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Relative hyperbolization of (one-ended
hyperbolic)-by-cyclic groups

François Gautero and Martin Lustig

Abstract

We show that the semi-direct product of a one-ended torsion-free word-
hyperbolic group with Z, given through an automorphism α : G → G, is a
hyperbolic group relative to certain canonical subgroups of G on which α

acts periodically or with linear growth.

Introduction

Let G be a word-hyperbolic group in the sense of Gromov [17], and let α be an
automorphism of G. For simplicity we consider in this paper only the case of
torsion-free G. The overall question adressed in this paper is whether (or better,
to what extent) the mapping torus group of α, i.e. the semi-direct product

Gα = G ⋊α Z,

is itself a word-hyperbolic group. The general answer to this question is mixed,
depending on the properties of the automorphism α. The best way to phrase this
is in terms of relative hyperbolicity (as introduced by Farb), explained in detail in
section 6.

Theorem 0.1. For any freely indecomposable non-elementary torsion-free word-
hyperbolic group G and every automorphism α of G the semi-direct product G⋊αZ

is hyperbolic relative to a family of maximal subgroups of G which consist entirely
of elements on which α acts up to conjugacy periodically or with linear growth.

Notice that the statement of Theorem 0.1 is sharp in the sense that it becomes
wrong whenever one tries to decrease the relative part essentially: Indeed, every
element of an α-periodic conjugacy class in G is contained in a Z ⊕ Z subgroup
of Gα. A similar statement is true for a linearily growing element, relative to the
family of periodic subgroups. For any Z⊕Z subgroup, one of its summands must
lie (up to conjugacy) in the relative part in order to get a relatively hyperbolic
group. These subgroups also explain why above we use Farb’s version of relative
hyperbolicity: In order for Gα to be relatively hyperbolic in the stronger sense of
Gromov, both factors of any Z ⊕ Z subgroup must be contained in the relative
part. Such a coarser “factorization” of Gα, with a stronger relative hyperbolicity
property, will be discussed in Remark 7.4.
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Remark 0.2. If G is a non-trivial free product, then its automorphisms behave,
relative to the free factors, very much like automorphisms of free groups (com-
pare [7]), so that the results of [13] can be adapted. In combination with the
results and methods of the present paper, with a small amount of extra technical
work, [13] gives the prospect of a complete solution of our overall question for
all automorphisms α of all (torsion-free) hyperbolic groups G, stated as follows:
Gα = G⋊α Z is hyperbolic relative to a canonical set of subgroups of G that con-
sist entirely of (and contain up to conjugation all) elements that have polynomial
α-growth.

Using Sela’s decomposition of one-ended hyperbolic groups, described in sec-
tion 7 below, the above Theorem 0.1 will follow directly from the more general
statement of Theorem 7.1, where G is replaced by the fundamental group of a
graph of groups of a certain type.

An important special case, which is at the time a “warm up” as well as the
most important building block in the proof of these results, is that of a surface
group G, where α is given by a surface homeomorphism.

Theorem 0.3. Let Mh be the mapping cylinder of a homeomorphism h : S → S of
a surface S with Euler characterisitc χ(S) < 0, possibly with non-empty boundary
∂S. Then the fundamental group π1Mh is hyperbolic relative to the family of
subgroups defined (up to conjugation) by the fundamental groups of the boundary
curves of S, of the reduction curves in the Nielsen-Thurston reduction of h, and of
those subsurfaces of S which are maximal unions of components in this reduction
on which h induces a periodic mapping class, pasted together along a maximal
subfamily of the reduction curves.

Before attacking the case of reducible h in section 6 we very carefully consider
the “absolute” case of a closed surface S provided with a pseudo-Anosov home-
omorphism h : S → S. (Note that, if the mapping class of h is reducible or of
finite order, then the mapping-torus Mh of h contains a π1-injective 2-torus, and
hence its fundamental group contains a copy of Z⊕Z and thus can not be word-
hyperbolic.) The first five sections of this paper are devoted to a detailed analysis
of the geometry of mapping tori of such pseudo-Anosov surface homeomorphisms.
We assemble the tools necessary for the more difficult relative case, and, as a side
product, we also obtain a conceptually simple proof of the following:

Proposition 0.4. If the mapping class of a surface homeomorphism h : S → S
is pseudo-Anosov, then π1Mh is word-hyperbolic.

Note that Proposition 0.4 is also a well known consequence of each of three
important, highly non-trivial theories: of Thurston’s hyperbolisation of fibered
3-manifolds [19], of Bestvina-Feighn’s combination theorem [1], or of the work of
Gabai-Kazez [12],[11] on genuine essential laminations in 3-manifolds.

By contrast, the methods presented in this paper only use classical Nielsen-
Thurston surface theory [10] and elementary geometric considerations: We use
the stable and the unstable singular foliation on S, which is associated to the
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pseudo-Anosov map h, to define a foliation metric on the universal cover of S.
This foliation metric is lifted and properly rescaled to define a metric on the
universal cover M̃ of Mh (reminiscent of the metric used by Cannon-Thurston, see
[5, 8]). This metric is preserved by the free, properly discontinuous and cocompact
action of π1Mh. Hence, in order to prove that π1Mh is hyperbolic, it suffices to
show that geodesic triangles in M̃ are thin (see [4] and [15] for background).
This is done through a close investigation of our metric on M̃ , which results in
an approximation of geodesics by vertical and horizontal segments. We find this
geodesic approximation illuminating in its own way, also with respect to potential
further applications.

Acknowledgements : The first author would like to thank the Mathematics
Department of University of Geneva where he held a post-doctoral position while
most of this work was done.

1 Setting

From here until the end of section 5 we consider a compact, connected surface
S with empty boundary and with Euler characteristic χ(S) < 0, as well as a
pseudo-Anosov homeomorphism h of S. The surface S can be endowed with a
hyperbolic structure, given by an identification of the universal cover of S with
the Poincaré disk D2. The action of the fundamental group π1S on the universal
cover of S by deck transformations is realized via this identification by isometries
on D2 with respect to Poincaré’s hyperbolic metric.

