
HAL Id: hal-00808801
https://hal.science/hal-00808801

Submitted on 13 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explication and semantic querying of Enterprise
Information Systems

Milan Zdravković, Hervé Panetto, Miroslav Trajanović, Alexis Aubry

To cite this version:
Milan Zdravković, Hervé Panetto, Miroslav Trajanović, Alexis Aubry. Explication and semantic query-
ing of Enterprise Information Systems. Knowledge and Information Systems (KAIS), 2014, 40 (3),
pp.697-724. �10.1007/s10115-013-0650-x�. �hal-00808801�

https://hal.science/hal-00808801
https://hal.archives-ouvertes.fr

1

Explication and semantic querying of

Enterprise Information Systems

Milan Zdravković

Laboratory for Intelligent Production Systems, University of Niš,

Faculty of Mechanical Engineering, Aleksandra Medvedeva 14, Niš, Serbia

milan.zdravkovic@masfak.ni.ac.rs

Hervé Panetto

Université de Lorraine, CRAN, UMR 7039, Campus sciences

 B.P. 70239, Vandœuvre-lès-Nancy Cedex, 54506, France,

CNRS, CRAN, UMR 7039, France

herve.panetto@univ-lorraine.fr

Miroslav Trajanović

Laboratory for Intelligent Production Systems, University of Niš,

Faculty of Mechanical Engineering, Aleksandra Medvedeva 14, Niš, Serbia

miroslav.trajanovic@masfak.ni.ac.rs

Alexis Aubry

Université de Lorraine, CRAN, UMR 7039, Campus sciences

 B.P. 70239, Vandœuvre-lès-Nancy Cedex, 54506, France,

CNRS, CRAN, UMR 7039, France

alexis.aubry@univ-lorraine.fr

Many researches show that the ability of independent, heterogeneous enterprises’ information

systems to interoperate is related to the challenges of making their semantics explicit and formal,

so that the messages are not merely exchanged, but interpreted, without ambiguity. In this paper,

we present an approach to overcome those challenges by developing a method for explication of

the systems’ implicit semantics. We define and implement the method for the generation of local

ontologies, based on the databases of their systems. In addition, we describe an associated method

for the translation between semantic and SQL queries, a process in which implicit semantics of the

EIS’s databases and explicit semantics of the local ontologies become interrelated. Both methods

are demonstrated in the case of creating the local ontology and the semantic querying of OpenERP

Enterprise Resource Planning system, for the benefit of the collaborative supply chain planning.

Keywords: Ontology; Systems Interoperability; Database semantics; Enterprise

Information System; OpenERP.

2

1. Introduction

Traditional approaches for configuring high-speed, low-cost collaborative

enterprises and corresponding technical requirements for tight systems integration

appeared ineffective in the age of growing demand for product customization.

Today, new enterprise collaborations with short lifecycles, such as virtual

enterprises [1] and virtual breeding environments [2] or organizations [3] are

often formed to meet the increasing demand for engineer-to-order products. Such

loosely-coupled and temporary collaborations need to be facilitated by

corresponding IT infrastructure, which exhibits the similar behavior. Hence, it is

made of interoperating autonomous, heterogeneous Enterprise Information

Systems (EIS), instead of mash-up of physically or functionally integrated

systems.

ISO/IEC 2382 [4] defines interoperability as the “capability to communicate,

execute programs, or transfer data among various functional units in a manner that

requires the user to have little or no knowledge of the unique characteristics of

those units”. The notion of interoperability refers to the ability of heterogeneous,

autonomous EISs to perform interactions, namely to exchange information and

services [5]. Such paradigm is related to the federated approach, which implies

that systems must accommodate on the fly in order to interoperate; in other words,

no pre-determined assets for interoperability are assumed.

There is an agreement in the research community that ontologies can be used for

the reconciliation of the interoperating EISs. Even so, there are opinions [6] that

the main conditions for making two loosely coupled systems interoperable are: 1)

to maximize the amount of semantics which can be utilized and 2) to make it

increasingly explicit.

While “traditional” interoperability research is oriented to the use of ontologies as

facilitators for reconciliation, the semantic interoperability focuses on data

interpretation rather than mere data exchange, independently of implementation

details [7]. Semantic interoperability means ensuring that the precise meaning of

exchanged information is uniquely interpreted by any system not initially

developed for the purpose of its interpretation [8][9]. It enables systems to

combine and process received information with other information resources and

even, to improve the expressivity of the underlying ontologies and consequently –

3

to increase the relevance of the data models which are formalized by those

ontologies [10].

Domain ontology provides a general context for semantic interoperability of

systems, namely, the language which they are going to use to communicate. Local

ontologies introduce actual enterprises contexts to a collaboration environment.

The capability of enterprises to efficiently collaborate between each other depends

on the correspondence between their local semantics and the abovementioned

general context. While this general context or the common language may be

found in large number of relevant enterprise domain ontologies [11,12,13], the

local semantics is not easily accessible, due to diversity and heterogeneity of the

EISs landscape.

Three main problems for unveiling this local semantics are identified: it is hidden

behind some design and development patterns, it is specified in implicit form and

it is represented by using arbitrary syntax. As a motivation to resolve these

problems, it is assumed that the corresponding solution will facilitate easier

reconciliation of the local and domain dictionaries and hence, it will reduce the

effort needed for achieving the semantic interoperability of the systems.

The main focus of the work, presented in this paper, is on the analysis of the

source of the local semantics of the EISs, that is, relational database management

systems and, consequently, its explication. Hence, the objectives of the research

presented in this paper are to answer on the following questions: Where can the

semantics of EISs be found? How can it be transformed to an explicit form? How

can the common business concepts of the different explicit models be uniquely

accessed and, consequently, processed?

In defining the methodological approach for answering these questions, we

assume that: 1) the enterprises’ realities are represented by the corresponding

EISs’ models, and 2) enterprises’ message models (crucial for flexible economic

integration) are based on EISs’ data models, represented implicitly in their

databases. The approach described in this paper aims at making this representation

- explicit.

The research addresses some of the identified weaknesses of the existing

approaches (see Section 2.2) to database to ontology mapping and aims at using

the expressivity of OWL (The Web Ontology Language) language for enriching

the implicit semantics of ER (Entity-Relationship) models. It delivers a method

4

and a corresponding software tool which: 1) imports the database structure and

classifies ER entities; 2) classifies (infers) OWL types and properties; 3) enables

lexical refinement and 4) generates a local ontology. The concepts of the local

ontology are then mapped backwards to the corresponding concepts of the

intermediary models, for enabling the transformation of semantic to SQL queries.

The method is described in Section 2.3.

Semantic querying of the databases cannot be considered independently from the

method used to transform the database schema to a formal model. The main

reason for this constraint is the dependence on the approach to mapping the

concepts of the formal model to database data. Thus, the method for execution of

semantic queries on the local ontology, namely, instantiation of its concepts

according to the content of the relevant database, is developed and presented in

Section 2.4.

The approach for generating a local ontology is implemented on the case of the

OpenERP Enterprise Resource Planning information system. OpenERP is an open

source suite of business applications including sales, CRM, project management,

warehouse management, manufacturing, accounting and human resources. It is a

client-server suite, where the client communicates with the server by using XML-

RPC interfaces. It uses PostgreSQL relational database for data storage.

The case considers the generation of a local ontology, based on an ER schema of

the OpenERP’s database (Section 3.1) and querying of this local ontology

(Section 3.2).

Previous work of the authors [14] introduced a theoretical perspective for an

ontological framework for semantic interoperability of EISs in supply chain

networks. The current paper extends this perspective by: providing the expanded

details on the implementation of the methods for explication and semantic

querying; discussing about the meaning of different constructs and design patterns

of database development; validating the method in a case study. Finally, the

discussion and experiences from the case study are used now to precisely define

some research gaps that will emphasize the future directions of work.

It is important to note that the scope of the presented approach is limited only to

selected ER patterns which are associated to semantics, expressed by the OWL

constructs. Although the process overcomes some of the gaps, identified in the

current state-of-the-art in database to ontology mapping, its end result typically

5

requires a considerable amount of customization and additional work. Since direct

mapping is unlikely to produce a useful ontology, the result of this analysis may

be considered as intermediary. Thus, a complementary work can be done for

semantically enriching this intermediary ontology by using some approaches as in

[15].

2. Theoretical background

One of the major challenges in the efficient use of computer systems is the

interoperability between multiple representations of reality (data, processes, etc.)

stored inside the systems, or actual representations and reality itself – systems’

users and their perception of reality [16]. Where the latter can be formalized by

the domain ontologies, as shared specifications of the conceptualizations, the

former relies upon the local ontologies – wrappers for heterogeneous sources of

individual enterprises’ information, business logic and rules.

The local ontologies formalize the implicit data from the heterogeneous sources in

order to facilitate the semantic interoperability of the systems that store these data.

