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Abstract

We derive a hierarchy of kinetic and macroscopic models from a noisy variant
of the heuristic behavioral Individual-Based Model of [53] where the pedestrians
are supposed to have constant speeds. This IBM supposes that the pedestrians
seek the best compromise between navigation towards their target and collisions
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avoidance. We first propose a kinetic model for the probability distribution function
of the pedestrians. Then, we derive fluid models and propose three different closure
relations. The first two closures assume that the velocity distribution functions
are either a Dirac delta or a von Mises-Fisher distribution respectively. The third
closure results from a hydrodynamic limit associated to a Local Thermodynamical
Equilibrium. We develop an analogy between this equilibrium and Nash equilibia
in a game theoretic framework. In each case, we discuss the features of the models
and their suitability for practical use.
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1 Introduction

Understanding and predicting crowd behavior is an extremely important issue in our so-
cieties. Public safety concerns have raised considerably after recent major crowd disasters
[54]. Public authorities are challenged by increasingly large crowds attending mass events
such as sports gatherings. Economic stakes related to crowd management are equally
high, as increasing the efficiency of pedestrian infrastructures have important returns in
terms of business.

To achieve a better comprehension of crowd behavior and increase the reliability of
predictions, numerical modeling and simulation is playing an ever-growing role.

A recent review on crowd modeling can be found in [9]. The most widely used crowd
simulation models are Individual-Based Models (or IBM), such as Rule-Based models
[61], mechanical models [35, 37, 38], traffic following models [48], optimal control theory
models, [40], Cellular-Automata [55] and Vision-Based models [34, 41, 56, 57, 59, 64]. The
present paper relies on [53] which is detailed below. Continuum models (CM) are based
on a fluid dynamics approach [36, 39]. Other approaches through optimal control theory
[42, 43, 44, 46] or exploiting the analogy with car traffic [3, 8, 10, 18, 19, 51, 60] have also
been developed. For dense crowds, the handling of the volume exclusion constraint has
led to several specific works [26, 27, 50]. Existence theory for some CM of crowds can be
found in [30].

Kinetic Models (KM) are intermediate between IBM and CM. As pointed out in the
review [9], there are quite few KM of crowds (see an example in [7]). IBM, KM and CM
constitute a hierarchy of models in the sense that each level can be deduced from the
previous one by a model reduction methodology. Indeed, KM deal with the one-particle
probability distributions of IBM. Such a description ignores correlations between the
particles (which are described by joint probability distributions of k particles for k ≥ 2)
and is therefore a reduced description of the IBM. CM are deduced from KM by taking
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averages over the velocity variable (see section 4.2.1). Therefore, CM involve a reduced
description of the velocity statistics of the KM to a small number of its moments.

In general, CM or KM are more efficient than IBM for large crowds because their
computational time does not increase with the number of agents. However, they suffer
from different drawbacks, such as a reduced validity range due to the necessary recourse to
closure relations, as detailed below. Nonetheless, CM are invaluable tools for large-scale
analysis and prediction of crowd behavior. Therefore, it is important to firmly base the
derivation of CM on their small-scale IBM counterpart. The literature on the derivation
of CM from microscopic models (IBM or CA) is scarce (see e.g. [1, 15, 17, 21]). The
present paper addresses this question and intends to propose a hierarchy of KM and CM
based on the IBM developed in [53].

The psychological literature shows that pedestrians can estimate the positions and
velocities of moving obstacles such as other pedestrians with fairly good accuracy [22].
Therefore, the subjects are able to process this information in order to determine the
dangerousness level of an encounter [66]. Taking these considerations into account, the
heuristic-based model of [53] proposes that pedestrians follow a heuristic rule composed of
two phases: a perception phase and a decision-making phase. In the perception phase, the
subjects make an assessment of the dangerousness of the possible encounters in all the pos-
sible directions of motion. In the decision-making phase, they turn towards the direction
which maximizes the distance walked towards their target while avoiding encounters with
other pedestrians. In this sense, in the game theoretical sense, the pedestrians choose the
Nash equilibrium as the new direction of motion. Game theoretical approaches of traffic
have already been considered (see e.g. [62]).

