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A unified approach to handle convection terms in Finite
Volumes and Mimetic Discretization Methods for elliptic

problems

Lourenço Beirão da Veiga 1, Jérôme Droniou 2 3, Gianmarco Manzini 4.
February 23, 2013

Abstract We study the numerical approximation to the solution of the steady convection-diffusion
equation. The diffusion term is discretized by using the Hybrid Mimetic Method (HMM), which is
the unified formulation for the Hybrid Finite Volume Method, the Mixed Finite Volume Method and
the Mimetic Finite Difference Method recently proposed in [33]. In such a setting, we discuss several
techniques to discretize the convection term, which are mainly adapted from the literature of Finite
Volume or Finite Element schemes. For this family of schemes, we provide a full proof of convergence
under very general regularity conditions of the solution field, and derive an error estimate when the scalar
solution is in H2(Ω). Finally, we compare the performance of these schemes on a set of test cases selected
from the literature in order to document the accuracy of the numerical approximation in both diffusion
and convection-dominated regimes. Moreover, we numerically investigate the behavior of these methods
in the approximation of solutions with boundary layers or internal regions with strong gradients.

1 Introduction

Many physical models of fluid flows involve partial differential equations (PDEs) with both convection and
diffusion terms such as the Navier-Stokes equations, flows in porous media, etc. Analytical solutions are
not normally available for real applications and numerical approximations must be devised in some way.
To this purpose, efficient numerical schemes based on Finite and Mixed Finite Element and 2-points Finite
Volumes have been developed for the numerical treatment of the diffusive part of the equation. In such a
framework, a great amount of work has been done to investigate the connections between the lowest-order
Raviart-Thomas Mixed Finite Element (RT0−P0) methods and various cell-centered Finite Volume and
Finite Difference numerical formulations on meshes of simplexes and quadrilaterals/hexahedrons. The
relationship between the Mixed Finite Element method and cell-centered Finite Difference on rectangular
meshes was first established in [45], and further developed in subsequent papers, see for example [3].
Basically, it can be shown that applying appropriate quadrature rules to the numerical formulation in
the RT0 space on rectangles, the vector variable (the velocity) is eliminated thus reducing the method
to a positive definite cell-centered Finite Difference method for the scalar variable (the pressure). Using
this approach, classical cell-centered Finite Difference methods on rectangular meshes are easily retrieved
based on a 9-points stencil for full tensor coefficients and a 5-points stencil for scalar (diagonal) tensor.
Similar results are also obtainable on regular hexahedron meshes. These developments leaded to the
formulation of enhanced cell-centered Finite Differences, cf. [3], that can handle general shape elements
(triangles, quadrilaterals and hexahedra) and are suitable to full tensor coefficients. A similar relationship
exists betwen the RT0−P0 scheme and the 2-point Finite Volume formulation on triangular meshes using
triangle circumcenters. This relationships was originally established by [6] for two-dimensional diffusion
problems with scalar coefficients. This approach has been further developed by [49], which investigates
the case of a full diffusion tensor in two and three dimensions on meshes of simplexes.
Nonetheless, practical situations, such as those encountered in petroleum engineering, require compu-

tational grids that are not structured or simple enough to make use of the methods mentioned above.
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Thus, alternative and more sophisticated techniques have been developed in the last decade to approx-
imate the solution to diffusive equations on general grids. In this framework, we mention, for instance,
the Discontinuous Galerkin Method, [5, 44] and references therein, the Multi-Point Flux Approximation
[1, 2, 48], the Mimetic Finite Difference Method, [8, 11–14,18, 20–23, 37, 40, 41] and references therein, the
Hybrid Finite Volume Method [36], and the Mixed Finite Volume Method [25, 31, 32]. Strict correlations
also exist among these numerical approximations and with respect to the lowest order Mixed Finite El-
ement Method, and it is not surprising that sometimes the lowest-order schemes may belong to more
than one of these families of methods. For example, the first-order Discontinuous Galerkin scheme can
be easily re-interpreted as a Finite Volume method. The lowest-order Raviart-Thomas scheme on grids
of simplexes (triangles in 2-D, tetrahedrons in 3-D) is a member of the family of MFD methods, cf. [23].
Note, however, that on meshes of quadrilaterals and hexaedrons no connection has been established yet
between the MFD method in mixed form and the Mixed Finite Element method. Again, we mention [47]
that outlined the relationship existing between the Multi-Point Flux Approximation and the Mixed Finite
Element Method.
A remarkable fact has been recently discovered in [33]: after some generalization a unified formulation

exists for three of the methods cited above, i.e., the Hybrid Finite Volume method, the Mixed Finite
Volume method and the Mimetic Finite Difference method. Consequently, these three methods are
members of the same family of discretization techniques. Following [33], we will refer to such a family of
numerical methods by the wording Hybrid Mimetic Mixed methods, or by the abbreviation HMM.
Since the HMM method is at the juncture of two different frameworks, namely the Mimetic/Finite

Element and the Finite Volume ones, the convective term can be naturally discretized using quite differ-
ent techniques depending on the adopted point of view on the scheme. There are, indeed, two possible
approches: either the diffusive flux is approximated and, then, some form of centered or upwind approx-
imation of the convection term is considered in the discretization of the divergence equation, or the total
flux, which includes both diffusive and convective terms, is approximated, which leads to a centered-type
approximation of the convection terms. The first approach is, perhaps, more popular in the Finite Differ-
ence and Finite Volume practitioner community, cf. [26, 32], while the second approach seems to be more
popular in the Finite Element practitioner community. Nevertheless, it is worth mentioning that both
approaches have been considered in the framework of Mixed Finite Element methods, see [29, 30, 39].
In the Mimetic Finite Difference setting, a numerical discretization of the full diffusion and convection

flux has been proposed by [24]. A proper reformulation of the mimetic scheme as a conforming method,
using the finite dimensional subspace of H(div,Ω) given by the lifting of the degrees of freedom of the
vector variable, makes it possible to perform the convergence analysis in a very similar way to that
presented in [30].
From this overview, we can conclude that several numerical discretizations of the convection-diffusion

equations that may fit in the HMM setting have been proposed in the literature. However, no systematic
study has been carried out so far on the possible ways, and related advantages and drawbacks, in which a
convective term can be treated numerically by using the more general HMM formulation. It is our main
goal in this work to perform such an investigation in order to assess the behavior of such methods both
theoretically and numerically.
The plan of the paper is as follows. In Section 2, we recall the principles of the HMM schemes for

the pure diffusion equation, and we discuss how to discretize the convection term, using some centered,
upwind or exponential fitting-like choice in accordance with a 2-point Finite Volume flux formula (or,
from the point of view of Finite Elements, see [28, 38]). We also show that the numerical approximation
proposed in [24], possibly with a stabilization term, is an HMM method, to which the theoretical analysis
of the present paper apply. In Section 3 we provide full proofs of convergence under very general regularity
conditions when the mesh size tends to zero and derive error estimates in suitable mesh-dependent norms
when the scalar solution is in H2(Ω). Section 4 is devoted to present and discuss how various instances
of the HMM discretizations perform when applied to a set of standard test cases for the convection-
diffusion equations including the approximation of solutions with boundary and internal layers. Finally,
conclusions are given in Section 5.

2



2 The HMM formulation for convection-diffusion problems

2.1 The mathematical model

Let us consider the steady convection diffusion equation:

−div(Λ∇p) + div(V p) = f in Ω , (2.1)

p = gD on ∂Ω (2.2)

under the hypotheses:

(H1) Ω is a bounded, open, polygonal subset of Rd with d ≥ 1;

(H2) Λ : Ω → Md(R) is a bounded, measurable, symmetric and uniformly elliptic tensor;

(H3) f ∈ L2(Ω);

(H4) V ∈ C1(Ω)d is such that div(V ) ≥ 0.

Moreover, let us introduce the diffusive flux and the total flux:

F = −Λ∇p and F̃ = F + V p. (2.3)

For simplicity, we will restrict the presentation of the methods and the theoretical analysis to the case
of homogeneous Dirichlet boundary condition by setting gD = 0 in (2.2) and we will consider the non-
homogeneous case in the numerical experiments of Section 4.
Under Assumptions (H1)-(H4), the existence and uniqueness of a weak solution in H1

0 (Ω) to (2.1)-(2.2)
with gD = 0 is completely standard since the bilinear form associated with this problem is continuous
and coercive.

Remark 2.1 The C1 regularity assumption on V in (H4) can be weakened for the convergence study (see
Section 3.1.3). We assume the smoothness of the convection field in order to simplify a little bit some
(already lenghty) technical arguments, and also to prove error estimates.

2.2 Mesh notation and regularity

Let us begin with the definition of an admissible discretization of Ω and the related notation.

Definition 2.2 [Admissible discretization] An admissible discretization of Ω is given by the triplet
Dh = (Ωh, Eh,Ph), where the mesh size h will be defined in the following and where:

• Ωh is a finite family of non-empty open polygonal disjoint subsets E of Ω, the cells of the mesh,
such that Ω = ∪E∈Ωh

E;

• Eh is a finite family of non-empty open disjoint subsets e of Ω, the faces of the mesh, such that for
all e ∈ Eh there exists an affine hyperplane A of Rd and a cell E ∈ Ωh such that e ⊂ (E\E) ∩ A.
We also assume that:

- for all E ∈ Ωh there exists a subset ∂E of Eh such that E\E = ∪e∈∂Ee;

- for all e ∈ Eh either we have that e ⊂ ∂Ω or we have that e ⊂ E∩E′ for some pair of elements
E,E′ ∈ Ωh with E 6= E′;

• Ph is a family of points of Ω indexed by E, i.e., Ph = (xE)E∈Ωh
, and such that each mesh cell E

is star-shaped with respect to xE .

Remark 2.3 When all the mesh cells are convex shaped, a convenient choice for the points (xE)E∈Ωh
is

given, for instance, by the centers of gravity of the cells.
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Figure 1: Mesh notations.

The d-dimensional measure of each cell E is denoted by |E| and the cell size by hE . As usual, the mesh
size is given by h = supE∈Ωh

hE . For notation’s consistency, |e| and he denote the (d − 1)-dimensional
measure of face e and the face diameter. For each face e ∈ Eh, x̄e denotes the barycenter of e and ne

E

its normal direction pointing out of E. Moreover, to each face e we associate the unit normal vector ne,
whose orientation is arbitrarily chosen when e is an internal face, and assumed pointing out of Ω when e is
a boundary face. We denote the set of the internal faces by Eh,int, i.e., Eh,int = {e ∈ Eh for e 6⊂ ∂Ω}, and
the set of the boundary faces by Eh,ext, i.e., Eh,ext = {e ∈ Eh for e ⊂ ∂Ω}. We will find it convenient to
denote the two cells that share an internal face e by E and E′, and, where required, to fix the orientation
of e so that ne

E · ne = 1. Finally, we introduce the following geometric quantities that will be useful in
the definition of the numerical convection flux in subsection 2.4.1:

dE,e = distance between xE and the hyperplane containing e,

and

de =

{
dE,e + dE′,e for any internal face e ∈ Eh,int,

dE,e for any boundary face e ∈ Eh,ext.

Figure 1 illustrates some of these notations.
The proof of convergence for h → 0 that we present in Section 3 requires the following very mild

geometrical assumptions on the meshes of Dh.

(G1) Every mesh cell E is star-shaped with respect to the corresponding point xE .

(G2) For any internal face e ∈ Eh,int, let us introduce Me = {E,E′}, i.e., the cells on the opposite side
of e; then, the quantity

regul(Dh) = max

(
max

e∈Eh,int , (E,E′)∈Me

dE,e

dE′,e
, max
E∈Ωh , e∈∂E

hE

dE,e
, max
E∈Ωh

Card(∂E)

)
,

which expresses the mesh regularity, is uniformly bounded from above for h → 0.

In the mimetic framework it is often used a similar condition, that we state as follows.

(ME)
[
Star-shaped elements

]
There exists a positive number τ∗ such that each element E is star-shaped

with respect to all the points of a ball of radius τ∗hE centered at xE .
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Stronger conditions on the mesh regularity are required to derive an error estimate for the HMM approx-
imations to the exact solution and flux. We formulate these mesh regularity conditions for d = 3; the
restriction to other dimensions is straightforward.

(HG)
[
Shape-regularity

]
There exist two positive real numbers Ns and ρs independent of h such that

every mesh Ωh of the sequence admits a sub-partition into tetrahedrons Sh such that:

(HG1) the decomposition of every polyhedron E ∈ Ωh denoted by Sh|E is formed by at most Ns

tetrahedrons, and each vertex of Ωh is a vertex of Sh;

(HG2) every tetrahedron of Sh is shape-regular in the sense that the ratio between rT , the radius
of its inscribed sphere, and hT , its diameter, is bounded from below by ρs; formally, we have
that

∀T ∈ Sh :
rT
hT

≥ ρs > 0.

From the above assumptions several properties of the mesh, which are useful in the error analysis of the
mimetic formulation, can be derived. For the sake of the reader’s convenience, we list them below for
future reference in the paper.

(M1) There exist two positive integers NE and Ne that are independent of h, E ∈ Ωh and e ∈ Eh and
such that every element E has Card(∂E) ≤ NE faces, and every face e has Card(∂e) ≤ Ne edges.

(M2) For any mesh element E ∈ Ωh, the quantities |E|, |e| for e ∈ ∂E, and |l | for each edge l ∈ ∂e
properly scale with respect to hE ; in particular, there exists a positive constant a∗ such that

a∗hd−1
E ≤ |e| , a∗hE ≤ he, a∗hd−2

E ≤ |l | .

(M3) There exists a constant CAg independent of hE and such that [20]:

∑

e∈∂E

||φ||2L2(e) ≤ CAg
(
h−1
E ||φ||2L2(E) + hE |φ|

2
H1(E)

)
(2.4)

for any function φ ∈ H1(E). We will refer to (2.4) as the Agmon inequality.

(M4) For any function q ∈ H2(E), there exists a linear polynomial L1(q) interpolating q and a constant
C, independent of hE, such that [17]:

||q − L1(q)||L2(E)+hE|q − L1(q)|H1(E)≤Ch2
E |q|H2(E). (2.5)

2.3 Discretization of the diffusion term

To approximate (2.1)-(2.2), we introduce the space of the discrete scalar fields Qh and the space of the
discrete flux fields Xh. The discrete scalars q ∈ Qh are defined by taking one degree of freedom per
cell denoted by qE , i.e., q = (qE)E∈Ωh

. Therefore, the space Qh can be identified with the space of
the piecewise constant polynomials defined on Ωh. Similarly, the discrete fluxes are defined by taking

one degree of freedom per face per element denoted by F e
E , i.e., F =

(
F e
E

)e∈∂E

E∈Ωh
, which represents the

normal flux across the face e along the direction ne
E . We require that every flux F ∈ Xh satisfies the flux

conservation property at any internal face:

∀e ∈ Eh,int , e ⊂ ∂E ∪ ∂E′ : F e
E + F e

E′ = 0, (2.6)

so that the elements of Xh only possess one degree-of-freedom per face, and the sign of F e
E depends

on the orientation of the face e with respect to E. The restriction of F to cell E ∈ Ωh is denoted by
FE = (F e

E)e∈∂E and represents the collection of the normal fluxes along the directions ne
E for e ∈ ∂E.