In order to cope with the implicitness of semantics of the enterprises’ realities, we

assume that these realities are represented by the corresponding EISs, and that the

enterprise message models are based on EISs’ data models, represented implicitly

in their databases. The proposed approach aims at making this representation -

explicit. We employ a database-to-ontology method in order to transform implicit

Entity-Relationship (ER) models to explicit OWL representations, namely, local

ontologies.

Then, these local ontologies can be mapped to a common, shared knowledge of

the enterprise collaboration environment, such as a formal model of supply chain,

while other contexts may also be added. Each of the contexts corresponds to a

domain ontology, whose concepts are logically related to the concepts of the local

ontologies. Thus, each domain ontology becomes a dictionary – a common

knowledge of particular enterprise perspective which can be used to query the

hidden, implicit knowledge stored in EISs. Then, single and integrated access to

the multiple contexts of the particular enterprise concept becomes possible.

The above assumptions about correlations between local ontologies and ER

models are made for the purpose of making the process of local ontology creation

– automatic. Otherwise, the precondition for this process would be a detailed

6

analysis of the involved EISs. An example of the work which follows this

approach was provided by Castano and Antonellis [17]. The authors “analyzed the

process descriptions for the aspects related to information and operation

similarity, to evaluate semantic correspondences between processes and identify

activity replication and overlapping, as well as for the aspects related to

interaction/cooperation, to evaluate the degree of coupling between processes and

identify the type and the nature of exchanged information flows”.

In our work, the range of semantic interoperability is clearly set to EISs. The

semantic interoperability of the enterprises is considered as a more complex

problem and is not addressed in this paper. The conceptualization of their

information systems is made also on the basis of business logic, which is hidden

in the actual code, in most cases, and data models, represented by the

corresponding relational database structure. Obviously, the business logic which

is encapsulated in the EIS’ will remain hidden – only the underlying data model is

exposed by ontology. The exceptions are database triggers, which can be

considered as business rules, if they are not implemented only to enforce

referential integrity of the database. Even so, they represent some “kind of”

semantics that has to be taken into account in the local ontology.

Another issue with the above assumptions is that, in the case of this approach, the

domain of the conceptualization is restricted to database schemas. Sometimes, ER

models, namely database schemas, do not capture the semantics of the application

functionality and underlying data models; when information systems are highly

generic, the application semantics is actually captured in the populated table rows.

For example, in Business Process Management systems, the structure of the

enterprise processes, i.e. activities, associated data structures (messages),

compensation and error handling blocks, etc., are defined by a system user and are

not expressed by the database schema. Moreover, those schemas are, sometimes,

adapted to cope with implementation constraints and thus, they are losing part of

their semantics.

This issue is evident even in trivial cases. For example, the attribute of “type” is

often used by database developers to describe some entity. It is typically

transformed to hasType(string) property. In this case, the meaning of this property

is unknown, because of the ambiguity of the linguistic term of “type”. A similar

remark can be made also for often used notion of “status”. However, sometimes,

7

the meaning of the ambiguous notion can be determined if the list of associated

data (strings) in database rows is semantically analyzed in the context of the

domain (entity) of the property above. For example, if OWL is used as a

formalism, the “hasType some bNode” construct may be used to model this

property, where bNode is an anonymous class that contains enumerated

(owl:oneOf) elements which correspond to data associated to the attribute. In a

more formal approach, the values of those attributes may be considered as

classifiers of the subsumed classes. For example, the property hasType(string) of

the concept Machine tool, asserted with one of the following values: “turning”,

”milling” and ”drilling” may enable the inference of the respective sub-concepts

of the Machine tool concept - Lathe, Mill and Drill.

In the above cases, the intervention of the domain expert in enriching the

conceptual model is inevitable [15]. Some research tackles this issue by providing

the tools to automatically or semi-automatically discover the semantics buried into

existing data patterns [18].

Although the conceptualization of the ER model is not a novel topic, the existing

results did not provide the method which delivered a usable conceptual model.

This is argued in the following subsections. It seems that most of the past work is

motivated by the problems of database interoperability, which does not

necessarily consider the semantics of the ER model. Systems interoperability, on

the other hand, needs somewhat different approach; it aims at conceptualizing the

intent of the schema developer and, thus, at making the reality of the enterprise

information system – explicit.

2.1. Schema integration

Current research and practices of database interoperability are based on the earlier

efforts in schema integration. Schema integration typically occurs [19] in the

context of view integration (during database design) or in database integration (in

distributed database management). The process of schema integration implies the

development of a single - federal schema [20], expressed by using a common data

model, for the purpose of integrating the schemas of existing or proposed

databases into a global and unified one [19].

The mismatch between the schemas is caused by the fact that a single concept in

the universe of discourse is sometimes represented in different ways, while there

8

are also cases where the single representation is associated to the meaning of

different concepts. Typically, schema integration assumes that these conflicts are

resolved in the process of schema transformation. This process is formalized by

McBrien and Poulovassilis [21]. Its outcomes are equivalent schemas, which may

then participate in the database federation.

It is important to note that most of the approaches to schema integration do not

make an attempt to interpret or formalize the implicit semantics of the schemas.

Instead, they are using a notion of common data model (which does not

necessarily reflect an ontological commitment) to enable the federation of

databases and thus, to make those interoperable.

With the development of the formalisms for semantics representation, the new

approaches to database interoperability are increasingly focused on the

transformation of the implicit semantics of the database schemas to explicit

conceptual models. Many researchers have worked on schemas mapping [22][23]

or data integration in ontology [24]. William et al [25] considered different groups

of semantic relations between schema objects in order to find the corresponding

similarities. Zhao and Ram [26] took into account the instance information in the

process of integrating heterogeneous data sources. In one of the recent efforts,

Ozgul and Afsarmanesh [27] used a variety of metrics and algorithms from the

domains of Natural Language Processing and Graph theory for schema matching.

In general, the existing approaches suffer of their applicability on existing large

data sets. Moreover, the most of these approaches cannot be implemented in real

cases because of the large amount of manual intervention. Some of the examples

of the existing but practical work in database to ontology mapping are presented

below.

2.2. Existing database to ontology mapping approaches and tools

The review of the relevant literature shows that many researchers dealt with the

problem of database-to-ontology mapping, for different purposes and with

different approaches. In this section, we present the main features of four

distinctive frameworks, made with different objectives, and we identify gaps, in

terms of the selected criteria. In particular, we are interested in how the existing

frameworks address three specific aspects related to the database-to-ontology

process: 1) semantic interpretation of E/R patterns, i.e. a level of database schema

9

conceptualization; 2) instance population, i.e. ontology concepts instantiation; and

3) use of the framework, i.e. translation of semantic to database queries. As the

latter two are mostly related to the technical challenges, we consider the level of

database schema conceptualization as the most important.

The work on DB2OWL mapping facility is a part of development of a general

interoperability architecture [28] that uses ontologies for the explicit description

of the semantics of information sources, and web services for facilitating the

communication between the different components of the architecture. DB2OWL

[29] looks for some particular cases of database tables to determine which

ontology component has to be created from which database component.

According to these cases, the conversion process is performed (table → class,

column→ property, constraint → relation) where the set of correspondences

between database and ontology components is conserved, thus enabling the

translation of ontological to SQL queries and retrieval of corresponding entities.

However, it remains unclear how this translation will be implemented. More

important, the semantics of existential constraints of the columns and cardinality

of relations is not taken into account. The major feature of this approach, as

claimed by the authors, is that it aims at separating data mapping from schema

mapping. Any data manipulation with a database will not affect the ontology; the

consistence of two corresponding data and sets of individuals will be maintained

by the queries which will populate the ontology with instances at the moment of

the semantic query execution. This method is referred to as a query-driven

population, in contrast to a massive export (also referred to in literature as

“massive dump”), which maintains the full correspondences between ontology

individuals and database tables’ data. The latter approach is taken by the

Relational.OWL model.

Relational.OWL [30] is a candidate for data and schema representation format,

relevant for database-to-ontology mapping, developed with a primary motivation

to facilitate data and schema exchange in the Peer-To-Peer (P2P) database

environment. It provides a meta-model, which describes the components of the

relational database. In contrast to DB2OWL, it does not attempt to interpret the

semantics of the E/R patterns. It does not conceptualize the E/R model but only

provides its replica. However, it can be used as an intermediary in the process of

database-to-ontology mapping, instead of a document with correspondences, used

10

by DB2OWL. In that sense, it can be considered as a complementary work.

Unfortunately, as it is the case for DB2OWL, it does not model multiplicity of the

foreign keys. Thus, it is not possible to use it to assign source and destination

cardinality to OWL properties.