The goal of this paper is to derive a CM from this heuristic-based IBM. With this
aim, the time-discrete IBM of [53] is first replaced by a time-continuous IBM and noise
is added to account for some uncertainty in the pedestrian velocity. From this time-
continuous IBM, a KM is introduced. The KM describes the evolution of the probability
distribution function of pedestrians in a phase space composed of position, velocity and
target direction. For the sake of simplicity, we assume that the pedestrian speed remains
constant and we discard any slowing down induced by close encounters. We do not develop
any rigorous theory of the passage from the IBM to the KM [12, 16].

The passage from the KM to the CM is realized by taking the velocity moments of
the distribution function. In doing so, some closure relations are needed otherwise the
hierarchy of moments is infinite. We propose three distinct closure relations. The first one
assumes a monokinetic distribution function. In other words, the velocity distribution is
assumed to be a Dirac delta at the mean velocity. Such a monokinetic Ansatz can only be
valid in the noiseless case but provides an exact solution of the KM. In the second closure
relation, the velocity distribution function is supposed to be a von Mises-Fisher (VMF)
distribution [67]. It is adapted to situations where the noise is non-zero. In these first two
closures, the resulting macroscopic model is a system consisting of a mass conservation
equation and an evolution equation for the mean velocity of each ensemble of pedestrians
sharing the same target direction.

The last closure is based on a formal hydrodynamic limit. It can be performed in
the restrictive situation where (i) the pedestrian interactions can be approximated by
spatially local ones and (ii) the interaction region of the subjects is isotropic (i.e. there
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is no blind zone behind the subjects). The closure relies on a Local Thermodynamical
Equilibrium (LTE) obtained through the solution of a fixed point equation. It expresses
that each ensemble of pedestrians has found its optimal mean velocity in the midst of the
other ones, i.e. is a Nash equilibrium in the game-theoretical sense. This example fits in
the general framework relating kinetic theory and game theory which can be found in [28]
and which bears analogies with the theory of Mean-Field Games [47]. In a companion
paper [24], the same methodologies are applied to the model of [56] based on a mechanical
view of pedestrian encounters.

The outline of the paper is as follows. In section 2 we review the IBM of [53]. In
sections 3 and 4, we successively derive the KM and the CM with the three possible
closure relations. The resulting models are discussed in 5. Finally, a conclusion is drawn
in section 6.

2 The Heuristic-Based model of pedestrian dynamics

2.1 Principles

The heuristic-based model of [53] proposes that pedestrians follow a rule composed of two
phases: a perception phase and a decision-making phase.

In the perception phase, the key observables are the distance-to-interaction (DTI), the
time-to-interaction (TTI) and the minimal distance (MD). Let us first examine a binary
encounter with another pedestrian (see Fig. 1).

Definition 2.1 Consider a pedestrian (the subject) at a given location and time moving
with a given velocity. Suppose that this pedestrian interacts with a single other pedestrian
(the collision partner) who possibly has a different velocity but whose location at the same
time is close. In this encounter, we define the following quantities:
(i) The interaction point is the point on the subject’s future or past trajectory where the
distance to the collision partner is minimal, assuming that both agents move in straight
line with a constant speed.
(ii) The Minimal Distance (MD) is this minimal distance between the subject and his
collision partner.
(iii) The Distance To Interaction (DTI) is the distance which separates the subject’s cur-
rent position to the interaction point. The DTI is counted positive if the interaction point
will be reached in the future of the subject and negative if the interaction point has been
crossed in the past.
(iv) The Time-To-Interaction (TTI) is the time needed by the subject to reach this inter-
action point from his current position (counted positive if this time belongs to the future
of the subject and negative if it belongs to the past).

Remark 2.1 (i) If the TTI is negative (i.e. the interaction point has been reached in the
past and the subject and his collision partner are now moving away from each other), or
if the MD is above a certain threshold (equal to the subjects’ diameter, possibly augmented
by some safe-keeping distance), then, no interaction occurs and the DTI is set to infinity.
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(ii) Because the subjects have supposedly perfect knowledge of their own and partner’s
positions and velocities, we assume that they are able to estimate the DTI, TTI and MD
with perfect accuracy.

We now define the DTI and the TTI when several collision partners are present (see
Fig. 2). We have:

Definition 2.2 When the subject is interacting with several collision partners at the same
time, the subject’s global DTI is the minimum of the DTI of all binary encounters. We
denote it by D(w) if w is the velocity of the subject.