We choose a lift h̃ of h to D2. It admits a pair of π1S-equivariant, h̃-invariant,
transverse, singular foliations Fu, Fs in D2, called the unstable and the stable
foliation respectively. Both Fu and Fs come with π1S-equivariant, transverse
measures, denoted µu and µs. The transverse measure µs on Fs is uniformly
dilated by a factor λ > 1 under the induced action of h̃, and similarly µu is uni-
formly contracted by the factor 1

λ
. In particular this gives for any finite segment

l0 of a leaf l of Fs, and for any finite segment l′0 of a leaf l′ of Fu, the equations
(compare [10]):

µu(h̃(l0)) =
1

λ
µu(l0) , µs(h̃(l′0)) = λµs(l

′
0)

The universal cover of the mapping torus Mh = S×[0, 1]/{(s, 1) = (h(s), 0) | s ∈
S} is called mapping telescope and denoted by M̃ . It is homeomorphic to D2×R,
but for our purposes we have to carefully select the identification M̃ = D2 × R

among the different (natural) possibilities. This is most conveniently done by
specifying a free, properly discontinuous and cocompact action of π1Mh on D2×R,
and by identifying Mh with the quotient space:

Every element gτ r of π1Mh = π1S ⋊h̃∗

Z, for g ∈ π1S, τ a generator of the
infinite cyclic “right factor” Z and r any integer, can be identified with the lift
H = gh̃r : D2 → D2 of the r-th power of the given homeomorphism h : S → S.
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We define the corresponding “deck transformation” Ĥ on M̃ by

Ĥ(gτ r) = Ĥ : D2 × R → D2 × R, (x, t) 7→ (H(x), t − r).

For r = 0 this gives the (desired) consequence that an element g ∈ π1S acts on
M̃ = D2×R through g(x, t) = (gx, t). In particular, the quotient manifold (D2×
R)/π1Mh is obtained in two steps as follows: First one quotients D2 × R modulo
π1S to obtain S × R, on which the infinite cyclic group π1Mh/π1S generated by
the image τ̄ of τ acts through τ̄ (z, t) = (h(z), t−1). As second step one quotients
S × R modulo < τ̄ >, which clearly gives the mapping torus Mh.

As a consequence, for each time t the fibre Ft = D2 × {t} of M̃ covers a fibre
homeomorphic to S of the mapping torus fibration Mh → S1. More specifically,
the covering map D2 × R → Mh induces for every integer value t ∈ Z ⊂ R a
covering map D2 × {t} → S, (x, t) 7→ y which differs from the above specified
universal covering map D2 → S, x 7→ z by composition with the power ht, i.e.
y = h−t(z). The analogous statement is true for any two fibres Ft1 , Ft2 at times
t1, t2 = t1 + t which differ by an integer t ∈ Z.

We now rescale the transverse measures on the fibres continuously, by mul-
tiplying µu with the factor λ−t to get the transverse measure of the unstable
foliation on D2 × {t}, and by multiplying µs with factor λt to get the trans-
verse measure of the unstable foliation on D2 × {t}. This has the effect that any
of the above defined deck transformations Ĥ : D2 × R → D2 × R preserves both
transverse measures of any path which is contained in some fibre Ft ⊂ M̃ .

We define the telescope flow Φt : M̃ → M̃ by Φt(x, r) = (x, r + t). This is
nothing other than the lift under the covering map of the mapping torus flow on
Mh. If P = (x, t) is a point in M̃ , we will denote by OP = {x}×R its orbit under
the telescope flow. Note that the above rescaling of the metric has the effect that
two orbits OP , OQ in the same stable leaf will approach one another arbitrarily
close and exponentially fast in the future (i.e. for t > 0), and they will diverge
exponentially fast in the past. The converse is true for unstable leaves.

2 The foliation metric on the Poincaré disk

In the Poincaré disk D2, identified above with the universal cover of the surface
S, we use the two foliations Fu, Fs and their transverse measures µu, µs to define
a new metric:

The unstable length |γ|u (resp. stable length |γ|s) of a path γ in D2 is the total
variation of |dµu| (resp. |dµs|) along γ. The foliation distance dF(x, y) between
any two points x, y in D2 is the infimum, over all the paths γ between x and y,
of the foliation length |γ|F = |γ|u + |γ|s.

We denote by D2
F the Poincaré disk equipped with the foliation distance dF .

The latter is clearly equivariant with respect to the covering space action of π1S.
As this action is free, properly discontinuous and cocompact, the disk D2

F is
quasi-isometric to the group π1Mh. In particular one has:

Proposition 2.1. The disk D2
F is a Gromov hyperbolic metric space. ⊔⊓
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Similarly, each fibre Ft = D2 × {t} of M̃ can be equipped with the analogous
foliation metric, denoted below by dt

F . The unstable and the stable foliation
length in Ft will be denoted by |γ|tu and |γ|ts respectively. Since Ft+1 is isometric
to Ft (through the deck transformation Ĥ associated in section 1 to any lift H of
the homeomorphism h : S → S), and since the Gromov hyperbolicity constant δt

for Ft varies continuously with t ∈ R, there is an upper bound δ > 0 to all δt.
The following is an elementary exercise (which becomes almost trivial, if one

passes from measured foliations to the associated geodesic laminations).

Lemma 2.2. (i) A path γ : [0, d] → D2
F is a geodesic if and only if it intersects

any leaf of Fu ∪ Fs in such a fashion that the full γ-preimage of the intersection
is connected.

(ii) A geodesic γ intersects each leaf of Fu ∪ Fs which separates the endpoints of
γ, and no other leaf.

(iii) Any two geodesics in D2
F with same endpoints have the same unstable and

the same stable length. ⊔⊓

Lemma 2.3. Let l be a leaf of Fu which separates two points A, B ∈ D2
F , and let

l′ be a similar leaf of Fs. If l and l′ intersect, then the intersection point Y ∈ D2
F

is contained in some geodesic between A and B. In particular, any two geodesics
[A, Y ] and [Y, B] intersect only in Y , and their union is a geodesic [A, B].

Proof. Assume Y0 is a point on both [A, Y ] and [Y, B], and let l0 be the leaf of
Fu and l′0 the leaf of Fs that contain Y0. If Y0 6= Y , then by Lemma 2.2 (ii) l0 or
l′0 separates Y from both A and B. But then one of the leaves l or l′ that contain
Y must also be separated by l0 or l′0 from both A and B. Hence one of them does
not separate A from B, which contradicts the assumption on l or that on l′. ⊔⊓

Proposition 2.4. Let A, B, C ∈ D2
F be arbitrary three points. Then there exists

a point Z ∈ D2
F which lies on three properly chosen geodesics [A, B], [B, C] and

[A, C]. In particular there is a geodesic triangle ∆ = [A, B, C] which is a tripod
with centre Z.

