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A numerical method for fractal conservation laws
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Abstract: We consider a fractal scalar conservation law, that is to say a conservation law modified
by a fractional power of the Laplace operator, and we propose a numerical method to approximate its
solutions. We make a theoretical study of the method, proving in the case of an initial data belonging
to L∞ ∩BV that the approximate solutions converge in L∞ weak-∗ and in Lp strong for p <∞, and we
give numerical results showing the efficiency of the scheme and illustrating qualitative properties of the
solution to the fractal conservation law.
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1 Introduction

Partial differential equations involving non-local operators are used in several models, from mathematical
finance [23] to dislocation dynamics [5] to gas detonation [13] and anomalous diffusion in semiconductor
growth [26]. We consider in this paper the following model of non-local scalar conservation law, which
appears in particular in the last two references:{

∂tu(t, x) + ∂x(f(u(t, x))) + g[u(t, ·)](x) = 0 t > 0 , x ∈ R ,
u(0, x) = u0(x) x ∈ R (1.1)

where f : R 7→ R is locally Lipschitz-continuous, u0 ∈ L∞(R)∩BV (R) and g is a fractional power of order
λ/2 of the Laplacian, with λ ∈]0, 2[. The natural definition of g can be written via Fourier transform
g[φ] = F−1(| · |λF(φ)), but it will be more useful in the sequel to consider the following formula (see [15]):
for all r > 0 and all φ ∈ S(R),

g[φ](x) = −c(λ)
∫
|z|≤r

φ(x+ z)− φ(x)− φ′(x)z
|z|1+λ

dz − c(λ)
∫
|z|>r

φ(x+ z)− φ(x)
|z|1+λ

dz

= gλ,r[φ](x) + g0,r[φ](x)
(1.2)

where c(λ) = λΓ( 1+λ
2 )

2
√
ππλΓ(1−λ2 )

with Γ the Euler function (this value of c(λ) corresponds to the convention

F(φ)(ξ) =
∫

R e
−2iπxξφ(x) dx, and gives in fact g = (2π)−λ(−∆)λ/2); the notations gλ,r and g0,r refer

to the order of each term: the first term is of order λ (the singularity of the weight in the integral sign
necessitates some regularity on φ, of the kind φ(x + z) − φ(x) − φ′(x)z = o(|z|λ)), whereas the second
term can be applied to any bounded non-regular φ and is therefore of order 0.

There are several theoretical studies and results regarding such equations. To our knowledge, [6] presents
some of the first results on these problems, mainly with f(s) = s2 (or other powers) and a Hs or Morrey
framework, studying in particular traveling wave or self-similar solutions; more on self-similar solutions,
as well as time decay estimates, can be found in [8]. In the framework of bounded solutions, classical for
pure scalar conservation laws, existence and uniqueness of a regular solution if λ > 1 has been proved
in [14]. If λ ≤ 1, the solution is not smooth in general (see [3]) and obtaining general existence and
uniqueness results for (1.1) requires to use an appropriate notion of entropy solution, introduced and
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studied in [1]; this notion, which is constructed from the classical notion for scalar conservation laws [18],
relies on the formula (1.2).
Numerical studies of non-local operators in first-order PDE seem more scarce. A scheme for a Hamilton-
Jacobi equation modelling dislocation dynamics and involving a non-local zero-order velocity is studied
in [16] (see also the references therein). Closer to the framework of scalar conservation laws, [2] studies an
equation modelling the formation and movement of dunes, which is (1.1) with an additional term −∆u
and g given by the opposite of (1.2) with λ = 4/3 and an integral sign only on R− (the non-local operator is
therefore a lower order term in the PDE); besides theoretical results on the solution to this non-monotone
equation, numerical results are obtained using a simple finite difference scheme (explicit and with centered
discretizations), the study of which remains to be done. Regarding numerical approximations of (1.1)
itself, to our best knowledge the only existing results are those based on the probabilistic interpretation
of this equation (fractal conservation laws can be, as the classical heat equation, linked with a stochastic
differential equation): [20] and [24] use this interpretation to construct and study, in the case λ > 1, a
numerical method for (1.1); however, in order to avoid having a too noisy approximation of the solution,
the probabilistic method must be applied on the equation on ∂xu obtained by derivating (1.1) and
expressing u as the integral sum of its derivative (the local non-linearity in (1.1) is thus transformed into
a non-local non-linearity); this technique is easy to implement in dimension 1, but its adaptation to the
multi-dimensional case is less straightforward (the derived equation becomes a system in which, in order
to reconstruct u from its derivatives, one has to introduce a convolution product with the derivative of the
fundamental solution to the Laplace equation, see [19] for g = −∆; this derivative is however a singular
function and therefore does not seem easy to use, in a numerical method, without introducing additional
errors).

In this paper, we propose and study a numerical method to directly approximate the solution to (1.1)
for any λ ∈]0, 2[. The scheme is based on classical techniques of numerical approximation of scalar
conservation laws and diffusion equations (monotone fluxes, semi-implicit scheme, etc.) and therefore,
though we present it on (1.1) for the sake of legibility, its adaptation to multi-dimensional equations
with heterogeneous fluxes and source terms (such as ∂tu + div(f(t, x, u)) + g[u(t, ·)](x) = h(t, x, u)) is
straightforward. This approach also allows us to obtain a stable and robust method, valid for any λ ∈]0, 2[
and which preserves the qualitative properties of the solution, such as the symmetry, the maximum
principle (the solution takes its values between the upper and lower bounds of the initial datum) or the
smoothing or non-smoothing effects (depending on the position of λ with respect to 1).
The plan is as follows. In the next section, we present the numerical method, using only general properties
on the discretizations of ∂x(f(u)) and g[u] and covering therefore a wide range of possible schemes.
The study of this method is done in Section 3, where we prove, thanks to usual techniques associated
with monotone numerical fluxes for conservation laws, the existence of an approximate solution and
its convergence toward the (entropy) solution to (1.1). An example of discretization of g, satisfying the
properties used in the theoretical study of the scheme, is presented in Section 4, along with considerations
on the practical implementation; some numerical results are also provided and show the efficiency of the
scheme in catching known qualitative properties of the solution to (1.1) (such as the presence of shocks,
speed of diffusion, or the asymptotic behavior). A few technical lemmas are gathered in an appendix
(Section 5) which closes the article.

2 Definition of the scheme and main result

Let δt > 0 and δx > 0 be time and space steps. The scheme consists in computing approximate values
uni of the solution to (1.1) on [nδt, (n+ 1)δt[×[iδx, (i+ 1)δx[ for n ∈ N and i ∈ Z, thanks to the following
relations:

∀i ∈ Z : u0
i =

1
δx

∫ (i+1)δx

iδx

u0(x) dx , (2.1)

∀n ≥ 0 , ∀i ∈ Z :
δx

δt
(un+1
i − uni ) + F (uni , u

n
i+1)− F (uni−1, u

n
i ) + δxgδx[un+1]i = 0 (2.2)
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where F is a numerical flux corresponding to the continuous flux f and gδx is a discretization of the non-
local term g. Notice that the hyperbolic term of the equation is discretized using an explicit method; this
imposes a CFL condition on the time and space steps (see (2.4)), but this condition is not very binding
and, more importantly, the explicit discretization has the double advantage to avoid the solving of a
non-linear equation at each time step and to allow us to consider as easily more complicated numerical
fluxes (see Remark 2.2; higher order fluxes are not really adapted to an implicit discretization [10]). On
the contrary, since the non-local operator is linear and has diffusive properties (similar to the ones of
−∆), we use an implicit discretization for g[u] in order not to have to impose, during the proof of a priori
estimates on the approximate solution, a more restrictive condition than (2.4) on the time and space
steps (see however Section 4.3).

Remark 2.1 Non-uniform time and space steps can as easily be considered but, for the sake of legibility,
we only take here uniform δt and δx.

The numerical fluxes we consider are classical 2-points finite volume monotone fluxes (see [10]):

F : R2 7→ R is Lipschitz-continuous on [infR u0, supR u0]2,
non-decreasing with respect to its first variable,

non-increasing with respect to its second variable,
and F (a, a) = f(a) for all a ∈ [infR u0, supR u0].

(2.3)

Defining Lip1,u0
(F ) and Lip2,u0

(F ) as the Lipschitz constants of F with respect to its first and second
variable on [infR u0, supR u0]2, it is know that the following CFL condition is required to ensure the
stability of explicit schemes involving such monotone fluxes:

δt

δx
≤ 1

Lip1,u0
(F ) + Lip2,u0

(F )
. (2.4)

Remark 2.2 We write the numerical method and make its theoretical study using basic 2-points fluxes,
but nothing prevents us from using higher order fluxes (computing f(u) at t = nδt and x = iδx by means of
uni−p, . . . , u

n
i+q instead of only uni−1 and uni ), provided that the scheme they define for ∂tu+ ∂x(f(u)) = 0

is stable with respect to the L∞ and BV norms (see Section 3). In particular, in Section 4, we present
numerical results involving 4-points MUSCL fluxes.

For our theoretical study, and as for the numerical fluxes above, the discretization gδx of g does not need
to have a specific expression but is only required to satisfy a series of assumptions (the curious reader
can refer to Section 4.1 for an example of gδx). The first ones are not surprising since the operator g itself
satisfies continuous equivalent formulations of these assumptions (this can easily be seen from (1.2), see
[15]):

gδx : l∞(Z) 7→ l∞(Z) is linear, (2.5)

∀v ∈ l∞(Z) , if (ik)k∈N is a sequence in Z such that limk→∞ vik = supj∈Z vj ,
then lim infk→∞ gδx[v]ik ≥ 0 , (2.6)

if τ : l∞(Z) 7→ l∞(Z) is the left translation τ(v)i = vi+1, then τgδx = gδxτ . (2.7)

The next assumption is quite natural in the framework of numerical analysis where, eventually, everything
has to be finite in order to be implemented.

