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Abstract. Several ways of assigning probabilities to runs of timed au-
tomata (TA) have been proposed recently. When only the TA is given, a
relevant question is to design a probability distribution which represents
in the best possible way the runs of the TA. This question does not seem
to have been studied yet. We give an answer to it using a maximal entropy
approach. We introduce our variant of stochastic model, the stochastic
process over runs which permits to simulate random runs of any given
length with a linear number of atomic operations. We adapt the notion of
Shannon (continuous) entropy to such processes. Our main contribution
is an explicit formula defining a process Y ∗ which maximizes the entropy.
This formula is an adaptation of the so-called Shannon-Parry measure to
the timed automata setting. The process Y ∗ has the nice property to be
ergodic. As a consequence it has the asymptotic equipartition property
and thus the random sampling wrt. Y ∗ is quasi uniform.

1 Introduction

Timed automata (TA) were introduced in the early 90’s by Alur and Dill [4] and
then extensively studied, to model and verify the behaviours of real-time systems.
In this context of verification, several probability settings have been added to
TA (see references below). There are several reasons to add probabilities: this
permits (i) to reflect in a better way physical systems which behave randomly,
(ii) to reduce the size of the model by pruning the behaviors of null probability
[8], (iii) to resolve undeterminism when dealing with parallel composition [16,17].

In most of previous works on the subject (see e.g. [11,2,12,16]), probability
distributions on continuous and discrete transitions are given at the same time as
the timed settings. In these works, the choice of the probability functions is left
to the designer of the model. Whereas, she or he may want to provide only the
TA and ask the following question: what is the “best” choice of the probability
functions according to the TA given? Such a “best” choice must transform the
TA into a random generator of runs the least biased as possible, i.e it should
generate the runs as uniformly as possible to cover with high probability the
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maximum of behaviours of the modeled system. More precisely the probability
for a generated run to fall in a set should be proportional to the size (volume) of
this set (see [17] for a same requirement in the context of job-shop scheduling).
We formalize this question and propose an answer based on the notion of entropy
of TA introduced in [6].

The theory developed by Shannon [22] and his followers permits to solve
the analogous problem of quasi-uniform path generation in a finite graph. This
problem can be formulated like this: given a finite graph G, how can one find
a stationary Markov chain on G which allows one to generate the paths in the
most uniform manner? The answer is in two steps (see Chapter 1.8 of [20] and
also section 13.3 of [19]): (i) There exists a stationary Markov chain on G with
maximal entropy, the so called Shannon-Parry Markov chain; (ii) This stationary
Markov chain allows to generate paths quasi uniformly.

In this article we lift this theory to the timed automata setting. We work
with timed graphs which are to timed automata what finite directed graphs are
to finite state automata i.e. automata without labeling on edges and without
initial and final states. We define stochastic processes over runs of timed graphs
(SPOR) and their (continuous) entropy. This generalization of Markov chains
for TA has its own interest, it is up to our knowledge the first one which provides
a continuous probability distribution on starting states. Such a SPOR permits
to generate step by step random runs. As a main result we describe a maxi-
mal entropy SPOR which is stationary and ergodic and which generalizes the
Shannon-Parry Markov chain to TA (Theorem 1). Concepts of maximal entropy,
stationarity and ergodicity can be interesting by themselves, here we use them
as the key hypotheses to ensure a quasi uniform sampling (Theorem 2). More
precisely the result we prove is a variant of the so called Shannon-McMillan-
Breiman theorem also known as asymptotic equipartition property (AEP).

Potential applications. There are two kind of probabilistic model checking:
(i) the almost sure model checking aiming to decide if a model satisfies a for-
mula with probability one (e.g. [14,3]); (ii) the quantitative (probabilistic) model
checking (e.g. [12,16]) aiming to compare the probability of a formula to be sat-
isfied with some given threshold or to estimate directly this probability.

A first expected application of our results would be a “proportional” model
checking. The inputs of the problem are: a timed graph G, a formula ϕ, a thresh-
old θ ∈ [0, 1]. The question is whether the proportion of runs of G which satisfies
ϕ is greater than θ or not. A recipe to address this problem would be like this:
(i) take as a probabilistic model M the timed graph G together with the max-
imum entropy SPOR Y ∗ defined in our main theorem; (ii) run a quantitative
(probabilistic) model checking algorithm on the inputs M, ϕ, θ (the output of
the algorithm is yes or no whether M satisfies ϕ with a probability greater than
θ or not) (iii) use the same output for the proportional model checking problem.

A random simulation with a linear number of operations wrt. the length of
the run can be achieved with our probabilistic setting (Algorithm 1). It would
be interesting to incorporate the simulation of our maximal entropy process in a
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statistical model checking algorithm. Indeed random simulation is at the heart
of such kind of quantitative model checking (see [16] and reference therein).

The concepts handled in this article such as stationary stochastic processes
and their entropy, AEP, etc. come from information and coding theory (see
[15]). Our work can be a basis for the probabilistic counterpart of the timed
channel coding theory we have proposed in [5]. Another application in the same
flavour would be a compression methods of timed words accepting by a given
deterministic TA.
Related work.As mentioned above, this work is a generalization of the Shannon-
Parry theory to the TA setting. Up to our knowledge this is the first time that
a maximal entropy approach is used in the context of quantitative analysis of
real-time systems.

Our models of stochastic real-time system can be related to numerous previ-
ous works. Almost-sure model checking for probabilistic real-time system based
on generalized semi Markov processes GSMPs was presented in [3] at the same
time as the timed automata theory and by the same authors. This work was
followed by [2,11] which address the problem of quantitative model checking for
GSMPs under restricted hypotheses. The GSMPs have several differences with
TA; roughly they behave like this: in each location, clocks decrease until a clock
is null, at this moment an action corresponding to this clock is fired, the other
clocks are either reset, unchanged or purely canceled. Our probability setting is
more inspired by [8,14,16] where probability densities are added directly on the
TA. Here we add the new feature of an initial probability density function on
states.

In [16], a probability distribution on the runs of a network of priced timed
automaton is implicitly defined by a race between the components, each of them
having its own probability. This allows a simulation of random runs in a non
deterministic structure without state space explosion. There is no reason that the
probability obtained approximates uniformness and thus it is quite incomparable
to our objective.

Our techniques are based on the pioneering articles [6,7] on entropy of regular
timed languages. In the latter article and in [5], an interpretation of the entropy
of a timed language as information measure of the language was given.
Submitted version. This paper is the long version of the paper [9] submitted
to publication.

2 Stochastic processes on timed graphs

2.1 Timed graphs and their runs

In this subsection we define a timed graph3, which is the underlying structure
of a timed automaton [4]. For technical reasons we consider only timed graphs
with bounded clocks. We will justify this assumption in section 3.

3 A reader acquainted with timed automata will notice that a timed graph is just a
timed automaton without labels on transitions and without initial and final states.
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Timed graphs. Let X be a finite set of variables called clocks. Clocks have
non-negative values bounded by a constant M . A rectangular constraint has the
form x ∼ c where ∼∈ {≤, <,=, >,≥}, x ∈ X, c ∈ N. A diagonal constraint has
the form x−y ∼ c where x, y ∈ X. A guard is a finite conjunction of rectangular
constraints. We denote by Guards the set of all guards. A zone is a set of clock
vectors x ∈ [0,M ]X satisfying a finite conjunction of rectangular and diagonal
constraints. A region is a zone which is minimal for inclusion (e.g. the set of
points (x1, x2, x3, x4) which satisfy the constraints 0 = x2 < x3 − 4 = x4 − 3 <
x1 − 2 < 1). We denote by Reg the set of all regions. Regions of [0, 1]2 are
depicted in Fig 1.

A timed graph is a tuple (X,Q,∆, S, r, g) such that

– X is a finite set of clocks.
– Q is a finite set of locations.
– ∆ is a finite set of transitions. Any transition δ ∈ ∆ has a starting location

δ− ∈ Q and an ending location δ+ ∈ Q.
– S is the set of states which are couples of a location and a clock vector

(S ⊆ Q×[0,M ]X). It admits a region decomposition S = ∪q∈Q∪r∈Regq
{q}×r

where for each q ∈ Q, Regq ⊆ Reg is a set of regions. We denote by

Q̃ = {(q, r)|r ∈ Regq} and by Sq = ∪r∈Regq
r for q ∈ Q.

– r : ∆ → 2X gives for each transition the set of clocks to reset when firing it.
– g : ∆ → Guards gives for each transition the guard to satisfy to fire it.