The set of these vector fields forms the linear space XE . Throughout the paper we will also make use of

5



the symbol X̂h to denote the linear space of the discontinuous fluxes, i.e., of the vectors having the same
form F = (F e

E)
e∈∂E
E∈Ωh

but that do not satisfy condition (2.6). Note that Xh is a linear sub-space of X̂h.

The next ingredient of the HMM formulation is the discrete divergence operator divh : X̂h → Qh, which
is defined as

∀G ∈ X̂h , ∀E ∈ Ωh : (divh(G))E =
1

|E|

∑

e∈∂E

|e|Ge
E . (2.7)

To any sufficiently regular vector field G and scalar field q, we associate the interpolated fields GI ∈ Xh

and qI ∈ Qh that are given by

∀e ∈ Eh : (GI)e =
1

|e|

∫

e

G · ne and ∀E ∈ Ωh : (qI)E =
1

|E|

∫

E

q. (2.8)

Remark 2.4 The definition of the discrete divergence operator in (2.7) is consistent with the Gauss
divergence theorem for the interpolations of (2.8), so that the following commutation property holds

(
div(G)

)I
= divh(G

I). (2.9)

We endow Qh with the usual L2(Ω) scalar product for piecewise constant functions, i.e., [·, ·]Qh
:=

[·, ·]L2 . On the other hand, Xh and X̂h are equipped with the scalar product

[F,G]X̂h
=
∑

E∈Ωh

[FE , GE ]E , (2.10)

that assembles the locally defined scalar products [·, ·]E . The local scalar products ([·, ·]E) satisfy the
coercivity and consistency assumptions:

(S1) there exist two positive constants σ∗ and σ∗ independent of the mesh size h such that for every
mesh cell E

σ∗|E|
∑

e∈∂E

(Ge
E)

2 ≤ [G,G]E ≤ σ∗|E|
∑

e∈∂E

(Ge
E)

2 ∀G ∈ Xh ;

(S2) for every element E, we have that

[
(ΛE∇q1)I , G

]
E
= −

[
divh(G), q1

]
L2(E)

+
∑

e∈∂E

Ge
E

∫

e

q1

for all G ∈ Xh and all linear polynomials q1, and where ΛE is the cell average of Λ.

Remark 2.5 ΛE is, actually, an approximation of Λ|E, the restriction of the diffusion tensor Λ to cell
E. To prove the convergence of the numerical solution in subsection 3.1, we only require that the diffusion
tensor Λ satisfy the regularity assumption (H2), while we need a stronger regularity condition to derive the
error estimates of subsection 3.2. In this latter case, we will find it convenient to assume (H2) and also
that Λ be locally Lipschitz continuous on Ωh, i.e., for all E ∈ Ωh, the components of Λ|E are Lipschitz
continuous functions on E. Consequently, ΛE can be any constant approximation of Λ|E such that the
estimate

max
i,j=1,d

sup
x∈E

|(ΛE)ij − Λij(x)| = O (h)

holds.

The construction of a family of scalar products satisfying the above assumptions when xE is the center
of gravity of E can be found in [22]. Moreover, in this case it has been proved in [33] that (S1)-(S2) lead
necessarily to the following form:

∀(FE , GE) ∈ XE : [FE , GE ]E = |E|ΛEvE(FE) · vE(GE) + TE(GE)
T
BETE(FE) (2.11)
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where

vE(FE) = −
1

|E|
Λ−1
E

∑

e∈∂E

|e|F e
E(x̄e − xE) (2.12)

is a constant approximation of ∇p on cell E, TE(FE) = (TE,e(F
e))e∈∂E is given by

TE,e(FE) = F e
E + ΛEvE(FE) · n

e
E , (2.13)

and BE is a symmetric positive definite matrix of size Card(∂E). More precisely, it turns out that the
matrix BE satisfies the following coercivity condition, which is directly related to (S1).

(C) There exists a positive constant α, which is independent of the mesh size, such that for all E ∈ Ωh

and GE ∈ XE there holds that:

α
∑

e∈∂E

|e|dE,e(TE,e(GE))
2 ≤ TE(GE)

T
BETE(GE) ≤

1

α

∑

e∈∂E

|e|dE,e(TE,e(GE))
2.

If xE is not the barycenter of E, the same construction (2.11)-(2.13) still holds provided that (S2) be
modified by introducing a suitable integration weight, see [33].
The HMM discretization to problem (2.1)-(2.2) with V = 0, which provides us the desired approxima-

tion of the diffusion operator, takes the form:

find (ph, Fh) ∈ Qh ×Xh such that:

∀G ∈ Xh : [Fh, G]X̂h
= [divh(G), ph]Qh

(2.14)

∀q ∈ Qh : [divh(Fh), q]Qh
= [f, q]Qh

. (2.15)

ph ∈ Qh and Fh ∈ Xh are the approximations to pI and F I , the interpolations of the exact scalar solution
p and its flux F = −Λ∇p.

The HMM method can be easily hybridized through the introduction of H(Eh), the space of face
values qEh

= (qe)e∈Eh
∈ RCard(Eh) with qe = 0 for e ∈ Eh,ext and imposing explicitly the flux conservation

property (2.6). The discrete variational form (2.14)-(2.15) with [·, ·]E satisfying (2.11)-(2.13) is equivalent
to:

find (ph, Fh, pEh
) ∈ Qh × X̂h ×H(Eh) such that:

∀E ∈ Ωh , ∀GE ∈ XE : [FE , GE ]E =
∑

e∈∂E

|e|Ge
E(pE − pe), (2.16)

∀E ∈ Ωh :
∑

e∈∂E

|e|F e
E =

∫

E

f, (2.17)

∀e ∈ Eh,int, : F e
E + F e

E′ = 0, (2.18)

where E,E′ ∈ Ωh are the two elements such that e ⊂ ∂E ∩ ∂E′ for every e ∈ Eh,int. Under suitable as-
sumptions on the regularity of the exact solution p, the additional unknowns pEh

= (pe)e∈Eh
approximate

the face average of the exact solution over each mesh face. We will formalize this concept through the
introduction of pJ ∈ H(Eh), the face interpolation of p, in Section 3.2, see equation (3.43).

2.4 Discretization of the convective term

As discussed in the introduction, two different strategies can be considered for the numerical treatment
of the convection term in the HMM discretization of an elliptic problem. In the first strategy, which
is reviewed in subsection 2.4.1, we introduce some form of centered or upwind approximation of the
convection term in the discretization of the divergence equation provided by the HMM method, cf. [26, 32].

7



In the second strategy, which is reviewed in subsection 2.4.2, the total flux, which includes both diffusive
and convective terms, is approximated, thus leading to a centered-type approximation of the convection
terms, cf. [24]. Both approaches have been considered for the Mixed Finite Element method in [29, 30, 39].
It turns out that in the new framework of HMM methods a unified formulation is possible, which is the
topic of subsection 2.4.3. We end this section with a discussion on an alternative hybridized form of the
numerical convection terms, cf. subsection 2.4.4.
In the rest of this section, we assume that the velocity field V is a continuous function with continuous

derivative, i.e., V ∈ C1(Ω)d. The cell restriction of its interpolation in Xh is given by the set of real
numbers (V e

E)e∈∂E ∈ XE such that

∀e ∈ ∂E : V e
E =

1

|e|

∫

e

V · ne
E . (2.19)

2.4.1 FV-based discretizations

Several discretization schemes for the convection term are available in the Finite Volume literature, e.g.,
the second-order centered scheme, the first-order upwind scheme, the θ-scheme, the Scharfetter-Gummel
scheme, etc. In these methods, the convection flux of the exact solution field p is approximated through
the numerical convection flux of the discrete scalar field ph ∈ Qh; this numerical convection flux is given
by the collection of real numbers Fc(ph) =

(
Fc(ph)

e
E

)
E∈Ωh,e∈∂E

such that

∀E ∈ Ωh , ∀e ∈ ∂E :
1

|e|

∫

e

V p · ne
E ≈ (Fc(ph))

e
E . (2.20)

We list below the schemes that we will explicitly consider in the section of numerical experiments. We
let E′ be the cell on the other side of e if e ∈ Eh,int and assume for notation’s simplicity that pE′ = 0 if
e ∈ Eh,ext.

• The second-order centered scheme is given by the approximation

1

|e|

∫

e

V p · ne
E ≈ (Fc(ph))

e
E = V e

E

pE + pE′

2
.

• The first-order upwind scheme is given by the approximation

1

|e|

∫

e

V p · ne
E ≈ (Fc(ph))

e
E = (V e

E)
+pE − (V e

E)
−pE′

with s± = max(±s, 0).

• The θ-scheme is given by the approximation

1

|e|

∫

e

V p · ne
E ≈ (Fc(ph))

e
E = (V e

E)
+
(
(1− θ)pE + θpE′

)
− (V e

E)
−
(
(1− θ)pE′ + θpE

)

= (1 − 2θ)
(
(V e

E)
+pE − (V e

E)
−pE′

)
+ θV e

E

(
pE + pE′

)

with θ ∈ [0, 1/2]; this choice is clearly intermediate between the centered and the upwind schemes.

• The Scharfetter-Gummel scheme [46] is given by the approximation

1

|e|

∫

e

V p · ne
E ≈ (Fc(ph))

e
E =

1

de
(Asg(deV

e
E)pE −Asg(−deV

e
E)pE′) , (2.21)

with

Asg(s) =
−s

e−s − 1
− 1. (2.22)
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Note that the first three approaches above can be found also in the Finite Element literature, see for
instance [28, 38]. As pointed out in [26], the Scharfetter-Gummel scheme in [46] was written for an
isotropic homogeneous material, i.e., Λ = I. In the original formulation, diffusion and convection terms
were simultaneously treated to define the numerical flux. Removing the diffusive part in the numerical
flux formulation allows us to obtain the formulas (2.21)-(2.22). This definition of a pure convective flux
through the simple elimination of the diffusive part is somewhat basic in the general case Λ 6= I, especially
if some eigenvalues of Λ are small. Although the above definition of Asg ensures the L2-stability of the
scheme, it can give quite bad solutions in convection-dominated cases. This fact can be understood if
one comes back to the 2-points Finite Volume scheme for −ǫ∆p + div(V p) = f : choice (2.22) ensures
the maximum principle of the scheme only if ǫ ≥ 1, while the maximum principle is lost numerically
if ǫ < 1. When applying the Scharfetter-Gummel method to compute the numerical convective flux, a
better choice is provided by locally scaling Asg in accordance with the smallest eigenvalue of Λ. If e is
the face between E and E′ and λe is the smallest eigenvalue of ΛE and ΛE′ , we use

Asg,Λ,e(s) = min(1, λe)Asg

(
s

min(1, λe)

)
(2.23)

instead of Asg(s) in (2.21). In this way, the numerical flux automatically and locally adjusts the upwinding
of the convection term depending on its strength with respect to the diffusive term without perturbing
the consistency property of Asg. Note that λe → 0 implies that λeAsg

(
s/λe

)
→ s+. Therefore, if the

local diffusion is very small, this implementation of the Scharfetter-Gummel method allows the flux to
adjust to upwinding automatically, thus bringing enough numerical diffusion to ensure a better stability.

Once an FV-based discretization of the convective term has been chosen, the divergence of the convection
term in (2.1), i.e., div(V p), is approximated on E by

(div(V p))IE ≈
1

|E|

∑

e∈∂E

|e|(Fc(ph))
e
E = divh(Fc(ph))|E

and the HMM approximation to the model problem (2.1)-(2.2) then reads:

find (ph, Fh) ∈ Qh ×Xh such that

∀G ∈ Xh : [Fh, G]X̂h
= [divh(G), ph]Qh

, (2.24)

∀q ∈ Qh : [divh(Fh + Fc(ph)), q]Qh
=
[
f I , q

]
Qh

. (2.25)

2.4.2 MFD-based discretizations

From the theoretical standpoint, Mimetic Finite Differences have only very recently approached problems
different than the pure diffusion one (see for instance [7, 9, 10]). To our knowledge, the only paper
considering development and error analysis of convection-diffusion equations directly in the framework
of MFD is found in [24]. In this subsection, we briefly review the formulation and the major convergence
results of the method considered in that paper, and we show how it can be reformulated as an HMM
method.
Let H(div,Ω) be the space of vector fields all of whose components are square integrable functions and

that have square integrable divergence. Formally,

H(div,Ω) =
{
v ∈ (L2(Ω))d such that div(v) ∈ L2(Ω)

}

is a Hilbert space when equipped with the scalar product

[v,u]H(div,Ω) =

∫

Ω

v · u+

∫

Ω

div(v) div(u)

9



and the corresponding norm

||v||2H(div,Ω) = ||v||2L2(Ω) + ||div(v)||2L2(Ω).

In [24], it is considered a numerical approximation to the mixed variational formulation of problem (2.1)-
(2.2), which reads as [19]:

find (F̃ , p) ∈ H(div,Ω)× L2(Ω) such that

∀v ∈ H(div,Ω) :
[
Λ−1F̃ ,v

]
L2

− [p, div(v)]L2 −
[
Λ−1V p,v

]
L2 = 0 (2.26)

∀q ∈ L2(Ω) :
[
div(F̃ ), q

]
L2

= [f, q]L2 , (2.27)

where F̃ is the total vector flux defined in (2.3).