Proof. Any leaf of either Fu or Fs which intersects one side of a geodesic triangle
[A, B, C] must also intersect at least one other side. One observes that there must
be precisely one special leaf in either foliation which intersects all three sides of
[A, B, C]. The special leaf can be regular, in which case it must contain at least
one vertex of the triangle. According to the location of the intersection points of
the two special leaves from Fu and Fs with the sides of [A, B, C] one distinguishes
several cases, and for each of them one sees directly that the two special leaves
must intersect. Hence we can apply Lemma 2.3 to derive that the intersection
point Z of the two special leaves has all the desired properties. ⊔⊓

From the arguments in the last proof it follows also that the centre Z is
uniquely determined by the three given points A, B, C, but this fact is not used
here.
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3 The telescope distance on M̃

For any two points P, Q ∈ M̃ and for any time t ∈ R let Pt ∈ OP and Qt ∈ OQ

be the intersection points of the fibre Ft with the orbits OP and OQ respectively.
From the definition of the foliation metric in Ft in the last section it follows
directly that, unless Pt and Qt belong to a leaf of Fs or of Fu, the distance
dt
F(Pt, Qt) becomes minimal at the diagonal time tdiag for P and Q, by which we

mean the time coordinate t = tdiag of the fibre Ft where the stable and the unstable
distances between Pt and Qt are equal. This distance is called the orbit width of
OP and OQ and denoted by ω(P, Q). The points Ptdiag

and Qtdiag
are said to lie

in diagonal position. Away from the diagonal fibre Ftdiag
the distance dt

F(Pt, Qt)
increases with t into both directions, in an exponential (or more precisely, a
hyperbolic cosine like) fashion.

If Pt and Qt are contained in the same leaf of Fs or of Fu, we set ω(P, Q) = 0
and tdiag = ∞ or tdiag = −∞.

We say that two points P ′, R′ in some fibre Ft are in (ǫ, δ)-almost diagonal
position, for ǫ, δ ≥ 0, if there are points P and R in the δ-neighbourhood of P ′ and
R′ respectively, which are in diagonal position and which satisfy dt

F(P, R) ≥ ǫ.
We observe:

Lemma 3.1. For any sufficiently large ǫ > 2δ there exists a constant σ > 0 such
that for any two points P ′, R′ in some fibre Ft which are in (ǫ, δ)-almost diagonal
position, the diagonal time t′ for P ′, R′ satisfies |t − t′| ≤ σ. ⊔⊓

A path γ in M̃ is called vertizontal if it is the concatenation of finitely many
subpaths that are vertical (i.e. segments of some orbit OP ) or horizontal (i.e.
contained in some fibre Ft). The length l(γ) of such a path is simply the sum of
the length of their subpaths, where each horizontal subpath γ′ ⊂ Ft is measured
in the foliation metric dt

F defined on Ft, while the length of a vertical segment is
simply the difference of the time coordinates of its endpoints.

Lemma 3.2. Let γ be a vertizontal path in M̃ from P = (xP , tP ) to R = (xR, tR),
and assume that γ realizes at the point Qmin = (xmin, tmin) the minimal time
coordinate. Let γmin be the projection of γ under the telescope flow to the fibre
Ftmin

. Then the length of γ satisfies the inequality:

l(γ) ≥ |γmin|
tmin
u + tP + tR − 2tmin

Similarly, if Qmax = (xmax, tmax) is the point of γ with the maximal time coordi-
nate, then one has, for the projection γmax ⊂ Ftmax

of γ:

l(γ) ≥ |γmax|
tmax

s − tP − tR + 2tmax

Proof. Between P and Qmin the path γ accumulates a time contribution of
at least tP − tmin, and between Qmin and R it accumulates similarly at least
tR − tmin. From the scaling of the foliation metric in the fibres according to
time we obtain that the unstable contribution to l(γ) is bounded below by
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|γmin|
tmin
u , which proves the first inequality. The second one is completely analo-

gous. 2

We define a metric d on M̃ (the telescope metric) as follows:

Definition 3.3. For any two points P, Q ∈ M̃ let d(P, Q) denote the infimum of
the lengths l(γ) of all vertizontal paths γ joining P to Q.

Using a decomposition of S into rectangles with sides given by stable and
unstable leaves (as done in the usual Markov partitions for h : S → S, see [10]) it
is not hard to see that this infimum is indeed realized by some vertizontal path,
which hence is a geodesic [P, Q]. Thus M̃ is a proper geodesic metric space on
which π1Mh acts by isometries in a free, cocompact and properly discontinuous
way, so that M̃ and π1Mh are quasi-isometric. In particular, in order to show
that π1Mh is word-hyperbolic, it suffices to show that geodesic triangles in M̃ are
thin.

Lemma 3.4. The image γt ⊂ Ft of a geodesic γ ⊂ M̃ under the telescope flow is
a geodesic with respect to the foliation metric dt

F .

Proof. If γt is not a geodesic, then by Lemma 2.2 (ii) it intersects some leaf l′

of the stable or the unstable foliation which does not separate the endpoints of
γt. In particular, γt intersects twice another leaf l that separates the endpoints
of γt from l′. Hence we can strictly reduce the length of γ by “shortcutting” a
subpath γ′ with endpoints in the full lift L ⊂ M̃ of l, and γ′ intersects the full
lift of l′: We replace γ′ with a path γ′′ that is entirely contained in L. Here γ′′ is
the projection of γ′ into L along leaves of the stable or the unstable foliations in
the fibres Ft which intersect γ′. ⊔⊓

A path γ = [A, B] ⊂ M̃ from A to B is called a geodesic lift (of γt), if the
telescope flow projection γt of γ into any fibres Ft is a geodesic in Ft with respect
to the metric dt

F , and if there is no strictly shorter path in M̃ from A to B which
also projects to γt. Clearly every geodesic in M̃ is a geodesic lift. Similarly as
shown above for geodesics one can see that a vertizontal geodesic lift exists for
any dt

F -geodesic in a fibre Ft.

4 Geodesics in M̃

The goal of this section is to show that any geodesic in M̃ locally either has an
“almost vertical” direction, in which case it stays close to an orbit OX , or else, if
it has a “mostly horizontal” direction, it passes close to the diagonal projection
of a properly chosen subsegment of the geodesic. The precise statement is given
by the following three propositions.

For any c > 0 we say that a subset S of M̃ is a c-approximation of a subset
T ⊂ M̃ , if S and T are contained in the c-neighbourhood of each other (i.e. if
their Hausdorff distance is smaller or equal to c). We say that a point Q ∈ M̃ is
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contained in the horizontal c-neighbourhood of an orbit OP if in the fibre FQ that
contains Q there is a path γQ which connects Q to P ′ = OP ∩FQ and is of length
l(γQ) ≤ c.