∃Aδx > 0 such that, for all v ∈ l∞(Z), gδx[v]0 only depends on (vj)|j|≤Aδx . (2.8)

The last assumptions impose the consistency of gδx as δx → 0 and necessitate to introduce a few con-
ventions and notations. If δx is a given space step and v ∈ l∞(Z), we identify v with the function
vδx ∈ L∞(R) which is piecewise constant equal to vi on [iδx, (i + 1)δx[ for all i ∈ Z; likewise, gδx[v]
is either considered as an element of l∞(Z) or of L∞(R), depending on the context. If K is a com-
pact subset of R, C2

K(R) is the space of C2 functions on R with support in K (it is endowed with the
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norm ||φ||C2
K

= ||φ||L∞(R) + ||φ′||L∞(R) + ||φ′′||L∞(R)) and, for such a function φ, we define Φ ∈ l∞(Z)

by Φi = 1
δx

∫ (i+1)δx

iδx
φ(x) dx. (gδx)∗ is the formal adjoint operator of gδx defined by: for all v ∈ l1(Z),

(gδx)∗[v]i =
∑
j∈Z g

δx[ei]jvj where ei ∈ l∞(Z) is the sequence which has 1 at the i-th position and 0
elsewhere (note that, since g is self-adjoint, it is probable, but not required, that gδx also is self-adjoint).
The assumptions regarding the behavior of gδx as δx→ 0 are:

∀K compact in R , ∃θK :]0, 1]→ R+ non-decreasing such that lims→0 θK(s) = 0 and,
for all φ ∈ C2

K(R) and all δx ∈]0, 1[, ||(gδx)∗[Φ]− g[φ]||L1(R) ≤ ||φ||C2
K
θK(δx) , (2.9)

∀r > 0 , gδx = gδxλ,r + gδx0,r where:
1) gδxλ,r satisfies (2.5)—(2.8) and (2.9) with g replaced by gλ,r,
2) ∀Q compact in R, ∃γr,Q :]0, 1[→ R+ such that lims→0 γr,Q(s) = 0 and,

for all δx ∈]0, 1[ and all v ∈ l∞(Z), ||gδx0,r[v]− g0,r[vδx]||L1(Q) ≤ ||v||l∞(Z)γr,Q(δx).

(2.10)

This last assumption is in fact useful only in the case λ ≤ 1, where we have to consider entropy solutions
to (1.1) (the entropy formulation of this equation requires to cut g into gλ,r and g0,r).

Time and space steps δt and δx being given, in a similar way as above we identify a family (uni )n≥0 , i∈Z
with the function uδt,δx : [0,∞[×R→ R equal to uni on [nδt, (n+ 1)δt[×[iδx, (i+ 1)δx[, and un : R→ R is
the function equal to uni on [iδx, (i+ 1)δx[. Our main result is the following.

Theorem 2.3 (Existence, uniqueness and convergence of the approximate solution) Assume that (2.3)
and (2.5)—(2.9) hold. Then, for all δt > 0 and all δx > 0 satisfying (2.4), there exists a unique bounded
solution uδt,δx = (uni )n≥0 , i∈Z to (2.1)—(2.2). Moreover, if λ > 1 or if (2.10) holds, then, as δt and δx
tend to 0 (while satisfying (2.4)), uδt,δx → u weakly-∗ in L∞([0,∞[×R) and strongly in Lploc([0,∞[×R)
for all p <∞, where u is the unique entropy solution to (1.1).

Remark 2.4 Since the construction and theoretical study of the scheme does not rely on the precise
expression of the non-local term in (1.1), but only on general properties enjoyed by this term and its
discretization (2), Theorem 2.3 can easily be generalized to equations involving, for example, other kinds
of Lévy operators (not only the stable operator g).

3 Theoretical study of the scheme

3.1 Properties of the approximation gδx

The assumptions made above on gδx allow us to precise the structure of this discretization of g and to
deduce additional properties.

Lemma 3.1 If gδx satisfies (2.5)—(2.8) then:

1) gδx commutes with the right translation τ−1 : (vi)i∈Z 7→ (vi−1)i∈Z.

2) If v ∈ l∞(Z) and (ik)k≥1 are such that limk→∞ vik = infj∈Z vj, then lim supk→∞ gδx[v]ik ≤ 0.

3) If v ∈ l∞(Z) is a constant sequence then gδx[v] = 0.

4) There exists non-negative real numbers (µδxj )j=−Aδx,...,Aδx such that

∀v ∈ l∞(Z) , ∀i ∈ Z : gδx[v]i = −
∑
|j|≤Aδx

µδxj (vi+j − vi). (3.1)

2Some of these properties (such as the invariance by translation (2.7)) being moreover stated and used only to simplify
the presentation.
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5) For all v ∈ l∞(Z), all η : R 7→ R convex function and all i ∈ Z, we have

gδx[η(v)]i ≤ η′(vi)gδx[v]i (3.2)

(if η is not regular, we let η′(vi) denote any sub-differential of η at vi).

6) If v ∈ l∞(Z) and (vm)m≥1 is a bounded sequence in l∞(Z) such that, for all i ∈ Z, limm→∞ vmi = vi,
then (gδx[vm])m≥1 is bounded in l∞(Z) and limm→∞ gδx[vm]i = gδx[v]i for all i ∈ Z.

7) There exists Cδx ≥ 0 such that, for all v ∈ l∞(Z) and all N ≥ 1,∣∣∣∣∣
N∑

i=−N
gδx[v]i

∣∣∣∣∣ ≤ Cδx sup
N−Aδx≤|i|≤N+Aδx

|vi|.

8) If w ∈ l1(Z) and v ∈ l∞(Z), then (gδx)∗[w] ∈ l1(Z) and∑
i∈Z

gδx[v]iwi =
∑
i∈Z

vi(gδx)∗[w]i. (3.3)

Remark 3.2 It is shown in [9] that operators acting on spaces of functions on R and satisfying a reverse
maximum principle similar to (2.6) have integral representations, generalizations of (1.2). Formula (3.1)
can be seen as a discrete version of this result (see also Section 4.1 to understand the absence, with
respect to the continuous case, of a discrete derivative in (3.1)) and, as in the continuous case, the
reverse maximum principle (2.6) truly is the key point to the study of the discretized equation.

Proof of Lemma 3.1
We first notice that Item 1 is evidently true, as a consequence of (2.7) and of the general fact that if
an operator commutes with an isomorphism, then it also commutes with its inverse mapping. It is also
easy to see that Item 2 is a consequence of (2.6) applied to −v instead of v. If v is a constant sequence,
then any i satisfies vi = supj∈Z vj = infj∈Z vj and, by (2.6) and Item 2, we must have gδx[v]i ≥ 0 and
gδx[v]i ≤ 0, which proves Item 3.
By assumptions (2.5) and (2.8), there exists (βδxj )j=−Aδx,...,Aδx such that, for all v ∈ l∞(Z),

gδx[v]0 =
∑
|j|≤Aδx

βδxj vj .

Let |j| ≤ Aδx, j 6= 0 and v ∈ l∞(Z) be defined by vj = −1 and vi = 0 if i 6= j; applying (2.6) with ik ≡ 0
(we have v0 = 0 = supi∈Z vi), we obtain 0 ≤ gδx[v]0 = −βδxj which proves that, for all j 6= 0, βδxj ≤ 0.
From the invariance by translation ((2.7) and Item 1), we also have

gδx[v]i = (τ igδx[v])0 = gδx[τ iv]0 =
∑
|j|≤Aδx

βδxj (τ iv)j =
∑
|j|≤Aδx

βδxj vi+j .

But Item 3 implies
∑
|j|≤Aδx β

δx
j = 0 and thus βδx0 = −

∑
j 6=0 β

δx
j , which gives

gδx[v]i =
∑
j 6=0

βδxj vi+j + βδx0 vi =
∑
j 6=0

βδxj vi+j −

∑
j 6=0

βδxj

 vi =
∑
j 6=0

βδxj (vi+j − vi) =
∑
|j|≤Aδx

βδxj (vi+j − vi).

Item 4 follows if we define µδx0 = 0 and, for j ∈ [−Aδx, Aδx]\{0}, µδxj = −βδxj .
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If η is convex then η(vi+j)− η(vi) ≥ η′(vi)(vi+j − vi) and Item 5 is thus a corollary of Item 4. Item 6 is
also an immediate consequence of Formula (3.1) and, to prove Item 7, we simply write

N∑
i=−N

gδx[v]i =
∑
|j|≤Aδx

βδxj

(
N∑

i=−N
vi+j −

N∑
i=−N

vi

)

=
∑

0≤j≤Aδx
βδxj

(
N+j∑
i=N+1

vi −
−N+j−1∑
i=−N

vi

)
+

∑
−Aδx≤j<0

βδxj

 −N−1∑
i=−N+j

vi −
N∑

i=N+j+1

vi


and thus ∣∣∣∣∣

N∑
i=−N

gδx[v]i

∣∣∣∣∣ ≤ 4
∑
|j|≤Aδx

jβδxj × sup
N−Aδx≤|i|≤N+Aδx

|vi|.

It remains to prove Item 8. First, by (3.1), it is easy to see that (gδx)∗ satisfies the same formula with
µδx−j instead of µδxj ; hence, if w ∈ l1(Z) then (gδx)∗[w] is also in l1(Z). By definition of (gδx)∗ and linearity
of gδx, (3.3) is true if v has only a finite number of non-zero terms; since we can approximate, term by
term, any v ∈ l∞(Z) by such sequences which stay bounded in l∞(Z), (3.3) for a general v follows from
Item 6.

3.2 Existence and uniqueness of an approximate solution

We prove in this section that there exists a unique solution to (2.1)—(2.2), and we establish a first series
of properties of this solution.

Lemma 3.3 Under assumptions (2.5)—(2.8), for all α ≥ 0 and all h ∈ l∞(Z) there exists a unique
solution v ∈ l∞(Z) to

∀i ∈ Z : vi + αgδx[v]i = hi. (3.4)

Moreover, we have
inf
i∈Z

hi ≤ inf
i∈Z

vi ≤ sup
i∈Z

vi ≤ sup
i∈Z

hi (3.5)

and ∑
i∈Z
|vi| ≤

∑
i∈Z
|hi|. (3.6)

Proof of Lemma 3.3
Let us first prove (3.5) and the uniqueness of the solution. Let (ik)k≥1 be a sequence in Z such that
limk→∞ vik = supi∈Z vi; then applying (3.4) to i = ik and passing to the inferior limit as k →∞ thanks
to (2.6) we find supi∈Z vi ≤ supi∈Z hi. Doing the same along a subsequence which converges to infi∈Z vi
(see item 2 in Lemma 3.1), we obtain infi∈Z vi ≥ infi∈Z hi and (3.5) is proved. These inequalities show
that if h = 0 then v = 0. System (3.4) being linear, this proves the uniqueness of its solution.

To prove the existence of a solution we consider, for m ≥ 1, the approximate problem

∀i ∈ Z : vmi + αgδx[vm]i1[−m,m](i) = hi (3.7)

where 1[−m,m](i) = 1 if |i| ≤ m and 1[−m,m](i) = 0 otherwise. Using the same argument as before, we
notice that any solution to (3.7) also satisfies (3.5) and, in particular, that this problem has at most one
solution. Since (3.7) clearly defines vmi (equal to hi) if |i| > m, solving this system comes down to solving
a finite-dimensional square linear system (of size 2m+1); the uniqueness of the solution therefore ensures
its existence.
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Since (vm)m≥1 is bounded in l∞(Z) (it satisfies (3.5)), we can assume up to a subsequence that, for all
i ∈ Z, (vmi )m≥1 converges to some vi as m→∞. We can then pass to the limit m→∞ in (3.7) thanks
to Item 6 in Lemma 3.1 to see that (vi)i∈Z ∈ l∞(Z) thus defined satisfies (3.4).