To discretize the convection term, we transform the corresponding variational term as follows:

∀v ∈ H(div,Ω) :
[
Λ−1V p,v

]
L2 ≈

∑

E∈Ωh

∫

E

Λ−1
E V p · v → ∀G ∈ Xh :

∑

E∈Ωh

pE
[
V I , G

]
E
,

where the components of the interpolated velocity field V I ∈ Xh, i.e., (V
I)eE for all E ∈ Ωh and e ∈ ∂E,

are given by (2.19), and the local scalar products are required to satisfy Assumptions (S1)-(S2). The
mimetic variational formulation presented in [24] reads as:

find (F̃h, ph) ∈ Xh ×Qh such that

∀G ∈ Xh :
[
F̃h, G

]
X̂h

− [ph, divh(G)]Qh
−
∑

E∈Ωh

pE
[
V I , G

]
E
= 0, (2.28)

∀q ∈ Qh :
[
divh(F̃h), q

]
Qh

=
[
f I , q

]
Qh

. (2.29)

The convergence analysis of this scheme is carried out in [24] under assumptions on the grid regularity
that are substantially equivalent to (HG)-(ME). When the scalar solution p is in H2(Ω), the analysis
provides the following error estimate

|||F̃h − F̃ I |||X̂h
+ |||ph − pI |||Qh

≤ Ch||p||H2(Ω) (2.30)

where |||·|||X̂h
and |||·|||Qh

are the norms induced by the inner products of the spaces X̂h andQh, respectively.
It is worth mentioning that the approximation of the scalar variable is superconvergent when calculation
is performed on a wide set of meshes. Superconvergence was also theoretically proved under some stronger
assumptions on the regularity of the domain shape, the source term, and the velocity field.
Despite convergence is proved for h → 0, this scheme is expected to become unstable when the model

problem is dominated by convection. This fact usually manifests through spurious effects like numerical
undershoots, overshoots, or oscillations that may appear in the approximate solution. To improve stabil-
ity, we modify the divergence equation by introducing a stabilization term that depends on the solution’s
jumps at mesh faces. We use the symbols E and E′ to denote the two distinct cells that share face e
when e is internal, and assume the orientation of e such that ne

E ·ne = 1. Let us now introduce the jump
of the discrete scalar field qh ∈ Qh, which is given by:

[[qh]]e =

{
qE − qE′ for e ∈ Eh,int,

qE for e ∈ Eh,ext.
(2.31)

Equation (2.29) is substituted by

∀q ∈ Qh :
[
divh

(
F̃h

)
+ Jh(ph), q

]
Qh

=
[
f I , q

]
Qh

, (2.32)
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where the stabilization term Jh(ph) is given by:

Jh(ph)|E =
α

2 |E|

∑

e∈∂E

|e|
∣∣(V I

)e
E

∣∣ [[ph]]e, (2.33)

and α is a non-negative parameter that can be tuned to control the amount of numerical dissipation of
the scheme.

This approach formally differs from the method introduced in the previous subsection by using FV-
based discretizations in that the convection term is numerically treated as part of the mimetic flux
equation. However, it is possible to “extract” an explicit form of the numerical convection flux from the
scheme given by equations (2.28) and (2.32) to reformulate it as an HMM method. To this purpose, we
define the collection of numbers Fh = (F e

E)E∈Ωh,e∈∂E by

F e
E = F̃ e

E − pE
(
V I
)e
E
. (2.34)

Equation (2.28) shows that Fh satisfies (2.14), and therefore plays the role of a purely diffusive flux.
Moreover, noticing that the stabilization term Jh(ph) is locally written as a balance of fluxes, i.e., a
discrete divergence, allows us to identify the convective flux as

(Fc(ph))
e
E = pE

(
V I
)e
E
+

α

2

∣∣(V I
)e
E

∣∣ (pE − pE′) (2.35)

(we let pE′ = 0 if e is a boundary edge) so that (2.32) is simply given by divh
(
Fh + Fc(ph)

)
= f I . The

stabilized MFD scheme (2.28) and (2.32) can, therefore, be written as:

find ph ∈ Qh and Fh ∈ X̂h such that

∀G ∈ Xh : [Fh, G]X̂h
= [divh(G), ph]Qh

, (2.36)

∀q ∈ Qh :
[
divh

(
Fh + Fc(ph)

)
, q
]
Qh

=
[
f I , q

]
Qh

, (2.37)

∀e ∈ Eh,int :
(
Fh + (Fc(ph)

)e
E
+
(
Fh + (Fc(ph)

)e
E′

= 0. (2.38)

Note that the diffusive flux Fh and the convective flux Fc(ph) are not conservative in the sense of (2.6)

when considered separately, and, therefore, belong to the linear space X̂h. However, their sum, i.e.,
Fh + Fc(ph), is conservative since it belongs to Xh in view of equation (2.38).

2.4.3 Unified setting

A unified formulation exists for the numerical discretization of the convection term. This formulation
includes the FV-based discretizations, as was noted in [26], and the MFD-based discretization (2.36)-
(2.38). This fact makes it possible to simplify the software implementation and carry out a unified
theoretical analysis.
Let us consider two functions A,B : R → R and choose the numerical convection flux as the collection

of real numbers
Fc(ph) =

(
Fc(ph)

e
E

)
E∈Ωh,e∈∂E

(2.39)

such that

∀E ∈ Ωh , ∀e ∈ ∂E : (Fc(ph))
e
E :=

1

de

(
A(deV

e
E)pE +B(deV

e
E)pE′

)
. (2.40)

Since in the MFD discretization of the convection term these flux components are not conservative, the
diffusive flux components cannot be conservative either and conservation must be imposed on the total
flux. The generic HMM approximation to the model problem (2.1)-(2.2) is thus written as:

11



find ph ∈ Qh and Fh ∈ X̂h such that

∀G ∈ Xh : [Fh, G]X̂h
= [divh(G), ph]Qh

, (2.41)

∀q ∈ Qh : [divh(Fh + Fc(ph)), q]Qh
=
[
f I , q

]
Qh

, (2.42)

∀e ∈ Eh,int :
(
Fh + (Fc(ph)

)e
E
+
(
Fh + (Fc(ph)

)e
E′

= 0. (2.43)

The schemes presented in the previous subsections can all be included in this general setting, with the
following choices of A and B:

• Centered scheme: A(s) = Ace(s) :=
s
2 and B(s) = −Ace(−s) = s

2 .

• Upwind scheme: A(s) = Aup(s) := s+ and B(s) = −Aup(−s) = −s−.

• θ-scheme: A(s) = Aθ(s) := (1− 2θ)Aup(s) + 2θAce(s) and B(s) = −Aθ(−s).

• Scharfetter-Gummel scheme: A(s) = Asg(s) defined by (2.22) and B(s) = −Asg(−s); the locally
scaled Scharfetter-Gummel scheme is obtained by using Asg,Λ,e defined by (2.23) instead of Asg.

• Stabilized MFD scheme: A(s) = s+ α
2 |s| and B(s) = −α

2 |s|.

The first four choices in (2.40) lead to a conservative definition of the numerical convection flux, whereas
the last one does not. However, in all the cases mentioned above, total conservation is ensured by (2.43).
We notice that all these choices of A and B satisfy the following properties:

(AB1) A : R → R and B : R → R are Lipschitz-continuous functions and A(0) = B(0) = 0;

(AB2) A(s) +B(s) = s for any real number s;

(AB3) one of the two following alternatives holds:

(AB3-s) A(s) +B(−s) = 0 and A(s)−B(s) ≥ 0 for any real number s;

(AB3-w) the function s → A(s) + B(−s) is odd and there exists C > 0 such that A(s) − B(s) ≥
−C|s| for any real number s.

We refer to (AB3-s) as the strong (AB3) condition, and to (AB3-w) as the weak (AB3) condition. As-
sumption (AB3-s) is satisfied by all the FV-based discretizations listed above whereas the MFD-based
discretization satisfies (AB3-w). In fact, condition A(s) + B(−s) = 0 in (AB3-s) is the one ensuring the
conservation of the numerical convection flux (2.40). On the other hand, the numerical convection flux
extracted from the MFD-based formulation satisfies (AB3-w) and, hence, is not conservative. We will see
in Section 3 that Assumptions (AB1)-(AB3) are enough to carry out the theoretical analysis of the scheme
in (2.39)-(2.43), with slightly different results depending on which alternative in (AB3) is satisfied.

Remark 2.6 It is worth noting that equation (2.42) can be rewritten in a Finite Volume form as the
following cell-based flux balance equation:

∀E ∈ Ωh :
∑

e∈∂E

|e|
(
F e
E +

(
Fc(ph)

)e
E

)
=

∫

E

f. (2.44)

Remark 2.7 We could also choose, in (2.40), different functions A = Ae and B = Be for each edge e,
provided that all these functions satisfy (AB1)-(AB3) and that their Lipschitz constants remains uniformly
bounded as the mesh size tends to 0. This setting would allow the scheme to make a finer tuning of the
numerical diffusion due to upwinding, thus better adapting the scheme behavior to the location inside the
domain or the local geometry of the mesh.
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2.4.4 An alternative hybrid discretization of the convection term

An alternative discretization of the convection term is possible by using the hybridized value pe in (2.40)
instead of pE′ , an idea introduced in [4]. In such a case, we define the numerical convection flux of the
discrete scalar field described by (ph, pEh

) ∈ Qh ×H(Eh) as the collection of real numbers:

Fc,Eh
(ph, pEh

) =
(
(Fc,Eh

(ph, pEh
))eE
)
E∈Ωh,e∈∂E

(2.45)

such that

∀E ∈ Ωh , ∀e ∈ ∂E : (Fc,Eh
(ph, pEh

))eE =
1

de
(A(deV

e
E)pE +B(deV

e
E)pe) . (2.46)

The substantial difference with the preceding choice (2.40) is that no property on A and B ensure that
the fluxes Fc,Eh

(ph, pEh
) are conservative (and they are not in general). However, this will not bring

any additional difficulty in the theoretical study provided that the following weaker form of (AB3) is
considered:

(AB3h) one of the following strong or weak alternatives holds:

(AB3h-s) A(s)−B(s) ≥ 0 for any real number s,

(AB3h-w) there exists C > 0 such that A(s)−B(s) ≥ −C|s| for any real number s.

The hybrid HMM formulation can then be written as:

find (ph, Fh, pEh
) ∈ Qh × X̂h ×H(Eh) such that

∀E ∈ Ωh , ∀GE ∈ XE : [FE , GE ]E =
∑

e∈∂E

|e|Ge
E(pE − pe), (2.47)

∀E ∈ Ωh :
∑

e∈∂E

|e|
(
F e
E + (Fc,Eh

(ph, pEh
))eE

)
=

∫

E

f, (2.48)

∀e ∈ Eh,int :
(
Fh + (Fc,Eh

(ph, pEh
)
)e
E
+
(
Fh + (Fc,Eh

(ph, pEh
)
)e
E′

= 0, (2.49)

where the local scalar products used in (2.47) satisfy (S1)-(S2), and, thus, may be given in the form (2.11)-
(2.13).

Remark 2.8 An important advantage of discretizing the convective fluxes by using (2.45)-(2.46) instead
of (2.39)-(2.40) is that the unknowns ph and Fh in the resulting numerical formulation (2.47)-(2.49) can
be eliminated by static condensation, i.e., through a local Gaussian elimination (this classical technique
is not directly applicable to (2.39)-(2.40)). This procedure, which is common for hybrid-Mixed Finite
Elements, provides a reduced linear system in the face unknowns pEh

. Moreover, when the discretization
of the convection term increases significantly the numerical diffusion, as for example in the case of the
upwind scheme, the hybrid version of the HMM method is likely to be less diffusive than that provided
by (2.39)-(2.40).

3 Theoretical study

In the present section we develop the theoretical analysis for the class of methods that we wish to
investigate in this work. In subsection 3.1, we prove the convergence of the numerical approximations to
the exact solution and its gradient. The analysis is based on a compactness argument, which is common
in the Finite Volume literature, under the weaker assumptions of mesh regularity (G1)-(G2) (see also
Definition 2.2). In subsection 3.2, we prove an O (h) convergence rate for the numerical approximation
of both scalar solution and flux. The analysis is on a stability and consistency argument, which are in
the MFD (and FEM) literature, under the stronger mesh regularity Assumptions (HG) and (ME).
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Let us introduce the mesh-dependent norms for the spaces Xh and Qh. Let Dh be an admissible mesh
in accordance with Definition 2.2 that satisfies (G1)-(G2) or, alternatively, (HG)-(ME). The scalar product

in X̂h induces the norm:

|||G|||2
X̂h

= [G,G]X̂h
∀G ∈ X̂h, (3.1)

and its local counterpart

|||G|||2E = [GE , GE ]E ∀GE ∈ XE . (3.2)

The elements of Qh can be identified with the Ωh-piecewise constant functions and the scalar product
in Qh is, in fact, the L2-scalar product for such functions. Therefore, it is quite natural to consider the
L2 norm. However, we will also find it useful to carry out the analysis by using the discrete H1

0 -like norm

||qh||1,Dh
=

(
∑

E∈Ωh

∑

e∈∂E

|e|dE,e

(
|qE − qE′ |

de

)2
)1/2

∀qh ∈ Qh, (3.3)

where E′ is the cell on the other side of e ∈ ∂E ∩ Eh,int and, to ease notation, we take qE′ = 0 if
e ∈ ∂E ∩ Eh,ext. We will also need a discrete H1 norm on Qh ×H(Eh):

||(qh, qEh
)||1,Dh,Eh

=

(
∑

E∈Ωh

∑

e∈∂E

|e|

dE,e
|qE − qe|

2

)1/2

∀(qh, qEh
) ∈ Qh ×H(Eh). (3.4)

It is easy to see that this norm is stronger than (3.3). More precisely, if θ ≥ regul(Dh) there exists a
constant C only dependent on θ such that, for all (qh, qEh

) ∈ Qh ×H(Eh), there holds that

||qh||1,Dh
≤ C||(qh, qEh

)||1,Dh,Eh
. (3.5)

In the following developments, we will number all constants whose value may be zero depending on which
alternative is considered in (AB3), i.e., the strong (AB3-s) or the weak (AB3-w) condition. We will also use
the symbol . to indicate an upper bound that holds up to a positive multiplicative constant independent
of h. However, we will trace explicitly the constants where required by the proofs or that may be zero
depending on the choice of Assumption (AB3).

Lemma 3.1 Assume that (H1)-(H3) hold. Let Dh be an admissible discretization of Ω such that θ ≥
regul(Dh); let Fc(q) be the convective flux of q ∈ Qh given by (2.39)-(2.40) for the vector field V ∈ C1(Ω)d

with A and B satisfying Assumptions (AB1)-(AB3). Then, there exists a non-negative constant C1 ≥ 0
that only depends on θ, V,A,B such that

∀(q, qEh
) ∈ Qh ×H(Eh) :

1

2

∫

Ω

q2div(V ) ≤
∑

E∈Ωh

∑

e∈∂E

|e|(Fc(q))
e
E(qE − qe) + C1h||(q, qEh

)||21,Dh,Eh
, (3.6)

and where C1 = 0 if (AB3-s) holds.