The decision-making phase consists in changing the current cruising direction u to
a new cruising direction u′. It is the outcome of an optimization process. From the
knowledge of the DTI in each cruising direction, the subject chooses the direction which
maximizes the DTI, while keeping his direction of motion close to his target direction. In
[53], the decision making phase is performed at discrete times separated by equal time
intervals ∆t. In this phase, the cruising direction is updated through the following local
optimization procedure. Without any obstacle, the subject would choose a target direction
a (a is a unit vector of R2) and cruise with speed c. Therefore, after a time interval ∆t, in
the absence of obstacles, he would find himself at position XT = c∆t a (assuming that the
origin of the coordinate system is placed at his current position). The point XT is called
the target point. Now, in the presence of obstacles, the subject cruising in the direction
w (w being a unit vector in R2) will estimate impossible to move a distance larger that
the DTI. Therefore, choosing the cruising direction w will place the subject at a position
XE(w) = D(w)w. The point XE(w) is the estimated point reached in the direction w.
The decision making consists in choosing for new cruising direction u′ the direction such
that the estimated point XE(u

′) is the closest to the target point XT , among a set of
test directions w belonging to the vision cone Cu about the subject’s current direction of
motion u. Therefore, u′ is determined by

u′ = arg min
w∈Cu

|XT −XE(w)|, (2.1)

where arg min denotes the point that realizes the minimum. Such a realization of the
minimum may not be unique, but we will discard this possibility as non-generic. This
decision-making phase is illustrated on Fig. 3.

This decision-making rule implicitly states how binary interactions are combined. This
combination is not a mere superposition, as in the classical social force model [35, 37, 38],
but a highly nonlinear operation involving the solution of an optimization problem. In
[52], it is shown that this model provides a better account of some of the most striking
emergence phenomena in crowds, such as spontaneous lane formation in bidirectional
motion.

In the next two sections, we make all these considerations mathematically explicit.

2.2 Perception phase

We consider a pedestrian i located at a position xi(t), with a velocity vi. He interacts
with a collision partner j located at a position xj(t) which has a velocity vj. Figure 4
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vj

xj

xi int

xj int

vixi MD

DTI

Figure 1: The Minimal Distance MD and the Distance-To-Interaction (DTI). The MD
is the smallest distance which separates the two pedestrians i and j supposing that they
cruise on a straight line at constant velocities vi and vj . The point on pedestrian i’s tra-
jectory where the minimal distance is attained is the interaction point xi int of pedestrian i
in his interaction with pedestrian j. The MD is the distance between xi int and xj int. The
DTI is the distance which separates the current pedestrian position xi to the interaction
point xi int. The Time-To-Interaction (TTI) is the time needed by pedestrian i to reach
the interaction point from his current position. Clearly, TTI = DTI/|vi|.

xj

vk

xk

xi

vj

vi

DTI(j)

DTI(k)

Figure 2: Perception phase: the Distance-To-Interaction (DTI) of a given pedestrian in
the case of several simultaneous encounters is the minimum of the DTI of the individual
encounters. In this figure, the DTI of pedestrian i with pedestrian j (denoted by DTI(j))
is smaller than that with pedestrian k (denoted by DTI(k)). Therefore, the DTI of
pedestrian i is DTI(j).
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u

XT

XE(w)

Target direction a
New cruising direction u′

The vision cone Cu

XE(u
′)

XT and the curve w → XE(w)
Closest distance between

Direction w

Figure 3: Decision-making phase. The new cruising direction u′ is chosen such that the
estimated point XE(u

′) in this direction is the closest to the target point XT . The tested
cruising directions w (with associated points XE(w)) are restricted to the vision cone Cu

of the pedestrian (where u is the current cruising direction).

gives a schematic picture of the geometry of the collision. The goal of this section is to
compute τint, Dint, Dmin, respectively the TTI, DTI and MD of walker i in his interaction
with pedestrian j (see Definition 2.1).