We conclude by proving (3.6), assuming that h ∈ l1(Z) (otherwise nothing needs to be proved). Multi-
plying (3.4) by sgn(vi) = η′(vi) for η = | · | and using (3.2), we have |vi|+ αgδx[|v|]i ≤ |hi|. Summing on
i = −N, . . . , N , we deduce from Item 7 in Lemma 3.1 that

N∑
i=−N

|vi| ≤
N∑

i=−N
|hi|+ αCδx sup

N−Aδx≤|i|≤N+Aδx
|vi| ≤

∑
i∈Z
|hi|+ αCδx||v||l∞(Z) < +∞. (3.8)

Hence, v ∈ l1(Z) and lim|i|→∞ vi = 0. We infer that limN→∞ supN−Aδx≤|i|≤N+Aδx |vi| = 0 and, letting
N →∞ in the first inequality of (3.8), this concludes the proof of (3.6).

We can now prove the existence and uniqueness of the solution to the scheme.

Corollary 3.4 (Existence and uniqueness of an approximate solution) Let δt > 0 and δx > 0. Under
assumptions (2.3)—(2.8), there exists a unique bounded solution (uni )n≥0 , i∈Z to (2.1)—(2.2). Moreover,
it satisfies, for all n ≥ 1,

inf
R
u0 ≤ inf

i∈Z
uni ≤ sup

i∈Z
uni ≤ sup

R
u0. (3.9)

Proof of Corollary 3.4
As it is usual for schemes involving monotone fluxes, we re-write (2.2) in the following way:

un+1
i + δtgδx[un+1]i = uni −

δt

δx
(F (uni , u

n
i+1)− F (uni , u

n
i )) +

δt

δx
(F (uni−1, u

n
i )− F (uni , u

n
i ))

= uni −
δt

δx

F (uni , u
n
i+1)− F (uni , u

n
i )

uni+1 − uni
(uni+1 − uni )

+
δt

δx

F (uni−1, u
n
i )− F (uni , u

n
i )

uni−1 − uni
(uni−1 − uni ).

Let us define

ani = − δt
δx

F (uni , u
n
i+1)− F (uni , u

n
i )

uni+1 − uni
and bni =

δt

δx

F (uni−1, u
n
i )− F (uni , u

n
i )

uni−1 − uni

(if uni+1 = uni or uni−1 = uni , we let the corresponding coefficient be equal to zero). The scheme is thus
equivalent to

un+1
i + δtgδx[un+1]i = uni + ani (uni+1 − uni ) + bni (uni−1 − uni ) , (3.10)

which comes down to asking that un+1 is the solution to (3.4) with α = δt and hi = (1 − ani − bni )uni +
ani u

n
i+1 + bni u

n
i−1. But, under (2.3) and (2.4), if un satisfies (3.9) then ani ≥ 0, bni ≥ 0 and ani + bni ≤ 1;

this means that hi is a convex combination of (unj )j∈Z and thus that infi∈Z u
n
i ≤ infi∈Z hi ≤ supi∈Z hi ≤

supi∈Z u
n
i . Hence, reasoning by induction on n from (2.1), Lemma 3.3 ensures the existence and uniqueness

of a bounded solution to (2.1)—(2.2), which satisfies moreover (3.9).

3.3 Compactness estimates

Proposition 3.5 (BV estimates) Let δt > 0 and δx > 0 and assume (2.3)—(2.8). If (uni )n≥0 , i∈Z is the
solution to (2.1)—(2.2) then, for all n ≥ 1,∑

i∈Z
|uni+1 − uni | ≤ |u0|BV (R). (3.11)
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Proof of Proposition 3.5
Subtracting (3.10) for i + 1 and for i and since gδx commutes with the translation τ , we obtain, with
vni = uni+1 − uni ,

vn+1
i + δtgδx[vn+1]i = (1− ani − bni+1)vni + ani+1v

n
i+1 + bni v

n
i−1.

Hence vn+1 is the solution to (3.4) with α = δt and hi = (1 − ani − bni+1)vni + ani+1v
n
i+1 + bni v

n
i−1 and we

deduce from (3.6) that∑
i∈Z
|vn+1
i | ≤

∑
i∈Z
|1− ani − bni+1| |vni |+

∑
i∈Z
|ani+1| |vni+1|+

∑
i∈Z
|bni | |vni−1|.

But the CFL (2.4) and Estimate (3.9) ensure that 1−ani −bni+1 ≥ 0, ani+1 ≥ 0 and bni ≥ 0 and we therefore
find, by re-indexing the last two sums,∑

i∈Z
|un+1
i+1 − u

n+1
i | ≤

∑
i∈Z
|uni+1 − uni |.

This estimate allows to conclude the proof by induction on n (because (3.11) is true for n = 0 from the
definition of u0 in (2.1), see [10]).

Proposition 3.6 (Time estimates) Let δt > 0 and δx ∈]0, 1[. Assume that (2.3)—(2.9) hold and let
uδt,δx = (uni )n≥0 , i∈Z be the solution to (2.1)—(2.2). Define ũδt,δx as the affine by parts time interpolate
of (uni )n≥0 , i∈Z:

∀t ∈ [nδt, (n+ 1)δt] , ∀x ∈ R : ũδt,δx(t, x) =
t− nδt
δt

un+1(x) +
(n+ 1)δt− t

δt
un(x).

Then for all K compact subset of R, there exists MK ≥ 0 not depending on δt or δx such that

||∂tũδt,δx||L∞(]0,∞[;(C2
K(R))′) ≤MK . (3.12)

Remark 3.7 If λ < 1 then (1.2) shows that g[φ] ∈ L1
loc(R) as soon as φ ∈ L∞(R) ∩ BV (R). Hence,

since Proposition 3.5 gives space BV estimates on uδt,δx, the choice of a proper approximation gδx and
the scheme (2.2) could allow to deduce, in the case λ < 1, time-BV local estimates on uδt,δx (stronger
estimates than (3.12)).

Proof of Proposition 3.6
We have ∂tũ = un+1−un

δt on [nδt, (n+ 1)δt]× R. Let K be a compact subset in R and φ ∈ C2
K(R); define

Φ ∈ l∞(Z) by Φi = 1
δx

∫ (i+1)δx

iδx
φ(x) dx. From (2.2) we deduce, for t ∈ [nδt, (n+ 1)δt],∫

R
∂tũδt,δx(t, x)φ(x) dx =

∑
i∈Z

δx

δt
(un+1
i − uni )Φi

=
∑
i∈Z

(F (uni−1, u
n
i )− F (uni , u

n
i+1))Φi −

∑
i∈Z

δx gδx[un+1]iΦi. (3.13)

Using (2.3), we have |F (uni−1, u
n
i )− F (uni , u

n
i+1)| ≤ C1(|uni+1 − uni |+ |uni − uni−1|) with C1 not depending

on δt, δx, n or i, and (3.11) therefore gives∣∣∣∣∣∑
i∈Z

(F (uni−1, u
n
i )− F (uni , u

n
i+1))Φi

∣∣∣∣∣ ≤ 2C1|u0|BV (R)||φ||L∞(R). (3.14)
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Formula (1.2) clearly shows that g is continuous W 2,1(R)→ L1(R) and thus, since C2
K(R) is continuously

embedded in W 2,1(R), there exists EK not depending on φ such that ||g[φ]||L1(R) ≤ EK ||φ||C2
K

; using
Item 8 in Lemma 3.1, (2.9) and (3.9), we deduce∣∣∣∣∣∑

i∈Z
δx gδx[un+1]iΦi

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈Z

δx un+1
i (gδx)∗[Φ]i

∣∣∣∣∣
≤ ||u0||L∞(R)||(gδx)∗[Φ]||L1(R)

≤ ||u0||L∞(R)(θK(1) + EK)||φ||C2
K
. (3.15)

The proof is concluded by plugging (3.14) and (3.15) into (3.13).

Corollary 3.8 (Compactness of the approximate solution) Assume that (2.3) and (2.5)—(2.9) hold.
Then as δt > 0 and δx > 0 tend to 0 while satisfying (2.4), up to a subsequence the solution uδt,δx to
(2.1)—(2.2) converges in L1

loc([0,∞[×R).

Proof of Corollary 3.8
Let δt > 0 and δx ∈]0, 1[ satisfy (2.4) and define ũδt,δx as the affine interpolate of (uni )n≥0,, i∈Z as in
Proposition 3.6. Estimate (3.11) show that, for all n ≥ 0, |un|BV (R) ≤ |u0|BV (R); since, for all t > 0,
ũδt,δx(t, ·) is a convex combination of un and un+1 (for some n ≥ 0), we deduce that |ũδt,δx(t, ·)|BV (R) ≤
|u0|BV (R) and, by (3.9), that ||ũδt,δx||L∞(]0,∞[×R) ≤ ||u0||L∞(R).
For all compact K ⊂ R, the set S = {ũδt,δx ; δt > 0 and δx > 0 satisfy (2.4)} is therefore bounded in
L∞([0,∞[;L∞(K)) and, by Proposition 3.6, the time derivatives of the functions in this set are bounded
in L∞([0,∞[; (C2

K(R))′). Since L∞(K) is compactly embedded in (C2
K(R))′ (because C2

K(R) is compactly
and densely embedded in L1(K)), we deduce that S is bounded in W 1,∞([0,∞[; (C2

K(R))′) and, by Aubin-
Simon’s compactness theorem (see [4, 21]), that S is relatively compact in L1

loc([0,∞[; (C2
K(R))′).

For all t ≥ 0, denoting by n the integer such that t ∈ [nδt, (n + 1)δt[, we have uδt,δx(t, ·) = ũδt,δx(nδt, ·)
and the bound in W 1,∞([0,∞[; (C2

K(R))′) thus shows that ||uδt,δx(t, ·) − ũδt,δx(t, ·)||(C2
K(R))′ ≤ C2δt with

C2 not depending on δt or δx. The compactness of S in L1
loc([0,∞[; (C2

K(R))′) therefore shows that, as
δt→ 0, uδt,δx is also relatively compact in this space.
By (3.11), for all t ≥ 0 we have |uδt,δx(t, ·)|BV (R) ≤ |u0|BV (R) which implies, by a classical result on BV
functions, for all ξ ∈ R,

||uδt,δx(t, ·+ ξ)− uδt,δx(t, ·)||L1(R) ≤ |u0|BV (R)|ξ|.