Proof of Lemma 3.1 By gathering the sum by faces we transform the term involving Fc(q) in the
right-hand side of (3.6) as follows:

∑

E∈Ωh

∑

e∈∂E

|e|(Fc(q))
e
E(qE − qe) =

∑

e∈Eh

|e| ((Fc(q))
e
E(qE − qe) + (Fc(q))

e
E′(qE′ − qe))

=
∑

e∈Eh

|e|(Fc(q))
e
E(qE − qE′)

+
∑

e∈Eh

|e| ((Fc(q))
e
E + (Fc(q))

e
E′ ) (qE′ − qe). (3.7)
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To handle the first term in the right-hand side of (3.7), we note that using (2.40) and writing, thanks to
(AB2),

A(deV
e
E) =

1

2
(deV

e
E +A(deV

e
E)−B(deV

e
E)) and B(deV

e
E) =

1

2
(deV

e
E +B(deV

e
E)−A(deV

e
E)), (3.8)

we have

(Fc(q))
e
E =

1

2
V e
E(qE + qE′) +

1

2de
(A(deV

e
E)−B(deV

e
E))(qE − qE′).

Therefore, we infer that

∑

e∈Eh

|e|(Fc(q))
e
E(qE − qE′) =

1

2

∑

e∈Eh

|e|V e
E(qE + qE′)(qE − qE′)

+
1

2

∑

e∈Eh

|e|

de
(A(deV

e
E)− B(deV

e
E))(qE − qE′)2. (3.9)

Then, let us observe that

∑

e∈Eh

|e|(qE − qE′)2 .
∑

E∈Ωh

∑

e∈∂E

|e|(qE − qe)
2 . h||(q, qEh

)||21,Dh,Eh
. (3.10)

By using (AB3), the conservation of (V e
E)E∈Ωh,e∈∂E , the fact that

∑
e∈∂E |e|V e

E =

∫

E

div(V ), and in-

equality (3.10) we obtain the following estimate:

∑

e∈Eh

|e|(Fc(q))
e
E(qE − qE′) ≥

1

2

∑

e∈Eh

|e|V e
E(q

2
E − q2E′)− C2

∑

e∈Eh

|e|(qE − qE′)2

≥
1

2

∑

E∈Ωh

q2E
∑

e∈∂E

|e|V e
E − C3h||(q, qEh

)||21,Dh,Eh

≥
1

2

∫

Ω

q2div(V )− C3h||(q, qEh
)||21,Dh,Eh

(3.11)

where C2 and C3 only depend on θ, V,A,B, and C2 = C3 = 0 if (AB3-s) holds.

From (2.40) and since V e
E = −V e

E′ , we have

(Fc(q))
e
E + (Fc(q))

e
E′ =

1

de
([A(deV

e
E) +B(−deV

e
E)] qE + [B(deV

e
E) +A(−deV

e
E)] qE′) .

If (AB3-s) holds, this quantity is equal to zero (this is the conservation of the convective flux), and if
(AB3-w) holds we have, thanks to (AB1),

|(Fc(q))
e
E + (Fc(q))

e
E′ | =

1

de
|(A(deV

e
E) +B(−deV

e
E)) (qE − qE′)| ≤ C4||V ||∞ |qE − qE′ |

for some C4 only dependent on A and B. Writing |qE − qE′ | ≤ |qE − qe| + |qe − qE′ | and using again
inequality (3.10) allows us to estimate the last term of (3.7) as follows:

∣∣∣∣∣
∑

e∈Eh

|e| ((Fc(q))
e
E + (Fc(q))

e
E′) (qE′ − qe)

∣∣∣∣∣ ≤ C5

∑

E∈Ωh

∑

e∈∂E

|e|(qE − qe)
2 ≤ C5h||(q, qEh

)||21,Dh,Eh
(3.12)

where C5 only depends on V , A, B and there holds that C5 = 0 if (AB3-s) holds.

The proof terminates by gathering inequalities (3.11) and (3.12) into (3.7).
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3.1 Convergence of the method

3.1.1 Preliminary results

Proposition 3.2 below is the key point in the study of scheme (2.39)-(2.43), since it gives the inequality
leading to the basic a priori estimates of the solution error. To state this proposition, we first notice
that, thanks to (2.41), we can introduce the set of face values pEh

∈ H(Eh) such that (2.47) holds even
if Fh is not conservative. To this purpose, we simply define pe through |e|(pE − pe) = [FE , GE(E, e)]E
where GE(E, e)e = 1 and GE(E, e)e′ = 0 for e 6= e′. Then, taking the vector G ∈ Xh that vanishes on all
mesh faces except e and is such that Ge

E = 1 and Ge
E′ = −1 in (2.41) allows us to show that pe does not

depend on the choice of the cell E such that e ∈ ∂E. This definition also ensures that pe = 0 whenever
e ∈ Eh,ext.

Proposition 3.2 Assume that (H1)-(H3) hold. Let Dh be an admissible discretization of Ω such that
θ ≥ regul(Dh); let Fc(q) be the convective flux of q ∈ Qh given by (2.39)-(2.40) for the vector field
V ∈ C1(Ω)d with A and B satisfying Assumptions (AB1)-(AB3). Then, for all solution (ph, Fh) to the
HMM scheme (2.41)-(2.43),

∑

E∈Ωh

[FE , FE ]E +
1

2

∫

Ω

div(V )p2h ≤

∫

Ω

fph + C1h||(ph, pEh
)||21,Dh,Eh

(3.13)

where C1, which is the same constant of Lemma 3.1, is non-negative, only depends on θ, V,A,B, and is
zero when (AB3-s) holds.

Proof of Proposition 3.2 Let us take q = ph in (2.42), use the flux conservation (2.43) and property
(2.47) of face values to obtain:

∫

Ω

fph =
∑

E∈Ωh

∑

e∈∂E

|e|
(
F e
E + (Fc(ph))

e
E

)
pE

=
∑

E∈Ωh

∑

e∈∂E

|e|
(
F e
E + (Fc(ph))

e
E

)
(pE − pe)

=
∑

E∈Ωh

[FE , FE ]E +
∑

E∈Ωh

∑

e∈∂E

|e|(Fc(ph))
e
E(pE − pe). (3.14)

The proposition follows by applying Lemma 3.1 with q = ph and qEh
= pEh

.

Corollary 3.3 Under the assumptions of Proposition 3.2, if V satisfies (H4) then, for all (ph, Fh) solu-
tion to the scheme (2.41)-(2.43) we have

||(ph, pEh
)||21,Dh,Eh

. ||f ||L2(Ω)||ph||L2(Ω) + C1h||(ph, pEh
)||21,Dh,Eh

(3.15)

where C1, which is the same constant of Lemma 3.1 and Proposition 3.2, is non-negative, only depends
on θ, V,A,B, and is zero when (AB3-s) holds.
In particular, for all h small enough (or any h if (AB3-s) holds), the scheme (2.41)-(2.43) has a unique

solution.

Proof of Corollary 3.3 We apply Proposition 3.2 and use (H4) and the form (2.11)-(2.13) of the
local scalar products ([·, ·]E)E∈Ωh

to write, thanks to (C),

∑

E∈Ωh

|E| |vE(FE)|
2 + α

∑

E∈Ωh

∑

e∈∂E

|e|dE,e |TE,e(FE)|
2 ≤

∫

Ω

fph + C1h||(ph, pEh
)||21,Dh,Eh

. (3.16)

From (2.47) and (2.11)-(2.13) we have

|e|(pE − pe) = |E|ΛEvE(FE) · vE(GE(e)) + TE(GE(e))
T
BETE(FE), (3.17)
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where GE(e) ∈ XE is equal to 1 on the face e and 0 on the other faces. But vE(GE(e)) = − 1
|E|Λ

−1
E |e|(x̄e−

xE), and thus, by the bound on regul(Dh), |vE(GE(e))| .
|e|dE,e

|E| and, for all e′ ∈ ∂E, |TE,e′(GE(e))| .∣∣∣GE(e)
e′
∣∣∣+ |e|dE,e

|E| . In particular, by using the Cauchy-Schwarz inequality and (C), since
∑

e′∈∂E |e′|dE,e′ =

d|E|,

∣∣TE(GE(e))
T
BETE(FE)

∣∣ .
(
∑

e′∈∂E

|e′|dE,e′ |TE,e′(GE(e))|
2

)1/2( ∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|
2

)1/2

.

(
|e|dE,e +

|e|2d2E,e

|E|

)1/2( ∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|
2

)1/2

.

Plugged into (3.17), this estimate and |E| |vE(GE(e))| . |e|dE,e lead to

|pE − pe| . dE,e |vE(FE)|+

(
dE,e

|e|
+

d2E,e

|E|

)1/2( ∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|
2

)1/2

.

We then obtain, from (3.16),

∑

E∈Ωh

∑

e∈∂E

|e|

dE,e
|pE − pe|

2
.
∑

E∈Ωh

∑

e∈∂E

|e|dE,e |vE(FE)|
2

+
∑

E∈Ωh

∑

e∈∂E

(
1 +

|e|dE,e

|E|

)( ∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|
2

)

.

∫

Ω

fph + C1h||(ph, pEh
)||21,Dh,Eh

,

and the proof of (3.15) is completed.
Existence and uniqueness of the numerical solution readily follows from (3.15). In fact, when the

right-hand side f vanishes, this inequality implies that the mesh-dependent norm ||(ph, pEh
)||1,Dh,Eh

is
zero, and, thus, that (ph, pEh

) are zero at least for a sufficiently small mesh size h. In such a case, the
numerical flux Fh is also zero by (2.47).

Remark 3.4 (Estimates for the hybrid discretization of the convection) For the hybrid discretization in
(2.45)-(2.49) with A and B satisfying (AB1)-(AB2) and (AB3h) there holds a similar result as that given
in Proposition 3.2 and Corollary 3.3. However, the proof is simpler. In fact, by using (3.8) we have that

∑

E∈Ωh

∑

e∈∂E

|e|(Fc,Eh
(q, qEh

))eE(qE − qe) =
1

2

∑

E∈Ωh

∑

e∈∂E

|e|V e
E(qE + qe)(qE − qe)

+
1

2

∑

E∈Ωh

∑

e∈∂E

|e|

de
(A(deV

e
E)−B(deV

e
E))(qE − qe)

2.

The right-hand side of this equation is similar to the right-hand side of (3.9) with qe instead of qE′

and, reasoning as in the proof of Lemma 3.1, can be bounded from below by the the right-hand side of
(3.11). The resulting estimate is then used in (3.14) with Fc,Eh

(ph, pEh
) instead of Fc(ph) in order to

prove Proposition 3.2.

We conclude this preliminary subsection by reporting two technical lemmas that we will use in the
analysis of the next subsection. The first lemma is a direct consequence of [36, Lemmas 5.2,5.3] and, for
this reason, is given without proof.
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Lemma 3.5 (Discrete Sobolev inequalities) Let Dh be an admissible discretization of Ω in the sense of

Definition 2.2 with θ > 0 and such that θ ≤
dE,e

dE′,e
≤ θ−1 for all e ∈ Eh,int. Let r = 2d

d−2 if d > 2 and

r < +∞ if d = 2. Then, there exists a real positive constant C that only depends on Ω, θ and r such
that, for all qh ∈ Qh, ||qh||Lr(Ω) ≤ C||qh||1,Dh

.

Let vh(Fh) denote the piecewise-constant function equal to vE(FE) on E ∈ Ωh as defined in (2.12).

Lemma 3.6 (Discrete Rellich theorem) Let Λ : Ω → Md(R) be a diffusion tensor satisfying hypothe-
sis (H2); let (Dh)h→0 be a family of admissible discretization of Ω in the sense of Definition 2.2 with mesh
size h tending to 0 and satisfying the regularity Assumptions (G1)-(G2); let (ph, pEh

) ∈ Qh ×H(Eh) be a
numerical scalar field such that ||(ph, pEh

)||1,Dh,Eh
remains bounded as h → 0; let Fh = (F e

E)E∈Ωh , e∈∂E

be a collection of numbers that satisfy equation (2.47) for the assigned (ph, pEh
) and with the local scalar

products defined accordingly to (2.11)-(2.13).
Then, there exists a scalar field p ∈ H1

0 (Ω) such that, up to a subsequence as h → 0,

(i) ph → p in Lr(Ω) for all r < 2d
d−2 ;

(ii) vh(Fh) → ∇p weakly in L2(Ω)d.

Proof of Lemma 3.6 Using [36, Lemma 5.6], Lemma 3.5, Vitali’s theorem and the fact that the
quantity ||(ph, pEh

)||1,Dh,Eh
is uniformly bounded ensures that (ph)h→0 is relatively compact in Lr(Ω) for

all r < 2d
d−2 . After defining the discrete gradient ∇̃(ph, pEh

) : Ω → Rd by

∀E ∈ Ωh , ∀x ∈ E : ∇̃(ph, pEh
)(x) =

1

|E|

∑

e∈∂E

|e|(pe − pE)n
e
E ,

we see from the bound on ||(ph, pEh
)||1,Dh,Eh

that ∇̃(ph, pEh
) remains bounded in L2(Ω)d. The technique

used to prove [36, Lemma 5.7] ensures that if ph → p in L2(Ω) (up to a subsequence), then, p belongs

to H1
0 (Ω) and ∇̃(ph, pEh

) is weakly convergent to ∇p in L2(Ω)d. The lemma is therefore true since

the argument discussed in [33, Remark 2.7] implies that ∇̃(ph, pEh
) = vh(Fh) if (ph, pEh

, Fh) are linked
through (2.11)-(2.13) and (2.47).

3.1.2 Convergence without regularity assumption

Let us consider the HMM method on (Dh)h→0, a family of meshes that are admissible according to
Definition 2.2, with mesh size h tending to 0 and all of which satisfy the regularity conditions (G1)-(G2).
We also assume that all the local scalar products in the scheme formulation are defined by (2.11)-(2.13)
through a set of symmetric and positive definite matrices (BE)E∈Ωh

that verifies the coercivity condition
(C). Moreover, the numerical convection flux Fc(ph) in (2.42) is built by using (2.39)-(2.40) through some
instance of the functions A and B that satisfy (AB1)-(AB3). Finally, we recall that vh(Fh) : Ω → Rd

is the piecewise-constant function equal to vE(FE) on E for all E ∈ Ωh. The convergence result of this
sub-section is stated in the following theorem.

Theorem 3.7 Let p ∈ H1
0 (Ω) be the weak solution to (2.1)-(2.2) under Assumptions (H1)-(H4), and

(ph, Fh) the numerical solution to problem (2.41)-(2.43) built along the guidelines summarized above.
Then, for h → 0 there holds that:

(i) ph → p in Lr(Ω) for all r < 2d
d−2 ;

(ii) vh(Fh) → ∇p in L2(Ω)d.

Proof of Theorem 3.7

The proof of Theorem 3.7 is based on compactness tools developed for Mixed Finite Volume or Hybrid
Finite Volume for the pure diffusion equation [31, 36] and on techniques from the classical Finite Volume
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schemes [26, 35] to handle the numerical convection term. We report the full proof for the sake of
completeness since none of these methods has ever been formulated in the new HMM framework.