Proposition 4.1. For any d > 0 there exists a bound c = c(d) > 0 with the
following property, for any points X, Y ∈ M̃ :

If Y is contained in the horizontal d-neighbourhood of the orbit OX, then any
geodesic lift γ = [X, Y ] is contained in the horizontal c-neighbourhood of OX.
Furthermore, γ is c-approximated by the vertical segment [X, X ′] ⊂ OX, where
X ′ ∈ OX is the point in the same fibre FY as Y .

Proof. For any point Z ∈ γ let tZ denote the time coordinate of Z. We consider
the projection γZ of the initial segment [X, Z] of γ into the fibre FZ that contains
Z. It suffices to show that tZ lies in a neighbourhood of [t, tY ] ⊂ R which depends
only on d, and that both the stable and the unstable length of γZ are bounded
above by a constant which also depends only on d.

We consider the vertizontal path γ′ which is the union of the vertical segment
[X, X ′] with the projection γY ⊂ FY of γ, and observe:

l(γ) ≤ l(γ′) ≤ |tX − tY | + d

By symmetry we can assume that tX ≥ tY , so that the above estimate shows
that γ must be contained between the fibres FtY − d

2

and FtX+ d
2

. This establishes

the desired bounds for tZ . We also deduce, for any point Z ∈ γ, that the stable
length of γZ is bounded above by the stable length of the projection γtY − d

2

of γ

to FtY − d
2

which depends only on d:

|γZ|
tZ
s ≤ |γtY − d

2

|
tY − d

2

s ≤ λ
d
2 d

To get the bound on the unstable length of γZ we apply Lemma 3.2 with P = Z
and R = X and obtain, for the smallest time coordinate tmin of any point Qmin ∈
[X, Z], and for the projection γmin of [X, Z] to the fibre Ftmin

, the inequality

l([X, Z]) ≥ |γmin|
tmin

u + tX + tZ − 2tmin

and thus

(tZ − tY ) + (|γmin|
tmin

u + tX + tZ − 2tmin) ≤ l([Y, Z]) + l([Z, X]) =

l(γ) ≤ l(γ′) ≤ tX − tY + d ,

which gives
|γmin|

tmin

u + 2(tZ − tmin) ≤ d .

From the last inequality we deduce directly the desired upper bound

|γZ|
tZ
u = λtZ−tmin |γmin|

tmin

u ≤ λ
d
2 d

which depends only on d. ⊔⊓
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Lemma 4.2. (a) For any h > 0 there exists j = j(h) > 0 with the following
property: Let γ = [P, R] be any geodesic lift in M̃ that joins orbits of width
ω(P, R) ≤ h, and let Ft be the fibre closest to P with the property that the projec-
tion γt ⊂ Ft of γ has length l(γt) ≤ h. Then γ passes through the j-neighbourhood
of γt.
(b) For any 0 < h0 ≤ h1 there exists a bound j(h0, h1) > 0 such that for any h
with h0 ≤ h ≤ h1 one has j(h) ≤ j(h0, h1).

Proof. (a) If the endpoints of γ lie on different sides of Ft, then the claim is
obvious, as there is a point where γ has to meet Ft and hence γt. Hence we can
assume that γ lies completely on one side of Ft, and by symmetry we can assume
that t < tmin, where we use the same notation as in Lemma 3.2. The latter gives
l(γ) ≥ |γmin|

tmin
u + tP + tR−2tmin. Note that the assumption t < tmin implies also

that t ≥ tdiag, where tdiag denotes the time coordinate of the diagonal projection
of γ, so that we deduce that the unstable length of γt is bigger than the stable
one and hence also bigger than h

2
.

Now we consider the vertizontal path γ′ which descends from the endpoint
P of γ along the orbit OP down to Ft, then proceeds along the projection γt,
and finally reconnects to the other endpoint R of γ along the orbit OR. The
length of γ′ is equal to l(γ′) = tP − t + tR − t + l(γt) ≤ tP − t + tR − t + h,
which has to be greater or equal to the length of the geodesic lift γ. Hence we
obtain |γmin|

tmin
u + tP + tR − 2tmin ≤ l(γ) ≤ l(γ′) ≤ tP − t + tR − t + h, thus

2(tmin − t) + h ≥ |γmin|
tmin
u ≥ λtmin−t|γt|

t
u ≥ λtmin−t h

2
, and finally

4(tmin − t) + (2 − λtmin−t)h ≥ 0

which implies that tmin − t is bounded above by some j > 0 which only depends
on h.
(b) The statement (b) is a direct consequence of the last inequality. ⊔⊓

Notice that in the previous lemma the fibre Ft can not be replaced by the
diagonal fibre for the orbits OP and OR: In fact, for small values of h the distance
between these two fibres can become arbitrary large. Note also that Ft depends
on P and on OR, but not on the location of R on OR. The same is true in part
(ii) of the following:

Proposition 4.3. (i) For any h > 0 there exists k = k(h) > 0, such that any
geodesic lift γ = [P, R] in M̃ with orbit width ω(P, R) < h is contained in the
horizontal k-neighbourhood of the orbits OP ∪ OR.
(ii) Furthermore, γ is k-approximated by the union of two vertical segments
[P, Pt] ⊂ OP and [R, Rt] ⊂ OR, where the fibre Ft that contains Pt and Rt is
the fibre closest to, say, P where the projection γt ⊂ Ft of γ has length l(γt) ≤ h.

Proof. We apply Lemma 4.2 (a) to obtain a bound j = j(k) a point Q ∈ γ which
lies in the j-neighbourhood of the fibre Ft described in part (ii) above. The
projection γt of γ to the fibre Ft has length l(γt) ≤ h, so that the projection γQ

of γ to the fibre FQ that contains Q has length l(γQ) ≤ λjh.
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Thus we can apply Proposition 4.1, for d = λjh, to both subsegments [P, Q]
and [R, Q] of γ and obtain as direct consequence the desired statements (i) and
(ii), for k = c(λjh). ⊔⊓

Proposition 4.4. For any sufficiently large k > 0 there exists a bound m =
m(k) > 0, such that, for any geodesic lift γ = [P, R] in M̃ and any point Q ∈
[P, R] which lies on the boundary of the horizontal k-neighbourhoods of both the
orbit OP and the orbit OR, the distance from Q to the diagonal projection γdiag

of γ is smaller or equal to m.