Where DB2OWL and Relational.OWL are used to create new ontologies from

existing schemas, there are tools that take a different approach by facilitating

automatic, semi-automatic or manual mapping between existing ontologies and

schemas. In this paper, we refer to the work of Konstantinou et al [31], and Xu et

al [32].

Vis-A-Vis tool [31] uses the Protégé libraries for graphically representing

ontology, a database model (MySQL or PostgreSQL) and it facilitates manual

establishment of the mappings between them. Hence, it is not relevant to discuss

conceptualization on the level of ER schema as it mainly depends on the

outcomes of the manual work. The Protégé plug-in allows queries to be asked to

the ontology and returns results from the database; it takes a query-driven

approach to instance population. The key motivation of this approach is to keep

the instances stored in a database while maintaining a link to the dataset, so

ontologies become smaller.

In contrast to Vis-A-Vis that only facilitates manual mapping, D2OMapper [33] is

a tool for automatic or semi-automatic creation of the mappings between database

schema and existing ontology. This work is based on the authors’ experience in

developing ER2WO [32] tool for translating ER schema into OWL ontology. The

key motivation of the authors was to develop a framework which would facilitate

the generation of ontological annotations for dynamic Web pages, extracted from

the database. D2OMapper outputs express the conceptual, in specific element

(naming matching) and structural (predefined heuristic rules), correspondences

between the schema and ontology. Although it is not explicitly mentioned in the

reported work, the purpose of the approach implies that a query-driven approach

to data population is taken.

Even though the topic of database to ontology mapping is still very active, it

seems that no recent work addressed the semantic issues of ER schema, in detail.

In contrast, more focus is given to use the ontologies (actually, semantic queries)

to gain access to the large volume of data residing in the (often, distributed)

database systems [34, 35, 36, 37, 38, 39] or to enable the exposure of the

11

relational databases in the Linked Data environment [40] and discovery of links

between open data sources [41]. In this context, the performance of reasoning

becomes one of the dominant issues [42]; it is even addressed by scaling the

reasoning capability from inference engines to database systems [43]. Other issues

are related to making this large data more accessible, by increasing the

expressivity [44] and robustness [45] of query languages or even to extending the

representation languages (OWL) to support the integrity constraints from the

relational databases [46]. The above trends correspond to the dominance of so-

called lightweight semantics in meeting the promises of Semantic Web paradigm,

especially driven by the recent success of linking open data initiatives [47].

We consider that most of the existing database-to-ontology methods are not

suitable for generating the local ontology, which can then be used in the

application framework for collaborative enterprises, for at least three reasons.

First, and most important, they do not interpret the semantics of all ER constructs

and patterns. Similarly, a remark can be made that the existing approaches do not

use the full expressivity of the OWL language. The above statements are argued

in this section, above. Second, approaches to instance population are not fully

appropriate for use in the collaborative enterprise settings. This is elaborated in

more detail in Section 3.2. Third, some of the authors claim that they provide a

method for translating semantics to SQL queries, but no detailed information

about this method is presented in their papers.

In our approach, we address the above-mentioned gaps by developing the

presented explication and semantic querying methods. The major feature of this

approach, in contrast to the existing research is the increased level of

conceptualization. This is considered as vital for the outcomes of the semantic

analysis, enactment and matching process, in which the local ontologies are

typically semi-automatically related to a domain of interest.

3. Our approach to database-to-ontology mapping

Database-to-ontology mapping is a process in which the implicit semantics of a

database schema is correlated to the explicit and formal knowledge structure of

the ontology. In our approach, we use the database schema to generate this formal

structure in section 3.1, while the logical mappings between the ER meta-model

12

and generated local ontology are preserved. These mappings will enable the

translation of semantic to database queries, as detailed in section 3.2.

3.1. Generating local ontologies

One of the objectives of the work presented in this paper was to increase the level

of conceptualization detail of the resulting ontology, namely, to restrict possible

use of concepts used in the description of the system, assumingly hidden in the

database schema. Thus, this description would become more explicit and

consequently, computable, in contrast to implicit meaning, which is expressed

indirectly and needs additional inference (including additional facts to facilitate

this inference). Our approach considers the existential constraints and cardinality

of relationships to unhide some semantic features of the assumed local ontology,

such as necessary conditions for a class, functionality of properties and

uniqueness.

Existential constraints from the ER-model (“not-null”) posed on the source of the

foreign key reflects the intention of the database developer to enrich the

description of the source with some destination concept or concepts. In other

words, the former cannot exist without the latter. Thus, the relationship described

by the foreign key can be considered as a necessary condition for a given concept.

More important, the meaning of the source concepts can be attributed to these

necessary conditions. This approach to a conceptualization is referred to as

intensional, and is considered as equivalent to human thinking [48], in contrast to

extensional approach, which implies that the elements of the mental image of the

specific domain are simply enumerated or listed. A special case of a necessary

condition may be defined by using functional or single-valued properties. A

functional property is a property that can have only one (unique) value y for each

instance x. The functional properties are established between two concepts when

two corresponding tables are related with source and destination cardinality which

equals 1.

The uniqueness attribute of the database fields is used to improve the performance

of the inferences on the corresponding local ontologies. One of the consequences

of Open World Assumption [49] of the description logics based languages, such

as OWL, is the inability to assume the difference of two individuals, unless it is

explicitly stated by using owl:differentFrom relation. Imposing such a relation

13

between all the individuals that correspond to the database rows may significantly

decrease the reasoning performance. In our approach, this problem is addressed by

assigning owl:hasKey properties to the concepts, whose corresponding tables have

“unique” constraint posed on their fields and thus, making those explicitly

different.

The generation process consists of 4 phases: a) data import and classification of

ER entities; b) classification (inference) of OWL types and properties; c) lexical

refinement; d) generation of local ontology.

Before the generation of local ontology, it is necessary to deliver two intermediary

models. The first model is OWL replica of a database schema, a database ER

model. Its primary role is to store the references to the actual database artifacts

which will be exploited later to execute the semantic queries. It can also be

considered as an input to other explication or discovery tools (for example, in

lightweight semantics’ Linked Data environment), because it uses OWL to

represent all the artifacts of the database schema, similar to Relational.OWL

approach, presented above. The second model – a meta-model, which classifies

OWL types and properties is used as a subject of lexical refinement, if necessary.

The process of local ontology generation is supported by a web application which

consists of modules for data import/assertion of ER meta-model instances, lexical

refinement and transformation of classified OWL types and properties to a local

ontology. The web application requires input of the database connection

parameters. First, two intermediary models are created, where the generation of

the meta-model is facilitated by firing the conversion rules (classification of the

meta-model concepts is done by inference engine, based on these rules). Then,

user can download both of the models and/or choose to proceed to a lexical

refinement (phase 3) module or to finalize the process by initializing the local

ontology generation (phase 4). Different phases of the local ontology generation

are illustrated on Figure 1. The details of the process are presented below.

14

Figure 1: Approach to database-to-ontology mapping

First, the database schema is investigated and OWL representation of the ER-

model is constructed. In this step, a web application connects to the database, uses

introspection queries for discovering its structure and asserting the relations

between the artifacts by using the proposed ER formalization (namely, er.owl).

The following assertions are made for each field of the corresponding table:

hasAttribute (entity, attribute), hasType(attribute, type) and

hasConstraint(attribute,’not-null’) and/or hasConstraint(attribute,’unique’) (if

applicable). The following assertions are made for each relation:

hasDestinationAttribute (relation, attribute), hasSourceAttribute(relation,

attribute).

Second, the resulting (serialized) OWL representation of the database ER-model

is imported into the meta-model (s-er.owl), which classifies future OWL concepts

(conversion rule R1, below) and domains and ranges of the object and data

properties, according to the defined conversion rules (rules R2 and R4, below).

Although the specifications of object and data properties may impose the

unnecessary restrictions on the resulting ontology, we consider those as important

for improving the efficiency of mapping or alignment process, which is critical for

15

the semantic interoperability. Another reason for the assertion of object properties

in OWL representation of database ER-model is that the object properties of the

resulting local ontology will be annotated with the URI’s (Uniform Resource

Identifiers) of the respective relations, in order to enable the correspondence

between the ontology and database representation, for the benefit of query

transformation.

According to the above constraints, the rules for intensional conceptualization

(inherited anonymous classes) for a particular entity are identified by inferring

ranges of hasDefiningProperty(concept, concept) and

hasDefiningDataProperty(concept, data-concept) relations (rules R2.2 and R4.2,

below). Finally, the approach takes into account the functionality of the properties

(owl:FunctionalProperty). Functional properties are classified when a one-to-one

relation is identified between two concepts (rule R2.3, below).