Associated with the relative compactness, as δt → 0, of uδt,δx in L1
loc([0,∞[; (C2

K(R))′) for all K ⊂ R
compact, this estimate makes it possible to apply Lemma 7.5 in [11] (or more precisely the technique of
proof of this lemma) to conclude that this relative compactness also holds in L1

loc([0,∞[;L1
loc(R)).

Remark 3.9 If u0 does not belong to BV (R), then it is not possible in general to directly prove strong
space BV estimates, and thus strong compactness, for uδt,δx. In this situation, one has to invoke the
convergence of uδt,δx in the non-linear L∞ weak-∗ sense (i.e. in the sense of Young measures), to prove
that the limit of uδt,δx is an entropy process solution to (1.1) (this is done thanks to some space weak
BV estimates on uδt,δx) and to check, following [1], that this entropy process solution is unique (see the
general method for pure scalar conservation laws in [10]).

3.4 Convergence

We can now prove the convergence of the solution of (2.1)—(2.2) toward the solution of (1.1), as δt and
δx tend to 0 while satisfying (2.4). By Corollary 3.8 and since uδt,δx is bounded in L∞([0,∞[×R), up to
a subsequence we can assume that it converges toward some u weakly-∗ in L∞([0,∞[×R) and strongly
in Lploc([0,∞[×R) for all p < ∞. We now show that any such limit u of uδt,δx is the unique (entropy)
solution to (1.1), which implies that the whole family uδt,δx converges to this solution and concludes the
proof of Theorem 2.3.
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Let φ ∈ C2
c ([0,∞[×R) and define Φni = 1

δx

∫ (i+1)δx

iδx
φ(nδt, x) dx. Multiplying (2.2) by δtΦni and summing

on n and i (all these sums are finite since Φni is equal to zero for n or |i| large), we obtain T1 +T2 +T3 = 0
where

T1 =
∑
n≥0

∑
i∈Z

δx(un+1
i − uni )Φni ,

T2 =
∑
n≥0

δt
∑
i∈Z

(F (uni , u
n
i+1)− F (uni−1, u

n
i ))Φni

and
T3 =

∑
n≥0

δt
∑
i∈Z

δxgδx[un+1]iΦni

Let us study the limit of each of these terms. We have

T1 =
∑
n≥1

δt
∑
i∈Z

δxuni
Φn−1
i − Φni

δt
−
∑
i∈Z

δxu0
iΦ

0
i =

∫ ∞
0

∫
R
uδt,δx(t, x)Ψδt,δx(t, x) dtdx−

∫
R
u0(x)Φ0(x) dx

where Ψδt,δx is equal to 0 on [0, δt[×R and to Φn−1
i −Φni
δt on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for all n ≥ 1

and all i ∈ Z. By regularity of φ, as δt and δx tend to 0, Ψδt,δx and Φ0 converge respectively to −∂tφ in
L1([0,∞[×R) and to φ(0, ·) in L1(R). The weak-∗ convergence of uδt,δx then shows that

T1 → −
∫ ∞

0

∫
R
u(t, x)∂tφ(t, x) dtdx−

∫
R
u0(x)φ(0, x) dx. (3.16)

To handle T2 we write, thanks to (2.3),

T2 =
∑
n≥0

δt
∑
i∈Z

δxF (uni , u
n
i+1)

Φni − Φni+1

δx

=
∑
n≥0

δt
∑
i∈Z

δxf(uni )
Φni − Φni+1

δx
+
∑
n≥0

δt
∑
i∈Z

δx(F (uni , u
n
i+1)− f(uni ))

Φni − Φni+1

δx

=
∫ ∞

0

∫
R
f(uδt,δx(t, x))Θδt,δx(t, x) dtdx

+
∑
n≥0

δt
∑
i∈Z

δx(F (uni , u
n
i+1)− F (uni , u

n
i ))

Φni − Φni+1

δx
(3.17)

where Θδt,δx = Φni −Φni+1
δx on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for all n ≥ 0 and all i ∈ Z; as δt and δx tend

to 0, this function converges to −∂xφ in L1([0,∞[×R) by regularity of φ. Moreover, by local Lipschitz-
continuity of f , uniform bound on uδt,δx and convergence of this function toward u in L1

loc([0,∞[×R),
f(uδt,δx)→ f(u) in L1

loc([0,∞[×R) while staying bounded in L∞([0,∞[×R); the convergence of f(uδt,δx)
thus also holds in L∞([0,∞[×R) weak-∗ and we therefore see that the first term in the right-hand side
of (3.17) tends to −

∫∞
0

∫
R f(u(t, x))∂xφ(t, x) dt dx. Regarding the second term, we invoke (3.11) and the

regularity of φ to write∣∣∣∣∣∣
∑
n≥0

δt
∑
i∈Z

δx(F (uni , u
n
i+1)− F (uni , u

n
i ))

Φni − Φni+1

δx

∣∣∣∣∣∣ ≤ Lip2,u0
(F )C3

∑
0≤n<T/δt

δt
∑
i∈Z

δx|uni+1 − uni |

≤ Lip2,u0
(F )C3T |u0|BV (R)δx

where C3 only depends on φ and T is such that supp(φ) ⊂ [0, T ]× R (so that Φni = 0 if n ≥ T/δt). This
last right-hand side tends to 0 with δx and we conclude that

T2 → −
∫ ∞

0

∫
R
f(u(t, x))∂xφ(t, x) dt dx. (3.18)
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The convergence of T3 is pretty straightforward from Item 8 in Lemma 3.1 and assumption (2.9): we
have

T3 =
∑
n≥0

δt
∑
i∈Z

δxun+1
i (gδx)∗[Φn]i =

∫ T

0

∫
R
uδt,δx(t+ δt, x)Ωδt,δx(t, x) dtdx (3.19)

where Ωδt,δx = (gδx)∗[Φn]i on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for all n ≥ 0 and all i ∈ Z and T is as
before. Let φδt : [0,∞[×R → R be the function equal to φ(nδt, ·) on [nδt, (n + 1)δt[×R for all n ≥ 0.
From (2.9) we have, for all t ≥ 0, ||Ωδt,δx(t, ·) − g[φδt(t, ·)]||L1(R) ≤ ||φ||L∞([0,∞[;C2

K(R))θK(δx) where K is
a compact set such that supp(φ) ⊂ [0,∞[×K. As δt → 0, the regularity of φ ensures that φδt → φ in
L∞([0, T ];C2

K(R)), and thus in L∞([0, T ];W 2,1(R)); since g : W 2,1(R)→ L1(R) is linear continuous (see
Formula (1.2)), this shows that g[φδt]→ g[φ] in L∞([0, T ];L1(R)). We deduce that, as δt and δx tend to 0,
Ωδt,δx → g[φ] in L∞([0, T ];L1(R)) ↪→ L1([0, T ]×R). Passing to the limit in (3.19) by weak-∗ convergence
in L∞([0,∞[×R) of uδt,δx, we find

T3 →
∫ T

0

∫
R
u(t, x)g[φ(t, ·)](x) dtdx. (3.20)

Gathering (3.16), (3.18) and (3.20) in T1 + T2 + T3 = 0 leads to∫ ∞
0

∫
R
u(t, x)∂tφ(t, x) dtdx+

∫ ∞
0

∫
R
f(u(t, x))∂xφ(t, x) dtdx−

∫ ∞
0

∫
R
u(t, x)g[φ(t, ·)](x) dtdx

=
∫

R
u0(x)φ(0, x) dx.

This proves that u is a weak solution to (1.1). If λ > 1, this weak solution is in fact the unique solution
in the sense of Duhamel’s formula, and thus also the unique smooth strong solution (see [14]), and the
proof is complete. If λ ≤ 1, we must modify the preceding reasoning to show, using (2.10), that u is an
entropy solution to (1.1).

Under assumptions (2.3) and (2.4), (2.2) can be written

un+1
i = uni −

δt

δx
F (uni , u

n
i+1) +

δt

δx
F (uni−1, u

n
i )− δtgδx[un+1]i = H(uni−1, u

n
i , u

n
i+1)− δtgδx[un+1]i

where H is non-decreasing with respect to each of its variable on [infR u0, supR u0]3 and, for all κ ∈
[infR u0, supR u0], H(κ, κ, κ) = κ. Denoting a>b = max(a, b), we have in particular H(uni−1, u

n
i , u

n
i+1) ≤

H(uni−1>κ, uni >κ, uni+1>κ) and κ ≤ H(uni−1>κ, uni >κ, uni+1>κ) and we deduce, examining separately the
cases un+1

i ≤ κ and un+1
i > κ,

un+1
i >κ ≤ H(uni−1>κ, uni >κ, uni+1>κ)− 1]κ,∞[(un+1

i )δtgδx[un+1]i.

Similarly, if a⊥b = min(a, b),

un+1
i ⊥κ ≥ H(uni−1⊥κ, uni ⊥κ, uni+1⊥κ)− 1]−∞,κ[(un+1

i )δtgδx[un+1]i

and therefore

un+1
i >κ− un+1

i ⊥κ ≤ H(uni−1>κ, uni >κ, uni+1>κ)−H(uni−1⊥κ, uni ⊥κ, uni+1⊥κ)

−
(
1]κ,∞[(un+1

i )− 1]−∞,κ[(un+1
i )

)
δtgδx[un+1]i.

Defining ηκ(s) = |s − κ| = s>κ − s⊥κ, we have η′κ(s) = 1]κ,∞[(s) − 1]−∞,κ[(s) (this selects the sub-
differential of ηκ equal to 0 at s = 0) and the definition of H thus leads to

δx

δt
(ηκ(un+1

i )− ηκ(uni ))+
(
F (uni >κ, uni+1>κ)− F (uni ⊥κ, uni+1⊥κ)

)
−
(
F (uni−1>κ, uni >κ)− F (uni−1⊥κ, uni ⊥κ)

)
+ δxη′κ(un+1

i )gδx[un+1]i ≤ 0.
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Taking r > 0, applying (2.10) and using (3.2) for gδxλ,r (which satisfies the assumptions of Lemma 3.1),
we find

δx

δt
(ηκ(un+1

i )− ηκ(uni )) +
(
F (uni >κ, uni+1>κ)− F (uni ⊥κ, uni+1⊥κ)

)
−
(
F (uni−1>κ, uni >κ)− F (uni−1⊥κ, uni ⊥κ)

)
+δxgδxλ,r[ηκ(un+1)]i + δxη′κ(un+1

i )gδx0,r[u
n+1]i ≤ 0. (3.21)

These inequalities (for all r > 0) are discrete versions of the entropy inequalities for (1.1) and it is quite
straightforward to deduce from them that the limit u of uδt,δx satisfies the entropy inequalities for (1.1).
Indeed, taking a non-negative φ ∈ C2

c ([0,∞[×R), defining Φni from φ as before, multiplying (3.21) by
δtΦni and summing on n and i, we obtain T4 + T5 + T6 + T7 ≤ 0 where

• T4 is T1 with uni replaced by ηk(uni ),

• T5 is T2 with F (uni , u
n
i+1) replaced by F (uni >κ, uni+1>κ) − F (uni ⊥κ, uni+1⊥κ) and F (uni−1, u

n
i ) re-

placed by F (uni−1>κ, uni >κ)− F (uni−1⊥κ, uni ⊥κ),

• T6 is T3 with gδx replaced by gδxλ,r and un+1 replaced by ηk(un+1)

and
T7 =

∑
n≥0

δt
∑
i∈Z

δxη′κ(un+1
i )gδx0,r[u

n+1]iΦni .