Proof. Fix h > 0. From Proposition 4.3 (i) we know that, if ω(P, R) < h, then
Q is contained in the horizontal k(h)-neighbourhood of OP ∪ OR. Thus, for
k > k(h) we conclude from the stated hypotheses that l(γdiag) = ω(P, R) ≥ h,
while the same hypotheses give l(γQ) = 2k for the horizontal projection γQ of γ
which contains Q. But since orbits in distinct stable and unstable leaves diverge
exponentially in the future and in the past, see section 3, there is an upper bound
m = m(k) to the distance between Q ∈ γQ and γdiag. ⊔⊓

5 Geodesic triangles in M̃ are thin

Proposition 5.1. There exists a constant b > 0 such any two geodesic lifts γ, γ′

in M̃ with same endpoints A, B are b-approximations of each other.

Proof. Fix a constant ǫ > 2δ as in Lemma 3.1, let k(ǫ) be the constant provided
by Proposition 4.3, choose k′ > k(ǫ), and define d′ = 3k′.

If the orbit width ω(A, B) is smaller than d′, then both γ and γ′ are k(d′)-
approximated by the same vertical subsegments of OA and OB, by Proposition
4.3, and hence they are 2k(d′)-close.

If the orbit width satisfies ω(A, B) ≥ d′, then, since k′ = d′

3
, there is a point

Q ∈ γ outside of the horizontal k′-neighbourhood of the endpoint orbits OA and
OB. Thus there exist points P, R ∈ γ such that Q ∈ [P, R] ⊂ γ, and Q lies on the
boundary of the horizontal k′-neighbourhoods of both orbits OP and OR. Thus
Proposition 4.4 proves that Q lies in the m(k′)-neighbourhood of the diagonal
projection [Pdiag, Rdiag] at time tdiag of the subsegment [P, R] of γ. Note also
that the geodesic segment [P, R] of γ projects to a segment [Pt, Rt] in the fibre Ft

containing Q which has length dt
F(Pt, Rt) = 2k′, so that we deduce ω(P, R) ≤ 2k′.

Our choice of the constant k′ > k(ǫ) allows us to deduce from Proposition 4.3
(i) that ω(P, R) ≥ ǫ. Furthermore, we know from section 2 that the fibre Fdiag

which contains [Pdiag, Rdiag] is δ-hyperbolic, with respect to the foliation metric

d
tdiag

F . Hence the geodesic γ′ contains points P̂ , R̂ which are projected by the
telescope flow to points P ′, R′ ∈ Fdiag in the horizontal δ-neigborhood of Pdiag

and Rdiag respectively. Lemma 3.1 proves that the diagonal time t′ for P ′ and
R′ satisfies |tdiag − t′| ≤ σ. This gives the possibility to determine upper and

lower bounds for ω(P̂ , R̂) as follows: 2k′ + 2δ ≥ ω(P, R) + 2δ ≥ d
tdiag

F (P ′, R′) ≥

ω(P̂ , R̂) ≥ λ−σd
tdiag

F (P ′, R′) ≥ λ−σ(ω(P, R) − 2δ) ≥ λ−σ(ǫ − 2δ). We then apply
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Lemma 4.2 (b) with h1 = 2k′ + 2δ and h0 = λ−σ(ǫ − 2δ) and h = ω(P̂ , R̂). The
last equation implies that in Lemma 4.2 (a) the fibre Ft agrees with the diagonal
fibre Ft′ for P̂ and R̂. Thus there is a point Q′ ∈ γ′ of distance ≤ j(h0, h1) from
the diagonal projection of the segment [P̂ , R̂], which itself has distance ≤ σ from
[Pdiag, Rdiag], which in turn has length ≤ 2k′ and contains a point of distance
≤ m(k′) from Q. This gives the desired uniform upper bound on d(Q, Q′).

Still in the case ω(A, B) ≥ d′, for any P ∈ γ in the horizontal k′-neighbourhood
of the orbit OA (or of OB) there is a point Q as above on the boundary of this
horizontal neighbourhood, with P ∈ [A, Q]. Then Proposition 4.1 shows that
P lies within horizontal distance c = c(k′) from a point on the vertical segment
[A, At] of OA, where t is the time coordinate of Q. Now, the point Q′ ∈ γ′ con-
structed above is of bounded distance from Q, so that Proposition 4.1 provides
a vertical approximation [A, A′] of [A, Q′] with A′ not far from At. Hence P is
close to some point P ′ of γ′. ⊔⊓

Proposition 5.2. There exists a constant k > 0 such that every geodesically lifted
triangle ∆ = [A, B, C] in M̃ , which projects to a tripod in any fibre, is k-thin.

Proof. We proceed in close analogy to the proof (though not to the statement) of
Proposition 5.1: Outside a horizontal neighbourhood of the orbit of the triangle
vertices and of the tripod centre OZ we conclude as in the above considered case of
geodesically lifted digons (or bigons, if you prefer latino-greek imbroglio). Inside
these orbit neighbourhoods we use Propositions 4.1 (in the case of large orbit
width between OZ and the vertex orbit) and 4.3 (in the case of small orbit width)
to approximate the segments of the sides of ∆ by vertical segments on that orbit.
The endpoints of these orbit segments are determined by the vertices of ∆ or
by the time coordinate of a point Q on the boundary of the above horizontal
neighbourhood, if such a point exists (i.e. in the case of large orbit width, where
Proposition 4.1 is applied). If for one of the vertices of ∆, say A, the orbit width
ω(A, Z) is small, then the corresponding endpoints of the orbit segments on OA

and on OZ are determined by the time coordinate of At ∈ OA given as the points
Pt ∈ OP in Proposition 4.3 (ii). Notice here that we crucially exploit the fact
that the fibre Ft in Proposition 4.3 (ii) depends on P and on OR but not on the
particular location of R on the orbit OR, as a priory we do not know whether the
two sides [A, B] and [A, C] of ∆ meet the orbit OZ at a close distance.

Thus an endpoint of such a vertical segment is either independent from the
side of ∆ which is being approximated, or else it is near to the endpoint of the
vertical segment, on the same orbit, which approximates one of the other two
sides of ∆. In any case each of the vertical segments is contained in a bounded
neighbourhood of the corresponding vertical segment from the other side or from
the other two sides of ∆. ⊔⊓

Theorem 5.3. There exists a constant h > 0 such that every geodesic triangle
∆ = [A, B, C] in M̃ is h-thin.

Proof. From Proposition 2.4 we know that there is another triangle ∆′ with same
endpoints as ∆, but with sides that are only geodesic lifts, such that ∆′ is pro-
jected by the telescope flow to a tripod, in any fibre Ft. Now Proposition 5.2
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shows that ∆′ is thin, while Proposition 5.1 shows that ∆′ is an approximation of
∆, so that ∆ must also be thin. 2

Theorem 5.3 shows that M̃ is hyperbolic in Gromov’s sense. As the action of
π1Mh on M̃ is isometric, free, properly discontinuous and cocompact (see section
3), this implies Proposition 0.4 from the introduction as an immediate corollary.