The classification of future OWL concepts is then inferred by exploiting the

following conversion rules:

R1. Concepts are all entities of the ER model’s OWL representation, except the

entities whose all attributes are relation sources (corresponding to intermediary

tables, connecting two tables with many-to-many relationship).

er:entity(x) ∧ not (er:hasAttribute only (er:attribute ∧ (er:isSourceAttributeOf

some er:relation))) ⇒ s-er:concept(x)

R2.1. Domains and ranges of the object properties are inferred by using the rule

below.

er:entity(x) ∧ er:entity(y) ∧ er:relation(r) ∧ er:hasAttribute(x, a1) ∧

er:hasAttribute(y, a2) ∧ er:isDestinationAttributeOf(a2, r) ∧

er:isSourceAttributeOf(a1, r) ⇒ s-er:hasObjectProperty(x, y)

R2.2. Domains and ranges of the defining properties (necessary conditions of the

concept) are inferred by using the rule below. The defining property is a sub-

property (rdfs:subPropertyOf) of the object property (hence, simplified

representation of the rule below).

s-er:hasObjectProperty(x, y) ∧ er:hasConstraint(a1,'not-null') ⇒ s-

er:hasDefiningProperty(x, y)

R2.3. Domains and ranges of the functional properties are inferred by using the

rule below. The functional property is a sub-property (rdfs:subPropertyOf) of the

defining property (hence, simplified representation of the rule below).

16

s-er:hasObjectProperty(x, y) ∧ er:hasConstraint(a1,'not-null') ⇒ s-

er:hasDefiningProperty(x, y)

R3. Data concepts are all attributes of the ER model’s OWL representation which

are not at the source of any relation.

er:attribute and not (er:isSourceAttributeOf some er:relation) ⇒ s-er:data-concept

R4.1. Domains and ranges of the data properties are inferred by using the rule

below. Ranges of the data properties are data types, corresponding to the simple

types from XML schema.

er:type(x) ⇒ s-er:data-type(x)

s-er:concept(c) ∧ er:attribute(a) ∧ er:type(t) ∧ er:hasAttribute(c, a) ∧

er:hasType(a, t) ⇒ s-er:hasDataProperty(c, t)

R4.2. Domains and ranges of the defining data properties are inferred by using the

rule below. The defining data property is a sub-property (rdfs:subPropertyOf) of

the data property (hence, simplified representation of the rule below).

s-er:hasDataProperty(c, t) ∧ er:hasConstraint(a,'not-null') ∧

er:hasConstraint(a,'unique') ⇒ s-er:hasDefiningDataProperty(c, t)

The above conversion rules are specified in s-er.owl by using SWRL. SWRL

(Semantic Web Rule Language) [50] is a proposal for a Semantic Web rules-

language, combining sub-languages of the OWL with those of the Rule Markup

Language (RuleML). Below are some examples of SWRL representations of the

conversion rules.

(R1) entity(?e), hasAttribute max 0 attribute(?a), isSourceAttributeOf some

relation(?r) -> concept(?e)

(R2.1) entity(?e1), entity(?e2), relation(?r), attribute(?a1), attribute(?a2),

hasAttribute(?e1,?a1), hasAttribute(?e2,?a2), isDestinationAttributeOf(?a2,?r),

isSourceAttributeOf(?a1,?r)->hasObjectProperty(?e1,?e2)

(R2.2) entity(?e1), entity(?e2), relation(?r), attribute(?a1), attribute(?a2),

hasAttribute(?e1,?a1), hasAttribute(?e2,?a2), isDestinationAttributeOf(?a2,?r),

isSourceAttributeOf(?a1,?r), hasConstraint(?a1,"not-null")-

>hasDefiningProperty(?e1,?e2)

The rules are stored in the meta-model and once fired, they classify instances of

the OWL representation of the database ER model (er.owl) into the concepts of

meta-model (s-er.owl). Inferred triples in the meta-model can then be edited in a

17

simple web application (lexical refinement), which also launches the process of

local ontology generation. In this process, meta-model entities are finally

transformed into corresponding OWL, RDF and RDFS constructs – a resulting

local ontology. Concepts of the generated local ontology are annotated with URI’s

of the corresponding ER entities from er.owl model, so that the translation of

semantic to SQL queries may become possible.

The process of transformation is illustrated on Figure 2. It shows the fragment of

the OpenERP database (a), its meta-model generated by firing the rules above (b)

and corresponding concepts of the resulting local ontology (c). The database ER

model is not illustrated, because it is only a replica of ER diagram (a).

Figure 2: Illustration of the process of local ontology generation

Based on the design of the illustrated fragment of the database (Figure 2a), entities

and data entities of the database ER model are classified (Figure 2b) as concepts

(Rule 1), data concepts (R3) and data types (R4.1); the focal concept of the

fragment – “res_company” has two object properties (R2.1), data property (R4.1),

defining data property (R4.2) and defining object property (R2.1 and R2.2).

18

On Figure 2c, the dashed lines represent the constraints posed by the defined

domains and ranges of the introduced properties (“hasCompany” and

“createdBy”). Solid lines represent necessary conditions for a class, namely the

defining object (“hasCurrency”) or data properties (“hasName”, “createdOn”).

In the phase of lexical refinement, the coding style, used by the database designer

is handled (e.g. “res_company” is renamed to “company”). Also, at this point, the

meaning of some relationships can be associated to the concepts of local ontology

by using proper lexical terms. For example, the meaning of the relationship

between “res_company” and “res_users” concepts of the meta-model is implied

only by the name of the relation between two corresponding tables:

“res_company_create_id_fkey”. Thus, in the manual intervention during the

lexical refinement, the automatically proposed title of the relationship between

company and user concepts – “hasRes_users” is replaced with “createdBy”.

Another challenge for the development of local ontologies is related to instance

population, namely, to how and when database data is represented in the local

ontology. As it is mentioned before, two types of approaches are applied in the

reported work. Massive export assumes that all data is represented as individuals

in the process of ontology generation (or mapping of existing ontology with a

database schema). Besides obvious maintenance related difficulties, this type of

approach is unacceptable mainly because of the size of the resulting ontology and

the mapping document and, consequently, performance issues related to reasoning

processes. Query-driven population approach assumes that individuals are

asserted to ontology during exploitation, upon execution of a semantic query.

Here, some kind of query rewriting mechanism is involved to transform the

semantics to SQL query or queries which are executed in the database; result-sets

are then represented as logical statements which are finally asserted to local

ontology. For many purposes, the existing query-driven approaches to population

seem good candidates. However, when semantic interoperability between diverse

and heterogeneous EISs is discussed, we believe that there are some concerns,

mostly related to the complexity of inferences when modular ontological

framework is queried and handling of data access rights. Those concerns are

elaborated in Section 3.2.

19

3.2. Reasoning with local ontologies and translation of semantic to

SQL queries

Semantic interoperability of systems enables a single point of access to the overall

knowledge of the “interoperable world”. Not only that it makes possible to use a

single semantic query to extract and combine relevant information from the

multiple sources of implicit data, but it also enables the usage of different

dictionaries for writing this query.

Figure 3: Extraction of data from heterogeneous sources

Figure 3 illustrates how the data is extracted from heterogeneous sources by using

three different approaches: 1) simple use of EISs; 2) merging the relevant result-

sets from the databases; and 3) executing semantic queries. In the first case, one

can use (USEi) the EISs’ data exchange facilities to export data files (Fi) and then

transform each of the files to a common format and merge. In the second case, the

SQL queries (SQLQi) are executed against EISs’ databases to get relevant result-

sets (RSi) and then merge. In the case of semantic queries data extraction, and if

the assumption that logical mappings between local and domain ontologies are

consistent and complete holds true, a single DL query (DLQi) can be constructed

by using any dictionary, formalized by the domain ontologies, to extract the same

data, but represented in different ways, depending on the used formalisms. Thus,

no matter which dictionary is used to build the query, the result of its execution

will be the union of semantically equivalent sets of triples (STi).

20

In this section, we describe the method for instance assertions to a local ontology

on the basis of semantic query results. The method consists of the following steps:

1) decomposition and analysis of the semantic query; 2) data extraction and

instance assertions and; 3) reasoning. The method is illustrated in Figure 4.

A semantic query can be considered as a pair (O, C), where O is a set of concepts

which need to be inferred and C is a set of restrictions to be applied to their

properties, namely, value (owl:hasValue and qualified cardinality restrictions,

owl:allValuesFrom, owl:someValuesFrom) and cardinality constraints

(owl:cardinality, owl:minCardinality, owl:maxCardinality). This consideration

corresponds to a simplified representation of a SQL query which includes tables

(and fields) and comparison predicate, that is, restrictions posed on the rows

returned by a query. In addition, different types of property restrictions

correspond to different cases (or patterns, where complex semantic query is

mapped) of SQL queries.