Using the same techniques as in the study of convergence of T1, T2 and T3, the strong convergence of
uδt,δx to u allows us to see that, as δt and δx tend to 0,

T4 → −
∫ ∞

0

∫
R
ηκ(u(t, x))∂tφ(t, x) dtdx−

∫
R
ηκ(u0(x))φ(0, x) dx, (3.22)

T5 → −
∫ ∞

0

∫
R

(f(u(t, x)>κ)− f(u(t, x)⊥κ)) ∂xφ(t, x) dtdx (3.23)

and
T6 →

∫ ∞
0

∫
R
ηκ(u(t, x))gλ,r[φ(t, ·)](x) dtdx. (3.24)

Regarding T7, we have

T7 =
∫ ∞

0

∫
R
η′κ(uδt,δx(t+ δt, x))Vδt,δx(t, x)Φδt,δx(t, x) dtdx (3.25)

where Vδt,δx = gδx0,r[u
n+1]i and Φδt,δx = Φni on [nδt, (n + 1)δt[×[iδx, (i + 1)δx[ for all n ≥ 0 and all i ∈

Z. By (2.10), for all compact Q and all t ≥ 0, taking n ≥ 0 such that t ∈ [nδt, (n + 1)δt[, we have
||Vδt,δx(t, ·) − g0,r[un+1]||L1(Q) ≤ ||un+1||L∞(R)γr,Q(δx) ≤ ||u0||L∞(R)γr,Q(δx). From the definition of g0,r

and the convergence of uδt,δx to u we see that the function defined by g0,r[un+1] on [nδt, (n + 1)δt[×R
converges to g0,r[u] in L1

loc([0,∞[×R), and we therefore deduce that, as δt and δx go to 0, Vδt,δx also
converges to g0,r[u] in L1

loc([0,∞[×R). The convergence of uδt,δx to u in L1
loc([0,∞[×R) shows that

uδt,δx(· + δt, ·) also converges in this space to u and thus, up to a subsequence, a.e. on ]0,∞[×R; but,
for a.e. κ ∈ R, the measure of {(t, x) ∈]0,∞[×R , u(t, x) = κ} vanishes and, since η′κ is continuous on
R\{κ}, we have, for such κ, η′κ(uδt,δx(· + δt, ·)) → η′κ(u) a.e. on ]0,∞[×R. Combined with the fact that
|η′κ| ≤ 1, the convergence of Vδt,δx to g0,r[u] in L1

loc, the uniform convergence of Φδt,δx to φ and the fact
that the support of Φδt,δx stays in a compact subset of [0,∞[×R, this allows to pass to the limit in (3.25)
to find

T7 →
∫ ∞

0

∫
R
η′κ(u(t, x))g0,r[u(t, ·)](x)φ(t, x) dtdx. (3.26)
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Gathering (3.22), (3.23), (3.24) and (3.26) in T4 + T5 + T6 + T7 ≤ 0, we conclude that∫ ∞
0

∫
R
ηκ(u(t, x))∂tφ(t, x) dtdx+

∫ ∞
0

∫
R

(f(u(t, x)>κ)− f(u(t, x)⊥κ))∂xφ(t, x) dtdx

−
∫ ∞

0

∫
R
ηκ(u(t, x))gλ,r[φ(t, ·)](x) dtdx−

∫ ∞
0

∫
R
η′κ(u(t, x))g0,r[u(t, ·)](x)φ(t, x) dtdx

+
∫

R
ηκ(u0(x))φ(0, x) dx ≥ 0 (3.27)

where we recall that ηκ(s) = |s− κ| and η′κ(s) = 1]κ,∞[(s)− 1]−∞,κ[(s). This inequality has been proved
up to now only for almost every κ ∈ R; but for any κ ∈ R we can choose (κm)m≥1 and (κ̃m)m≥1 such
that (3.27) is valid with κ = κm and κ = κ̃m and such that κm ↗ κ and κ̃m ↘ κ, and we have then
1
2 (ηκm + ηeκm) → ηκ and 1

2 (η′κm + η′eκm) → η′κ on R as m → ∞, all these functions staying bounded on
bounded subsets of R; we can therefore take the mean value of (3.27) applied to κm and κ̃m and let
m → ∞ to see that (3.27) is also satisfied with κ. This shows that u is the unique entropy solution to
(1.1) (see [1]) and concludes the proof.

Remark 3.10 We could as well consider the multi-dimensional form of (1.1) (i.e. with N space dimen-
sions instead of one); on cartesian grids, the adaptation of the preceding reasoning is straightforward;
on unstructured grids, however, the schemes for scalar conservation laws are not necessarily TVD (total
variation decreasing) and it is therefore not possible to directly prove Corollary 3.8: even if u0 ∈ BV (RN ),
we have then to rely on the techniques sketched in Remark 3.9.

4 Implementation of the numerical method

4.1 A few words on the resolution procedure

4.1.1 Example of gδx

A space step δx > 0 being chosen, Formula (1.2) makes it easy to write a discretization of g: we
approximate each integral sign using a basic quadrature rule on the mesh ([jδx, (j+1)δx[)j∈Z (for example
the right rectangles for z > 0 and the left rectangles for z < 0 — this avoids the singularity of 1/|z|1+λ at
z = 0 and preserves the symmetry between z > 0 and z < 0) and we use a finite difference approximation
of the derivative (for example a centered one). However, such an approximation would use all the (vj)j∈Z
in order to compute gδx[v]i; in practical application, the considered functions are usually constant near
−∞ and +∞: it is therefore safe to assume this when discretizing g and to use the mesh ([jδx, (j+1)δx[)j∈Z
only up to |z| = Jδxδx (for some integer Jδx such that Jδxδx → +∞ as δx → 0), approximating the
remaining parts with two unbounded space steps ]−∞,−Jδxδx] and [Jδxδx,+∞[. This leads to

gδx[v]i = −c(λ)
∑

0<|j|≤r/δx

δx
vi+j − vi − vi+1−vi−1

2δx jδx

|jδx|1+λ
− c(λ)

∑
r/δx<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

−c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

. (4.1)

But
∑

0<|j|≤r/δx
j

|jδx|1+λ = 0 by symmetry and we can in fact drop the discretization of the derivative:

gδx[v]i = −c(λ)
∑

0<|j|≤r/δx

δx
vi+j − vi
|jδx|1+λ

−c(λ)
∑

r/δx<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

− c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

(4.2)

= −c(λ)
∑

0<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

− c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

. (4.3)
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This dropping of the discretization of the derivative is in concordance with the reason behind the existence
of φ′(x) in (1.2); in fact, g is essentially the principal value of (| · |1−λ)′′ and g[φ] is therefore the limit
as ε → 0 of −c(λ)

∫
|z|≥ε

φ(x+z)−φ(x)
|z|1+λ dz (see [15]); the term φ′(x)z is introduced on ] − r, r[ because, by

symmetry, it does not modify this integral sign but makes it possible to write the limit as ε → 0 as an
integral sign on R. In the framework of numerical analysis, there is no such question of principal value
and integrability at 0, and the disappearance of the discrete derivative is therefore not surprising.

It is easy to prove the first properties (2.5)—(2.8) for gδx defined by (4.3). Indeed, if limk→∞ vik = supj vj
then, for all ε > 0 and for k large enough, vik+j − vik ≤ ε for all j ∈ Z and thus

gδx[v]ik ≥ −c(λ)ε
∑

0<|j|≤Jδx

δx
1

|jδx|1+λ
− 2c(λ)ε
λ(Jδxδx)λ

= −C(δx)ε

and (2.6) is obtained by taking the lim infk→∞ of this inequality and then letting ε → 0. The linearity
(2.5), the invariance by translation (2.7) and the dependence on a finite number of values (2.8) are
obviously satisfied. The proof of Properties (2.9) and (2.10) is way more technical and is therefore given
in the appendix (Lemma 5.1).

4.1.2 Choice of the parameters

The practical implementation of the scheme (2.1)—(2.2) requires to make some choices of truncation
parameters. First of all, we cannot obviously compute the approximate solution on the whole of [0,∞[×R,
we have to select a bounded domain on which we intend to obtain the solution: assume that this domain
is [0, T ] × [−D,D]. To simplify the presentation, we also assume that δt = T/Nδt and δx = D/Nδx for
some integers Nδt and Nδx.
If we forget for a moment the operator gδx in (2.2), we notice that the calculation of (un+1

i )|i|≤Nδx (in order
to obtain the approximate solution at time step n+ 1 on [−D,D]) necessitates to know (uni )|i|≤Nδx+1 (or
(uni )|i|≤Nδx+2 in the case of 4-points numerical fluxes instead of 2-points fluxes). Hence, the hyperbolic
part of the scheme imposes to begin at t = 0 with the indexes |i| ≤ Nδx +Nδt (or Nδx + 2Nδt in the case
of the 4-points scheme) in order to obtain the approximate solution at time t = T on [−D,D]; this is the
discrete counterpart of the well-known finite speed propagation of the scalar conservation laws.
But we must also consider the operator gδx, which makes of the scheme a non-trivial infinite linear system.
The proof of Lemma 3.3 however gives a way to approximate the solution to (2.2): hi being the right-hand
side of (3.10) and α being equal to δt, an approximation of (un+1

i )i∈Z is given by the solution to (3.7)
for m “large enough”... but which m? It is not obvious to give an analytical answer to this question: it
is possible, from (4.3), to estimate the convergence as m→∞ of the solution of (3.7) to the solution of
(3.4); however, this general estimate is very slow (of order ξm/Jδxδx for some ξδx < 1) and imposing m using
this error bound leads to unreasonable values. The same holds for the choice of Jδx in the definition of
gδx: it is easy to see that the difference between gδx defined by (4.3) and the same expression with an
infinite series (Jδx = +∞) is of order ||v||l∞(Z)(Jδxδx)−λ and thus, if we take Jδx = ε−1/λ

δx , that the error,
in the definition of gδx, due to the truncation of the sum at Jδx is of order at most ε... however, the value
thus chosen for Jδx is not reasonable, especially if λ is small. These general findings are in concordance
with the estimate on the infinite speed propagation phenomenon of (1.1): it is proved in [1] that the
influence of u0(x) on u(1, y) decreases as |x− y|−λ (i.e. very slowly).
However, in practical situations, things behave much better than the preceding reasoning might let believe
(partly because the above bounds are quite rough, partly because the considered initial conditions are
not any kind of function). Consider for example T = 0.5, D = 1, λ = 0.5, a Burgers flux f(s) = s2/2
and a Riemann initial condition u0(x) = 1 if x < 0 and u0(x) = −1 if x > 0 (we also use a 4-points
MUSCL method based on the Godunov numerical flux, see [17], instead of a simple 2-points fluxes in
(2.2)). Due to the hyperbolic part of the equation, we compute the solution for at least the indexes
|i| ≤ Nδx + 2Nδt, and it seems wise to take this value as a lower bound for the choice of m in (3.7)
(in order that the non-local operator influences all the terms coming from the hyperbolic part of the
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Nδx Nδt m L∞ difference
50 100 250 and 750 2.02E-4
100 200 500 and 1500 2.05E-4
150 300 750 and 2250 2.06E-4

Table 1: L∞ difference between the approximate solutions computed with m = Nδt + 2Nδx and with
m = 3(Nδt + 2Nδx) (and Jδx = 4m in either case).