Runs of the timed graph. A timed transition is an element (t, δ) of A =def

[0,M ]×∆. The time delay t represents the time before firing the transition δ.
Given a state s = (q,x) ∈ S (i.e x ∈ Sq) and a timed transition α = (t, δ) ∈ A

the successor of s by α is denoted by s ⊲ α and defined as follows. Let x′ be the
clock vector obtained from x + (t, . . . , t) by resetting clocks in r(δ) (x′

i = 0 if
i ∈ r(δ), x′

i = xi + t otherwise). If δ− = q, x+ (t, . . . , t) satisfies the guard g(δ)
and x′ ∈ Sδ+ then s ⊲ α = (δ+,x′) else s ⊲ α = ⊥. Here and in the rest of the
paper ⊥ represents every undefined state.

We extend the successor action ⊲ to words of timed transitions by induction:
s ⊲ ε = s and s ⊲ (αα′) = (s ⊲ α) ⊲α′ for all s ∈ S, α ∈ A, α′ ∈ A∗.

A run of the timed graph G is a word s0α0 · · · snαn ∈ (S× A)n+1 such that
si+1 = si ⊲ αi 6= ⊥ for all i ∈ {0, . . . , n − 1} and sn ⊲ αn 6= ⊥; its reduced
version is [s0, α0 . . . αn] ∈ S × An+1 (for all i > 0 the state si is determined by
its preceding states and timed transition and thus is a redundant information).
In the following we will use without distinction extended and reduced version of
runs. We denote by Rn the set of runs of length n (n ≥ 1).

Example 1. Let us consider the timed graph Gex1 depicted on the left of fig-
ure 1 with states given by Sq = r1 ∪ r2 where r1 and r2 are the region de-
scribed by the constraints 0 = y < x < 1 and 0 = x < y < 1 respectively.
Successor action for transition δ1 is defined by [q, (x, y)] ⊲ (t, δ1) = [q, (x′, y′)]
iff (x, y) ∈ Sq, y

′ = 0 and 0 < x′ = x + t < 1: for transition δ2 things are
defined symmetrically by exchanging x and y. An example of run of Gex1 is
(q, (0.5, 0))(0.4, δ1)(q, (0.9, 0))(0.8, δ2)(q, (0, 0.8))(0.1, δ1)(q, (0.1, 0)).
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Fig. 1. The running example. Left: a TG Gex1. Right: Its state space (in gray)

Integrating over states and runs; volume of runs. It is well known (see
[4]) that a region is uniquely described by the integer parts of clocks and by an
order on their fractional parts, e.g. in the region rex given by the constraints
0 = x2 < x3 − 4 = x4 − 3 < x1 − 2 < 1, the integer parts are ⌊x1⌋ = 2, ⌊x2⌋ =
0, ⌊x3⌋ = 4, ⌊x4⌋ = 3 and fractional parts are ordered like this 0 = {x2} <
{x3} = {x4} < {x1} < 1. We denote by γ1 < γ2 < · · · < γd the fractional
parts different from 0 of clocks of a region r (d is called the dimension of the
region). In our example the dimension of rex is 2 and (γ1, γ2) = (x3 − 4, x1 − 2).
We denote by Γr the simplex Γr = {γ ∈ Rd | 0 < γ1 < γ2 < · · · < γd < 1}.
The mapping φr : x 7→ γ is a natural bijection from the d dimensional region
r ⊂ R|X| to Γr ⊂ Rd. In the example the pre-image of a vector (γ1, γ2) is
(γ2 + 2, 0, γ1 + 4, γ1 + 3).

Example 2 (Continuing example 1). The region r1 = {(x, y) | 0 = y < x < 1} is
1-dimensional, φr1(x, y) = x and φ−1

r1
(γ) = (γ, 0).

Now, we introduce simplified notation for sums of integrals over states, transi-
tions and runs. We define the integral of an integrable4 function f : S → R (over
states):

∫

S

f(s)ds =
∑

(q,r)∈Q̃

∫

Γr

f(q, φ−1
r (γ))dγ.

where
∫

.dγ is the usual integral (wrt. Lebesgue measure). We define the integral
of an integrable function f : A → R (over timed transitions):

∫

A

f(α)dα =
∑

δ∈∆

∫

[0,M ]

f(t, δ)dt

and the integral of an integrable function f : Rn → R (over runs) with the
convention that f [s,α] = 0 if s ⊲ α = ⊥:

∫

Rn

f [s,α]d[s,α] =

∫

S

∫

A

. . .

∫

A

f [s,α]dα1 . . . dαnds

4 A function f : S → R is integrable if for each (q, r) ∈ Q̃ the function γ 7→
f(q, φ−1

r
(γ)) is Lebesgue integrable. A function f : A → R is integrable if for each

δ ∈ ∆ the function t 7→ f(t, δ) is Lebesgue integrable.

5



To summarize, we take finite sums over finite discrete sets Q̃, ∆ and take
integrals over dense sets Γr, [0,M ]. More precisely, all the integrals we define
have their corresponding measures5 which are products of counting measures on
discrete sets Σ, Q̃ and Lebesgue measure over subsets of Rm for some m ≥ 0
(e.g. Γr, [0,M ]). We denote by B(S) (resp. B(A)) the set of measurable subsets
of S (resp. A).

The volume of the set of n-length runs is defined by:

Vol(Rn) =

∫

Rn

1d[s,α] =

∫

S

∫

An

1s⊲α 6=⊥dαds

Remark 1. The use of reduced version of runs is crucial when dealing with in-
tegrals (and densities in the following). Indeed the following integral on the
extended version of runs is always null since variables are linked (si+1 = si ⊲ αi

for i = 0..n− 2):
∫

A

∫

S
. . .
∫

A

∫

S
1s0α0···sn−1αn−1∈Rn

ds0dα0 . . . dsn−1dαn−1 = 0.

2.2 SPOR on timed graphs

Let (Ω,F , P ) be a probability space. A stochastic process over runs (SPOR) of
a timed graph G is a sequence of random variables (Yn)n∈N = (Sn, An)n∈N such
that:

C.1) For all n ∈ N, Sn : (Ω,F , P ) → (S,B(S)) and An : (Ω,F , P ) → (A,B(A)).
C.2) The initial state S0 has a probability density function (PDF) p0 : S → R+

i.e. for every S ∈ B(S), P (S0 ∈ S) =
∫

s∈S
p0(s)ds (in particular P (S0 ∈

S) =
∫

s∈S
p0(s)ds = 1).

C.3) Probability on every timed transition only depends on the current state:
for every n ∈ N, A ∈ B(A), for almost every6 s ∈ S, y0 · · · yn ∈ (S× A)n,

P (An ∈ A|Sn = s, Yn = yn, . . . , Y0 = y0) = P (An ∈ A|Sn = s),

moreover this probability is given by a conditional7 PDF p(.|s) : A → R+

such that P (An ∈ A|Sn = s) =
∫

α∈A
p(α|s)dα and p(α|s) = 0 if s ⊲ α = ⊥

(in particular P (An ∈ A|Sn = s) =
∫

α∈A
p(α|s)dα = 1).

C.4) States are updated deterministically knowing the previous state and tran-
sition: Sn+1 = Sn ⊲ An.

For all n ≥ 1, Y0 · · ·Yn−1 has a PDF pn : Rn → R+ i.e. for every R ∈ B(Rn),
P (Y0 · · ·Yn−1 ∈ R) =

∫

Rn
pn[s,α]1[s,α]∈Rd[s,α]. This PDF can be defined with

the following chain rule:

pn[s0,α] = p0(s0)p(α0|s0)p(α1|s1) . . . p(αn−1|sn−1)

5 We refer the reader to [13] for an introduction to measure and probability theory.
6 A property prop (like “f is positive”, “well defined”...) on a set B holds almost
everywhere when the set where it is false has measure (volume) 0:

∫
B
1b�propdb = 0.

7 A necessary condition for the existence of p(.|s) is that
∫
α∈A

1s⊲α 6=⊥dα 6= 0. This is
the case for almost every s when considering V -connected timed graphs (see Section
3 for explanation about the technical assumptions).
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where for each j = 1..n− 1 the state updates are defined by sj = sj−1 ⊲ αj−1.
The SPOR (Yn)n∈N is called stationary whenever for all i, n ∈ N, Yi · · ·Yi+n−1

has the same PDF as Y0 · · ·Yn−1 which is pn.

Simulation according to a SPOR. Given a SPOR Y , a run (s0,α) ∈ Rn

can be chosen randomly w.r.t. Y using Algorithm 1 with a linear number of the
following operations: random pick according to p0 or p(.|s) and computing of a
successor.