Since relevant entailments can be reasoned only by the property domain and range

inferences, a set C may be considered as necessary and sufficient for representing

the semantic query. For example, in the local ontology that is generated from the

database schema of OpenERP EIS (see Section 4), a DL query

“hasAccountAccountType some (hasCode value 3)” returns all instances of

account_account concept whose type code is exactly 3. This kind of query

representation (only by using properties restrictions) may produce unpredictable

and misleading results when the restrictions are posed on the common lexical

notions of different concepts, such as “name”, “type”, “id”, etc. The ambiguity of

the corresponding properties is reflected on the relevant ontology in the sense that

their domains are typically represented as a union of large number of concepts.

For example, in OpenERP ontology, the domain of the “hasName” data property

is the union of 170 concepts.

However, this ambiguity may be considered as an advantage in some cases. Value

restrictions on ambiguous data properties may produce relevant inferences, thus

facilitating semantic querying without a need to have extensive knowledge of the

underlying ontology structure. This kind of query is mapped to a SQL UNION

query which combines SELECT sub-queries made on each element of the

property domain, with the WHERE statement corresponding to the relevant rows

restrictions. For example, in a mapping process, DL query “hasName value

21

‘Derek Porter’” is first used to infer all 170 possible entailments (property

domains) in OpenERP ontology, which are, then, used to assemble qualified

(O,C) pairs, e.g. “res_users and hasName value ‘Derek Porter’”. When the

corresponding element of the UNION query is assembled, a static field with

appropriate label (a reference to the concept) is added to each of the elements, so

as to become possible to decide on the entailments. In other words, we need this

to determine which sub-query actually returns the results.

Figure 4: Execution of the example semantic query in local ontology

In the first step of the method, decomposition and semantics analysis of the input

query is performed. The 4-tuples in forms of (subject predicate some|only|min

n|max m|exactly o bNode) and (subject predicate value {type}) are extracted from

the input query. In the case of the DL query which returns all concepts which are

related to a company whose primary currency is EURO (“hasCompany some

(hasCurrency some (hasName value "EUR"))”), the following 4-tuplets are

identified:

X hasCompany some bNode1

bNode1 hasCurrency some bNode2

bNode2 hasName value "EUR"

In some cases, more complex queries may be needed to define the requirements of

the user. This occurs when multiple restrictions on a desired object are given, so

22

that the intersection of two or more sets, corresponding to these restrictions, is

taken into account. For example, all payable accounts for companies whose

primary currency is EURO are inferred by using DL query: hasAccountType

value "Payable" and hasCompany some (hasCurrency some (hasName value

"EUR")). In this case, the following 4-tuples are identified:

X hasAccountType value "Payable"

X hasCompany some bNode1

bNode1 hasCurrency some bNode2

bNode2 hasName value "EUR"

In the next step of semantic query execution, a database connection is established

and sets of SQL queries are constructed and executed for each element of a 4-

tuple, in reverse order, as a result of analysis described above. Each query returns

data which is used to generate OWL statements which are asserted to a temporary

model. Each set of the OWL statements corresponds to a sub-graph whose focal

individual is an instance of the concept, inferred on basis of the property domain

or returned result (label) of a 4-tuple. Other individuals or values correspond to

the defining properties of this concept (inherited anonymous classes). In the case

of ambiguity, the resulting blank nodes are represented as sets, which are filtered

as a result of range inference of the parent 4-tuple, in the final stage of the

method.

As it is shown in Figure 4, the output of the process of semantic querying of local

ontology is a set of OWL triples which formalizes the parts of the local ontology,

asserted with individuals whose properties match the restrictions, defined by the

DL query.

Obviously, a query-driven population is applied in this case. As it is mentioned

before, this approach separates data from the meta-model and, hence, it enables

better performance of the reasoning processes. However, at this moment, a query-

driven population cannot be applied in a more complex environment of

interrelated ontologies, such as the scenario of semantic interoperability of EISs.

In the remainder of this section, we discuss the two main arguments for this

statement.

Almost all of the work on semantic reasoning still assumes a centralized approach

where all inferences are carried out on a single system. The consequence of this

approach is that all ontologies that need to interoperate (typically interrelated by

23

“imports” relations) have to be loaded by the reasoner software before the

inference is even started. In a semantic interoperability scenario, the reasoner uses

asserted logical correspondences between the local ontologies and the domain

ontology to infer about the individuals of the local ontologies by using the

language of the domain ontology. Since all ontologies need to be loaded into the

memory space of the reasoner, it is not possible to apply a query-driven approach

because the database is not accessible. This issue may be resolved by enabling

more flexible and dynamic imports, where, for example, imported local ontologies

are populated by dynamic services, capable of processing restrictions from the

semantic query executed in the parent ontology. At this moment, we are not aware

of any efforts of the scientific community to tackle this problem. A possible

workaround for resolution of this problem may be the usage of formally-defined

interfaces which allow that different ontology modules are developed completely

independent of each other’s signature and even a language [51].

Another issue of the query-driven population of local ontologies in inter-

organizational settings is data security, namely, access authorization. In a massive

export population approach, specific export and synchronization rules may be

implemented to publish only some parts of the EIS’s database to a local ontology.

However, a query-driven population, as explained above is done at the runtime,

when the query itself is executed. Hence, it is very difficult to implement and

manage access rules. Even, a more complex, but realistic scenario can be

imagined, where an enterprise wants to manage the access to particular

information per request in the process of a query execution. It is important to note

that, in this case, the process of semantic querying will become asynchronous.

Again, it seems that no relevant work on this topic has been done so far.

Despite the fact that the above concerns are serious, we still believe that the

query-driven population is a better candidate approach for application in

semantically interoperable EISs than the massive export. The problems of static

and restricted imports are mainly related to technical challenges, which are

expected to be faced more likely than performance issues of DL-based reasoners.

The problems of access rights may be resolved by considering a middleware

which will be used for implementing the cross-organizational processes with

strictly defined information access policy. For example, the cross-organizational

24

process may combine customized views on internal business processes that hide

their private internal details [52].

4. Explication and semantic querying of OpenERP

Enterprise Information System

Our approach for generating a local ontology and semantic querying is

implemented on the case of extracting the semantic information from the

OpenERP enterprise information system. This example is a part of the greater

case study which demonstrates the benefits of the semantic interoperability of

systems for a lifecycle management of the virtual enterprise for manufacturing of

the custom orthopedic implants [53]. These, engineered-to-order, highly

customized products are vital for the effectiveness and efficiency of the clinical

practice. Today, they are rarely produced because of extremely long lead time,

even up to three months, and corresponding high costs. The above cited case

study shows how the uptake of the relationship management in the cost and lead

time can be reduced by enabling the efficient communication between partners in

the dynamic supply chain.

In this example, we show how the enterprise with a customer role in a virtual

enterprise for custom orthopedic implants manufacturing (or any other

engineered-to-order product) could gain a transparent access to the information

needed for production planning. In specific, we demonstrate how the presented

methods for explication and semantic querying could be used to by the customer

to achieve access to the production schedules of its supplier for a given part, and

hence, to increase the efficiency of its production planning processes..

First, it is demonstrated how the supplier is represented into the “interoperable

world”, namely, how our database-to-ontology method is used to generate a local

ontology for OpenERP enterprise information system. Then, it is shown how the

semantic query for extracting the production schedule for a given part is executed

in this local ontology.

4.1. Generation of OpenERP local ontology

With all modules installed, OpenERP database counts 238 tables. The database is

transformed to an OpenERP local ontology by the software prototype that

implements the approach, described in Section 3.1. In the first step of database

25

import into er.owl model, namely, instantiation of the OWL representation of the

ER model, 3806 individuals are created (2633 of “attribute” type, 238 of “entity”

type and 934 of “relation” type) and 7999 object property assertions are made.

These individuals and their asserted properties directly correspond to the structure

of OpenERP database schema and they are their literal OWL representation.

In the second step of the transformation process, the classification of OWL

concepts and properties is done and s-er.owl model is generated. 193 concepts,

493 data-concepts and 2779 properties are inferred, on the basis of the SWRL

rules, presented in Section 3.1, executed on the literal OWL representation

produced in the former step. All inferences are stored in a separate OWL file,

which is considered as the meta-model of the OpenERP database schema, in order

to reduce the processing requirements for the final step.

In the final step of the local ontology generation, the software transforms the

classified instances of the meta-model of the OpenERP database to the

corresponding OWL concepts and properties (see Figure 5).

Figure 5: OpenERP local ontology in Protégé

The resulting OWL file is considered as the output of the described database-to-

ontology transformation process. In the case of OpenERP, additional work on

lexical refinement is not vital because the database developers use natural

language to describe the entities and their attributes.

The resulting conceptualization, that is, the generated local ontology corresponds

to the user perspective of OpenERP system. This is demonstrated below, in the

26

description of the manufacturing module of OpenERP system. The lexical

refinement is intentionally skipped in order to better illustrate the process of

semantic querying (by preserving the similarity of the database tables and

concepts’ and relationships’ names).