Remark 5.4. An interesting feature of the material presented in this and the
previous sections comes from the fact that foliations with a transverse measure
determine a dual R-tree. Our proof of Theorem 5.3 generalizes nicely to this
more general setting, so that direct extensions of this approach seem natural.
This concerns for example certain classes of free group automorphisms, where
however a main problem remains to be solved: The action of Fn on the product
of two R-trees T+ × T− is not cocompact and hence one has to find a suitable
Fn-invariant subspace of T+×T−. Recently V. Guirardel has obtained interesting
results on this matter, see [18].

6 Relative hyperbolic mapping tori: The special

case

The goal of this and the next section is to prove Theorem 0.1 from the introduc-
tion, or rather, the stronger Theorem 7.1. For this purpose we need to extend
techniques (and results) of the previous sections to the case of reducible surface
homeomorphisms, replacing “hyperbolicity” of the mapping torus by “relative
hyperbolicity”. There are two different notions of relative hyperbolicity in the
literature, and they are note quite equivalent, though very close. We will give
more details below in Remark 7.4. Until then we will use “relative hyperbolic”
always in the sense of Farb’s paper [9] (called “weakly hyperbolic” in [3]), which
we recall now.

Let G be a finitely generated group, and let U = (U1, . . . , Ur) be a finite family
of subgroups Ui of G. A Cayley graph Γ∗ of G relative to U is the Cayley graph Γ
of G with respect to a finite generating system of G, together with extra vertices
added, one for each left coset gUi, and with extra edges added that connect any
such extra vertex to any vertex of Γ which is labelled by an element of this coset.

One says that G is relative hyperbolic with respect to U if a Cayley graph of
G relative to U is a δ-hyperbolic space. It is immediate that any two Cayley
graphs of G relative to the same family of subgroups U are quasi-isometric, so
that relative hyperbolicity depends only on G and U . Similarly, replacing any Ui

of U by a conjugate gUig
−1 or by a finite index subgroup U ′

i ⊂ Ui changes the
relative Cayley graph only up to a quasi-isometry.

The canonical action of G on a relative Cayley graph Γ∗ is no longer free,
as is the G-action on “absolute” Cayley graphs. However, every G-orbit in Γ∗ is
discrete, and on all but finitely many of them G acts freely. The exceptional orbits
Gxi are in 1-1 correspondence with the subgroups Ui of U , in that StabG(xi) =
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giUig
−1
i for some suitable gi ∈ G. In particular, one easily verifies that the action

of G on Γ∗ satisfies the hypotheses of the following proposition, which we will use
below. It seems to be (within an ǫ-neighbourhood of) folk knowledge among the
experts and can be proved easily by a proper variation of the well known proof
in the classical case of empty U , see e.g. [16]:

Proposition 6.1. Let X be a geodesic metric space, and let G be a finitely gen-
erated group which acts on X by isometries. Assume that X/G can be covered by
finitely many connected sets Bi with pairwise connected intersections, and with
the property that some (and hence every) connected component B̃i of the full
preimage of any Bi in X has finite diameter and is convex. Assume furthermore
that there is a lower bound ǫ > 0 to the distance between disjoint lifts gB̃i and
hB̃j for any g, h ∈ G. Let Ui ⊂ G be the stabilizer of B̃i.

Then X is quasi-isometric to the group G relative to the family U of subgroups
Ui (i.e. to any Cayley graph of G relative to U). ⊔⊓

In order to concentrate on the main difficulty in translating our techniques of
the previous sections from absolute to relative hyperbolicity we will first consider
a special case. In the next section, however, we shall see that this special case is
also the main building block for the general relative hyperbolic case.

The special case considered in this section is that of a compact surface S∗

of negative Euler characteristic with non-empty boundary ∂S∗. Let h∗ be a
pseudo-Anosov homeomorphism of S∗. As in Section 1, S∗ is given a hyperbolic
structure, and consequently π1S∗ acts by isometries on the hyperbolic plane,
represented by the Poincaré disc D2. The action, however, is in the present case
not cocompact: The (finitely many) boundary curves of S∗ are represented by
geodesics on the hyperbolic surface D2/π1S, and without loss of generality we can
identify S∗ with the geodesic compact core of D2/π1S∗, i.e. with the subsurface
of D2/π1S∗ obtained by cutting off the infinite-volume funnels along the closed
simple geodesics that represent the homotopy class of the boundary curves in
D2/π1S∗. We denote by D2

∗ the subdisk of D2 which is the full preimage of
S∗ ⊂ D2/π1S∗ under the covering map D2 → D2/π1S∗.

As in the closed case, we obtain h̃∗-invariant foliations Fu,Fs in D2
∗, with pro-

jectively invariant measures µu and µs. There is, however, a substantial difference
from the closed case, in that the boundary curves of S∗ lift to leaves which belong
to both foliations Fu and Fs. At all other points of D2

∗ the two foliations are
transverse as before.

We continue to proceed, nevertheless, just as in the closed case, thus simply
ignoring the above “difficulty”: We define the mapping telescope M̃∗ as universal
covering space of the mapping torus Mh∗

and identify it with D2
∗×R. The action

of π1Mh∗
on M̃∗ = D2

∗ × R is defined precisely as described in section 1 for the
closed case. Similarly, we copy from section 1 the notion of fibres and orbits in
M̃∗, and also the rescaling of the measure on the fibres so that the action of π1Mh∗

on M̃∗ preserves the transverse measure of any horizontal path in M̃∗.
Next we introduce on D2

∗ the foliation distance as described at the beginning
of section 2. Note that, because of the above “problem”, rather than getting a
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metric, this defines a pseudo-metric space D2
∗F , where any two distinct points

have distance 0 if and only if they belong to the same boundary geodesic of D2
∗.

Let D̂2
∗ denote the canonical metric quotient space of D2

∗. We prove:

Proposition 6.2. The disk D̂2
∗F is a Gromov hyperbolic metric space.