Algorithm 1 Simulation according to a SPOR

1: Pick s0 according to p0;
2: for i = 0 to n− 1 do

3: Pick αi according to p(.|si);
4: si+1 ← si ⊲ αi;
5: end for

6: return [s0, α0α1 . . . αn−1]

2.3 Entropy

In this sub-section, we define entropy for timed graphs and SPOR. The first one
is inspired by [6] and the second one by [22].

Entropy of a timed graph Given a timed graph G, its entropy is defined by:

H(G) = lim sup
n→∞

log2(Vol(Rn))

n
. (1)

Proposition 1. When the timed graph G satisfies the technical assumptions de-
scribed in section 3, the lim sup in (1) is a true limit:

H(G) = lim
n→∞

log2(Vol(Rn))

n
.

When H(G) > −∞, we speak of a thick timed graph, the volume behaves wrt
n like an exponent: Vol(Rn) ≈ 2nH. WhenH(G) = −∞, we speak of a thin timed
graph, the volume decays faster than any exponent: ∀ρ > 0, Vol(Rn) << ρn.

Entropy of a SPOR

Proposition-definition 1 If Y is a stationary SPOR, then

−
1

n

∫

Rn

pn[s,α] log2 pn[s,α]d[s,α] →n→∞ −

∫

S

p0(s)

∫

A

p(α|s) log2 p(α|s)dαds.

This limit is called the entropy of Y , denoted by H(Y ).
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Proposition 2. Let G be a timed graph and Y be a stationary SPOR on G.
Then the entropy of Y is upper bounded by that of G: H(Y ) ≤ H(G).

The main contribution of this article is a construction of a stationary SPOR
for which the equality holds i.e. a timed analogue of the Shannon-Parry Markov
Chain [22,21].

3 Technical assumptions

In this section we explain and justify several technical assumptions on the timed
graph G we make in the following.
Bounded delays. If the delays were not bounded the sets of runs Rn would
have infinite volumes and thus a quasi uniform random generation cannot be
achieved.
Thickness. In the maximal entropy approach we adopt, we need that the en-
tropy is finite H(G) > −∞. This is why we restrict our attention to thick timed
graph. The dichotomy between thin and thick timed graphs was characterized
precisely in [10] where it appears that thin timed graph are degenerate.
V -connectivity of the timed graph. Given a word π = q̃0δ0 · · · q̃nδnq̃n+1 ∈
(Q̃×∆)∗Q̃ we denote byR(π) the set of runs s0α0 · · · snαn such that si ∈ q̃i, αi is
of the form αi = (ti, δi) and sn⊲αn ∈ q̃n+1. When Vol(R(π)) > 0, π is called a V -
region-path and q̃n is said to be V -reachable from q̃0. A V -connected component
of a timed graph G is a maximal subset of Q̃ (for inclusion) that contains at
least two elements and whose all elements are pairwise V -reachable from each
other. When the whole set Q̃ is a V -connected component then G is called V -
connected. Timed graphs can be decomposed in V -connected components like
finite graphs in strongly connected components. We will assume that the timed
graphs are V -connected.

Example 3. Consider the running example with states space given by Sq =
[0, 1]2. There is only one V -connected component: r1 ∪ r2.

Weak progress cycle condition. In [6] the following assumption was made:
for some positive integer constant D, on each path of D consecutive transitions
all the clocks are reset at least once.

Here we use a weaker condition: for a positive integer constant D, a timed
graph satisfies the D weak progress condition (D-WPC) if on each path of D
consecutive transitions at most one clock is not reset during the entire path.

The timed graph on figure 1 does not satisfy the progress cycle condition
(e.g. x is not reset along δ1) but satisfies the 1-WPC.

4 Maximal entropy SPOR and quasi uniform sampling

In this section G is a thick V -connected timed graph which satisfies the D-WPC
for some D > 1. We present a stationary SPOR Y ∗ for which the upper bound
on entropy is reached H(Y ∗) = H(G) (Theorem 1). Another key property of this
SPOR is the ergodicity we define now:

8



Ergodicity. Given a set of infinite runs R ⊆ (S × A)ω we denote by Ri+j
i ⊆

(S×A)j−i+1 (i, j ∈ N) the set of runs that can occur between indices i and j in an
infinite run of R. Let Y be a stationary SPOR then the sequence P (Y0 · · ·Yn ∈
Rn

0 ) decreases and converges to a value called the probability of R and denoted
by P (R) = limn→∞ P (Y0 · · ·Yn ∈ Rn

0 ). The set R is shift invariant if for every
i, n ∈ N: Ri+n

i = Rn
0 . A stochastic process is ergodic whenever it is stationary

and every shift invariant set has probability 0 or 1. Definition of ergodicity for
general probability measures can be found in [13].

4.1 Main theorems

Theorem 1. The following equations define the PDF of an ergodic SPOR Y ∗

with maximal entropy: H(Y ∗) = H(G).

p∗0(s) = w(s)v(s); p∗(α|s) =
v(s ⊲ α)

ρv(s)
. (2)

Objects ρ, v, w are spectral attributes of an operator Ψ defined in the next sub-
section.

An ergodic SPOR satisfies an asymptotic equipartition property (AEP) (see
[15] for classical AEP and [1] which deals with the case of non necessarily Marko-
vian stochastic processes with density). Here we give our own AEP. It strongly
relies on the pointwise ergodic theorem (see [13]) and on the Markovian property
satisfied by every SPOR (conditions C.3 and C.4).

Theorem 2 (AEP for SPOR). If Y is an ergodic SPOR then

P [{s0α0s1α1 · · · | −
1

n
log2 pn[s0, α0 · · ·αn] →n→+∞ H(Y )}] = 1

This theorem applied to the maximal entropy SPOR Y ∗ means that long runs
have a high probability to have a quasi uniform density:

p∗n[s0, α0 · · ·αn] ≈ 2−nH(Y ∗) ≈ 1/Vol(Rn) (since H(Y ∗) = H(G)).

4.2 Operator Ψ and its spectral attributes ρ, v, w.

Let Ln(s) be the set of words of timed transitions of length n that can be read
from s: Ln(s) = {α ∈ An | s ⊲ α 6= ⊥}. The volume of Ln(s) is denoted by
Vn(s) and is equal to Vn(s) =

∫

An 1s⊲α 6=⊥dα. This volume is related with the
volume of runs by the following equation: Vol(Rn) =

∫

S
Vn(s)ds. In [6], it was

shown that the sequence of volume functions Vn is simply described with the
recurrence formula:

∀s ∈ S, V0(s) = 1, Vn+1(s) =

∫

A

Vn(s ⊲ α)dα = ΨVn(s) (with Vn(⊥) = 0)
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where Ψ is an operator which acts on a well-chosen functional space where the
functions Vn lie. The operator Ψ is formally defined by:

∀s ∈ S, Ψf(s) =

∫

A

f(s ⊲ α)dα (with f(⊥) = 0). (3)

A good analogy to keep in mind is the following: operators act on functions as
matrices act on column vectors. Here the operator Ψ of a timed graph plays the
role of the adjacency matrix of a finite graph. We take as the functional space
for Ψ , the Hilbert space L2(S) of square integrable functions from S to R with
the scalar product 〈f, g〉 =

∫

S
f(s)g(s)ds and associated norm ||f ||2 =

√

〈f, f〉.

Proposition 3. The operator Ψ formally defined in (3) is a positive continuous
linear operator on L2(S).

The adjoint operator Ψ∗ (acting also on L2(S)) is defined with the equation:

∀f, g ∈ L2(S), 〈Ψf, g〉 = 〈f, Ψ∗g〉. (4)

An easier characterization of some power of Ψ∗ is ensured by proposition 4 below.
The definition of the real ρ used in (2) is given in the following theorem together
with its main properties.

Theorem 3 (adapted from [6] to L2(S)). Let ρ be the spectral radius8 of
Ψ . Then ρ is a positive eigenvalue (i.e. ∃v ∈ L2(S) s.t. Ψv = ρv) and H(G) =
log2(ρ).

Another theorem permits to define the eigenfunctions v, w.

Theorem 4. There exists a unique eigenfunction (up to a scalar constant) v of
Ψ (resp. w of Ψ∗) for the eigenvalue ρ which is positive almost everywhere. Any
non-negative eigenfunction of Ψ (resp. Ψ∗) is collinear to v (resp. w).

Eigenfunctions v and w are chosen such that 〈w, v〉 = 1. Operator Ψ and Ψ∗ are
easier to describe when elevated to some power greater than D the constant of
weak progress cycle condition.

Proposition 4. For every n ≥ D there exists a function kn ∈ L2(S × S) such
that: Ψn(f)(s) =

∫

S
kn(s, s

′)f(s′)ds′ and Ψ∗n(f)(s) =
∫

S
kn(s

′, s)f(s′)ds′.