The manufacturing module of OpenERP EIS facilitates the management of master

data about products, master Bill of Materials, work centers and routings; it

automates procurement management, manufacturing and purchase scheduling; it

facilitates the management of manufacturing and delivery orders and after-sales

services. Figure 6 displays the fragment of the UML representation of OWL

concepts and relations (from the generated local ontology) that describe the

manufacturing module of OpenERP EIS.

The basis for manufacturing management in OpenERP is the management of

master data, namely, bills of materials, work centers and routings. Bills of

materials (mrp_bom concept in Figure 6) describe the single or multi-level

structure of the product (product_product concept) to be manufactured – sub-

assemblies or raw material, each of which can be moved from stock or

manufactured or purchased (determined by hasType functional property of

mrp_bom concept). Work centers (mrp_work_center) represent units of

production (machines or human resources, determined by hasType functional

property), capable of doing material transformation operations, with a certain

production capacity, expressed in cycles (for machines) or hours (for human

resources). Routings (mrp_routing) define the manufacturing operations to be

done in work centers to produce a certain product. They are associated to bills of

materials.

Once the master data is defined, the system can automatically generate the

production schedule (schedule of generation of production – mrp_production, and

procurement – mrp_procurement orders) by using make-to-order rules, minimum

stock (for make-to-stock production) rules or production plan (based on

forecasts). For make-to-order production, orders are computed on the basis of

quantity of the ordered product, bill of material and delivery date. For each of the

product’s elements which are supplied, a procurement order is generated. Planned

dates (hasDatePlanned property) for the orders are calculated on the basis of a

delivery date and manufacturing and purchase lead times for the product elements.

For make-to-stock production, instead of the delivery date, minimum stock rules

27

are used for production scheduling. In this case, orders are launched when

minimum stock thresholds are reached.

The logistics of production is managed on the basis of stock moves

(mrp_stock_move concept). OpenERP supports three types of stock locations:

physical stock locations (warehouses), partner locations (customers’ and

suppliers’ stocks) and virtual locations. The notion of stock location is used to

define pull and push flows and to manage all types of storage places, including

internal, supplier, customer, production and others. It is used to manage

manufacturing logistics, since each of the manufacturing operations (described by

mrp_routing concept) can be associated to a single stock location.

Figure 6: Fragment of UML representation of OpenERP local ontology

The cardinalities of the properties on the UML representation of OpenERP

ontology highlight the specific semantic features of the illustrated concepts, which

are not clearly obvious when the ER model of the database is considered. For

example, the bill of material cannot exist without an associated product or

products; thus, (hasProduct product_product) is a necessary condition for the

mrp_bom concept. The bill of material must have a type assigned (hasType

functional property). It may (or may not) be associated with a parent bill of

28

material element (hasMrpBom property). Similar reasoning can be applied for the

other concepts of OpenERP ontology.

The above description of how OpenERP system works with manufacturing

management corresponds to the conceptual model of this domain, illustrated in

Figure 6. However, although the principles above are used to manage the

production in many other (if not all) ERP systems, they are all realized by the

different database schemas. The differences in conceptualization approaches of

the ERP systems designers have a negative effect on the capabilities of these

systems to cooperate. This problem is typically addressed by making two

conceptual models correlated. However, the reconciliation of different semantic

models, such as different explicit representations of the implicit realities of two

EIS, namely, local ontologies and conceptual models of a specific domain, are

beyond the scope of this paper.

4.2. Execution of semantic queries

Once the local ontology of OpenERP system is generated, our method for

semantic querying of the local ontologies can be applied to facilitate the extraction

of the relevant information. In order to demonstrate this, we consider a case in

which a manufacturing enterprise queries the local ontologies of its suppliers in

order to extract the information about a production schedule for a specific part of

the custom orthopedic implant – an inner fixture.

In the query-driven population approach, two types of query re-writing

mechanisms are needed. The first query needs to transpose the semantic query,

written by using the language of domain ontology, into another semantic query,

which can be then executed on the local ontology. The second type of query

rewrite mechanism is needed to transform the semantic query to SQL query or

queries which are executed in the database; result-sets are then represented as

logical statements which are finally asserted to local ontology.

The DL query which returns the production schedule for the product (part) with

name "Custom fixture F12" from the local ontology of OpenERP system is:

mrp_production and hasProductProduct some (hasProductTemplate some

(hasName value "Custom inner fixture F12"))

According to the method, in the first step of semantic query execution, the query

is decomposed to the following 4-tuplets:

29

X hasProductProduct some bNode1

bNode1 hasProductTemplate some bNode2

bNode2 hasName value "Custom fixture F12"

In the next step, SQL queries are generated for each of the 4-tuplets, from the

bottom up. The domain of “hasName” property of OpenERP ontology is the union

of 170 sets – concepts, each of which corresponds to a data table. Hence, the

resulting SQL query is an array of 170 SELECT queries.

The SQL queries, generated by the module for semantic query execution for the

last 4-tuplet, are as follows:

(1) SELECT * FROM account_account_template WHERE name='Custom fixture

F12'

(2) SELECT * FROM account_account_consol_rel WHERE name='Custom

fixture F12'

....

....

(65) SELECT * FROM product_template WHERE name='Custom fixture F12'

....

....

(170) SELECT * FROM wkf_workitem WHERE name='Custom fix-ture F12'

The queries are executed and resulting datasets are transformed into logical

statements which are, then, asserted to a temporary model. The query (65) returns

the product template description that matches the given criteria. The result-set is

then transformed into the logical statements that describe an instance of

“product_template” concept and its necessary conditions.

custom-fixture_f12 type product_template

custom-fixture_f12 hasCostMethod 'Average price'

custom-fixture_f12 hasId 1332

custom-fixture_f12 hasMesType 'Measure type'

custom-fixture_f12 hasName 'Custom fixture F12'

custom-fixture_f12 hasProcureMethod 'Make to Order'

Inner-Fixtures type product_category

Inner-Fixtures hasName 'InnerFixtures'

Inner-Fixtures hasId 12

custom-fixture_f12 hasProductCategory Inner-Fixtures

30

custom-fixture_f12 hasStandardPrice 540.00

custom-fixture_f12 hasSupplyMethod 'Produce'

custom-fixture_f12 hasType 'Product type'

These logical statements are then asserted into a temporary model (stored in the

memory space of the semantic querying engine).

It is important to emphasize that a query execution procedure is recursive. The

query is expected to extract from the database and to assert all necessary

conditions for a given concept. When the result-set includes a field which is at the

destination of one-to-many schema relationship, the algorithm raises the

occurrence of another concept (not a basic data type) as a necessary condition. In

this case, another SQL query is executed to extract the result set which

corresponds to this concept. In the above example, for the definition of necessary

conditions of “product_template” concept, the instance of the “product_category”

concept needs to be constructed and asserted to a temporary model.

In the next iteration of the query execution, the next 4-tuplet is transformed into a

set of SQL queries. As it is shown above, value restrictions are transformed to

SQL queries in a simple way, where basic data-types (in this case, strings) are

used as criteria. In this iteration, the criterion is defined with an instance(s) of the

ontology (in this case, bNode2 array). In the example above, only one instance is

asserted into local ontology, as a result of the first iteration. Thus, in the second

iteration, the following statement is transposed to SQL queries:

bNode1 hasProductTemplate custom-fixture-f12

When existential restrictions are used, SQL WHERE statements are interpreted as

the values of the functional data properties of this instance:

custom-fixture_f12 hasId 1332

Given the fact that the domain of “hasProductTemplate” property is a union of

three concepts (“product_pricelist_item”, “product_product” and

“product_supplierinfo”) in OpenERP local ontology, the following set of SQL

queries is generated:

(1) SELECT product_pricelist_item.* FROM prod-uct_pricelist_item,

product_template WHERE

product_pricelist_item.product_template_id=product_template.id AND

product_template.id='1332'

31

(2) SELECT product_product.* FROM product_ product, product_template

WHERE product_ product.product_template_id=product_template.id AND

product_template.id='1332'

(3) SELECT product_ supplierinfo.* FROM product_ supplierinfo,

product_template WHERE product_

supplierinfo.product_template_id=product_template.id AND

product_template.id='1332'

In this example, only the second SELECT query returns a value, because the

custom fixture product is engineered to order, so no pricelist or supplier

information is relevant for its description. Similarly as in the case of the first

iteration, a result set is transformed into a set of logical statements, which describe

the instance of “product_product” concept of OpenERP local ontology, by using

its necessary conditions:

custom-fixture_f12_p type product_product

custom-fixture_f12_p hasId 67

custom-fixture_f12_p hasProductTemplate custom-fixture_f12

These logical statements are also asserted into the temporary model. In the last

iteration, a domain of “hasProductProduct” property is determined for a given

range (“custom-fixture_f12_p” instance). Then, the value of the functional

property of a criterion instance is used to generate SQL query. This set has 22

SELECT queries because the domain of the “hasProductProduct” property is the

union of 22 classes:

(1) SELECT account_analytic_line.* FROM account_analytic_line,

product_product WHERE account_analytic_line.product_id=product.id AND

prod-uct.id='67'

...