Step 1: compactness of the approximate solutions.
Using Corollary 3.3 we have ||(ph, pEh

)||21,Dh,Eh
. ||f ||L2(Ω)||ph||L2(Ω) (at least for h small enough if

(AB3-s) does not hold). In view of Lemma 3.5 and inequality (3.5), we obtain an upper bound on
||(ph, pEh

)||1,Dh,Eh
. Then, the result of Lemma 3.6 implies the existence of a function p ∈ H1

0 (Ω) such
that, up to a subsequence, ph → p in Lr(Ω) for all r < 2d

d−2 and vh(Fh) → ∇p weakly in L2(Ω)d.

Step 2: the limit function p is the weak solution to (2.1)-(2.2). Since the exact solution is unique, this
step allows us to prove the convergence to p of the whole sequence of discrete solutions ph for h → 0. We
take ϕ ∈ C∞

c (Ω), define ϕh ∈ Qh by ϕh = ϕ(xE) on E ∈ Ωh and plug q = ϕh in (2.42). Since Fh+Fc(ph)
is conservative, we obtain:

∫

Ω

fϕh =
∑

E∈Ωh

∑

e∈∂E

|e|F e
E

(
ϕ(xE)− ϕ(x̄e)

)

+
∑

E∈Ωh

∑

e∈∂E

|e|
(
ϕ(xE)− ϕ(x̄e)

) 1
de

(
A(deV

e
E)pE +B(deV

e
E)pE′

)

=
∑

E∈Ωh

∑

e∈∂E

|e|F e
E(xE − x̄e) · ∇ϕ(xE) +

∑

E∈Ωh

∑

e∈∂E

|e|F e
ER

h
E,e(ϕ)

+
∑

E∈Ωh

∑

e∈∂E

|e|(ϕ(xE)− ϕ(x̄e))
1

de

(
A(deV

e
E) +B(deV

e
E)
)
pE

+
∑

E∈Ωh

∑

e∈∂E

|e|(ϕ(xE)− ϕ(x̄e))
1

de
B(deV

e
E)(pE′ − pE)

= T1 + T2 + T3 + T4 (3.18)

where the residual term Rh
E,e(ϕ) in T2 is such that

∣∣Rh
E,e(ϕ)

∣∣ . dE,eh||∇
2ϕ||∞.

By (2.12) we have that

T1 =
∑

E∈Ωh

|E|ΛEvE(FE) · ∇ϕ(xE) =

∫

Ω

Λvh(Fh) · (∇ϕ)h

where (∇ϕ)h = ∇ϕ(xE) on E ∈ Ωh. The regularity of ϕ together with the weak convergence of vh(Fh)
implies that

T1 →

∫

Ω

Λ∇p · ∇ϕ as h → 0. (3.19)

From (2.13) we have |F e
E | . |TE,e(FE)| + |vE(FE)| and, since ||ph||L2(Ω) and ||(ph, pEh

)||1,Dh,Eh
are

bounded, inequality (3.16) implies that

∑

E∈Ωh

∑

e∈∂E

|e|dE,e|F
e
E | ≤

(
∑

E∈Ωh

∑

e∈∂E

|e|dE,e

)1/2( ∑

E∈Ωh

∑

e∈∂E

|e|dE,e|F
e
E |

2

)1/2

. 1

(recall that
∑

e∈∂E |e|dE,e = d|E|). Therefore, we obtain that

|T2| . h||∇2ϕ||∞ → 0 as h → 0. (3.20)
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Assumption (AB2) makes it possible to show that

T3 =
∑

E∈Ωh

pE
∑

e∈∂E

|e|(ϕ(xE)− ϕ(x̄e))V
e
E

=
∑

E∈Ωh

pEϕ(xE)
∑

e∈∂E

|e|V e
E −

∑

E∈Ωh

pE
∑

e∈∂E

|e|ϕ(x̄e)V
e
E

=

∫

Ω

phϕhdiv(V )−
∑

E∈Ωh

pE
∑

e∈∂E

∫

e

ϕV · ne
E +

∑

E∈Ωh

pE
∑

e∈∂E

∫

e

(ϕ− ϕ(x̄e))V · ne
E

=

∫

Ω

phϕhdiv(V )−

∫

Ω

phdiv(ϕV ) +
∑

E∈Ωh

pE
∑

e∈∂E

∫

e

(ϕ− ϕ(x̄e))V · ne
E .

The regularity of ϕ and the convergence of ph ensure that, as h → 0, the first two terms in this right-hand
side tend to

∫
Ω
pϕdiv(V ) and

∫
Ω
pdiv(ϕV ). As for the last term, using the fact that

∫
e
(ϕ−ϕ(x̄e))V · ne

E

vanishes for boundary faces (ϕ has a compact support) and is conservative for interior faces (i.e. changing
E in E′, the cell on the other side of e, only changes the sign), we find

∣∣∣∣∣
∑

E∈Ωh

pE
∑

e∈∂E

∫

e

(ϕ− ϕ(x̄e))V · ne
E

∣∣∣∣∣ =
∣∣∣∣∣
∑

E∈Ωh

∑

e∈∂E

(pE − pe)

∫

e

(ϕ− ϕ(x̄e))V · ne
E

∣∣∣∣∣

. h||∇ϕ||∞
∑

E∈Ωh

∑

e∈∂E

|e| |pE − pe| .

But Cauchy-Schwarz inequality and the bound on ||(ph, pEh
)||1,Dh,Eh

gives

∑

E∈Ωh

∑

e∈∂E

|e| |pE − pe| ≤ (d |Ω|)1/2||(ph, pEh
)||1,Dh,Eh

. 1, (3.21)

and
∑

E∈Ωh
pE
∑

e∈∂E

∫
e
(ϕ− ϕ(x̄e))V · ne

E thus tends to 0 with h. We deduce that

T3 →

∫

Ω

pϕdiv(V )−

∫

Ω

pdiv(ϕV ) = −

∫

Ω

V p · ∇ϕ as h → 0. (3.22)

To handle T4, we start noting that Assumption (AB1) implies that 1
de

|B(deV
e
E)| . 1. Thus, writing

pE′ − pE = pE′ − pe + pe − pE and using (3.21), we obtain:

|T4| . h||∇ϕ||∞
∑

E∈Ωh

∑

e∈∂E

|e| (|pE′ − pe|+ |pe − pE |)

. 2h||∇ϕ||∞
∑

E∈Ωh

∑

e∈∂E

|e| |pE − pe| → 0 as h → 0. (3.23)

Eventually, the convergence properties (3.19), (3.20), (3.22) and (3.23) allows us to get the limit of (3.18)
for h → 0 and show that p is the weak solution to (2.1)-(2.2).

Step 3: strong convergence of the gradient. Estimate (3.13) and Relation (2.11) imply that

∫

Ω

Λvh(Fh) · vh(Fh) +
1

2

∫

Ω

div(V )p2h ≤

∫

Ω

fph + Ch||(ph, pEh
)||21,Dh,Eh

.

Taking the upper limit of this inequality, recalling that ||(ph, pEh
)||1,Dh,Eh

stays bounded and noting that
ph is strongly convergent to p in L2(Ω) and that p is the weak solution to (2.1)-(2.2) lead to

lim sup
h→0

∫

Ω

Λvh(Fh) · vh(Fh) +
1

2

∫

Ω

div(V )p2 ≤

∫

Ω

fp =

∫

Ω

Λ∇p · ∇p+
1

2

∫

Ω

div(V )p2,
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from which we deduce that

lim sup
h→0

∫

Ω

Λvh(Fh) · vh(Fh) ≤

∫

Ω

Λ∇p · ∇p. (3.24)

Since w → (
∫
Ω
Λw ·w)1/2 is a norm in L2(Ω)d equivalent to the usual norm, equation (3.24) proves that

the weak convergence vh(Fh) → ∇p in L2(Ω)d is, in fact, strong.

Remark 3.8 Adjusting these same arguments makes it possible to prove a similar convergence result for
the hybrid HMM formulation (2.47)-(2.49), which is based on the numerical convection flux (2.45)-(2.46)
instead of (2.39)-(2.40).

3.1.3 About the regularity assumption on V

Oftentimes, the velocity field V is not given but comes from the resolution of another problem (see e.g.
[25]). In this case, it is not obvious that it satisfies the regularity assumption V ∈ C1(Ω)d: we can
in general ensure that V ∈ H(div,Ω), but not more. How does this impact the preceding convergence
study?

We first of all have to be able to define the fluxes V e
E of the velocity; this is in general quite straight-

forward, either using (2.19) and the fact that V belongs to H(div,Ω), or even more directly by looking
at the discretization of the equation providing V (this discretization usually also provides the fluxes of
the velocity, as in [25]). The minimal requirement on these fluxes is their conservativity

∀e ∈ Eh,int, : V e
E + V e

E′ = 0

(where E,E′ ∈ Ωh are the two elements such that e ⊂ ∂E∩∂E′ for every e ∈ Eh,int) and their compatibility
with the coercitivity assumption div(V ) ≥ 0:

∀E ∈ Ωh , :
∑

e∈∂E

|e|V e
E ≥ 0

(usually,
∑

e∈∂E |e|V e
E plays the role of an approximation of

∫
E
div(V )). Under these two requirements

and the strong version of Assumption (AB3) (i.e. (AB3s)), it is then easy to see that the a priori estimates
still hold (see Lemma 3.1, Proposition 3.2 and Corollary 3.3).

As for the convergence (Theorem 3.7), we have to check if T3 and T4 behave well. For T3 we need that

∀E ∈ Ωh , :
∑

e∈∂E

|e|V e
E =

∫

E

div(V )

(or at least that
∑

e∈∂E |e|V e
E approximates

∫
E div(V ) as the size of the mesh tends to 0), which is usually

the case from the definition of V e
E using (2.19) or an expression of these fluxes coming from the resolution

of another elliptic equation, and that, for any smooth function ϕ with compact support, denoting by
Φh : Ω → R the function defined by

∀E ∈ Ωh , ∀x ∈ E : Φh(x) =
∑

e∈∂E

ϕ(x̄e)|e|V
e
E ,

the function Φh weakly converges in L2(Ω), as h → 0, div(ϕV ). Since, for any W ∈ H(div,Ω), defining
W e

E = 1
|e|

∫
e W · ne

E (in the usual weak sense), we have

|W e
E |

2 ≤ Ch−d||W ||2L2(E) + Ch−d+2||div(W )||2L2(E) (3.25)

(this is the usual Agmon scaling of trace estimates), the estimates we provide in the proof of Theorem 3.7
on the last part of T3 indicate that Φh behaves as needed if V e

E comes from 2.19 with V ∈ H(div,Ω); if
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these velocity fluxes come from the approximation of another elliptic equation, then the expected behavior
of Φh is usually a straightforward consequence of the properties of the scheme used on this other equation
(see e.g. [25]).
For T4, we require that ∑

E∈Ωh

∑

e∈∂E

|e|dE,e|V
e
E |

2 (3.26)

remains bounded as the size of the mesh tends to 0. When V e
E comes from the approximation of an

elliptic equation (i.e. V e
E is the “F e

E” of this other equation), then this estimate is usually a basic one (for
HMM methods, for example, it is a direct consequence of (S1) or (C)); if V e

E is constructed from (2.19)
with V ∈ H(div,Ω), then (3.25) shows that (3.26) also remains bounded independently of the mesh size.

In other words, although the preceding study has been made, for the sake of simplicity, with regular
velocity fields, it is easy to adapt to more realistic fields, and the convergence result still hold for these
fields.

3.2 Error estimates

In the theoretical developments of this section we assume that (HG) and (ME) hold.
Now, we consider the bilinear form

B(Gh, qh, qEh
;G′

h, q
′
h, q

′
Eh
) = [Gh, G

′
h]X̂h

−
∑

E∈Ωh

∑

e∈∂E

|e|(G′
h)

e
E

(
qE − qe

)

+
[
divh(Gh + Fc(qh)), q

′
h

]
Qh

−
∑

E∈Ωh

∑

e∈∂E

|e|
(
Gh + Fc(qh)

)e
E
q′e (3.27)

for all couple of triplets (Gh, qh, qEh
) and (G′

h, q
′
h, q

′
Eh
) in X̂h × Qh ×H(Eh). Problem (2.41)-(2.43) can

be reformulated as

Find (Fh, ph, pEh
) ∈ X̂h ×Qh ×H(Eh) such that:

B(Fh, ph, pEh
;Gh, qh, qEh

) =
[
f I , qh

]
Qh

∀(Gh, qh, qEh
) ∈ X̂h ×Qh ×H(Eh). (3.28)

In order to prove the convergence result, we need the following stability lemma.

Lemma 3.9 Assume (AB1)-(AB3) with either h small enough if (AB3-w) holds or any h if (AB3-s) holds.

For any triple (Gh, qh, qEh
) ∈ X̂h×Qh×H(Eh) there exists a triple (G′

h, q
′
h, q

′
Eh
) ∈ X̂h×Qh×H(Eh) with

|||G′
h|||X̂h

+ ||q′h||1,Dh
+ ||(q′h, q

′
Eh
)||1,Dh,Eh

≤ 1 (3.29)

for which there holds that:

B(Gh, qh, qEh
;G′

h, q
′
h, q

′
Eh
) & |||Gh|||X̂h

+ ||qh||1,Dh
+ ||(qh, qEh

)||1,Dh,Eh
. (3.30)

Proof of Lemma 3.9.

A straightforward calculation shows that

B(Gh, qh, qEh
;Gh, qh, qEh

) = ||Gh||
2
X̂h

+
∑

E∈Ωh

∑

e∈∂E

|e|(Fc(qh))
e
E(qE − qe). (3.31)

Since div(V ) ≥ 0, applying Lemma 3.1 yields the inequality

B(Gh, qh, qEh
;Gh, qh, qEh

) ≥ ||Gh||
2
X̂h

− C1h||(qh, qEh
)||21,Dh,Eh

. (3.32)

The non negative real constant C1, which is provided by Lemma 3.1, is zero if Assumption (AB3-s) holds.
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Let us consider the non-conservative vector field Ĝh ∈ X̂h given by

∀E ∈ Ωh, ∀e ∈ ∂E : (Ĝh)
e
E =

qe − qE
dE,e

.