It is worth mentioning that for any n ≥ D, the objects ρ, v (resp. w) are solutions
of the eigenvalue problem

∫

S
kn(s, s

′)v(s′)ds′ = ρnv(s) with v non negative (resp.
∫

S
kn(s

′, s)w(s′)ds′ = ρnw(s) with w non negative); unicity of v (resp. w) up to
a scalar constant is ensured by Theorem 4. Further computability issues for ρ, v
and w are discussed in the conclusion.

8 Recall from spectral theory that the spectrum of Ψ is the set {λ ∈ C s.t. Ψ −
λId is not invertible.}. The spectral radius ρ of Ψ is the radius of the smallest disc
centered in 0 which contains all the spectrum.

10



4.3 Running example completed

Example 4. Let us make (3) explicit on our running example.

Ψf(q, (x, 0)) =
∫

f(q, (x+ t, 0))10<x≤x+t<1dt +
∫

f(q, (0, t))10≤t<1dt
Ψf(q, (0, y)) =

∫

f(q, (t, 0))10≤t<1dt +
∫

f(q, (0, y + t))10<y≤y+t<1dt

The first (resp. second) line corresponds to functions defined on r1 (resp. r2).
The first (resp. second) row of integrals corresponds to transition δ1 (resp. δ2).
We introduce the simpler notation vr1(γ) = v(q, (γ, 0)) and vr1(γ) = v(q, (0, γ)).
With this notation the eigenvalue equation ρv = Ψv gives:

ρvr1(γ) =

∫ 1

γ

vr1(γ
′)dγ′+

∫ 1

0

vr2(γ
′)dγ′; ρvr2(γ) =

∫ 1

0

vr1(γ
′)dγ′+

∫ 1

γ

vr2(γ
′)dγ′.

Similarly the eigenfunction w satisfies:

ρwr1(γ) =

∫ γ

0

wr1(γ
′)dγ′+

∫ 1

0

wr2(γ
′)dγ′; ρwr2(γ) =

∫ 1

0

wr1(γ
′)dγ′+

∫ γ

0

wr2(γ
′)dγ′.

After some calculus we obtain that ρ = 1/ ln(2); vr1(γ) = vr2(γ) = C2−γ ;
wr1(γ) = wr2(γ) = C ′2γ with C and C ′ two positive constants.

Finally the maximal entropy SPOR for Gex1 is given by:

p∗0(q, (γ, 0)) = p∗0(q, (0, γ)) =
1

2
for γ ∈ (0, 1);

p∗(t, δ1|q, (γ, 0)) = p∗(t, δ2|q, (0, γ)) =
2−(γ+t)

ρ2−γ
=

2−t

ρ
for γ ∈ (0, 1), t ∈ [0, 1− γ);

p∗(t, δ2|q, (γ, 0)) = p∗(t, δ1|q, (0, γ)) =
2−t

ρ2−γ
=

2γ−t

ρ
for γ ∈ (0, 1), t ∈ [0, 1− γ).

5 More details about Ψ

Kernels. An operator Ψ is said to be an Hilbert-Schmidt integral operator
(HSIO) if there exists a function k ∈ L2(S× S) (called the kernel) such that

∀s ∈ S, Ψf(s) =

∫

s′∈S

k(s, s′)f(s′)ds′.

With HSIOs, analogy with matrices is strengthen and easier to use e.g. when
Ψ has a kernel k then Ψ∗ has the kernel: k∗(s, s′) = k(s′, s) (it is a direct
analogue of matrix transposition). Moreover HSIOs have the good property to
be compact. The compactness of ΨD was the key technical point used in [6] to
prove a theorem similar to our theorem 3. Here the proposition 4 we have given
is a slightly stronger result, it implies that ΨD and (Ψ∗)D are Hilbert-Schmidt
integral operator.

It is convenient to adopt the following matrix notation: the set Q̃ is the set
of indices, each function f of L2(S) is represented by a row vector f of functions

11



f(q,r) ∈ L2(Γr). The operator Ψ is represented as a Q̃× Q̃ matrix [Ψ ] for which
each element [Ψ ](q,r)(q′,r′) is an operator from L2(Γr′) to L2(Γr). Action of [Ψ ]
on f is given by the following formula:

∀i ∈ Q̃, ([Ψ ]f)i =
∑

j∈Q̃

[Ψ ]ijfj .

With this matrix notation the matrix for Ψ∗ is simply defined by: for all i, j ∈
Q̃, [Ψ∗]ij = ([Ψ ]ji)

∗.

Sketch of proof of theorem 4. The proof of Theorem 4 is based on theorem
11.1 condition e) of [18] which is a variant of the Krein-Rutman theorem. For
this theorem to work in our special case, the main point to prove is that Ψ is
an irreducible operator on L2(S). A sufficient condition for irreducibility9 is the
conclusion of the following key lemma.

Lemma 1. If G is thick, V -connected and satisfies the D-WPC then for all
i = (q, r), j = (q′, r′) ∈ Q̃, there exists n ∈ N such that the operator [Ψn]ij :
L2(Γr′) → L2(Γr) has a kernel kij ∈ L2(Γr × Γr′) positive almost everywhere.

6 Conclusion and perspectives

In this article, we have proved the existence of an ergodic stochastic process over
runs of a timed graph G with maximal entropy, provided G has finite entropy
(H > −∞) and satisfies the D weak progress condition.

The next question is to know how simulation can be achieved in practice.
Symbolic computation of ρ and v have been proposed in [6] for subclasses of
deterministic TA. In the same article, an iterative procedure is also given to
estimate the entropy H = log2(ρ). We think that approximations of ρ, v and w
using an iterative procedure on Ψ and Ψ∗ would give a SPOR with entropy as
close to the maximum as we want. A challenging task for us is to determine an
upper bound on the convergence rate of such an iterative procedure.

Connection with information theory is clear if we consider as in [5], a timed
regular language as a source of timed words. A SPOR is in this approach a
stochastic source of timed words. It would be very interesting to lift compression
methods (see [20,15]) from untimed to timed setting.

Acknowledgements.

I thank Eugene Asarin, Aldric Degorre and Dominique Perrin for sharing moti-
vating discussions.

9 One can remark the analogy between conclusion of lemma 1 and irreducibility of
matrices: a n×n-matrix P is said to be irreducible whenever for all i, j ∈ {1, . . . , n}
there exists n ≥ 1 such that Pn

ij > 0. Several definitions of irreducibility (in more
general settings) are given in [18]. We give such a definition in the detailed proof of
Theorem 4 below (section B.3)
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Appendix

We give more details on our running example and another example in section
A. We give all the proof details in the remaining of the appendix.

A Examples

A.1 More details on the running example

We give details of computation for Example 4. The matrix notation of (3) is:

[Ψ ]

(

fr1
fr2

)

=

(

γ 7→
∫ 1

γ
fr1(γ

′)dγ′ +
∫ 1

0
fr2(γ

′)dγ′

γ 7→
∫ 1

0
fr1(γ

′)dγ′ +
∫ 1

γ
fr2(γ

′)dγ′

)

We can deduce that operators Ψ and Ψ∗ are HSIO with matrices of kernels:

k =

(

10<γ≤γ′<1 10<γ′<1

10<γ′<1 10<γ≤γ′<1

)

; k∗ =

(

10<γ′≤γ<1 10<γ′<1

10<γ′<1 10<γ′≤γ<1

)

.

Eigenfunctions and spectral radius v, w, ρ are solutions of the eigenvalue equa-
tions [Ψ ]v = ρv and [Ψ∗]w = ρw i.e. of the following equations (given in the
core of the article):

ρvr1(γ) =

∫ 1

γ

vr1(γ
′)dγ′ +

∫ 1

0

vr2(γ
′)dγ′;

ρvr2(γ) =

∫ 1

0

vr1(γ
′)dγ′ +

∫ 1

γ

vr2(γ
′)dγ′;

ρwr1(γ) =

∫ γ

0

wr1(γ
′)dγ′ +

∫ 1

0

wr2(γ
′)dγ′;

ρwr2(γ) =

∫ 1

0

wr1(γ
′)dγ′ +

∫ γ

0

wr2(γ
′)dγ′.

We differentiate one time the equations and obtain:

ρv′ri(γ) = −vri(γ); ρw
′
ri(γ) = wri(γ) (i ∈ {1, 2}).

Thus the functions are of the form vri(γ) = vri(0)e
−γ/ρ, wri(γ) = wri(0)e

γ/ρ.