Nδx Nδt Jδx L∞ difference
50 100 500 and 1500 1.76E-5
100 200 1000 and 3000 8.82E-6
150 300 1500 and 4500 5.88E-6

Table 2: L∞ difference between the approximate solutions computed with Jδx = 2m and with Jδx = 6m
(and m = Nδ + 2Nδx in either case).

equation). To understand if a higher value of m can improve the precision of the approximate solution,
we show in Table 1, for various values of Nδt and Nδx (all satisfying the CFL condition associated with
the MUSCL scheme), the difference between these solutions computed with the values m = Nδx + 2Nδt
and m = 3(Nδx + 2Nδt) (and in either case for Jδx large enough to have a minimal interference): the very
small difference between the two solutions shows that the choice m = Nδ + 2Nδx is sufficient to obtain,
in most cases, a good approximate solution to the scheme.
As for Jδx, a minimal value appears to be 2m in order that, when solving (3.7), the computation of
gδx[vm]i takes into account all the (vmj )j∈Z which are influenced by gδx in this system of equations. Here
again, there is in fact little gain to be found in using a much larger value for Jδx than this estimated
minimum, as shown by Table 2 (in which we present the L∞ difference of the solutions computed with
m = Nδx+ 2Nδt and either Jδx = 2m or Jδx = 6m). Fixing Jδx = 2m seems sufficient to obtain acceptable
numerical approximations.
Notice that, once m and Jδx are chosen, we know exactly which indexes are to be considered in the
implementation: the indexes |i| ≤ m + Jδx + 1 (this can be seen from (3.7), since the computation of
gδx[vm]i for all |i| ≤ m uses only (vmj )|j|≤m+Jδx+1).

4.1.3 Efficient numerical computation of the solution

Once the truncation parameters m and Jδx are chosen, computing an approximate solution to the scheme
requires to solve the following systems of the kind (3.7):

∀i ∈ Z : un+1
i + δtgδx[un+1]i1[−m,m](i) = hni , (4.4)

where hn is obtained by an iteration of the scheme for the pure scalar conservation law, i.e. hni =
uni + δt

δxF (uni−1, u
n
i ) − δt

δxF (uni , u
n
i+1). This system imposes un+1

i = hni for |i| > m; defining then v =
(hni 1Z\[−m,m](i))|i|∈Z and W = (un+1

i )|i|≤m, (4.4) reduces to a square system of size 2m+ 1 on W :

W + δtGδxW = (hni − δtgδx[v]i)|i|≤m, (4.5)

in which the matrix Gδx comes from gδx (GδxW = (gδx[W̃ ]i)|i|≤m with W̃i = Wi if |i| ≤ m and W̃i = 0
if |i| > m). It is easy to see from the definition of gδx that Gδx is a symmetric semi-definite positive (it
is diagonal-dominant) Toeplitz matrix, and thus that the matrix I + δtGδx of (4.5) is symmetric definite
positive Toeplitz; solving this system can therefore be done in an extremely fast way by using a pre-
conditioned Conjugate Gradient method and multiplication algorithms coming from the FFT framework
(see [12, 25] and also [22] for a possible adaptation to “more local” operators). Moreover, because of the
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Toeplitz form of gδx, it is also possible to use FFT-based algorithms to achieve a very fast computation
of the right-hand side of (4.5).

Hence, the scheme (2.1)—(2.2) is not only a proper theoretical approximation of (1.1), but also a very
efficient one in terms of computational cost. We now give some numerical results to show that this scheme
also provides nice practical approximations of solutions to fractal conservation laws.

4.2 Numerical results

In the following numerical tests, we consider a Burgers flux f(s) = s2/2 and, in order to avoid introducing
too much numerical diffusion, we use a 4-points MUSCL method based on the Godunov flux [17] to
compute the numerical fluxes associated with f . Except in Section 4.2.3, we present snapshots of the
approximate solutions (3) at time T = 0.5 on the domain [−1, 1], computed with a space step δx =
6.67× 10−3 and a time step δt = 1.67× 10−3 (with our choices of initial conditions, these values satisfy
the CFL associated with the MUSCL method); we use gδx given by (4.3), the parameters m and Jδx
being chosen according to the discussion in the preceding section (δx and δt correspond to the choices
Nδx = 150 and Nδt = 300, so m = Nδx + 2Nδt = 750 and Jδx = 2m = 1500).
Note that δx = 6.67 × 10−3 and δt = 1.67 × 10−3 are not very small steps; thanks to the algorithms
mentioned in Section 4.1.3, each of the following numerical test only takes a few seconds on a personal
computer and it would not be a strong computational issue to reduce the size of the time-space grid. We
choose to present the results using these values of δx and δt in order to show that the numerical outputs
of the scheme are quite good even without using a very fine grid.

4.2.1 Shock preservation and creation

If λ > 1, the solution to (1.1) is C∞-regular for any bounded initial data (see [14]). If λ < 1, however,
it is proved in [3] that the diffusion properties of g are not always strong enough, when in presence of a
Burgers flux, to smoothen discontinuous initial data; moreover, in this situation, even C∞-regular initial
data can give rise to discontinuous solutions.
These two different behaviors (smoothing or shock preservation) with respect to a discontinuous initial
condition are illustrated in Figure 1 (in which the initial condition is of Riemann type: u0(x) = 1 if x < 0
and u0(x) = −1 if x > 0). The figure clearly shows that the solution corresponding to λ = 0.3 presents
a shock at x = 0, whereas the solution for λ = 1.5 is smooth.
The phenomenon of shock creation if λ < 1 is shown in Figure 2; in this test, we take a kind of initial
data which, although Lipschitz continuous, ensures that the solution develops a shock in finite time (see
[3]): u0(x) = min(1,max(−3x,−1)) (u0 is in fact piecewise linear, with a strong negative slope around
0 which provokes the creation of a shock; we could have smoothen u0 around its slope discontinuities at
x = −1/3 and x = 1/3 without changing much the behavior of the solution).

4.2.2 Speeds of diffusion

Let us consider for a moment the pure fractal equation, i.e. f = 0 in (1.1). It is known that, for
any λ ∈]0, 2[, the solution to ∂tu + g[u] = 0 is regular. The diffusive effects of the operator g, which
explains this regularizing effect, however depend on the value of λ; indeed, taking the Fourier transform
of ∂tu+g[u] = 0 we see that ∂tF(u)+ |ξ|λF(u) = 0: thus, during the evolution, the larger λ the more high
frequencies are reduced and the less low frequencies are diffused. This property explains in particular
the different behaviors in presence of a Burgers flux with respect to shocks (Section 4.2.1), but is also
illustrated, for the pure fractal equation, in Figure 3: the initial data used in this test (−1 if x < 0,
+1 if x > 0) has mainly low frequencies and is globally less diffused for a higher λ, except around the
discontinuity (high frequency) where the smoothing is stronger (the slope of the solution is smaller).

3Or rather of affine interpolates of the constant-by-parts approximate solutions (these affine interpolates also converge
to the solution of (1.1)).
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-1.00 1.00

1.00

Solution at T = 0.5 for λ = 1.5

-1.00

-1.00 1.00

Solution at T = 0.5 for λ = 0.3

1.00

-1.00

Figure 1: Smoothing effect for λ > 1 and preservation of shock for λ < 1 (the dotted line is the common
initial condition of these tests).

-1.00 1.00

1.00

Initial condition
Solution at T = 0.5 for λ = 0.3

-1.00

Figure 2: Creation of shock for λ < 1.

17



-1.00 1.00

-1.00

Solution at T = 0.5 for λ = 1.5
Solution at T = 0.5 for λ = 0.5

Initial condition

1.00

Figure 3: Solutions, for various λ and an initial shock, to the pure fractal equation ∂tu+ g[u] = 0.

The presence of a flux can also interact with the different diffusive properties of g for various λ. If, keeping
the same non-decreasing discontinuous initial data, we add a Burgers flux (i.e. we consider (1.1) with
f(s) = s2/2), then the hyperbolic part of the equation generates a rarefaction wave: the initial shock
is transformed into a piecewise-linear solution; the high frequencies are therefore killed by the flux and
it can be seen in Figure 4 that the behaviors of the solutions for various λ no longer differ around the
initial shock (in fact, from (1.2) we can see that g vanishes on affine functions for any λ). The stronger
diffusive effect for low λ is however still perceptible in the zones of lower frequencies of the solution.