(7) SELECT mrp_production.* FROM mrp_production, product_product

WHERE mrp_production.product_id=product.id AND product.id='67'

...

(22) SELECT stock_warehouse_orderpoint.* FROM

stock_warehouse_orderpoint, product_product WHERE

stock_warehouse_orderpoint.product_id=product.id AND product.id='67'

In contrast to the previous iteration, in this step, the instances of more than one

concept of OpenERP local ontology are returned – all instances to which the

32

custom fixture product is associated (the domain of “hasProductProduct”

property), such as account_invoice_line, delivery_carrier, mrp_bom, and others.

Then, the result-sets are transformed into logical statements that are asserted to a

temporary model. Some relevant statements are:

custom-fixture_f12_prod_sched type mrp_production

custom-fixture_f12_prod_sched hasDatePlanned '2012-02-15 23:59:59'

custom-fixture_f12_prod_sched hasId 67

custom-fixture_f12_prod_sched hasName 'Production schedule for Custom fixture

F12'

custom-fixture_f12_prod_sched hasProductProduct custom-fixture_f12_p

custom-fixture_f12_prod_sched hasProductQuantity 3.0

custom-fixture_f12_prod_sched hasDateFinished '2012-02-17 23:59:59'

stock_location_w2 type stock_location

stock_location_w2 hasAllocationMethod ''

stock_location_w2 hasChainedAutoPacking ''

stock_location_w2 hasChainedLocationType ''

stock_location_w2 hasId 8

stock_location_w2 hasName ''

stock_location_w2 hasUsage 'Warehouse 2'

custom-fixture_f12_prod_sched hasStockLocation stock_location_w2

At this time, all instances required for the semantic representation of the query

result are stored in the temporary model, in the memory of the inference engine.

The second step of the semantic query execution method – query execution and

assertions can be considered as completed.

In the third and last step of the method; a semantic DL query is executed on the

temporary model, in order to filter only relevant instances. Namely, as it is shown

in the description of the third iteration of the query execution step, the property

domain inferences may result in some excessive information which is not relevant

for the case. Also, in the case where the complex semantic queries (with multiple

restrictions on the desired instance) are executed, the intersection of the resulting

sets of instances, each corresponding to individual restrictions, need to be

inferred. Finally, this filtered model is returned as an end outcome of the semantic

query execution. The representation of the outcome of the production schedule

33

querying for the product “Custom fixture F12” is illustrated in Figure 7 (data

properties are not displayed).

Figure 7: Visual representation of the production schedule for example product “Custom fixture

F12”

The resulting graph is a semantic representation of the production schedule

concept and is delivered after the semantic query is transformed to a set of SQL

queries which are executed in the database of OpenERP system. Now, its concepts

and instances can be mapped to the domain models and, hence, more advanced

reasoning may be enabled. More importantly, a production schedule concept of

OpenERP local ontology may become logically equivalent to the corresponding

concepts of local ontologies of other systems. Thus, these systems will become

capable of interpreting messages which encapsulate different production

schedules. The main implication of this capability in a federated enterprise

network is that any two systems may become semantically interoperable [54].

5. Conclusions and future work

The work presented in this paper is a part of the research of semantic

interoperability in supply chain networks. In this paper, we focus on introducing

the partial realities of the enterprises, that is, data representations of their

information systems, into the heterogeneous environment of a supply chain

network. In the presented approach, enterprise data models are used to generate

local ontologies, by applying a set of rules for interpreting the semantics of an ER

34

model, namely a database schema. Although “database-to-ontology mapping” is

not a novel concept, we showed that existing approaches are characterized by

weaknesses, most of which are related to the lack of completeness of properties’

semantics. Our approach and corresponding tools aim at overcoming these

weaknesses, thus enabling the complete (in aspects of ER patterns’ semantics and

OWL expressivity) interpretation (explication) of the implicit semantics of the ER

models, as well as the full correspondence between semantic and database queries.

As we have shown, the precondition for this correspondence is the resolution of

some technical problems, related to the lack of more expressive formalisms (or

technical approaches) for correlating two ontologies and the lack of methods for

enabling the management of access rights.

The generated local ontologies should be considered only as intermediary results

of the process of conceptualization of one EIS. The main argument for the need of

a human intervention is that a weak assumption is made that the ER schema of the

EISs represents the semantics of their data models. There are obvious limitations

introduced by this assumption, related to semantics coverage and even correctness

(because it is more correct to say that ER schemas are conceptual models of the

developers’ intents rather than databases of actual systems). However, the case

study of generating a local ontology from the OpenERP system shows that the

method provides an exhaustive semantic landscape by fully interpreting the

semantics of ER underlying schema, by using full OWL/DL expressivity,

automatically. As such, this landscape can be improved in the following human

intervention by considering business rules, ambiguous types and more

sophisticated semantic relations.

In the context of the semantic interoperability, the resulting local ontologies may

be considered as enterprise message models. As such, they aim at enabling the

semantic interoperability of corresponding enterprise information systems, not the

enterprises themselves. Still, significant research efforts are needed for the

representation and the exposition of the enterprise business logic, which is hard-

coded in the systems, as well as the semantics of the instances, namely,

information which are stored in the database. Hence, some of the identified future

research topics aimed at improving the resulting conceptual model are: analysis of

data patterns with the goal of discovering the semantics of the ambiguous notions

of the local ontologies (e.g. type or status); and semi-automatic classification of

35

the concepts of local ontologies by analyzing necessary conditions for different

concepts. There are other topics which relate to improving the application

framework that uses the local ontologies, such as: developing a universal method

for semantic query rewriting, where source and destination queries use the

concepts of two ontologies, logically interrelated by using SWRL rules; and

developing a method and tools for execution of “Tell” semantic queries. Finally,

developments in some specific areas of Semantic Web tools and languages will

certainly contribute to the improved performance and functionality of the

application framework for semantic interoperability in supply chain networks.

Some expected developments are related to: distributed reasoning capabilities for

modular ontologies with dynamic imports, security and access control levels to

the parts of ontologies in distributed ontological frameworks, and performance

and quality of ontology matching tools.

We consider these research topics as important for increasing collaboration in a

supply chain network, as its fulfillment will enable logic driven, automatic and

transparent decision making, thus contributing to the transition from traditional

supply chains to virtual enterprise and related paradigms.

Acknowledgement

The work presented in this paper was supported by the program for scientific

cooperation between Serbia and France PHC PAVLE SAVIC (project No.

23494VF 2010/2011); and the Ministry of Education and Science of the Republic

of Serbia (project No. III41017).

References

1. Browne J, Zhang J (1999) Extended and virtual enterprises – similarities and differences.

International Journal of Agile Management Systems. 1 (1):30-36

2. Sánchez NG, Apolinar D, Zubiaga G, Atahualpa J, González I, Molina A (2005) Virtual

Breeding Environment: A First Approach to Understanding Working and Sharing Principles. In:

Proceedings of the 1st International Conference on interoperability of Enterprise Software and

Applications. February 23-25, 2005. Geneva. Switzerland.

3. Panetto H, Molina A (2008) Enterprise integration and interoperability in manufacturing

systems: Trends and issues. Comput Ind. 59 (7):641–646.

4. ISO/IEC 2382-1:1993. Information technology -- Vocabulary -- Part 1: Fundamental terms,

International Organisation for Standardisation, Geneva

36

5. Chen D, Vernadat F (2004) Standards on enterprise integration and engineering - a state of the

art. Int J Comput Integ M. 17 (3):235–253.

6. Obrst L (2003) Ontologies for semantically interoperable systems. In: Proceedings of the 12th

International Conference on Information and Knowledge Management. November 3-8, 2003. New

Orleans, USA.

7. Lee JL, Madnick SE, Siegel MD (1996) Conceptualizing semantic interoperability: A

perspective from the knowledge level. Int J Coop Inf Syst. 5 (4):367-393.

8. Sowa J (2009) Knowledge Representation : Logical, Philosophical, and Computational

Foundations. Brooks/Cole Publishing Co., CA

9. The IEEE Standard Upper Ontology web site. http://suo.ieee.org, Accessed: 17.5.2012.

10. Zdravković M, Panetto H, Trajanović M, Aubrey A (2011) An approach for formalising the

supply chain operations. Enterprise Information Systems. 5 (4):401-421.

11. Grubic T, Fan IS (2010) Supply chain ontology: Review, analysis and synthesis. Comput Ind.

61 (8): 776-786.