Remark that ρvr1(0) =
∫ 1

0
vr1(γ

′)dγ′+
∫ 1

0
vr2(γ

′)dγ′ = ρvr2(0) and thus vr1 = vr2
(we can divide by ρ > 0 since we can prove that H > −∞ using theory of [10]).
Similarly wr1(1) = wr2(1) and thus wr1 = wr2 . The constant ρ satisfies the

condition vr1(0) = 2
∫ 1

0
vr1(γ

′)dγ′/ρ = 2vr1(1) = 2vr1(0)e
−1/ρ. Thus we obtain:

ρ = 1
ln(2) ;

(

vr1(γ)
vr2(γ)

)

= C

(

2−γ

2−γ

)

;

(

wr1(γ)
wr2(γ)

)

= C ′

(

2γ

2γ

)

with C and C ′ two

positive constants.



p q

a, 0 < x < 1, {x}

b, 0 < y < 1, {y}

Fig. 2. A timed graph whose operator is self adjoint: Gex2

A.2 One more example

Let us consider the timed graph depicted on Fig. 2. We set Sp and Sq to be the
region r1 = {(x, y) | 0 = y < x < 1} and r2 = {(x, y) | 0 = x < y < 1}.

The operators Ψ and Ψ∗ are equal, indeed they are HSIO with the same
matrices of kernels10:

k = k∗ =

(

0 10<γ′<1−γ<1

10<γ′<1−γ<1 0

)

The maximal entropy SPOR is given by the following PDFs:

p∗0(p, (γ, 0)) = p∗0(q, (0, γ)) = cos2
(π

2
γ
)

for γ ∈ (0, 1);

p∗(t, a|p, (γ, 0)) = p∗(t, b|q, (0, γ)) =
π

2

cos(π2 t)

cos(π2 γ)
1t<1−γ for γ ∈ (0, 1), t ∈ [0, 1−γ);

B Proofs

B.1 Results of section 2.3

The proof of Proposition 1 is a consequence of (8) given at the end of the proof
of Theorem 3 (the lim sup coincides with the lim inf and thus is a true limit).

Proof of Proposition-definition 1.

−

∫

Rn

pn[s0,α] log2 pn[s0,α]d[s0,α]/n = E(− log p[S0, A0 · · ·An])/n

= E[− log p0(S0)
n
∏

i=0

p(Ai|Si)]/n

= −E[log p0(S0)]/n−

n
∑

i=0

E[log p(Ai|Si)]/n

= −E[log p0(S0)]/n− E[log p(A0|S0)] by stationarity

This quantity tends to −E(log p(A0|S0)) when n tends to +∞ which is equal to
−
∫

S
p0(s)

∫

A
p(α|s) log2 p(α|s)dαds.

⊓⊔
10 Such a self adjoint operator (i.e. Ψ = Ψ∗) in a Hilbert space has nice properties.
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Proof of Propostion 2. The proof follows from the following fact: for all
n ∈ N,

−

∫

Rn

pn[s,α] log2 pn[s,α]d[s,α] ≤ log2(Vol(Rn)) (5)

We need some definitions and properties concerning Kullback-Leibler diver-
gence before proving this fact.

The Kullback-Leibler-divergence11 (KL-divergence) from a PDF pn to an-
other p′n is

D(pn||p
′
n) =

∫

Rn

pn[s,α] log2
pn[s,α]

p′n[s,α]
d[s,α].

The KL-divergence is always positive with equality to 0 if and only if pn and p′n
are equal almost everywhere (see [15] chapter 8). It permits to measure how far
a probability distribution is from another.

Now we can prove (5). The KL-divergence from an arbitrary distribution pn
to the uniform distribution [s,α] 7→ 1/Vol(Rn) is log2(Vol(Rn)) − h(pn) ≥ 0
with equality if and only if pn is uniform almost everywhere.

B.2 Extended proofs of results of section 5

We give some needed material before giving the proof of proposition 3

Lemma 2. Let δ ∈ ∆, r ∈ Regδ− , r
′ ∈ Regδ+ , γ ∈ Γr, γ

′ ∈ Γr′ and t be a
timed delay. If (δ−, γ) ⊲ (t, δ) = (δ+, γ′) then

∀j ∈ {1, . . . , dimr}, ∃i ∈ {0, . . . , dimr′}, γ′
j = {γi + t}

where by convention γ0 = 0 represents the clocks which are null in r.

Proof. Let x = φ−1
r (γ) and x′ = φ−1

r (γ′). For all j ∈ {1, . . . , dimr′} there is a
clock x′

l such that its fractional part ({x′
l} = x′

l−⌊x′
l⌋) is equal to γj and thus this

clock was not reset by the action of (t, δ). We have x′
l = xl+ t and xl = ⌊xl⌋+γi

for some i. Combining all together: γ′
j = x′

l+C(1) = xl+ t+C(1) = γi+ t+C(2)

where C(1), C(2) are integer constants. Taking fractional part in both sides of
equality gives the result. ⊓⊔

The set G(δ, r, r′) and G′(δ, r, r′). Let δ ∈ ∆, r ∈ Regδ− , r
′ ∈ Regδ+ . We

denote by G(δ, r, r′) the set {(γ, t) ∈ Γr × [0,M ] | (δ−, γ) ⊲ (t, δ) ∈ {δ+} × r′}.
For a real y we denote by {y} its fractional part. The change of coordinates
φ : (γ, t) 7→ ({γ1 + t}, . . . {γdimr

+ t}, {t}) preserves the volume (its Jacobian is
1). Let (γ, t) ∈ G(δ, r, r′) and γ′ such that (δ−, γ)⊲(t, δ) = (δ+, γ′). By the lemma
just above coordinates of φ(γ, t) = ({γ1 + t}, . . . {γdimr

+ t}, {t}) can be split
into two vectors: one is γ′ and the other denoted by σ contains the remaining
coordinates. We abuse the notation and note φ(γ, t) = (γ′, σ) (the equality holds
in fact for some coordinates reordering that only depends on δ, r, r′). We denote
by G′(δ, r, r′) = φ(G(δ, r, r′)).

11 this notion has a lot of names such as relative entropy, Kullback-Leibler distance,
KLIC...
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Proof of proposition 3. Let f ∈ L2(S), we first prove the following inequality
∫

S

∫

A

f(s ⊲ α)2dαds ≤

∫

s′
f(s′)2ds′ = ||f ||2 (6)

We have
∫

S

∫

A

f(s ⊲ α)2dαds =
∑

δ∈∆

∑

r∈Reg
δ−

∑

r′∈Reg
δ+

∫

(γ,t)∈G(δ,r,r′)

f((δ−, γ) ⊲ (t, δ))2dγdt

=
∑

δ∈∆

∑

r∈Reg
δ−

∑

r′∈Reg
δ+

∫

(γ′,σ)∈G′(δ,r,r′)

f(δ+, γ′)2dγ′dσ

If we denote by g(γ′) = Vol({σ | (γ′, σ) ∈ G′(δ, r, r′)}) we can simplify the last
integral:

∫

(γ′,σ)∈G′(δ,r,r′)

f(δ+, γ′)2dγ′dσ =

∫

γ′∈r′
f(δ+, γ′)2g(γ′)dγ′

The coordinates of σ belong to [0, 1] and thus for every γ′ ∈ r′, the set {σ |
(γ′, σ) ∈ G′(δ, r, r′)} is included in a hypercube of side 1. We deduce that g(γ′) ≤
1 for every γ′ ∈ r′ and obtain the inequality (6).

Now we prove that Ψ acts on L2(S). We have [Ψ(f)(s)]2 = (
∫

A
f(s⊲α)dα)2 ≤

Vol(A)
∫

A
f(s ⊲ α)2dα by the Cauchy-Schwartz inequality on L2(A) applied to

the constant function 1 and the function α 7→ f(s ⊲ α) (this last function is
defined and integrable for almost every s by Fubini’s theorem and inequality
(6)).