Lemma 2.3 We have:

τint = −(xj − xi) · (vj − vi)

|vj − vi|2
, (2.2)

Dint = −(xj − xi) · (vj − vi)

|vj − vi|2
|vi|, (2.3)

Dmin =
(

|xj − xi|2 −
(

(xj − xi) ·
vj − vi
|vj − vi|

)2
)1/2

. (2.4)

Proof: The distance D(t) between the two particles at time t is given by

D2(t) = |xj + vjt− (xi + vit)|2

= |vj − vi|2
(

t +
(xj − xi) · (vj − vi)

|vj − vi|2
)2

+ |xj − xi|2 −
(

(xj − xi) · (vj − vi)
)2

|vj − vi|2
, (2.5)

denoting by xi and xj the positions of the two particles at time 0. This quadratic function
of time is minimal at the time t = τint given by (2.2), which gives the value of the TTI.
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vi

xj

vj

xi

vj − vi

this distance
divided by |vj − vi|
TTI = this distance

MD =

Figure 4: Geometry of a collision: The TTI is the projected distance of the two pedestrians
on the direction of the relative velocity vj−vi, divided by the norm of this relative velocity
|vj−vi|. The DTI is the TTI times the velocity of the pedestrian. The MD is the projected
distance of the two pedestrians on the normal direction to the relative velocity.

Then, the DTI Dint of particle i is obviously given by the distance traveled by this particle
during the TTI, i.e. Dint = τint |vi|. This leads to (2.3). Finally, the MD Dmin is given by
the minimal value of (2.5), i.e. Dmin = D(τint), which leads to (2.4).

If (2.2) and (2.3) give negative values for the TTI and DTI, it means that there is no
threat of collision in the future times, as pedestrians are walking away from each other.
Therefore, some interaction occurs in the future if and only if (xj − xi) · (vj − vi) < 0.
Furthermore, if the MD is larger than a certain threshold R identified as the diameter
of the individuals, plus a certain safe-keeping distance, the interaction will no longer be
perceived as a collision threat. In both cases, the DTI and TTI are set to infinity. With
these additional features, we now define the DTI and TTI as

Definition 2.4 We define: Dint and τint as:

τint =

∣

∣(xj−xi)·(vj−vi)

∣

∣

|vj−vi|2
, Dint =

∣

∣(xj−xi)·(vj−vi)

∣

∣

|vj−vi|2
|vi|,

if
(

|xj − xi|2 −
(

(xj − xi) · vj−vi
|vj−vi|

)2
)1/2

≤ R, and (xj − xi) · (vj − vi) < 0,











(2.6)

τint = +∞, Dint = +∞, otherwise . (2.7)

2.3 Decision-making phase

The collision avoidance model of [53] uses the elements of collision perception reviewed in
section 2.2. In this model, the decision of a new cruising direction taken by the pedestrian
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reflects the balance between two antagonist goals: collision avoidance on the one hand
and maintenance of the target direction on the other hand. The goal of the present paper
is to investigate the role of the cruising direction. Consequently, we discard the variations
of the cruising speed. We assume that all pedestrians move with constant speed equal to
c. Therefore, |vi| = |vi| = c and we let

vi = cui, vj = cuj, |ui| = |uj| = 1.

This assumption prevents us to take into account one of the features of the model of
[53], namely that pedestrians slow down or stop in case of very close encounters. This
restricts the validity of the present paper to low densities. In the present paper, we will
also discard fixed obstacles.

The model follows the lines of [53], with some simplifications of the expressions of the
collision avoidance response. We assume a time discrete model with time steps ∆t. During
this time step, the pedestrian moves according to the vector vi∆t. Then, he updates his
velocity and adopts a new velocity. For this purpose, he explores all possible velocity
directions w and computes the minimum of the DTI with the other pedestrians in the
direction w. Let us denote by Dij(w) the DTI with pedestrian j assuming that i moves
in the direction w. If there are no close encounters, we let this quantity be equal to the
distance traveled by the pedestrian during ∆t, i.e. c∆t. In any case, we limit Dij(w) by
this quantity. Then, according to (2.6), (2.7), we have:

Dij(w) =























min
(

∣

∣(xj − xi) · (uj − w)
∣

∣

|uj − w|2 , c∆t
)

if (xj − xi) · (uj − w) < 0,

and |xj − xi|2 −
(

(xj − xi) · uj−w

|uj−w|

)2 ≤ R2,

c∆t otherwise.

(2.8)

For physical consistency, we should have R < c∆t, as the typical diameter of a pedestrian
should be much less than the distance traveled by a subject between two velocity updates.