Proof. From Proposition 6.1 we know that D̂2
∗F is quasi-isometric to the free

group π1S∗, relative to the set of cyclic subgroups generated by the boundary
curves (which are well defined up to conjugacy). Cyclic subgroups are known to
be always quasi-convex in any hyperbolic group. By [14] any hyperbolic group
G is hyperbolic relative to any quasi-convex subgroup. If G is a free group (as
is the fundamental group of a surface with boundary), this follows alternatively
from elementary arguments, which also extend directly to the case of more than
one relative subgroup, see [13]. 2

As in section 2 one then defines the foliation (pseudo-)metric on each fibre Ft

of M̃∗, and Lemmas 2.2 and 2.3 as well as Proposition 2.4 carry over word by
word. Indeed, the same is true for all of sections 3 – 5, so that we obtain:

Theorem 6.3. There exists a constant h > 0 such that every geodesic triangle
∆ = [A, B, C] in M̃∗ is h-thin. ⊔⊓

Thus we can again apply Proposition 6.1 to obtain:

Corollary 6.4. The group π1Mh∗
is hyperbolic relative to the family of cyclic

subgroups generated by the boundary components of the surface, i.e. of the fibre.

The reader should note here that this result is not a special case of Farb’s
relative hyperbolicity result for hyperbolic 3-manifolds with cusps (see [9]), as in
the above result the relative subgroups are all infinite cyclic, while Farb considers
hyperbolicity relative all of the fundamental group of any cusp neighbourhood,
which is isomorphic to Z ⊕ Z.

7 Relative hyperbolic mapping tori: The gen-

eral case

Let G be a finite graph of groups with fundamental group G, and let α be an
automorphism of G which respects the graph of groups structure of G: There
are different equivalent ways to express this, the most elegant saying that the
length function ||.||G, defined by G on the conjugacy classes of G, is invariant
under α. Equivalently, there is a homeomorphism H : T → T of the Bass-
Serre tree T associated to G which satisfies α(g)H = Hg : T → T for every
g ∈ G. Such an automorphism α induces a graph isomorphism αΓ on the graph
Γ = T/G on which G is built, and for every vertex v and every edge e of Γ
group isomorphisms αv : Gv → GαΓ(v) and αe : Ge → GαΓ(e) such that for the
terminal vertex v = τ(e) of any (oriented) edge e and the corresponding group

14



monomorphism fe : Ge → Gv, given by G, one has fαΓ(e)αe = αvfe up to inner
automorphisms of GαΓ(v). Supposing the existence of such maps αΓ, αv and αe

gives another equivalent way to describe that α preserves the graph of groups
structure of G, see e.g. [6].

Let now V0 be an αΓ-invariant subset of the vertices of Γ, such that each of the
groups Gv for v ∈ V0 is the fundamental group of a surface Sv with boundary. We
assume furthermore that for all edges e with terminal vertex τ(e) ∈ V0 the edge
group Ge maps under the edge monomorphism fe into an infinite cyclic subgroup
of Gτ(e) that is generated (up to conjugation) by some boundary curve ∂eSτ(e)

of the surface Sτ(e). In particular, these edge groups Ge must be infinite cyclic.
(One could also allow trivial Ge, at the expense of minor technical modifications
below.)

Finally, for each vertex v ∈ V0 we assume that there is a homeomorphism
hv : Sv → SαΓ(v) that induces the group isomorphism αv : Gv → GαΓ(v). We
denote by tv the cardinality of the αΓ-orbit of v. We then want to assume that
the tv-th power of the set of homeomorphisms hv defines on Sv a homeomorphism
h

(tv)
v = hα

tv−1

Γ
(v)hα

tv−2

Γ
(v) . . . hαΓ(v)hv which is pseudo-Anosov. We call the vertices

from V0 vertices of type pseudo-Anosov on surface with boundary.
We now define complementary subgroups as follows: For every boundary com-

ponent ∂iSv of a surface Sv with v ∈ V0 one introduces a new vertex v(∂iSv) with
vertex group isomorphic to Z. The new vertex is connected by a newly introduced
edge e(∂iSv) to v. The new edge group Ge(∂iSv) is also isomorphic to Z, and on
one side of e(∂iSv) the edge group monomorphism surjects Ge(∂iSv) onto Gv(∂iSv),
while on the other side Ge(∂iSv) is mapped onto the infinite cyclic group π1∂iSv.
This does not change π1G, and now all “old” edges of G adjacent to Sv can be
slid over one of the new edges to be attached to one of the new vertices, again
without changing π1G. We now remove all vertices from V0 together with all
new edges (but not the new vertices !), and define the subgroups complementary
to the vertex subset V0 to be the fundamental groups of the obtained connected
components of the left over sub-graph of groups. Each component determines a
subgroup of π1G that is well defined up to conjugation.

We can now formulate the main result of this paper, in the most general form:

Theorem 7.1. Let G be the fundamental group of a finite graph of groups G, and
let α be an automorphism of G which respects the structure of G. Let V0 be the set
of vertices of type pseudo-Anosov on surface with boundary. Then the semidirect
product Gα = G ⋊α Z is a hyperbolic group relative to the family of subgroups
complementary to V0.

A direct consequence of this theorem is Theorem 0.3 from the introduction,
where the graph of groups structure of G = π1S is given by the reduction curves
of the Nielsen-Thurston decomposition of the mapping class of h.

In order to derive Theorem 0.1, we use Sela’s canonical graph of groups de-
composition of one-ended hyperbolic groups G, as described and specified in [2].
This decomposition is canonical in the sense that it is preserved by any auto-
morphism α of G. There are three kind of vertices in this decomposition: For
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torsion-free G the vertex groups are either rigid, infinite cyclic, or quadratically
hanging. The edge groups are all infinite cyclic and they contain the infinite cyclic
vertex groups. (The latter are only of auxiliary nature, in that one could get rid of
them by contracting suitably chosen edges, at the expense of damaging the canon-
ical nature of the decomposition). The quadratically hanging vertex groups are
fundamendal groups of surfaces with boundary (and thus free groups), and the
adjacent edge groups are given (up to passage to a finite index subgroup) by the
boundary components of the surface. Note that for torsion free hyperbolic G the
hypotheses “one-ended” and “freely indecomposable non-elementary” are equiva-
lent, by Stalling’s celebrated characterisation of groups with infinitely many ends
as amalgamated products with finite amalgam [20].