4.2.3 Asymptotic behavior

In [7], the asymptotic behavior as t → ∞ of the solution to ∂tv + ∂x(f(v)) + g[v] −∆v = 0 is studied;
the addition, with respect to (1.1), of the Laplacian term provokes little disturbance in the long-time
behavior of the solution and the results of this reference are also valid for (1.1). Let us try and illustrate
them with the help of the numerical scheme.
We take λ = 0.5, and an initial data u0 equal to 1 on [−0.2, 0.2] and to 0 elsewhere; the time-space domain
of discretization is [0, 30]× [−1, 1] and, to avoid that the rarefaction wave and the shock generated by a
Burgers flux for u0 leave the domain of study, we reduce the strength of the flux by taking f(s) = s2/6.
Denoting by K(t, x) the kernel of ∂t + g = 0 (i.e. ∂tK(t, x) + g[K(t, ·)](x) = 0 and K(t, ·)→ δ0 as t→ 0),
it is proved in [7] that t1/λ[u(t)−K(t) ∗ u0]→ 0 in L∞(R) as t→∞.
Figures 5 and 6 illustrate this property, by showing on one side the functions x 7→ u(t, x) and x 7→
K(t)∗u0(x) for various times, and on the other side the plot in log-log scale of the L∞ norm of t1/λ[u(t)−
K(t)∗u0] on [−1, 1] versus the time; the approximations of u and K∗u0 (solution to (1.1) with f = 0) used
to draw these figures have been computed on [0, 30]× [−1, 1] using the numerical scheme with Nδx = 100
and Nδt = 4000. It is proved in [7] that the next term in the asymptotic expansion of u(t) is of order
t−2/λ, i.e. that ||t1/λ[u(t)−K(t) ∗ u0]||L∞(R) = O(t−1/λ) as t→∞, and the reference slope t 7→ t−1/λ in
Figure 6 confirms this (see below regarding the change of behavior after t = 10).
In fact, the second term in the asymptotics of u(t) is known: it is proportional to ∂xK(t) (see [7]); the
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-1.00 1.00

-1.00

Initial condition
Solution at T = 0.5 for λ = 1.5
Solution at T = 0.5 for λ = 0.5

1.00

Figure 4: Solutions, for various λ, to (1.1) in the case of an initial data and a flux f(s) = s2/2 generating
a rarefaction wave.

numerical capture of this term is however quite challenging. Indeed, since K(t, x) = t−1/λK(1, t−1/λx),
we have ∂xK(t, x) = t−2/λ∂xK(1, t−1/λx) and ∂xK(t) is of order t−2/λ in L∞(R) but, as ∂xK(1, 0) = 0,
its maximal absolute values are attained at points x which go to ±∞ with t1/λ; restricted to [−1, 1],
∂xK(t) is in fact of order t−3/λ and can thus interact with a possible third — and yet unknown —
term in the expansion; this behavior is in concordance with the acceleration of convergence which clearly
appears in Figure 6: restricted to [−1, 1], t1/λ[u(t)−K(t) ∗ u0] seems to be asymptotically more of order
t−2/λ than t−1/λ. Numerically illustrating the second term in the asymptotics of u(t) would therefore
require to approximate this solution on a large time-space scale (including the extremal values of ∂xK)
and with a very high degree of precision (so that the numerical error is negligible with respect to t−2/λ),
which is beyond standard computational power.
Notice that this problem does not appear for the first term K(t) ∗ u0 in the asymptotic expansion:
its maximum absolute value is of order t−1/λ and is attained in [−1, 1] for all t > 0; a reasonable
approximation of u(t) on [−1, 1] thus suffices to capture this term. This is shown in Figure 6, and also
confirmed if look at the relative L∞ error on [−1, 1] between u(t) and K(t) ∗u0: for t = 1, this computed
error ||u(t)−K(t)∗u0||L∞([−1,1])

||K(t)∗u0||L∞([−1,1])
is around 0.63, whereas it is around 0.047 for t = 10 and around 0.0014 for

t = 30. We are thus confident that the numerical scheme really has captured the proximity of u(t) and
K(t) ∗ u0 for t large, not only a small quantity due to the difference of two small functions.

4.3 About the explicit scheme

The explicit form of the scheme consists in replacing (2.2) with

∀n ≥ 0 , ∀i ∈ Z :
δx

δt
(un+1
i − uni ) + F (uni , u

n
i+1)− F (uni−1, u

n
i ) + δxgδx[un]i = 0. (4.6)

The computation of the approximate solution to this scheme, on the contrary to the implicit scheme, does
not require to solve a linear system at each time step (a truncation parameter m is however still needed
for the practical implementation), but it is known that the CFL condition, ensuring the L∞ stability of

19
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t=1
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1.00-1.00

t=2.5

-1.00 1.00

1.00

t=5

Figure 5: Initial condition u0 (dotted line), K(t) ∗ u0 (dashed line) and u(t) solution to ∂tu+ ∂x(u2/6) +
g[u] = 0 (continuous line), for λ = 0.5 and various times.
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Figure 6: Plot in log-log scale of t 7→ ||t1/λ[u(t)−K(t) ∗u0]||L∞([−1,1]) (continuous line) and of t 7→ t−1/λ

(dashed line), for λ = 0.5, u0(x) = 1[−0.2,0.2](x) and u solution to ∂tu+ ∂x(u2/6) + g[u] = 0.

the method, is usually more binding than in the implicit case. Using Formula (3.1), we can make this
condition precise: with the same notations as in the proof of Corollary 3.4, and since the index j = 0 in
(3.1) plays no role, the equivalent of (3.10) for the explicit scheme gives

un+1
i =

1− ani − bni − δt
∑

0<|j|≤Aδx
µδxj

uni + ani u
n
i+1 + bni u

n
i−1 + δt

∑
0<|j|≤Aδx

µδxj u
n
i+j .

A sufficient condition for the L∞ stability of the scheme is that un+1
i is a convex combination of (unj )j∈Z,

which is, from the definition of ani and bni , ensured by the preceding relation if

δt

δx

(
Lip1,u0

(F ) + Lip2,u0
(F )
)

+ δt
∑

0<|j|≤Aδx
µδxj ≤ 1.

For the particular example of gδx given by (4.3), this comes down to

δt

δx

(
Lip1,u0

(F ) + Lip2,u0
(F )
)

+
δt

(δx)λ
c(λ)

 ∑
0<|j|≤Jδx

1
|j|1+λ

+
2

λJλδx

 ≤ 1. (4.7)

This condition on the time and space steps is more restrictive than (2.4), but in general not terribly
more since c(λ) is small (c(0.5) ≈ 0.08, c(1) ≈ 0.05, c(1.5) ≈ 0.02); this is especially true if λ < 1:
asymptotically as the space step tends to 0, the term coming from the hyperbolic part of the equation
is then leading in (4.7). This is however the opposite if λ > 1, and this CFL condition is also very
sensitive to the ratio diffusion/hyperbolic flux: if the hyperbolic flux is smaller than the diffusion term
(e.g. if Lipu0

(f) is small — which entails in general that Lip1,u0
(F ) + Lip2,u0

(F ) is also small — or if
we multiply g in (1.1) by a coefficient), (4.7) can be much more demanding than (2.4); at the level of
discretization used in the preceding tests and for λ > 1, a ratio of 5 between the coefficient of g and
Lipu0

(f) is enough to find a noticeable difference between these two CFL (recall also that the g we used
is in fact g = (2π)−λ(−∆)λ/2).

From a practical point of view, if the parameters are chosen so that the explicit scheme is stable (in
which case the implicit scheme is of course also stable), the solutions given by both forms (explicit and
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implicit) of the scheme are very similar: for example, in the preceding numerical tests, the relative L∞

norm of their difference is lower than 3× 10−4.
Since the explicit scheme demands to compute gδx[un] at each time step, its implementation can take
advantage of FFT-based algorithms as in Section 4.1.3. In fact, as explained in this section, the implicit
scheme also requires such a computation at each time step, and the difference of cost between the explicit
and implicit methods therefore lies in the preconditioned CG iterations needed to solve the system in
the implicit case. Although very fast, these CG iterations are not negligible in the overall cost and, in
situations where (4.7) is not much more demanding than (2.4), the explicit scheme is clearly faster than
the implicit scheme. However, for a diffusion-dominated problem (for example f(s) = s2/2, λ = 1.5 and
(2π)λg = (−∆)λ/2 instead of g), (4.7) can impose a much smaller time step than (2.4) and the implicit
method then remains way more efficient than the explicit method.

5 Appendix: technical lemmas

Lemma 5.1 If Jδx is such that Jδxδx → +∞ as δx → 0, then gδx defined by (4.3) satisfies (2.9) and
(2.10).

Proof of Lemma 5.1
Step 1: proof of (2.9).
We notice first, from (4.3), that (gδx)∗ = gδx. Let K be a compact subset of R and define Aδx : C2

K(R)→
L1(R) by Aδxφ = gδx[Φ]− g[φ], where Φ is defined from φ as before (2.9) (4). Proving (2.9) is equivalent
to proving that Aδx → 0 in L(C2

K(R);L1(R)) as δx → 0, which we intend to do by applying Lemma 5.3
(stated after this proof).
Let r > 0 and x ∈ R; by definition, choosing i ∈ Z such that x ∈ [iδx, (i+ 1)δx[ we have

gδx[Φ](x) = −c(λ)
∑

0<|j|≤r/δx

δx
Φi+j − Φi
|jδx|1+λ

− c(λ)
∑

r/δx<|j|≤Jδx

δx
Φi+j − Φi
|jδx|1+λ

−c(λ)
Φi−Jδx−1 − Φi
λ(Jδxδx)λ

− c(λ)
Φi+Jδx+1 − Φi
λ(Jδxδx)λ

= −c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ

1
δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ) dξ

−c(λ)
∑

r/δx<|j|≤Jδx

δx

|jδx|1+λ

1
δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ) dξ

−c(λ)
1

λ(Jδxδx)λ
1
δx

(∫ (i−Jδx)δx

(i−Jδx−1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)

−c(λ)
1

λ(Jδxδx)λ
1
δx

(∫ (i+Jδx+2)δx

(i+Jδx+1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)
.

The same way we went from (4.1) to (4.2), we can add to each term in the first sum of the right-hand
side anything of the form pi

jδx
|jδx|1+λ without changing the value of the sum (these additional terms cancel

out each other by symmetry). We choose to add −
∫ (i+1)δx

iδx
φ′(ξ) dξ jδx

|jδx|1+λ and we obtain

gδx[Φ](x) = −c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ

1
δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ)− φ′(ξ)jδx dξ

4It might not be straightforward that Aδx takes its values in L1(R), because of the term gδx[Φ], but this will be made
clear by the reasoning to come.
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−c(λ)
∑

r/δx<|j|≤Jδx

δx

|jδx|1+λ

1
δx

∫ (i+1)δx

iδx

φ(ξ + jδx)− φ(ξ) dξ

−c(λ)
1

λ(Jδxδx)λ
1
δx

(∫ (i−Jδx)δx

(i−Jδx−1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)

−c(λ)
1

λ(Jδxδx)λ
1
δx

(∫ (i+Jδx+2)δx

(i+Jδx+1)δx

φ(ξ) dξ −
∫ (i+1)δx

iδx

φ(ξ) dξ

)
= T δx,r8 [φ](x) + T δx,r9 [φ](x) + T δx10 [φ](x) + T δx11 [φ](x).

We then define the operators Aδx0,r and Aδx2,r by

Aδx0,rφ = T δx,r9 [φ] + T δx10 [φ] + T δx11 [φ]− g0,r[φ] and Aδx2,rφ = T δx,r8 [φ]− gλ,r[φ].