Then, we define the minimum Di(w) of all the DTI by taking the minimum of Dij(w)
over all partner pedestrians. The anisotropy of human vision is taken into account by
restricting the set of partner pedestrians to those belonging to the vision cone of pedestrian
i. Introducing a threshold number κ ∈ [0, 1], this vision cone is centered at xi and has half
angle cos−1 κ about the direction ui. The minimal DTI of the ith-pedestrian is therefore
defined by :

Di(w) = min {Dij(w), j = 1, . . . , N, j 6= i,
xj − xi

|xj − xi|
· ui ≥ κ}, (2.9)

where N is the total number of pedestrians. Finally, the new direction of motion u′
i of the

i-th pedestrian is the direction w that minimizes the distance between the point reached
after traveling a distance Di(w) in this direction and the point reached after traveling a
distance c∆t in the target direction ai. Therefore, the new direction of motion u′

i is found
by solving the following minimization problem:

u′
i = arg min

w∈S1 |w·ui≥κ
|Di(w)w − c∆t ai|2, (2.10)
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where again, the test directions w are restricted to the vision cone of pedestrian i. We
denote by S1 the set of vectors of R2 of unit norm.

Remark 2.2 We note that the minimization problem (2.10) is not convex and may have
multiple solutions. We will discard this occurrence as non-generic.

2.4 Summary of the Heuristic-Based IBM model

We now consider a collection of N point particles with positions xn
i ∈ R2, velocity direc-

tions un
i ∈ S1 at time tn = n∆t and target direction ai ∈ S1, and i ∈ {1, . . . , N}. The

dynamics is as follows:

xn+1
i = xn

i + c∆t un
i , (2.11)

un+1
i = arg min

w∈S1 |w·un
i ≥κ

|Dn+1
i (w)w − c∆t ai|2, (2.12)

with

Dn+1
i (w) = min {Dn+1

ij (w), j = 1, . . . , N, j 6= i,
xn+1
j − xn+1

i

|xn+1
j − xn+1

i | · u
n
i ≥ κ}, (2.13)

and

Dn+1
ij (w) =































min
(

∣

∣(xn+1
j − xn+1

i ) · (un
j − w)

∣

∣

|un
j − w|2 , c∆t

)

,

if (xn+1
j − xn+1

i ) · (un
j − w) < 0,

and |xn+1
j − xn+1

i |2 −
(

(xn+1
j − xn+1

i ) · un
j −w

|un
j −w|

)2 ≤ R2,

c∆t otherwise.

(2.14)

We now make some comments on the position update rule (2.11). Since the pedes-
trian can only walk a distance D(un

i ) in the direction un
i before colliding with another

pedestrian, it would appear more sensible to use the formula xn
i +D(un

i ) u
n
i . However, in

the present model, the pedestrian speed is supposed equal to one. Therefore, this update
can only provide the position at an intermediate time tn +D(un

i )/c < tn+1. This leads to
position updates at different times for the different pedestrians. In order to derive a time
continuous model, it is more convenient to keep position updates at constant time-steps,
which justifies the choice made in (2.11). In the limit ∆t → 0 in (2.11) (but keeping ∆t
finite in (2.12), (2.14)), the quantity c∆t tends to zero and eventually becomes smaller
than D(un

i ). Then, the objection formulated at the beginning of this paragraph disap-
pears. In the next section, we first propose a time-continuous model based on this limit,
and then deduce a mean-field kinetic model from it.

3 Mean-field kinetic model

3.1 Methodology

The goal of this section is to propose a time and space continuous kinetic model (KM).
With this aim, we first convert the previous time-discrete IBM into a time-continuous
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one. This conversion consists in replacing the sudden change of the velocity every ∆t
time intervals, by a continuous one.

The difficulty with writing such a time-continuum model comes from the ’roughness’
of the rules of the time-discrete IBM. For this reason, we regularize the time-discrete
dynamics in two ways. First, in the perception phase, we replace the distance to the closest
encounter by an average distance to the possible encounters in some interaction region.
We propose the use of an harmonic average which closely approximates the minimum
used in the original model. The use of averages over certain interaction regions is found
in many classical swarm models, such as [2, 20, 29, 31, 33, 65], but the introduction
of harmonic averages is new. Second, in the decision-making phase, the jump to the
direction of motion which maximizes the distance walked towards the target is replaced
by a continuous directional change determined by a velocity potential. This supposes
that the subjects choose their new cruising direction close to the previous one, which
looks realistic.