Since (M2) implies that |E| . |e|dE,e, we have that

||Ĝh||
2
X̂h

=
∑

E∈Ωh

||ĜE ||
2
E ≤ σ∗

∑

E∈Ωh

∑

e∈∂E

|E|

d2E,e

(
qE − qe

)2
≤ Ĉ||(qh, qEh

)||21,Dh,Eh
, (3.33)

where Ĉ > 0 is independent of h and only depends on the constant σ∗ of Assumption (S1) and on the
mesh regularity constants of (M2). We infer, from the Cauchy-Schwarz inequality and Young’s inequality,
that ∣∣∣∣

[
Gh, Ĝh

]
X̂h

∣∣∣∣ ≤ ||Gh||X̂h
||Ĝh||X̂h

≤
Ĉ

2
||Gh||

2
X̂h

+
1

2
||(qh, qEh

)||21,Dh,Eh
.

By using the definitions (3.27) and (3.4) we obtain that

B(Gh, qh, qEh
; Ĝh, 0, 0) =

[
Gh, Ĝh

]
X̂h

−
∑

E∈Ωh

∑

e∈∂E

|e|(Ĝh)
e
E

(
qE − qe

)

=
[
Gh, Ĝh

]
X̂h

+
∑

E∈Ωh

∑

e∈∂E

|e|

dE,e

(
qE − qe

)2

≥ −
Ĉ

2
||Gh||

2
X̂h

+
1

2
||(qh, qEh

)||21,Dh,Eh
. (3.34)

In the following development, it is natural to use the H1-like norm for the elements of Qh given by:

||qh||
2
1,h =

∑

e∈Eh

|e|h−1
e ([[qh]]e)

2 , (3.35)

where [[qh]]e is the jump of qh at edge e defined accordingly to (2.31). Assumptions (HG)-(ME) implies
that mesh-dependent norm || · ||1,h in (3.35) is uniformly equivalent to norm || · ||1,Dh

in (3.3), i.e., there
exists two positive constants ν∗ and ν∗ independent of the mesh size h such that there holds:

ν∗|| · ||1,Dh
≤ || · ||1,h ≤ ν∗|| · ||1,Dh

(3.36)

for every instance of the admissible mesh family (Dh)h. As in [11], let us consider the conservative vector

field G̃h ∈ Xh given by

∀E ∈ Ωh, ∀e ∈ ∂E : (G̃h)
e
E = h−1

e (qE′ − qE).

Since (M2) implies that |E| . |e|he, we have that

||G̃h||
2
X̂h

=
∑

E∈Ωh

||G̃E ||
2
E ≤ σ∗

∑

E∈Ωh

∑

e∈∂E

|E|h−2
e

(
qE′ − qE

)2
≤ C̃||qh||

2
1,h, (3.37)

where C̃ is independent of h and only depends on σ∗ and the mesh regularity constants of (M2). We
then apply the Cauchy-Schwarz inequality and Young’s inequality to obtain:

∣∣∣∣
[
Gh, G̃h

]
X̂h

∣∣∣∣ ≤ ||Gh||X̂h
||G̃h||X̂h

≤
C̃

2
||Gh||

2
X̂h

+
1

2C̃
||G̃h||

2
X̂h

≤
C̃

2
||Gh||

2
X̂h

+
1

2
||qh||

2
1,h.
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By using the definition of G̃h and norm definition (3.4) we obtain that
∑

E∈Ωh

∑

e∈∂E

|e|(G̃h)
e
E

(
qE − qe

)
=
∑

e∈Eh

|e|
(
(G̃h)

e
EqE + (G̃h)

e
E′qE′

)
+
∑

e∈Eh

|e|
(
(G̃h)

e
E + (G̃h)

e
E′

)
qe

= −
∑

e∈Eh

|e|h−1
e

(
qE′ − qE

)2
= −||qh||

2
1,h.

Therefore, we have that

B(Gh, qh, qEh
; G̃h, 0, 0) =

[
Gh, G̃h

]
X̂h

+ ||qh||
2
1,h ≥ −

C̃

2
||Gh||

2
X̂h

+
1

2
||qh||

2
1,h. (3.38)

Let G′
h = θGh + Ĝh + G̃h for some value of θ, q′h = qh and q′Eh

= qEh
. From (3.32), (3.34) and (3.38)

there holds:

B(Gh, qh, qEh
;G′

h, q
′
h, q

′
Eh
)

= θB(Gh, qh, qEh
;Gh, qh, qEh

) + B(Gh, qh, qEh
; Ĝh, 0, 0) + B(Gh, qh, qEh

; G̃h, 0, 0)

≥

(
θ −

Ĉ

2
−

C̃

2

)
||Gh||

2
X̂h

+
1

2
||qh||

2
1,h +

(
1

2
− θC1h

)
||(qh, qEh

)||21,Dh,Eh
. (3.39)

Now, we take θ = (1 + Ĉ + C̃)/2 and we obtain the inequality

||Gh||
2
X̂h

+ ||qh||
2
1,h + ||(qh, qEh

)||21,Dh,Eh
. B(Gh, qh, qEh

;G′
h, q

′
h, q

′
Eh
), (3.40)

which holds for h small enough under Assumption (AB3-w), and for any h under Assumption (AB3-s)
because C1 = 0 in this case. Using inequalities (3.33) and (3.37) allows us to obtain:

||G′
h||X̂h

+ ||q′h||1,h + ||(q′h, q
′
Eh
)||1,Dh,Eh

≤ θ||Gh||X̂h
+
(
1 +

√
Ĉ
)
||qh||1,h

+
(
1 +

√
C̃
)
||(qh, qEh

)||1,Dh,Eh
. (3.41)

Lemma’s inequalities (3.29)-(3.30) follow from (3.40)-(3.41) by rescaling the three discrete fields G′
h, q

′
h,

and q′Eh
by the positive factor max

(
θ, 1 +

√
Ĉ, 1 +

√
C̃
)(

||Gh||X̂h
+ ||qh||1,h + ||(qh, qEh

)||1,Dh,Eh

)
.

The following technical lemma provides us with an estimate for the interpolation of a vector field which
is locally in (H1(E))d.

Lemma 3.10 Let G ∈ (H1(E))d and GI the interpolated field (2.8). Then, we have that

|||GI |||E . ||G||L2(E) + hE |G|H1(E) (3.42)

Proof of Lemma 3.10 Using the stability condition of Assumption (S1), the Agmon inequality from
(M3), and the scaling |E|/|e| . hE , which is a consequence of (M2), it readily follows that

|||(GI)|||2E . |E|
∑

e∈∂E

(Ge
E)

2 . |E|
∑

e∈∂E

|e|−1||G||2L2(e) . hE

(
h−1
E ||G||2L2(E) + hE|G|2H1(E)

)

. ||G||2L2(E) + h2
E |G|2H1(E),

from which the lemma’s statement immediately follows.

We can now prove the main result of this sub-section that is stated in the following theorem. This
theorem provides a bound on the approximation error that is defined by comparing the numerical solution
(ph, Fh, pEh

) ∈ Qh × X̂h ×H(Eh) with the interpolations pI and F I of the exact solution and flux given
by (2.8) and by the interpolated field pJ = {(pJ)e}e∈Eh ∈ H(Eh) given by

∀e ∈ Eh : (pJ)e =
1

|e|

∫

e

p. (3.43)

24



Theorem 3.11 Let p be the solution of the continuous problem (2.1)-(2.2) under Assumptions (H1)-(H4)
with Λ locally Lipschitz continuous on Ωh, c.f. Remark 2.5, and F given by (2.3). Let (Fh, ph) be the
solution of problem (2.41)-(2.42) under Assumptions (HG)-(ME) and (AB1)-(AB3) with either h small
enough if (AB3-w) holds or any h if (AB3-s) holds. Then, there holds that:

|||Fh − F I |||X̂h
+ ||ph − pI ||1,Dh

+ ||(ph − pI , pEh
− pJ)||1,Dh,Eh

. h||p||H2(Ω) . (3.44)

Proof of Theorem 3.11. Let us consider the triplet of error fields
(
Fh − F I , ph − pI , pEh

− pJ
)
∈

X̂h ×Qh ×H(Eh). Due to Lemma 3.9 there exist a triplet (Gh, qh, qEh
) ∈ X̂h ×Qh ×H(Eh) with

|||Gh|||X̂h
+ ||qh||1,Dh

+ ||qEh
||1,Dh,Eh

≤ 1 (3.45)

such that

|||Fh − F I |||X̂h
+ ||ph − pI ||1,Dh

+ ||(ph − pI , pEh
− pJ )||1,Dh,Eh

. B(Fh − F I , ph − pI , pEh
− pJ ;Gh, qh, qEh

). (3.46)

By using equations (3.28) a straightforward calculation gives:

B(Fh − F I , ph − pI , pEh
− pJ ;Gh, qh, qEh

) = T1 + T2 + T3 (3.47)

where

T1 =
[
pI , divh(Gh)

]
Qh

−
[
F I , Gh

]
X̂h

−
∑

E∈Ωh

∑

e∈∂E

|e|(pJ)eGe
E ,

T2 =
[
f I , qh

]
Qh

−
[
divh(F

I) + divh(Fc(p
I)), qh

]
Qh

,

T3 =
∑

E∈Ωh

∑

e∈∂E

|e|(F I + Fc(p
I))eEqe.

For convenience, we will separately bound T1 and T2 + T3. To this purpose, let us first introduce the
discontinuous Ωh-piecewise linear function p1, which is such that p1|E is the L2 orthogonal projection of
p on the linear polynomials defined on E ∈ Ωh. Let us start by noting that ||p− p1||L2(E) ≤ ||p− q1||L2(E)

for any linear polynomial q1 defined in E; hence, taking q1 = L1(p), the linear interpolation of p on
E provided by (M4), allows us to use the estimate for the interpolation error. Moreover, adding and
subtracting L1(p), applying the triangular inequality, using (M4) and a standard inverse inequality yields:

|p− p1|H1(E) ≤ |p− L1(p)|H1(E) + |L1(p)− p1|H1(E) . hE |p|H2(E) + h−1
E ||L1(p)− p1||L2(E) (3.48)

The second term in the last inequality of (3.48) is developed by adding and subtracting p, applying the
triangular inequality and the estimate for the interpolation error of (M4):

||L1(p)− p1||L2(E) ≤ ||L1(p)− p||L2(E) + ||p− p1||L2(E) . h2
E |p|H2(E). (3.49)

Substituting (3.49) in (3.48) yields the final inequality:

||p− p1||L2(E) + hE|p− p1|H1(E) . h2
E ||p||H2(E). (3.50)

We recall that, for convenience, we may identify the elements of Qh with the piecewise constant
functions whose restriction to each cell E is the degree-of-freedom of that cell. Therefore, it is possible
to reformulate the first term of T1 as an L2-scalar product, so that

[
pI , divh(Gh)

]
Qh

= [p, divh(Gh)]L2 .

Then, we split T1 in four sub-terms by recalling that F = −Λ∇p, adding and subtracting (ΛE∇p)I and
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(ΛE∇p1)I , using the local consistency assumption (S2), and noting that |e|(pJ)e =
∫
e
p. We have the

following developments:

T1 =
[
p− p1, divh(Gh)

]
L2 +

[
p1, divh(Gh)

]
L2 −

[
F I , Gh

]
X̂h

−
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e

p

= T1,1 +
[
p1, divh(Gh)

]
L2 +

[
(Λ∇p)I , Gh

]
X̂h

−
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e

p

= T1,1 +
[
p1, divh(Gh)

]
L2 +

∑

E∈Ωh

[
(ΛE∇p)I , Gh

]
E

+
∑

E∈Ωh

[
((Λ − ΛE)∇p)I , Gh

]
E
−
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e

p

= T1,1 +
∑

E∈Ωh

([
divh(Gh), p

1
]
L2(E)

+
[
(ΛE∇p1)I , Gh

]
E

)
+
∑

E∈Ωh

[
(ΛE∇(p− p1))I , Gh

]
E

+
∑

E∈Ωh

[
(Λ − ΛE)∇p)I , Gh

]
E
−
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e

p

= T1,1 +
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e

(p1 − p) +
∑

E∈Ωh

[
(ΛE∇(p− p1))I , Gh

]
E
+
∑

E∈Ωh

[
(Λ− ΛE)∇p)I , Gh

]
E

= T1,1 + T1,2 + T1,3 + T1,4 .

To estimate T1,1, let us first note that the definition of divh, the scalings hd
E ≤ |E| . hd

E and |e| . hd−1
E

from (M2) and Assumption (S1) imply that

||divh(Gh)||
2
L2(E) = |E|

∣∣(divh(Gh)
)
E

∣∣2 .
1

|E|

∑

e∈∂E

|e|2(Ge
E)

2 . h−2
E |||Gh|||

2
E . (3.51)

Thus, using the Cauchy-Schwarz inequality for each scalar product inXE , error estimate (3.50), inequality
(3.51), the Cauchy-Schwarz inequality again, and finally noting that (3.45) implies that |||Gh|||X̂h

≤ 1 yield

T1,1 .
∑

E∈Ωh

||p− p1||L2(E)||divh(Gh)||L2(E) .
∑

E∈Ωh

(
h2
E |p|H2(E)

)(
h−1
E |||Gh|||E

)

. h

(
∑

E∈Ωh

|p|2H2(E)

)1/2( ∑

E∈Ωh

|||Gh|||
2
E

)1/2

. h|p|H2(Ω) . (3.52)

The second term is bounded using a scaling argument and inequality (3.45). We obtain that:

T1,2 . h||p||H2(Ω)|||Gh|||X̂h
. h||p||H2(Ω) . (3.53)

To get an upper bound for T1,3, we use the Cauchy-Schwarz inequality for the local scalar product in
XE , the result of Lemma 3.10, an upper bound on ΛE that easily follows from the upper bound of Λ in
(H2), again the Cauchy-Schwarz inequality, the estimate of the interpolation error given by (3.50),which
follows from (M4), and the fact that |||Gh|||X̂h

≤ 1 due to inequality (3.45). We obtain the following chain
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of inequalities:

T1,3 =
∑

E∈Ωh

[
(ΛE∇(p− p1))I , Gh

]
E

≤
∑

E∈Ωh

|||(ΛE∇(p− p1))I |||E |||Gh|||E

.
∑

E∈Ωh

(
||ΛE∇(p− p1)||L2(E) + hE |ΛE∇(p− p1)|H1(E)

)
|||Gh|||E

.
∑

E∈Ωh

(
|p− p1|H1(E) + hE |p|H2(E)

)
|||Gh|||E

.

(
∑

E∈Ωh

|p− p1|2H1(E) + h2
E |p|

2
H2(E)

)1/2 ( ∑

E∈Ωh

|||Gh|||
2
E

)1/2

.