The definition of g0,r clearly shows that Aδx0,rφ is defined for any φ ∈ C0
K(R). For all x ∈ R we have

|T δx10 [φ](x) + T δx11 [φ](x)|

≤ c(λ)
λ(Jδxδx)λ

(
sup
|s|≤δx

|φ(x− Jδxδx− δx+ s)|+ 2 sup
|s|≤δx

|φ(x+ s)|+ sup
|s|≤δx

|φ(x+ Jδxδx+ δx+ s)|

)
,

which shows, integrating and using some changes of variables, that

||T δx10 [φ] + T δx11 [φ]||L1(R) ≤
4c(λ)

λ(Jδxδx)λ

∫
R

sup
|s|≤δx

|φ(z + s)| dz ≤ 4c(λ)
λ(Jδxδx)λ

||φ||L∞(R)mes(K + [−δx, δx])

and thus, since Jδxδx→∞ as δx→ 0,

T δx10 + T δx11 → 0 in L(C0
K(R);L1(R)) as δx→ 0. (5.1)

We let I(j, δx) = [jδx, (j + 1)δx[ if j > 0 and I(j, δx) =](j − 1)δx, jδx] if j < 0, and we define Hδx : R→ R
by: for all r/δx < |j| ≤ Jδx, Hδx = 1

|jδx|1+λ on I(j, δx), and Hδx = 0 on R\ ∪r/δx<|j|≤Jδx I(j, δx). By
regularity of z → |z|−1−λ on |z| ≥ r, we have, if δx < r/2,

∀z ∈
⋃

r/δx<|j|≤Jδx

I(j, δx) :
∣∣∣∣Hδx(z)− 1

|z|1+λ

∣∣∣∣ ≤ (1 + λ)δx sup
|s|≤δx

1
|z + s|2+λ

≤ δx 1 + λ

(|z| − r/2)2+λ
.

Since
⋃
r/δx<|j|≤Jδx I(j, δx) = {z ∈ R | r + αr,δxδx ≤ |z| < Jδxδx + δx} for some αr,δx ∈ [0, 1], we deduce

that Hδx → 1
|z|1+λ in L1(|z| > r) as δx→ 0; for all φ ∈ C0

K(R) and all x ∈ R, by uniform continuity of φ
we infer that

T δx,r9 [φ](x)→ −c(λ)
∫
|z|>r

φ(x+ z)− φ(x)
|z|1+λ

dz = g0,r[φ](x) as δx→ 0. (5.2)

Moreover, still assuming that δx < r/2,

|T δx,r9 [φ](x)| ≤ c(λ)
∫
|z|>r

Hδx(z)

(
sup
|s|≤r

|φ(x+ z + s)|+ sup
|s|≤r/2

|φ(x+ s)|

)
dz (5.3)

and, by convergence of Hδx in L1(|z| > r), the right-hand side of (5.3) converges, as a function of x, in
L1(R) as δx → 0. The dominated convergence theorem and (5.2) then show T δx,r9 [φ] → g0,r[φ] in L1(R)
and, together with (5.1), this proves that Aδx0,r satisfies Item 1 in Lemma 5.3.
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Since (Hδx)δx∈]0,r/2[ is bounded in L1(|z| > r), (5.3) gives ||T δx,r9 [φ]||L1(R) ≤ C4||φ||L∞(R)mes(K+ [−r, r])
with C4 not depending on φ or δx ∈]0, r/2[; recalling (5.1) and since g0,r ∈ L(C0

K(R);L1(R)) (see the
definition of g0,r), this shows that Aδx0,r satisfies Item 2 in Lemma 5.3.
Let us now turn to Aδx2,r. Writing φ(x+ z)− φ(x)− φ′(x)z =

∫ 1

0
(1− s)φ′′(x+ sz)z2 ds, we have

||gλ,r[φ]||L1(R) ≤ c(λ)||φ′′||L1(R)

∫
|z|≤r

|z|1−λ dz ≤ ||φ′′||L1(R)
2c(λ)
2− λ

r2−λ. (5.4)

We handle T δx,r8 [φ] in a similar way: integrating its definition with respect to x and using a comparison
between discrete and integral sums, we find

||T δx,r8 [φ](x)||L1(R) ≤ c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ

∫
R
|φ(ξ + jδx)− φ(ξ)− φ′(ξ)jδx| dξ

≤ c(λ)
∑

0<|j|≤r/δx

δx

|jδx|1+λ
||φ′′||L1(R)|jδx|2

≤ ||φ′′||L1(R)c(λ)
∫
|z|≤r+δx

|z|1−λ dz ≤ ||φ′′||L1(R)
2c(λ)
2− λ

(r + δx)2−λ.

Together with (5.4), this proves that Aδx2,r satisfies Item 3 in Lemma 5.3 and concludes the proof of (2.9).

Step 2: proof of (2.10)
The cutting of gδx in gδxλ,r and gδx0,r is of course the one given by (4.2), gδxλ,r being the first sum and gδx0,r
the rest of the right-hand side. The proof that gδxλ,r satisfies (2.5)—(2.8) and (2.9) with gλ,r instead of g
is done exactly as for gδx (the proof of (2.9) is done by cutting the sum defining gδxλ,r at a level r′/δx with
r′ < r, by introducing the derivative of φ in the lower part of the sum and by replacing, in the reasoning
of Step 1 above and in Lemma 5.3, r with r′).
Let us study gδx0,r. For all v ∈ l∞(Z) and all x ∈ R, choosing i ∈ Z such that x ∈ [iδx, (i+ 1)δx[ we have

gδx0,r[v](x) = −c(λ)
∑

r/δx<|j|≤Jδx

δx
vi+j − vi
|jδx|1+λ

− c(λ)
vi−Jδx−1 − vi
λ(Jδxδx)λ

− c(λ)
vi+Jδx+1 − vi
λ(Jδxδx)λ

. (5.5)

Let |j| > r/δx. We have x + z ∈ [(i + j)δx, (i + j + 1)δx[ (which implies v(x + z) = vi+j) if and only if
z ∈ [jδx, (j + 1)δx[+(iδx− x) =: Ej(i, x), in which case |z − jδx| ≤ δx and, if δx ≤ r/4,∣∣∣∣ 1

|z|1+λ
− 1
|jδx|1+λ

∣∣∣∣ ≤ (1 + λ)δx sup
|s|≤δx

1
|z + s|2+λ

≤ δx(1 + λ)
1

(|z| − r/4)2+λ

(notice that if z ∈ Ej(i, x) then |z| > r/2). We deduce∣∣∣∣∣δxvi+j − vi|jδx|1+λ
−
∫
Ej(i,x)

v(x+ z)− v(x)
|z|1+λ

dz

∣∣∣∣∣ ≤ 2||v||l∞(Z)δx(1 + λ)
∫
Ej(i,x)

dz

(|z| − r/4)2+λ

and, plugging this into (5.5) and defining E(i, x) = ∪r/δx<|j|≤JδxEj(i, x) ⊂ {|z| > r/2},∣∣∣∣∣gδx0,r[v](x) + c(λ)
∫
E(i,x)

v(x+ z)− v(x)
|z|1+λ

dz

∣∣∣∣∣ ≤ 2||v||l∞(Z)δx(1 + λ)
∫
|z|>r/2

dz

(|z| − r/4)2+λ

+
4c(λ)||v||l∞(Z)

λ(Jδxδx)λ
.

But E(i, x) = [−Jδxδx + ρ′1δx,−r + ρ1δx[∪[r + ρ2δx, Jδxδx + ρ′2δx[ with (ρ1, ρ
′
1, ρ2, ρ

′
2) ∈ [−1, 1] and the

symmetric difference between E(i, x) and {|z| > r} is therefore contained in {r−δx ≤ |z| ≤ r+δx}∪{|z| ≥

24



Jδxδx− δx}; we conclude that

|gδx0,r[v](x)− g0,r[vδx](x)|

≤ 2||v||l∞(Z)δx(1 + λ)
∫
|z|>r/2

dz

(|z| − r/4)2+λ
+

4c(λ)||v||l∞(Z)

λ(Jδxδx)λ

+2c(λ)||v||l∞(Z)

∫
r−δx≤|z|≤r+δx

1
|z|1+λ

dz + 2||v||l∞(Z)c(λ)
∫
|z|>Jδxδx−δx

1
|z|1+λ

dz

and Item 2 of (2.10) follows, the estimate being in fact valid in L∞(R) and not only in L1(Q).

Remark 5.2 It is also possible, by some direct estimates rather than using the abstract lemma 5.3, to
give an explicit θK such that (2.9) holds; such an expression could be useful, for example, to establish
error estimates for the scheme (2.1)—(2.2). However, getting this θK is much more technical than the
arguments used in Step 1 of the preceding proof.

Lemma 5.3 Let K be a compact subset of R and denote by C0
K(R) (resp. C2

K(R)) the space of continuous
(resp. twice continuously differentiable) functions with support included in K. Assume that (Aδx)δx>0

is a family of linear continuous operators C2
K(R) → L1(R) such that, for all r > 0, we can write

Aδx = Aδx0,r + Aδx2,r with Aδx0,r : C0
K(R) → L1(R) and Aδx2,r : C2

K(R) → L1(R) linear continuous operators
satisfying:

1. For all r > 0 and all φ ∈ C0
K(R), Aδx0,rφ→ 0 in L1(R) as δx→ 0,

2. For all r > 0, lim supδx→0 ||Aδx0,r||L(C0
K(R);L1(R)) < +∞,

3. limr→0 lim supδx→0 ||Aδx2,r||L(C2
K(R);L1(R)) = 0.

Then Aδx → 0 in L(C2
K(R);L1(R)) as δx→ 0.

Proof of Lemma 5.3
We take φδx ∈ C2

K(R) such that ||φδx||C2
K(R) ≤ 1 and ||Aδx||L(C2

K(R);L1(R)) ≤ ||Aδxφδx||L1(R) +δx. Using the
compactness of the embedding C2

K(R) ↪→ C0
K(R), we can assume that φδx converges in C0

K(R) to some φ
as δx→ 0. We then take r > 0 and write

||Aδx||L(C2
K(R);L1(R)) ≤ ||Aδx0,rφδx||L1(R) + ||Aδx2,rφδx||L1(R) + δx

≤ ||Aδx0,rφ||L1(R) + ||Aδx0,r||L(C0
K(R);L1(R))||φδx − φ||C0

K(R)

+||Aδx2,r||L(C2
K(R);L1(R)) + δx,

and the conclusion follows by taking first the upper limit as δx→ 0 and then the limit as r → 0.

Acknowledgements: the author would like to thank the referee for his/her useful suggestions, which
have led to a reduction of technicality in some reasonings (in particular in Step 1 of the proof of Lemma
5.1).
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diffusion generators, Studia Mathematica 148 (2001), no. 2, 171–192.

[8] Biler P., Karch G. and Woyczynski W., Critical nonlinearity exponent and self-similar asymp-
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