We will conclude the proof by bounding for all f ∈ L2(S) the operator norm

||Ψ(f)||2 = (
∫

S
Ψ(f)(s)2ds)

1
2 by Vol(A)

1
2 ||f ||2:

||Ψ(f)||2 =

∫

S

Ψ(f)(s)2ds =

∫

S

(
∫

A

f(s ⊲ α)dα

)2

ds

≤ Vol(A)

∫

S

∫

A

f(s ⊲ α)2dαds

≤ Vol(A)||f ||2

The last inequality comes from inequality (6). ⊓⊔

Proof of Lemma 1 and Proposition 4. This lemma is a consequence of
Lemmas 3 and 4 below while Proposition 4 is a straightforward corollary of
Lemma 3. We need some definition to state these lemmas and their proofs.
Let i = (q, r), j = (q′, r′) ∈ Q̃, we denote by Reach(n, i, j) the set {(γ, γ′) ∈
Γr × Γr′ | ∃α ∈ An, (q, γ) ⊲ α = (q′, γ′)}. Let π = r0δ1 · · · rn−1δnrn be a V -
region-path from i = (q0, r0) to j = (qn, rn), γ ∈ r0 and t ∈ [0,M ]n. The
successor of γ by t is denoted by γ ⊲π t and defined as follows: If (q, φ−1

r0
(γ)) ⊲

(t1, δ1) · · · (tn, δn) = ⊥ then γ ⊲π t = ⊥ else γ ⊲π t = φrn(x
′) where (qn,x

′) =
(q, φ−1

r0
(γ)) ⊲ (t1, δ1) · · · (tn, δn).

We denote by Reach(π) = {(γ, γ′) | ∃t ∈ [0,M ]n, γ ⊲π t = γ′}.
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Lemma 3. If G is thick, V -connected and verifies the D weak progress condition
then for all i = (q, r), j = (q′, r′) ∈ Q̃, for all n ≥ D, the operator [Ψn]ij :
L2(Γr) → L2(Γr′) has a kernel kij ∈ L2(Γr × Γr′) positive almost everywhere in
Reach(n, i, j) and piecewise polynomial. Such functions kij are computable.

Proof. Let n ≥ D. We first decompose [Ψn]ij into a sum of operator along V -
region-paths π from i = (q, r) to j = (q′, r′). Given a V -region-path π, we define

Ψπf(γ) =

∫

t∈[0,M ]n
f(γ ⊲π t)dt.

with the convention that f(x ⊲π t) is non-zero only if x ⊲π t 6= ⊥. We can
decompose Ψn into a sum of operators Ψπ as follows:

[Ψn]ijf(γ) =
∑

π|π goes from i to j and |π| = n

Ψπf(γ).

Now it suffices to prove that if π is a V -region-path leading from i to j and
with |π| = n then Ψπ has a kernel kπ which is piecewise polynomial and non-zero
in the interior of Reach(π) = {(γ, γ′) | ∃t ∈ [0,M ]n, γ ⊲π t = γ′}.

The idea of the proof is to operate a change of coordinate which transforms
several time delays of t into the vector coordinates γ′. Let d′ = dim(r′). In r′,
there are d′ clocks non zero which fractional parts are pairwise different and
which corresponds to coordinates of γ′. We sort them like this y1 < · · · < yd

′

.
By the D weak progress condition, only one clock is not reset during π, this must
be the oldest and thus the greatest: yd

′

. If yd
′

was not reset along π its value
is of the form yd

′

= x+
∑i=n

i=1 ti where x is a clock possibly null of the starting

region rp (in this case we pose id′ = 1), otherwise it is of the form yd
′

=
∑i=n

i=id′
ti

where id′ −1 ∈ {1, . . . n−1} is the index of the transition where yd
′

was reset for
the last time. Similarly for the other clocks we define i1 > i2 > · · · > id where
for each l = 1..d′ − 1, il − 1 is the index of the transition where yl was reset for
the last time. We have thus yl =

∑i=n
i=il

ti.

We denote by I the set of indices {i1, . . . , id′} and Ī = {1, . . . , n} \ I. The
function which maps tI = (ti1 , . . . , tid′ ) to (y1, . . . , yd′) is a change of coordinates
whose Jacobian is 1. We write vectors t ∈ Rn as t = (tĪ , tI)I to say that tĪ
regroups the coordinate of t whose indices are in Ī and tI regroup the coordinate
of t whose indices are in I. The function which maps t = (tĪ , tI)I to (tĪ , γ

′)I is
a change of coordinate whose jacobian is 1 (γ′ is obtained from (y1, . . . , yd′) by
a translation by the constant vector (⌊y1⌋, . . . , ⌊yd′⌋) followed by a permutation
of coordinates).

Now let us consider the domains of integration before and after the change of
coordinates. We denote by L(π, γ) the old domain of integration {t | γ⊲π t 6= ⊥},
this domain is a polytope (see for instance [10]). We denote by P the new domain
of integration i.e. (tĪ , tI)I ∈ L(π, γ) iff (tĪ , γ

′)I ∈ P . When we fix γ, γ′ we denote
by L(π, γ, γ′) the set of vectors tĪ such that (tĪ , γ

′)I ∈ P . This corresponds
intuitively to the set of timed vectors which leads from γ to γ′. Now, remark
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that (tĪ , γ
′)I ∈ P iff (γ, γ′) ∈ Reach(π) and tĪ ∈ L(π, γ, γ′) and thus we have:

Ψπf(γ) =

∫ ∫

1γ,γ′∈Reach(π)1tĪ∈L(π,γ,γ′)f(γ
′)dtĪdγ

′

We obtain the expected form of Ψπ by defining the kernel as

kπ(γ, γ
′) = 1(γ,γ′)∈Reach(π)Vol[L(π, γ, γ

′)].

It remains to prove that this kernel is piecewise polynomial and non null when
(γ, γ′) ∈ Reach(π). We have (γ, γ′) ∈ Reach(π) if and only if the set L(π, γ, γ′)
is non empty. In this case L(π, γ, γ′) is moreover an open polytope as a section
of the open polytope L(π, γ), its volume is thus positive and so is kπ(γ, γ

′).
The polytope L(π, γ, γ′) can be defined by a conjunction of inequalities of the

following form:
∑

i∈Ī aiti+
∑dim(r)

i=1 biγi+
∑dim(r′)

i=1 ciγ
′
i ≥ d with ai, bi, ci, d ∈ Q.

The volume of such a polytope (when integrating the ti) can be shown to be
piecewise polynomial in γi and γ′

j (i = 1.. dim(r), j = 1.. dim(r′)). ⊓⊔

Lemma 4. When G is thick and V -connected, for any constant D, there exists
an n ≥ D such that Reach(n, i, j) = Γr × Γr′

Proof. This lemma is a direct consequence of results of [10]. The following as-
sertions and definitions (slightly adapted to our notation) can be found in [10].
A V -region-path π from i to j is called forgetful if Reach(π) = Γr × Γr′ where
Reach(π) is the reachability relation restrained to π. Every V -region-path which
contains a forgetful cycle is forgetful (see [10] for a definition of forgetfulness).
If G is thick it contains a forgetful cycle f (with |f | > 0). Let l ∈ Q̃ such that
f leads from l to l and π, π′ such that π leads from i to l and π′ leads from
l to j. Let m ≥ D, the path πfmπ′ is forgetful leads from i to j and thus
Reach(m+ |π|+ |π′|, i, j) = Γr × Γr′ ⊓⊔

The following proposition ensure some regularity for eigenfunctions which
permits to adapt the results of [6] to our settings.

Proposition 5. If G is thick, V -connected and satisfies the D weak progress
condition, for each eigenvalue λ 6= 0, each solution f of the eigenfunction equa-
tion Ψf = λf (resp Ψ∗f = λf) is continuous and bounded12.

Proof of proposition 5. Let f be a solution of the eigenfunction equation
Ψf = λf . Lemma 3 implies that ΨD is a kernel operator with a kernel k piece-
wise polynomial. The function f satisfies for almost every s: ΨDf(s) = λDf(s) =
∫

k(s, s′)f(s′)ds′. Thus f is bounded almost everywhere by λ−D sup(k)
∫

|f(s′)|ds′.
We have describe precisely the form of k in the proof of Lemma 3: for each

i = (q, r), j = (q′, r′) ∈ Q̃ the kernel kij of [ΨD]ij is a sum of kernel of the form
(see the proof of Lemma 3):

kπ(γ, γ
′) = 1(γ,γ′)∈Reach(π)Vol[L(π, γ, γ

′)].

12 To be more formal, f as an element of L2 is a class of functions pairwise equal almost
everywhere, it admits a unique representative which is continuous and bounded.
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The function γ 7→
∫

kπ(γ, γ
′)f(γ′)dγ′ is continuous since the domain of inte-

gration (γ′ | (γ, γ′) ∈ Reach(π)) depends continuously on γ and the integrand is
continuous w.r.t γ and bounded almost everywhere. By summing over all path
π, we obtain that f : s 7→ λ−D

∫

k(s, s′)f(s′)ds′ is continuous and bounded.
The same proof can be written for Ψ∗. ⊓⊔

Proof of Theorem 3. We adapt to the functional space L2(S) the proof of the
main theorem of [6].
Proof of H(G) ≤ log2 ρ: The so called Gelfland formula gives

ρ = lim
n→∞

||Ψn||2
1
n .