12. Gailly F, Poels G (2011) Experimental Evaluation of an Ontology-Driven Enterprise Modeling

Language. In: Advances in conceptual modeling, Recent developments and new directions. Lect

Notes Comp Sc. 6999:163-172

13. Hoang HH, Tran PCT, Le TM (2010) State of the Art of Semantic Business Process

Management: An Investigation on Approaches for Business-to-Business Integration. In: Intelligent

information and database systems. Lect Notes Comput Sc. 5991:154-165

14. Zdravković M, Panetto H, Trajanović M (2011) Local ontologies for semantic interoperability

in supply chain networks, In: Zhang, R., Cordeiro, J., Li, X., Zhang, Z., Zhang, J. (Eds.),

Proceedings of the 13th International Conference on Enterprise Information Systems. SciTePress,

pp. 22-31

15. Lezoche M, Panetto H, Aubry A (2012) Formal Fact-Oriented model transformations for

Cooperative Information Systems semantic conceptualization. Enterprise Information Systems.

Lecture Notes in Business Information Processing LNBIP 102 117-131

16. Hepp M (2007) Ontologies: State of the art, business potential and grand challenges. In: Hepp,

M., De Leenheer, P., de Moor, A. and Sure, Y. (eds), Ontology Management – Semantic Web.

Semantic Web Services and Business Applications. Springer, Berlin/Heidelberg, 2007, pp.3-22.

17. Castano S, De Antonellis V (1998) A framework for expressing semantic relationships

between multiple information systems for cooperation. Inform Syst. 23 (3-4) (1998) 253-277.

18. Astrova I (2004) Reverse Engineering of Relational Databases to Ontologies. Lect Notes

Comput Sc. 3053:327-341.

19. Batini C, Lenzerini M, Navathe SB (1986) A comparative analysis of methodologies for

database schema integration. ACM Comput Surv. 18 (4):323-364.

20. Sheth A, Larson J (1990) Federated Database Systems. ACM Comput Surv. 22 (3):183-236.

21. McBrien P, Poulovassilis A (1998) A Formalisation of Semantic Schema Integration. Inform

Syst. 23 (5):307-334.

22. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB

Journal. 10:334–350.

37

23. Doan A, Halevy AY (2005) Semantic Integration Research in the Database Community: A

Brief Survey. AI Magazine. 26 (83)

24. Wache H, Vögele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H, Hübner S (2001)

Ontology-based Integration of Information - A Survey of Existing Approaches. In: Proceedings of

IJCAI-01 Workshop: Ontologies and Information Sharing, Seattle, WA, 2001, pp. 108-117.

25. William WS, Johannesson P, Bubenko Jr. JA (1996) Semantic similarity relations and

computation in schema integration. Data Knowl Eng. 19 (1):65-97.

26. Zhao H, Ram S (2007) Combining schema and instance information for integrating

heterogeneous data sources. Data Knowl Eng. 61 (2):281-303.

27. Unal O, Afsarmanesh H (2010) Semi-automated schema integration with SASMINT. Knowl

Inf Syst 23 (1): 99-128.

28. Ghawi R, Cullot N (2007) Database-to-Ontology Mapping Generation for Semantic

Interoperability. In: Proceedings of 3rd International Workshop on Database Interoperability.

September 24, 2007. Vienna. Austria.

29. Cullot N, Ghawi R, Yetongnon K (2007) DB2OWL: A Tool for Automatic Database-to-

Ontology mapping. In: Proceedings of the 15th Italian Symposium on Advanced Database

Systems. June 17-20, 2007. Torre Canne di Fasano (BR). Italy.

30. de Laborda CP, Conrad S (2005) Relational.OWL: a data and schema representation format

based on OWL. In: Proceedings of the 2nd Asia-Pacific conference on Conceptual modelling.

January 30 - February 4, 2005. Newcastle. Australia.

31. Konstantinou N, Spanos D, Chalas M, Solidakis E, Mitrou N (2006) VisAVis: An approach to

an intermediate layer between ontologies and relational database contents. In: Proceedings of

International Workshop on Web Information Systems Modeling. June 6, 2006. Luxembourg.

32. Xu Z, Zhang S, Dong Y (2006) Mapping between Relational Database Schema and OWL

Ontology for Deep Annotation. In: Proceedings of the 2006 IEEE/WIC/ACM International

Conference on Web Intelligence. December 18-22, 2006. Hong Kong.

33. Xu Z, Cao X, Dong Y, Su W (2004) Formal Approach and Automated Tool for Translating ER

Schemata into OWL Ontologies. Advances in Knowledge Discovery and Data Mining, Lect Notes

Comput Sc. 3056:464-475.

34. Rishe N, Furht B, Adjouadi M, Barreto A, Davis D, Wolfson O, Yesha Y, Yesha Y (2011)

Semantic Wrapper: Concise Semantic Querying of Legacy Relational Databases. Handbook of

data intensive computing. 2:415-444

35. Vavliakis KN, Grollios TK, Mitkas PA (2010) RDOTE - Transforming Relational Databases

into Semantic Web Data. ISWC Posters&Demos 2010

36. Sane S S, Shirke A (2009) Generating OWL ontologies from a relational databases for the

semantic web. In: Proceedings of ICAC3 '09 International Conference on Advances in Computing,

Communication and Control. Pages 157-162, ACM New York, NY, USA

37. Fischer M, Dean M, Joiner G. (2008) Use of OWL and SWRL for Semantic Relational

Database Translation. In: Proceedings of the Fourth OWLED Workshop on OWL: Experiences

and Directions. Washington, DC (metro), 1-2 April 2008.

38

38. Spanos DE, Stavrou P, Mitrou N (2012) Bringing relational databases into the Semantic Web:

A survey. Semantic Web. 3(2): 169-209

39. Curino C, Orsi G, Panigati E, Tanca L (2009) Accessing and Documenting Relational

Databases through OWL Ontologies. Flexible query answering systems. Lect Notes Comput Sc.

5822:431-442

40. Auer S, Dietzold S, Lehmann J, Hellmann S, Aumueller D (2009) Triplify: light-weight linked

data publication from relational databases. In: WWW '09 Proceedings of the 18th international

conference on World wide web, Pages 621-630, ACM New York, NY, USA

41. Hassanzadeh O, Kementsietsidis A, Lim L, Miller RJ, Wang M. (2009) A framework for

semantic link discovery over relational data. In: CIKM '09 Proceedings of the 18th ACM

conference on Information and knowledge management. 1027-1036. ACM New York, NY, USA

42. Vavliakisa KN, Symeonidisa AL, Karagiannisc GT, Mitkasa PA (2011) An integrated

framework for enhancing the semantic transformation, editing and querying of relational

databases. Expert Systems with Applications. 38 (4): 3844–3856

43. Hert M (2009) Relational Databases as Semantic Web Endpoints. The semantic web: research

and applications. Lect Notes Comput Sc. 5554:929-933

44. Koutsomitropoulos DA, Domenech RB, Solomou GD (2011) A Structured Semantic Query

Interface for Reasoning-Based Search and Retrieval. The semantic web: research and applications.

Lect Notes Comput Sc. 6643:17-31

45. Buil-Aranda C, Corcho O, Krause A (2009) Robust Service-Based Semantic Querying to

Distributed Heterogeneous Databases. In: Proceedings of 20th International Workshop on

Database and Expert Systems Application, DEXA '09. pp:74-78

46. Motika B, Horrocks I, Sattler U (2009) Bridging the gap between OWL and relational

databases. Web Semantics: Science, Services and Agents on the World Wide Web. 7(2):74–89

47. Bizer C, Heath T, Berners-Lee T. (2009) Linked Data – The Story So Far. International Journal

for Semantic Web and Information Systems. 5(3):22

48. Guarino N (1997) Understanding, building and using ontologies. Int J Hum-Comput St. 46 (2–

3):293–310.

49. Antoniou G, van Harmelen F (2009) Web Ontology Language: OWL. In: Handbook on

ontologies. International Handbooks on Information Systems, Part 1: 91-110

50. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: A

Semantic Web Rule Language - Combining OWL and RuleML. W3C Member Submission 21

May 2004. http://http://www.w3.org/Submission/SWRL/

51. Ensan F, Du W (2011) A knowledge encapsulation approach to ontology modularization.

Knowl Inf Syst. 26 (2): 249-283.

52. Eshuis R, Grefen P (2008) Constructing customized process views. Data Knowl Eng. 64:419-

438.

53. Zdravković M, Trajanović M, Stojković M, Vitković N, Mišić D (2012) A case of using the

Semantic Interoperability Framework for custom orthopedic implants manufacturing. Annual

Reviews in Control. 36 (2): 318-326.

39

54. Yahia E, Lezoche M, Aubry A, Panetto H (2012) Semantics enactment for interoperability

assessment in enterprise information systems. Annual Reviews in Control 36 (1): 101–117.