(
∑

E∈Ωh

h2
E |p|

2
H2(E)

)1/2

|||Gh|||X̂h

. h|p|H2(Ω). (3.54)

Using Cauchy-Schwarz inequality and inequality (3.42) we get

T1,4 .
∑

E∈Ωh

|||((Λ − ΛE)∇p)I |||E |||Gh|||E

.
( ∑

E∈Ωh

|||((Λ − ΛE)∇p)I |||2E
)1/2

.
( ∑

E∈Ωh

||(Λ− ΛE)∇p||2L2(E) + h2
E |(Λ − ΛE)∇p|2H1(E)

)1/2
. (3.55)

Due to the definition of ΛE and since the restriction Λ|E belongs to W 1,∞(E) for all E ∈ Ωh, we obtain
that

||Λ− ΛE ||L∞(E) + hE |Λ− ΛE |W 1,∞(E) . hE ∀E ∈ Ωh .

Combining the above bound with (3.55) easily yields

T1,4 . h||p||H2(Ω) . (3.56)

Combining (3.52), (3.53), (3.54), and (3.56) yields the following upper bound of T1

T1 . h||p||H2(Ω) . (3.57)

To get an upper bound for T2 + T3 we note that using the commuting property of the divergence
operator (2.9), c.f. also Remark 2.4, the flux definition given in (2.3), and the model’s equation (2.1)
allows us to write:

divh(F
I) = (div(F ))I = f I − (div(V p))I . (3.58)

Equation (3.58) makes it possible to reformulate T2 as follows:

T2 =
[
(div(V p))I − divh(Fc(p

I)), qh
]
Qh

. (3.59)

As before, we identify the elements of Qh with the space of Ωh-piecewise constant functions, and the
scalar product in Qh with the L2 scalar product. Then, we split T2 into two sub-terms by applying the
divergence theorem to each cell’s contribution and adding and subtracting the term V e

Ep:

T2 =
∑

E∈Ωh

∑

e∈∂E

qE

∫

e

(V · ne
E − V e

E)p+
∑

E∈Ωh

∑

e∈∂E

qE

∫

e

(
V e
Ep−

(
Fc(p

I)
)e
E

)
= T2,1 + T2,2 . (3.60)
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Noting that V e
E +V e

E′ = 0 and ne
E +ne

E′ = 0 for any e ∈ Eh,int, and using definition (2.31) for the jump
of qh, i.e., [[qh]]e, allows us to reformulate T2,1 as follows

T2,1 =
∑

e∈Eh

[[qh]]e

∫

e

(V · ne
E − V e

E)p

where E = E(e) is the unique cell to the boundary of which e belongs and such that ne
E · ne = 1. Due

to the definition of V e
E , on each edge e the quantity (V · ne

E − V e
E) is orthogonal to constants. Therefore

we can write

T2,1 =
∑

e∈Eh

[[qh]]e

∫

e

(V · ne
E − V e

E)(p− pe) (3.61)

where pe is the average of p on e. Applying the Hölder inequality to each face’s term, the interpolation
estimates for the face’s velocity, the Cauchy-Schwarz inequality, and the equivalence between norms || · ||1,h
and || · ||1,Dh

give:

T2,1 .
∑

e∈Eh

|[[qh]]e| h
d−1
2

e ||(V · ne
E − V e

E)(p− pe)||L2(e)

.
∑

e∈Eh

h
d−2
2

e |[[qh]]e| h
3
2
e |V |W 1,∞(Ω)||p− pe||L2(e)

. |V |W 1,∞(Ω)

( ∑

e∈Eh

hd−2
e |[[qh]]e|

2
)1/2( ∑

e∈Eh

h3
e||p− pe||

2
L2(e)

)1/2

. |V |W 1,∞(Ω)||qh||1,Dh

( ∑

e∈Eh

h5
e||∇p||2L2(e)

)1/2
, (3.62)

where in the last line we also used a standard approximation result. Now, the Agmon inequality for ∇p,
c.f. (M3) with φ = ∇p, and the fact that for e ⊆ ∂E ∩ ∂E′ there holds that he ≤ max(hE , hE′) imply
that

∑

e∈Eh

h5
e||∇p||2L2(e) .

∑

E∈Ωh

∑

e∈∂E

h5
E ||∇p||2L2(e) .

∑

E∈Ωh

h5
E

(
h−1
E |p|2H1(E) + hE |p|

2
H2(E)

)
.

The bound for T2,1 readily follows recalling (3.45)

T2,1 . h2||p||H1(Ω) + h3||p||H2(Ω) . h2||p||H2(Ω) , (3.63)

where we included the data factor |V |W 1,∞(Ω) in the inequality’s constant. As a byproduct we observe
here that, looking at (3.63) and at the estimate (3.68), it becomes clear that the error coming from the
approximation of the datum V is a higher order term.
Now, let us search for an upper bound for T2,2+T3. First, note that, since V

I and F I are conservative
fields, ∑

E∈Ωh

∑

e∈∂E

qe

∫

e

V e
Ep =

∑

e∈Eh

qe
(
V e
E + V e

E′

) ∫

e

p = 0 and
∑

E∈Ωh

∑

e∈∂E

|e|(F I)eEqe = 0

and thus

T2,2 + T3 =
∑

E∈Ωh

∑

e∈∂E

(
qE − qe

) ∫

e

(
V e
Ep−

(
Fc(p

I)
)e
E

)
. (3.64)

Moreover, Assumption (A2) implies that V e
E = 1

de

(
A(deV

e
E) + B(deV

e
E)
)
and therefore, by using defini-

tion (2.40) and the triangle inequality, a straightforward calculation gives:

∣∣∣∣V e
Ep−

(
Fc(p

I)
)e
E

∣∣∣∣2
L2(e)

≤

∣∣∣∣
∣∣∣∣
(
p− (pI)E

)A(deV e
E)

de

∣∣∣∣
∣∣∣∣
2

L2(e)

+

∣∣∣∣
∣∣∣∣
(
p− (pI)E′

)B(deV
e
E)

de

∣∣∣∣
∣∣∣∣
2

L2(e)

. (3.65)
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From (A1) and the definition of V e
E it easily follows that max

(
|A(deV

e
E)| , |B(deV

e
E)|
)
. de. Then, by

using the Agmon inequality of (M3) and the standard first-order interpolation estimate for cell averages,
i.e., ||p− (pI)E ||L2(E) . hE |p|H1(E), we have that

∣∣∣
∣∣∣
(
p− (pI)E

)A(deV e
E)

de

∣∣∣
∣∣∣
2

L2(e)
. ||p− (pI)E ||

2
L2(e)

. h−1
E ||p− (pI)E ||

2
L2(E) + hE |p− (pI)E |

2
H1(E)

. hE|p|
2
H1(E) . (3.66)

A similar inequality can be derived by repeating the same argument for the second term in the right hand
side of (3.65) when e ∈ Eh,int, and noting that the second term is zero if e is a boundary face. Finally,
we obtain: ∣∣∣

∣∣∣V e
Ep−

(
Fc(p

I)
)e
E

∣∣∣
∣∣∣
2

L2(e)
. h|p|2H1(E∪E′) .

Therefore, by using a Hölder inequality on the faces and an l2 Cauchy-Schwarz inequality, from (3.64)
we obtain

T2,2 + T3 . h
1
2

∑

e∈Eh

|qE − qe| |e|
1
2 |p|H1(E∪E′) . h

1
2 ||qh||1,Dh,Eh

( ∑

e∈Eh

he|p|
2
H1(E∪E′)

)1/2
. (3.67)

Recalling (3.45) yields
T2,2 + T3 . h||p||H1(Ω) . (3.68)

Combining (3.63) and (3.68) we have the bound for T2+T3, and considering also (3.46), (3.47) and (3.57)
we conclude the proof.
From Theorem 3.11 we get immediately two corollaries that we state without proof.

Corollary 3.12 Under the same hypotheses of Theorem 3.11 it holds

|||F̃h − F̃ I |||X̂h
. h||p||H2(Ω) , (3.69)

where the total fluxes are defined through F̃ I = −
(
Λ∇p+ V p

)I
and F̃h = Fh + Fc(ph).

Corollary 3.13 Under the same hypotheses of Theorem 3.11 (and applying Lemma 3.5) it holds

||pI − ph||Lr(Ω) . h||p||H2(Ω)

where r = 2d
d−2 if d > 2 and r < +∞ if d = 2.

Remark 3.14 Repeating the same arguments makes it possible to prove a similar error estimate for the
hybrid HMM formulation (2.47)-(2.49), which is based on the numerical convection flux (2.45)-(2.46).

Remark 3.15 It must be noted that the proofs in this paper are not uniform with respect to the Peclet
number, i.e., the estimates degenerate when the convection becomes dominant. On the other hand, uniform
estimates cannot be derived under the general framework considered here, since it comprehends also
methods which are not stable in the limit. Nevertheless, the general approach used here can be followed in
order to develop uniform error estimates for certain methods. For example, we believe that an uniform
error bound can be developed for the upwind scheme starting from a uniform version of the stability results
in Proposition 3.2 and Corollary 3.3. A deeper theoretical investigation of the convection dominated case
will be the objective of future communications.
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(a) Mesh M1 (base mesh) (b) Mesh M1 (first refinement)

Figure 2: The base mesh and its first refinement of mesh family M1; the mesh construction parameter n
is initially taken equal to 10 and doubled at each refinement step. Details about the mesh characteristics
are given in Table 1.

4 Numerical experiments

In this section we present a number of examples of problem (2.1)-(2.2), whose solutions are computed
over uniform and non-uniform meshes. The performance of these discretization methods is investigated
by evaluating the rate of convergence when the meshes are refined and the shock-capturing capability
when strong layers develop in the convection-dominated regime.
To this purpose, we consider the sequence of meshes of mesh family M1 on Ω =]0, 1[×]0, 1[. These

meshes are built by remapping the position (ξ, η) of the nodes of an n× n uniform grid of quadrilaterals
into final positions (x, y) through

x = ξ + (1/10) sin(2πξ) sin(2πη), (4.1)

y = η + (1/10) sin(2πξ) sin(2πη). (4.2)

Then, we split each quadrilateral-shaped cell into two triangles, which gives the primal mesh, and then
we connect the barycenters of adjacent triangular cells by a straight segment. We complete the mesh
construction at the domain boundary ∂Ω by connecting the barycenters of triangular cells close to ∂Ω to
the midpoints of boundary edges and these latter to the boundary vertices of the primal mesh. For this
mesh family, the base mesh of the refinement process is obtained by setting n = 10; refined meshes are
generated by doubling this parameter and repeating the construction procedure. The plots of Figure 2
illustrate the base mesh and the first refined mesh of M1. Details about the mesh characteristics are
reported in Table 1.
The numerical implementation is partially based on P2MESH [15], a C++ public domain library

designed to manage data structures of unstructured meshes in the implementation of solvers of partial
differential equations. For convenience, we will use the labels listed below to refer to the different instances
of the HMM family of schemes considered in our numerical experiments. In each one of these schemes
the diffusion term is discretized along the lines described in subsection 2.3 while the numerical treatment
of the convection term differs as specified in the item’s description:

• HMM-Cnt, two-point centered flux formula;

• HMM-Upw, two-point upwind flux formula;

• HMM-SG, two-point Scharfetter-Gummel formula with local adjustment (2.23);

• HMM-(no stabilization), central mimetic method without any form of stabilization;

• HMM-Jmp, central mimetic method with jump stabilization (2.32);
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Table 1: Mesh parameters of the mesh sequence M1; r is the refinement level (0 refers to the base mesh),
NE is the number of cells, Ne is the number of mesh edges, NV is the number of mesh vertices.

r NE Ne NV h

0 121 400 280 9.477 10−2

1 441 1400 960 4.843 10−2

2 1681 5200 3520 2.445 10−2

3 6561 20000 13440 1.225 10−2

4 25921 78400 52480 6.130 10−3

5 103041 310400 207360 3.066 10−3

4.1 Accuracy

In this test case, the forcing term f in (2.1) and the boundary condition function gD in (2.2) are set
accordingly to the exact solution

p(x, y) =
(
x− e

2(x−1)
ν

)(
y2 − e

3(y−1)
ν

)
(4.3)

and V = (2, 3)t. We assume that the diffusion tensor Λ is given by the identity matrix scaled by the
positive real factor ν. By taking ν = 10−4 the problem is strongly convection-dominated and the solution
is characterized by an exponential boundary layer near top and right sides of Ω.
We are mainly interested in showing that the shock-capturing capability does not deteriorate too much

the convergence behavior where the solution is enough smooth, i.e. away from the boundaries where
the layer develops. As pointed out in [16, 27, 42, 43] (to which we also refer the reader interested in the
comparison with performance of the mixed-hybrid Finite Element and different kind of Finite Volume
schemes on this test case), the errors due to the approximation of the solution gradient in the narrow strip
around the boundary where the layer develops are so large that including them in the error measurements
would prevent to see any convergence at all. For this reason, we restrict the error measurement to the
sub-domain [0, 0.95]× [0, 0.95]. Convergence rates are measured by the relative errors

EQh
=

|||pI − ph|||Qh

|||pI |||Qh

and EXh
=

|||F̃ I − F̃h|||X̂h

|||F̃ I |||X̂h

, (4.4)

where, in the second error definition, we use the total fluxes F̃ I and F̃h are defined in Corollary 3.12.
Practically speaking, the quantity EQh

is a measure of the approximation error of cell averages and is
calculated by using a mesh-dependent L2-like norm. On its turn, error EXh

compares the edge-based flux

F̃ I with the numerical flux F̃h through the mesh-dependent norm induced in Xh by the mimetic scalar
product.
In Figure 3 we present the log-log plots of the errors EQh

(on the left) and EXh
(on the right) versus the

characteristic mesh size h. Herein, we compare the convergence behavior of the various implementation
of the HMM schemes considered in this paper. The actual order of accuracy shown by these methods is
reflected by the slopes of the experimental error curves, and can be approximately evaluated by compari-
son with the “theoretical” slopes represented in the bottom-left corner of each plot, c.f., also the caption’s
comment. These plots document the optimal convergence behavior of all the numerical approximations
in the diffusive regime, c.f., the top side plots. When the problem becomes convection-dominated, i.e.,
for the smallest value of the diffusion coefficient, convergence is still provided for both scalar and flux
unknowns by all methods except HMM-(no stabilization).
When we use HMM-SG, HMM-Cnt, and HMM-(no stabilization) in the diffusive regime, a superconver-

gence effect is visible for the approximation of the scalar and the flux variable. The numerical approx-
imation of the scalar unknown is second-order accurate, while we have O

(
h3/2

)
for the flux variable.
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Instead, both HMM-Upw and HMM-Jmp provides a first-order accurate approximation for both p and F .
It is also worth noting that the error curves of HMM-SG and HMM-Cnt almost coincide. Moreover, the
errors from HMM-(no stabilization) are a little bit smaller than those obtained by the centered schemes
of Finite Volume type. Instead, in this test case scheme HMM-Upw gives better results than HMM-Jmp.
In the convection-dominated case, i.e., for ν = 10−4, the central approximation HMM-(no stabiliza-

tion) is not at all convergent on the meshes considered by M1; instead, HMM-Cnt is convergent, but
the numerical solution (not shown in the paper) is affected by large amplitude oscillations that almost
completely destroy the solution’s profile. This fact is consistent with the error curves displayed in Fig-
ure 3. The numerical approximation of the scalar and flux variable provided by the methods HMM-Upw
and HMM-SG is linearly convergent, while the one provided by HMM-Jmp seems to converge at a rate
proportional to O

(
h1/2

)
, even if this last effect might be due to an insufficient mesh resolution.