As Vn = Ψn(1) we have

||Vn||2 = ||Ψn1||2 ≤ ||Ψn||2||1||2

and thus

lim sup
n→∞

log(||Vn||2)

n
≤ log2 ρ.

Recall that

H(G) = lim sup
n→∞

log(Vol(Rn))

n

and that

Vol(Rn) =

∫

S

Vn(s)ds = ||Vn||1.

Thus

H(G) = lim sup
n→∞

log(||Vn||1)

n
.

It remains to prove that

lim sup
n→∞

log(||Vn||1)

n
≤ lim sup

n→∞

log(||Vn||2)

n
.

This come from the Cauchy-Schwartz inequality:

||Vn||1 ≤ ||Vn||2||1||2 ≤ ||Vn||2
√

Vol(S).

Proof of ρ is a positive eigenvalue for Ψ and Ψ∗:
By the preceding part of the proof and using the hypothesis H > −∞ we

have ρ ≥ 2H > 0. A necessary condition for a positive spectral radius to be an
eigenvalue is the compactness of some power An of the operator A where A = Ψ
or Ψ∗. This is ensured by proposition 4 as HSIOs are compacts operator. Thus
there exists v such that Ψv = ρv and w such that Ψ∗w = ρw.
Proof of log2 ρ = H(G):
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Proposition 5 ensures that the eigenfunction v define above is continuous and
bounded (everywhere). Let C be an upper bound for v i.e a positive constant
such that ∀s ∈ S, |v(s)| < C. We have that

∀s ∈ S, n ∈ N, ρn|v(s)| = |Ψnv(s)| ≤ Ψn|v|(s) ≤ CΨn1(s) = CVn(s). (7)

where the first inequality is a variant of the so called triangular inequality, it
can be proven like this: let v+ and v− be the positive and the negative part of
v then

|Ψnv(s)| = |Ψnv+(s)−Ψnv−(s)| ≤ |Ψnv+(s)|+|Ψnv−(s)| = Ψnv+(s)+Ψnv−(s) = Ψn|v|(s).

Now we integrate (7) wrt. s and obtain 0 < ρn||v||1 ≤ C||Vn||1 = CVol(Rn).
Taking lim infn→∞

1
n log(.) in this latter inequality we obtain:

log2 ρ ≤ lim inf
n→∞

1

n
log(Vol(Rn)) ≤ lim sup

n→∞

1

n
log(Vol(Rn)) = H(G) ≤ log2 ρ

(8)
where the last inequality comes from the previous part of the proof. Thus all
inequalities of (8) are equalities and we conclude that log2 ρ = H(G). ⊓⊔

B.3 proof of theorem 4

We first recall some definitions of spectral theory needed to use theorem 11.1
condition e) of [18]:

An operator is said to be irreducible if the following condition holds: if Ψf ≤
af for some a > 0 and a non-negative non-null f ∈ L2 implies that f is quasi-
interior which means that 〈f, g〉 > 0 for every non-negative and non null g ∈
L2(S).

Lemma 5. Ψ and Ψ∗ are irreducible.

Proof. Let f ∈ L2 non-negative non-null and a > 0 such that Ψf ≤ af . Let
g ∈ L2(S) be non negative and non null; we show that 〈f, g〉 > 0. There are
i, j ∈ Q̃ such that gi, fj are non negative and non null. By lemma 3 and 4 there
exists an n such that [Ψn]ij has a kernel kij positive almost everywhere and thus
[Ψn]ijfj(s) =

∫

s′
kij(s, s

′)f(s′)ds′ > 0 for almost every s. We are done since

an〈f, g〉 ≥ 〈Ψnf, g〉 ≥ 〈[Ψn]ijfj , gi〉 > 0.

One can easily adapt the proof for Ψ∗ (using kernels of Ψ∗: k∗ij = kji). ⊓⊔

The conclusion of theorem 3 furnish the hypotheses of theorem 11.1 condition
e) of [18] (written below). We take as a cone K, the subset of L2(S) of non-
negative function. It satisfies Ψ(K) ⊆ K, it is minihedral ([18]6.1 example d))
and it is reproducing i.e. all functions of f ∈ L2(S) can be written as f = f+−f−

with f−, f+ ∈ K. The conclusion of this latter theorem achieve the proof of our
theorem.
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Theorem 5 ([18], theorem 11.1 condition e)). Suppose that ΨK ⊆ K, Ψ
has a normalized eigenfunction v ∈ K with corresponding eigenvalue ρ, K is
reproducing and minihedral, the operator Ψ is irreducible and the operator Ψ∗

has an eigenfunction w in K∗ which correspond to the eigenvalue ρ. Then the
eigenvalue is simple and there is no other normalized eigenfunction different
from ρ in K.

C Proof of main theorems (section 4.1)

We give the proof of theorem 1 in several steps

C.1 Proof of Y is a SPOR

The function v and w are defined up to a scaling constant in Theorem 4 and
are chosen such that

∫

S
p∗0(s) = 〈v, w〉 = 1. The function v is positive almost

everywhere and v(s ⊲ α) = 0 when s ⊲ α = ⊥ thus p(α|s) is defined for almost

every s ∈ S, α ∈ A and equals 0 when s ⊲ α = ⊥. Finally we have
∫

A

v(s⊲α)
ρv(s) dα =

Ψv(s)
ρv(s) = 1 since v is an eigenfunction for ρ. ⊓⊔

C.2 Proof of Y ∗ is stationary

First we remark that a SPOR is stationary whenever the probability on states
remains the same:

Proposition 6. a SPOR is stationary if and only if S1 has the PDF p0.

Proof. The only if part is straightforward. For the other part let Y be a SPOR
such that S1 has the PDF p0. We show by recurrence that Sn has the PDF
p0 (n ≥ 1). For this, let us suppose that Sn has the PDF p0. We show that
Sn+1 has the same law has S1 and thus has the PDF p0. P (Sn+1 ∈ S) =
∫

S

∫

A
p0(s)p(α|s)P (Sn⊲An ∈ S|Sn = s,An = α)dαds=

∫

S

∫

A
p0(s)p(α|s)1s⊲α∈Sdαds =

P (S1 ∈ S).
Y i+n
i has the PDF p0(s)p(α|s) and thus has the same law as Y n

0 . ⊓⊔

We applied this proposition to show that Y ∗ is stationary

Proof.

P (S1 ∈ S) = P (S0 ⊲ A0 ∈ S)

=

∫

S

∫

A

p0(s)p(α|s)1s⊲α∈Sdαds

=

∫

S

w(s)

∫

A

v(s ⊲ α)1s⊲α∈Sdαds

= 〈w, Ψ(v1S)〉/ρ

= 〈Ψ∗w, v1S〉/ρ

= 〈w, v1S〉 =

∫

S

p0(s)1S(s)ds

= P (S0 ∈ S).
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C.3 Proof of H(Y ∗) = H(G)

H(Y ∗) = −

∫

S

p0(s)

∫

A

p(α|s) log2 p(α|s)dαds

= −

∫

S

v(s)w(s)

∫

A

v(s ⊲ α)

ρv(s)
log2

v(s ⊲ α)

ρv(s)
dαds

= −
1

ρ

∫

S

w(s)

∫

A

v(s ⊲ α)[log2 v(s ⊲ α)− log2(ρv(s))]dαds

= −
1

ρ
〈w, Ψ(v log2 v)〉+

1

ρ
〈w log2 v, Ψv〉+

log2 ρ

ρ
〈w, Ψv〉

= −
1

ρ
〈Ψ∗w, v log2 v〉+ 〈w log2 v, v〉+ log2(ρ)〈w, v〉 since v is an eigenfunction of Ψ for ρ

= −〈w, v log2 v〉+ 〈w log2 v, v〉+ log2(ρ) since 〈w, v〉 = 1 and w is an eigenfunction of Ψ∗ for ρ

= log2(ρ) = H(G).

All the computations above are well defined since all the functions considered
are bounded and continuous as a consequence of Proposition 5.

C.4 Ergodicity of Y ∗

We first introduce a “stochastic” operator ϕ which is the continuous analogue
of a stochastic matrix. We then prove an ergodic property on ϕ (proposition 9).

Operator ϕ and its conjugate ϕ∗. Let L2(v
2ds) be the space of function f

such that fv ∈ L2(v
2ds). The dual space of L2(v

2ds) is isomorphic to L2(ds/v
2).

The norm on L2(v
2ds) is ||f ||L2(v2ds) = ||fv||2.

Let ϕ : L2(v
2ds) → L2(v

2ds) be the linear operator defined by ϕ(f) =
Ψ(vf)/v. On can see that ϕ∗(f) = vΨ∗(f/v).