Thus Theorem 7.1 gives directly:

Theorem 7.2. (a) Let G be a freely indecomposable non-elementary torsion-free
word-hyperbolic group, and let α be an automorphism of G. Assume that in the
canonical graph of groups decomposition of G on all of the quadratically hanging
vertex groups the restriction of (a power of) α is induced by a pseudo-Anosov
homeomorphism. Then the semi-direct product G ⋊α Z is hyperbolic relative to
the family of subgroups complementary to the set of vertices with quadratically
hanging vertex group.
(b) If the above assumption on the quadratically hanging vertex groups is not valid,
then the analogous statement holds, provided that the canonical decomposition
of G is refined to include as further edges the reduction curves in the Nielsen-
Thurston reduction of the induced automorphisms on the quadratically hanging
vertex groups. The relative subgroups are then the subgroups complementary to
the set of vertices which correspond to those subsurfaces on which α is pseudo-
Anosov. ⊔⊓

Rigid vertex groups can be characterized by the fact that they are non-
elementary and have finite outer automorphism group. Thus a power of α fixes
every conjugacy class of elements in the vertex groups of the relative part, i.e. of
any connected component of the subgraph of groups complementary to the set
V0 of vertices of pseudo-Anosov type on surface with boundary, in the refined
canonical graph of groups G, after having properly introduced the “new” vertices
and edges as described before Theorem 7.1. It follows that such an automorphism
is a multiple Dehn twist in the sense of [6] on every subgroup of G complemen-
tary to the set of vertices from V0. Such multiple Dehn twists are well known to
have linear or zero growth on all conjugacy classes. Thus the above Theorem 7.2
(together with Proposition 0.4 to include the case where G consists of a single
vertex) implies directly Theorem 0.1 from the introduction.

To prove Theorem 7.1 we construct a topological space X modelled on the
graph Γ in the usual way, to get G = π1X. Here each vertex v from V0 is
represented by the surface Sv, while all other vertex spaces Xv′ can be taken
arbitrary (with π1Xv′ = Gv′ , of course). The edge spaces Xe with τ(e) ∈ V0

are given by annuli which, in the forward direction of e, are attached to a power
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of the boundary curve ∂eSv of the surface Sv. The universal covering X̃ of X,
together with the standard action of the fundamental group G = π1X by deck
transformations, gives then a model for the Bass-Serre tree T associated to G,
where each vertex of T is represented by a connected component of the full
preimage in X̃ of a vertex space, and conversely. This is quite standard though
a little heavy on the notational side, as is typical for Bass-Serre theory.

We now provide each of the surfaces Sv with the hv-invariant measured fo-
liations and lift the latter to each connected component of the full preimage of
Sv in X̃. We then continue for each of these connected components precisely
as in the special case considered in the previous section, while all the connected
components of the full preimage of any other vertex space or of any edge space
is given the zero pseudo-metric, thus effectively contracting each such connecting
component. Let X̂ denote the obtained metric space.

As in the special case treated in the previous section, we now pass to the
mapping telescope M̂ = X̂ × R, with fibres and orbits as defined before, and
with an action of G ⋊α Z defined on it so that, with respect to the properly
rescaled metric on the fibres and the induced telescope metric on M̂ , this action
is isometric. Hence, in light of Proposition 6.1, in order to prove Theorem 7.1 it
suffices to show the following:

Proposition 7.3. There exists a constant h ≥ 0 such that all geodesic triangles
in the metric space M̂ are h-thin.

Proof. We use the tree like structure of M̂ , inherited from T , to observe that a
geodesic triangle is either contained in a vertex space of M̂ , in which case we are
done, by the special case considered in Theorem 6.3 in the last section. Otherwise,
the telescope flow projection of the triangle in any fibre decomposes into finitely
many geodesic digons, each contained in a single vertex space, and one geodesic
triangle, also contained in a single vertex space. Hence the claim follows again
directly from the special case of surfaces with boundary, if we can bound the
time coordinate difference which the lifts of the geodesic digons realize on their
two sides at the place when they pass from one vertex space to another, i.e. at a
“singular orbit” which corresponds to a maximal connected union of edge space
and vertex spaces that are not of pseudo-Anosov type on surface with boundary
(i.e. a connected component of subspaces that has been contracted above).

To obtain such a bound we first use Proposition 5.1 to reduce the claim to
digons with the same telescope flow projections in any fibre. One then uses
precisely the same arguments as explained in the proof of Proposition 5.2 for
the time coordinate difference of two different geodesic lifts at the tripod centre
orbit OZ . For digons with endpoints that have small orbit width and which have
initial points (i.e. the endpoints closer to the vertices of the given triangle) on the
two digon sides already at different time coordinate values, the time coordinate
difference at the terminal endpoints can not be larger: This follows from the
observation that, in the situation of Proposition 4.3 (ii), moving the point P
along its orbit by a distance ≤ t0, will effect the time coordinate of the fibre Ft

by at most t0, as follows directly from the given definition of Ft. ⊔⊓
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Remark 7.4. There is a stronger version of relative hyperbolicity in the liter-
ature, originally proposed by Gromov [17], and later elaborated by Szczepański
[21] and Bowditch [3]. It is equivalent (see [21]) to Farb’s version of relative
hyperbolicity, as used above, plus an aditional property, called “Bounded Coset
Penetration property (BCP)” (also due to Farb [9]). The latter, however, implies
that the relative subgroups Ui must be malnormal in the total group G. In our
case, this is in general not true, as typically Ui is a cyclic summand of a Z ⊕ Z

subgroup in G.
Thus, to get the stronger version of relative hyperbolicity for hyperbolic-by-

cyclic groups, one is forced to increase the relative subgroups, so that with each
periodic-up-to-conjugacy element it must contain at least its centralizer, which
contains a subgroup isomorphic to Z ⊕Z. This is done properly by defining new
relative subgroups Ûi = Ui⋊αt|Ui

Z, where αt is a power of α that fixes every vertex
or edge group of G (up to conjugation). It follows then indeed that the group Gα

from Theorem 7.1 is strongly hyperbolic relative to the family of these subgroups
Ûi. To show this one uses again the canonical decomposition of word-hyperbolic
groups, where the arguments become actually simpler than in the above treated
amalgamation: As the time coordinate must be collapsed as well, there is no need
to worry about at which height one enters or leaves a vertex of pseudo-Anosov
type on surface with boundary.

To prove the strong relative hyperbolicity of such vertex groups (i.e. the
analogue of Corollary 6.4), one has two alternatives: One can either use the
telescope metric on the mapping telescope M̃∗ as introduced in the last section,
modify it properly by contracting each boundary component of M̃∗, and then use
Lemma 1 of [21] to approximate geodesics in the resulting metric by geodesics
with respect to the unmodified telescope metric. One then uses Propositions
4.1 and 4.3 and the existence of a lower bound to the distance between any two
distinct boundary leaves to prove Farb’s property BCP. Alternatively, one can
simply quote [9], thus of course using implicitly Thurston’s hyperbolisation of
fibered 3-manifolds with pseudo-Anosov monodromy [19].
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