Remark 4.1 As noticed at the end of Section 2.4.1, in the convection-dominated regime the A function
given by (2.23) is numerically nearly indistinguishable from the upwind functions Aup. Figures 3 and 4
confirm this. On the other hand, in the diffusion regime, the modified Scharfetter-Gummel scheme has
better convergence properties than the upwind scheme. This behavior is a very interesting characteristic
of the choice (2.23) when the convection term is discretized by (2.40): it automatically adjusts to either
provide a good order of convergence in the diffusive regime, or enough numerical diffusion to stabilize the
calculation in the convection-dominated regime. Note that if one takes A and B satisfying (AB1)-(AB2)
and (AB3-s) and such that A(s) ∼ s as s → +∞, A(s) has a finite limit as s → −∞ and A(s) is regular
around s = 0, then a scheme using such functions modified in the same way as (2.23) is expected to show
the same kind of behavior (this has been numerically tested on several choices of such functions). Note
also that this approach does not hold for the upwind scheme since Aup(s) is not regular at s = 0.

4.2 Shock-capturing behavior

Shock-capturing behavior is investigated by solving (2.1)-(2.2) in the convection-dominated regime. The
exact solution may be characterized by boundary layers of exponential and parabolic types and is ap-
proximated on the sequence of meshes of M1. The numerical solution is plotted at mesh vertices. Vertex
values are obtained by interpolating the approximate cell averages provided by the scheme.

4.2.1 Exponential boundary layers

We experimentally investigate how these methods approximate a solution with an exponential boundary
layer, which forms on those sides of the domain boundary where V points outward. To this purpose, we
solve problem (2.1)-(2.2) with the same data of the accuracy benchmark test in the convection-dominated
regime, i.e., for ν = 10−4.
In Figure 4, we compare the numerical solutions produced by the following implementations: HMM-SG,

HMM-Upw, HMM-(no stabilization) and HMM-Jmp.
In plots (a)−(b) the non-oscillatory solution produced by schemes HMM-Upw and HMM-SG is displayed.

Instead, from plot (c) it is evident that when calculation is performed using the HMM-(no stabilization)
without any stabilization the numerical solution suffers of severe oscillations. These oscillations disappear
when we introduce a stabilizing term in the divergence equation, which is based on the solution’s jump
at mesh edges. However, a great numerical diffusion is introduced by this form of upwinding and the
resolution of the boundary layer is poor and generally worst than that obtained through the other HMM
implementations.

4.2.2 Exponential and parabolic boundary layers

On Ω =]0, 1[×]0, 1[, we numerically solve (2.1)-(2.2) with Dirichlet boundary condition

p(x, 0) = (1 − x)3, p(x, 1) = (1− x)2, p(0, y) = 1, p(1, y) = 0,
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and V = (1, 0)T in the convection-dominated regime for ν = 10−4. The solution has an exponential
boundary layer at the side x = 1 and two parabolic boundary layers at y = 0 and y = 1. Figure 5 shows
the numerical results obtained from calculations using HMM-SG, HMM-Upw, HMM-(no stabilization), and
HMM-Jmp. The behavior is similar to the behavior documented in the previous subsection for the case
of the single exponential layer.

4.3 Strongly anisotropic heterogeneous and convection-dominated case

In this third example we consider the test case proposed in [34], where problem (2.1)-(2.2) is solved
for a strongly anisotropic and heterogeneous diffusion tensor and a rotating convection field. A zero-th
order term proportional to p is also present in the model’s equations; its discretization is straightforward
(see e.g. [24]). The domain Ω =]0, 1]×]0, 1[ is split into four subdomains Ω1 =]0, 2/3[×]0, 2/3[, Ω2 =
]0, 2/3[×]2/3, 1[, Ω2 =]2/3, 1[×]2/3, 1[, Ω4 =]2/3, 1[×]0, 2/3[. The diffusion tensor is diagonal in each
sub-domain and is characterized by a very small value along one principal direction:

Λ =

(
10−6 0

0 1

)
in Ω1 and Ω3 ,

and

Λ =

(
1 0

0 10−6

)
in Ω2 and Ω4 .

Note that the directions along which diffusion is small are interchanged for adjacent subdomains. Con-
vection is given by the clockwise rotating solenoidal field V (x, y) = 40(x(2y−1)(x−1),−y(2x−1)(y−1))
and the right-hand side is a gaussian bump positioned at distance 0.35 of the domain center, f(x, y) =
10−2 exp(−(r − 0.35)2/0.005) with r2 = (x − 0.5)2 + (y − 0.5)2. This problem is convection-dominated,
thus requiring some sort of upwinding in the numerical treatment of the convection term. Moreover, the
exact solution is continuous, but internal layers form near the interfaces that separate the subdomains
due to the small diffusion value in the switching directions. The strong solution gradients cannot be
resolved by the attainable grid sizes and the numerical approximations are expected to be discontinuous
at the internal interfaces.
In the test cases presented in the previous subsections there was no significant difference between the

numerical approximations provided by the cell-based version of the upwind scheme HMM-Upw, c.f. (2.41)-
(2.42), and its edge-based version, c.f. (2.47)-(2.49). This is no longer the case herein, as illustrated in
Figure 6. The calculations, which use the two alternative versions of the HMM-Upw scheme, are performed
on a grid obtained by a 30× 30 periodic reproduction of the pattern reported in Figure 6-(a). Since the
exact solution of this problem is unknown, a reference solution is calculated, for comparison’s sake, on
a very fine cartesian grid. The reference solution is displayed in Figure 6-(b). The numerical solution
provided by the cell-based upwind scheme is shown in Figure 6-(c) and is clearly affected by spurious
oscillations. Instead, this undesirable effect is almost completely absent in the numerical solution provided
by the edge-based upwind scheme, which is shown in Figure 6-(d).
It is also worth mentioning the behavior of these two different implementations of the HMM-Upw scheme

as far as minimum and maximum principles are concerned. To this purpose, we recall that the numerical
solutions obtained by first-order upwind two-point Finite Volume schemes in convection-dominated prob-
lems are characterized by numerical properties like positivity, monotonicity, etc. A thorough inspection
of our numerical results reveals that both cell-based and edge-based schemes respects the minimum value,
which is zero for the reference solution, and provides 6.6×10−4 and 6.9×10−4, respectively, for the max-
imum value against a reference value of approximately 6.7 × 10−4. Nonetheless, we noticed a minimum
value of approximately −1.1× 10−5, which corresponds to a numerical undershoot of around 1.6%, when
we applied the cell-based scheme on a different mesh given by splitting every other rectangular cell of a
120× 60 regular partition of Ω in two sub-triangles. On this latter mesh the edge-based upwind scheme
was still seen to respect the zero minimum value. We do not show the other solution plots for these latter
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calculations because their behaviors are very similar to those of the solutions shown in Figure 6. From
these qualitative comparisons we deduce that the edge-based upwind scheme may be more stable and
accurate than the cell-based upwind scheme. We also remark that the edge-based upwind scheme has the
advantage of being fully hybridizable, thus leading to a linear system in the edge unknowns through local
variable eliminations like, for example, in the static condensation of Mixed Finite Elements. For these
reasons, the edge-based upwind scheme may be preferable when dealing with stiff problems on coarse
meshes.

Remark 4.2 As a final comment we observe that, in all the developed tests, the schemes HMM-(no
stabilization) and HMM-Jmp, which satisfy only (AB3-w), do not show particular pathologies for coarse
meshes. Therefore, at least on the basis of the presented tests, the h-small-enough condition appearing in
Theorem 3.11 does not seem to pose a true limitation in practice.

5 Conclusions

We presented a new family of methods for the numerical approximation to the solution of the steady
convection-diffusion equation. These methods, which are referred to as Hybrid Mimetic Mixed methods
(HMM), are based on a unified formulation for the Hybrid Finite Volume method, the Mixed Finite
Volume method and the Mimetic Finite Difference method, and differ mainly in the approximation of the
convection term. In particular, we considered centered, upwind, weighted and locally scaled Scharfetter-
Gummel type discretizations, for which we provided a full proof of convergence under very general
regularity conditions of the solution field, and derived an error estimate when the scalar solution is in
H2(Ω).
In the last part of the paper, we numerically compared the performance of these schemes on a set of

test cases selected from the literature in both diffusion and convection-dominated regimes. As expected,
the methods, including a centered-type discretization of the convective term, showed a better behavior
in the test cases dominated by diffusion, exhibiting a superconvergence in the approximation of both
scalar and vector variables. On the other hand, such schemes showed a strong loss of convergence rate
in the convection dominated tests, while on that same tests the methods with upwinding or stabilization
exhibited a better behavior. Finally, we showed a test with strong anisotropy and jumps in the coefficients.
The results seem to suggest that the hybridized formulation gives more stable results for this kind of
problems.
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Diffusive regime: V = (2, 3)T , ν = 1; slopes are h2 and h on the left plot,
h3/2, h, h1/2 on the right plot.
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Convection-Dominated regime: V = (2, 3)T , ν = 10−4;
slopes are h and h1/2 on both plots.

Symbols: © HMM-Upw, � HMM-SG, � HMM-Cnt, △ HMM-Jmp, ⋆ HMM-(no stabilization).

Figure 3: Test case 1: error curves for the numerical approximation of an exact solution that is smooth
in the diffusive regime (top) and shows an exponential boundary layer on right and top sides of the
computational domain in the convection-dominated regime (bottom). Approximation errors are measured
on the reduced domain [0, 0.95]× [0, 0.95], i.e. away from the critical region where the layer may develop.
All calculations are performed on the mesh sequence M1.
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Figure 4: Shock-capturing test case: the exact solution has an exponential boundary layer on right and
top sides of the computational domain. Calculations are performed on the second mesh of mesh family
M1 by taking constant velocity field V = (2, 3)T and ν = 10−4. Numerical solution is displayed at mesh
vertices through linear interpolation. Severe oscillations are visible in plot (c) when we use scheme HMM-
(no stabilization), i.e, the central mimetic discretization without any stabilization (note the different scale
along Z). This phenomenon disappears in plot (d) when jump stabilization is turned on using scheme
HMM-Jmp.
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[36] R. Eymard, T. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic diffu-
sion problems on general non-conforming meshes, SUSHI: a scheme using stabilisation and hybrid
interfaces, 2009. To appear in IMAJNA.

[37] J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference methods for the
diffusion equation. Comput. Geosci., 6:333–352, 2002.

38



[38] J. Jaffre. Decentrage et elements finis mixtes pour les equations de diffusion-convection. Calcolo,
21:171–197, 1984.

[39] J. Jaffre and J. E. Roberts. Upstream weighting and mixed finite elements in the simulation of
miscible displacements. RAIRO Modl. Math. Anal. Numr., 19(3):443–460, 1985.

[40] Y. Kuznetsov, K. Lipnikov, and M. Shashkov. The mimetic finite difference method on polygonal
meshes for diffusion-type problems. Comput.Geosci., 8:301–324, 2005.

[41] K. Lipnikov, M. Shashkov, and I. Yotov. Local flux mimetic finite difference methods. Numer.
Math., 112:115–152, 2009.

[42] Gianmarco Manzini and Alessandro Russo. A finite volume method for advection-diffusion problems
in convection-dominated regimes. Computer Methods in Applied Mechanics and Engineering, 197(13-
16):1242 – 1261, 2008.

[43] G. Rapin and G. Lube. A stabilized scheme for the lagrange multiplier method for advection-diffusion
equations. Math. Models Methods Appl. Sci., 14:1035–1060, 2004.

[44] B. Riviere. Discontinuous Galerkin methods for solving Elliptic and Parabolic Equations: Theory
and Implementation. SIAM, 2008.

[45] T.F. Russell and M.F. Wheeler. Finite element and finite difference methods for continuous flows
in porous media. In R.E. Ewing, editor, The Mathematics of Reservoir Simulation, pages 35–106,
Philadelphia, 1983. SIAM.

[46] D. L. Scharfetter and H. K. Gummel. Large signal analysis of a silicon read diode. IEEE Trans. on
Elec. Dev., 16:64–77, 1969.

[47] M. Vohralik. Equivalence between lowest-order mixed finite element and multi-point finite volume
methods on simplicial meshes. M2AN Math. Model. Numer. Anal., 40(2):367–391, 2006.

[48] M. F. Wheeler and I. Yotov. A multipoint flux mixed finite element method. SIAM J. Numer. Anal.,
44(5):2082–2106, 2006.

[49] A. Younes, P. Ackerer, and G. Chavent. From mixed finite elements to finite volumes for elliptic
pdes in two and three dimensions. Internat. J. Numer. Methods Engrg., 59(3):365–388, 2004.

39



Z
−

A
xi

s

0

1

X−Axis

0

1
Y−Axis

0

1

(a) HMM-SG

Z
−

A
xi

s

0

1

X−Axis

0

1
Y−Axis

0

1

(b) HMM-Upw

Z
−

A
xi

s

−4.835

0

7.383

X−Axis

0

1
Y−Axis

0

1

(c) HMM-(no stabilization)

Z
−

A
xi

s

0

1

X−Axis

0

1
Y−Axis

0

1

(d) HMM-Jmp

Figure 5: Shock-capturing test case: the exact solution has an exponential boundary layer on the right
side and two parabolic layers on top and bottom side of the computational domain. Calculations are
performed on the second mesh of mesh family M1 by taking the constant velocity field V = (1, 0)T

and ν = 10−4. Numerical solution is displayed at mesh vertices through linear interpolation. Severe
oscillations are visible in plot (c) when we use scheme HMM-(no stabilization), i.e, the central mimetic
discretization without any stabilization (note the different scale along Z). This phenomenon disappears
in plot (d) when jump stabilization is turned on using scheme HMM-Jmp.
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(a) Grid pattern (b) Exact solution

(c) cell-based upwind HMM-Upw (d) edge-based upwind HMM-Upw

Figure 6: Strongly anisotropic heterogeneous and convection-dominated test case: on a coarse mesh, the
cell-based upwinding of the convection provokes spurious oscillations, which are completely absent in the
edge-based upwinding discretization.
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