The operators ϕk are associated with the conditional PDFs pk(α|s) = pk(α)/p0(s)
as shown by the following equation:

ϕk(f)(s) =

∫

α∈Ak

p(α|s)f(s ⊲α)dα. (9)

The analogy between the operator ϕ and the matrix of a finite Markov chain
can also be applied to the eigenfunctions. The eigenfunctions for the spectral
radius of ϕ (which is 1) are the constant functions while the eigenfunctions
for the adjoint (analogous with the transposed matrix) are all collinear to the
stationary PDF on states p∗0. First we have an existence lemma

Lemma 6. ϕ(1) = 1, ϕ∗(p∗0) = p∗0.

Then we have uniqueness given in the following proposition. This is an ap-
plication of Theorem 5 we have already use to prove Theorem 4.
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Proposition 7. The spectral radius of ϕ is 1. It is a simple eigenvalue of ϕ for
which 1 is an eigenfunction (ϕ(1) = 1). Every positive eigenfunction of ϕ are
constant (i.e. collinear to 1). p∗0 is an eigenfunction of ϕ∗ for the spectral radius
1 which is a simple eigenvalue (ϕ∗(p∗0) = p∗0). Every positive eigenfunction of ϕ∗

are collinear to p∗0.

Proposition 8. Some power ϕp (p ∈ N) has a spectral gap, i.e. the spectral
radius of ϕp is a simple eigenvalue (here all the eigenfunctions for the spectral
radius 1 are constant) and the rest of the spectrum of ϕp belongs to the disc
Cλ = {z||z| ≤ λ} for some λ strictly lower than the spectral radius.

Proof. ϕ is a compact operator with spectral radius 1. A well known results in
spectral theory asserts that there is only a countable number of point in the
spectrum of a compact operator and that all nonzero points of the spectrum are
isolated and are eigenvalues.

We can apply the theorem at the beginning of section 3.4 of the book of
Schaefer, H.H. and Wolff, M.P.H. called Topological vector spaces and edited by
Springer Verlag in 1999. This theorem states that there exists p ∈ N such that all
eigenvalue ω of modulus 1 satisfies ωp = 1 and thus ϕp has only one eigenvalue
of modulus 1 which is its spectral radius. The other eigenvalue ωp of φp are such
that ωp < β for some β < 1 since their is no accumulation point other than 0.

Proposition 7 just above guarantee that 1 is the single eigenfunction for φ
and thus for φp, this eigenfunction is positive and therefore φp has a spectral
gap β. ⊓⊔

Lemma 7. For all f ∈ L2(v
2ds) such that E(f) 6= 0 the following holds

||ϕpk(f)− E(f)||L2(v2ds) →k→+∞ 0

Proof. This is ensured by Theorem 15.4 of [18] whose hypothesis is the existence
of a gap for ϕp (Proposition 8). ⊓⊔

Proposition 9. Let f ∈ L2(v
2ds) such that E(f) 6= 0 and gn(s) =

1
n

∑n
k=1 ϕ

k(f)(s)−
E(f) then

||gn||L2(v2ds) →k→+∞ 0.

Proof. We have

||gn||L2(v2ds) ≤

p
∑

i=1

1

n

n−1
∑

k=0

||ϕpk+i(f)(s)− E(f)||L2(v2ds).

Now it suffices to remark that for all i ∈ {1, . . . , p} the sequence ||ϕpk+i(f) −
E(f)||L2(v2ds) →k→+∞ converges to 0 and thus so does its Cesaro mean. This

convergence follows from Lemma 7 applied to ϕi since ϕpk+i(f) = ϕpk(ϕif) and
E(ϕi(f)) = E(f) > 0. ⊓⊔
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Lemma 8. Let R be a measurable subset of (S× A)m+1 (m ∈ N) then

1

n

n
∑

k=1

p(Y ∗
0 · · ·Y ∗

m ∈ R and Y ∗
m+k · · ·Y

∗
2m+k ∈ R) →n→∞ p(Y ∗

0 · · ·Y ∗
m ∈ R)2.

Proof. For all k ∈ N we have:

p(Y ∗
0 · · ·Y ∗

m ∈ R and Y ∗
m+k · · ·Y

∗
2m+k ∈ R) =

∫

R

pm[s, α]P (Y ∗
m+k · · ·Y

∗
2m+k ∈ R|Sm = s⊲α)d[s, α].

We use stationarity and characterization of φk 9 and obtain:

P (Y ∗
m+k · · ·Y

∗
2m+k ∈ R|Sm = s) = P (Y ∗

k · · ·Y ∗
k+m ∈ R|S0 = s) = ϕk(f)(s)

with f(s) = P (Y ∗
0 · · ·Y ∗

m ∈ R|S0 = s). We have also that

P (Y ∗
0 · · ·Y ∗

m ∈ R)2 =

∫

R

pm[s,α]P (Y ∗
0 · · ·Y ∗

m ∈ R)d[s,α].

We will use the proposition 9 with

gn(s) =
1

n

n
∑

k=1

ϕk(f)(s)− P (Y ∗
0 · · ·Y ∗

m ∈ R) =
1

n

n
∑

k=1

ϕk(f)(s)− E(f).

We can end the proof with the following inequalities:

∣

∣

∣

∣

∣

1

n

n
∑

k=1

p(Y ∗
0 · · ·Y ∗

m ∈ R and Y ∗
m+k · · ·Y

∗
2m+k ∈ R)− P (Y ∗

0 · · ·Y ∗
m ∈ R)2

∣

∣

∣

∣

∣

≤

∫

S

∫

Aω

pm[s,α]|gn(s ⊲ α)|dαds

≤

∫

S

ϕm(|gn|)p(s)ds =

∫

S

ϕm(|gn|)v(s)w(s)ds

≤ ||w||∞

∫

S

ϕm(|gn|)v(s)ds since w is bounded by Proposition 5

≤ ||w||∞||ϕm(|gn|)v||2
√

Vol(S) by Cauchy Schwartz inequality

= ||w||∞||ϕm(|gn|)||L2(v2ds)

√

Vol(S)

≤ ||w||∞||ϕm||L2(v2ds)||gn||L2(v2ds)

√

Vol(S) →n→+∞ 0.

⊓⊔

Now we can achieve the proof that Y ∗ is ergodic.

Proof. Consider a shift invariant set R. We will show that P (R) ∈ {0, 1}. We
suppose that P (R) < 1 and show that P (R) ≤ P (R)2. These inequalities imply
that P (R) = 0.
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For every ǫ, there exists anm ∈ N such that P (Y ∗
0 · · ·Y ∗

m ∈ Rm
0 ) ∈ [P (R), P (R)+

ǫ]. By set inclusion we have:

P (R) ≤ P (Y ∗
0 · · ·Y ∗

m ∈ R and Y ∗
m+k · · ·Y

∗
2m+k ∈ R)

Taking the Cesaro average (i.e. summing over k and dividing by n) we obtain:

P (R) ≤
1

n

n
∑

k=1

P (Y ∗
0 · · ·Y ∗

m ∈ R and Y ∗
m+k · · ·Y

∗
2m+k ∈ R).

Taking the limit and using lemma 8 we obtain:

P (R) ≤ P (Y ∗
0 · · ·Y ∗

m ∈ Rm
0 )2 ≤ (P (R) + ǫ)2.

Letting ǫ tends to 0 we obtain the required inequality. ⊓⊔

This last paragraph has achieved the proof of Theorem 1.

C.5 Proof of Theorem 2

The pointwise ergodic theorem states that with probability 1 an infinite runs r
satisfies 1

n

∑n−1
k=0 f(σ

k(r)) →n→+∞ E(f) where σ is the shift map i.e. σ(y0y1 · · · ) =
y1y2 · · · and f is such that E(|f |) < +∞.

Here we define f by f(s0α0s1α1 · · · ) = − log p(α0|s0) and thus

1

n

n−1
∑

k=0

f(σk(r)) = −
1

n

n−1
∑

k=0

log2 p(αk|sk) = −
1

n
[log2 pn[s0, α0 · · ·αn−1]−log2 p0(s0)].

On the other side E(f) = E(− log p(A0|S0)) = −
∫

S
p0(s)

∫

A
p(α|s) log p(α|s)dαds

which is equal to H(Y ) by definition.
It remains to show that E(|f |) < +∞. Indeed E(|f |) = E(f) + 2E(f−) =

H(Y ) + 2E(f−) where f− = (|f | − f)/2 is the negative part of f and

E(f−) ≤ max
R+

(x 7→ −x log2 x)Vol(A) < +∞.

⊓⊔
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