A final modification of the IBM is to add some noise in the pedestrian velocity updates.
This noise accounts for various effects such as the uncertainties in the estimations of the
interaction partner velocities, the variability of the subjects’ responses to interactions,
the possibility that the subjects react to some unpredicted stimuli, etc. For KM, the
introduction of noise in the particle velocity update results in diffusion in velocity space
which produces solutions with smooth velocity profiles. This has important consequences
for the derivation of CM from KM, as it supports the use of smooth macroscopic closures.
Such smooth closures will be at the heart of the VMF closure and of the hydrodynamic
limit methodologies which will be described in Sections 4.3 and 4.4 respectively.

3.2 Modified time-continuous IBM

We consider the following time-continuous stochastic model for the pedestrian positions
xi(t) and velocity directions ui(t):

dxi

dt
= c ui(t), (3.1)

dui = Fi(t)dt+
(

(
√
2d ◦ dBi(t)) · u⊥

i

)

u⊥
i , (3.2)

where Fi(t) is a force term and d is the noise intensity (supposed uniform among pedestri-
ans). The term dBi(t) stands for the standard white noise and the symbol ’◦’ means that
the stochastic differential equation must be understood in the Stratonovich sense. The
force term Fi(t) is constructed below in such a way that it remains orthogonal to ui(t), i.e.
Fi(t) · ui(t) = 0 and the noise term

√
2d dBi(t) is projected onto the orthogonal vector u⊥

i

to ui. These facts, together with the use of the Stratonovich definition of the Stochastic
Differential Equation, maintain ui on the one-dimensional unit sphere i.e. |ui(t)| = 1,
provided that |ui(0)| = 1 initially [45].

The force term is defined as follows. First, we replace the ’min’ in (2.13) by an average
over neighboring particles located in the i-th pedestrian interaction region. We choose an
harmonic average, which has the property to give large weights to the small values of the
quantity to be averaged. In this way, the harmonic average mimics closely the outcome
of the ’min’ operation in (2.13). The i-th pedestrian interaction region is defined as the
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angular sector centered at xi(t), with axis ui(t), semi-angle cos−1 κ and radius δi(t). The
set Si(t) of subjects belonging to the i-th pedestrian interaction region is:

Si(t) = {j ∈ {1, . . . , N} | |xj(t)− xi(t)| ≤ δi(t) and
xj(t)− xi(t)

|xj(t)− xi(t)|
· ui(t) ≥ κ}. (3.3)

The angle cos−1 κ is the semi-angle of the human vision cone (say typically π/2, i.e. κ = 0).
The value of δi(t) is linked to the local inter-particle distance and will be estimated later
on. The number of elements of Si(t) is denoted by #Si(t).

We then consider the harmonic average of the elementary DTI with all collision part-
ners in the interaction region:

D−1
i (w, t) = max

{ 1

#Si(t)

∑

j∈Si(t)

D−1
ij (w, t),

1

L

}

, (3.4)

where the ’max’ has been introduced to bound the average for reasons that will be ex-
plained below and where the DTI is defined like in (2.14):

D−1
ij (w, t) =































min
( |uj(t)− w|2
∣

∣(xj(t)− xi(t)) · (uj(t)− w)
∣

∣

,
1

ℓ

)

,

if (xj(t)− xi(t)) · (uj(t)− w) < 0,

and |xj(t)− xi(t)|2 −
(

(xj(t)− xi(t)) · uj(t)−w

|uj(t)−w|

)2 ≤ R2,

0 otherwise.

(3.5)

The quantity ℓ is a lower cut-off for Dij because the elementary DTI can be arbitrarily
small. In reality, if the DTI is too small, the pedestrian lowers his velocity or even
stops. This feature is not taken into account in the present model, where we only allow
directional changes. Therefore, to cope with this situation, our model pedestrian would
have to develop very large angular accelerations, which is unrealistic. The parameter ℓ is
introduced to bound the forces and thus prevent the dynamics to become too singular in
this situation. In the situations where the elementary DTI are large (which corresponds
to the second alternative of (3.5)), we just set them equal to ∞, so that they are not
taken into account in the average (3.4), which computes the global DTI. The bound of
the global DTI by c∆t is realized by the parameter L as described now.

Indeed, the quantity L stands for the distance walked by the pedestrian between two
velocity updates (i.e. L = c∆t in the discrete model). Of course, if there are no collision
partners (i.e. Si(t) = ∅ is the vacuum set), or if the elementary DTI with the available
collision partners are large, the pedestrian will be able to walk this distance L without
performing a velocity update. Therefore, we bound Di by L thanks to the ’max’ in (3.4).
In practice, we have ℓ ∼ R ≪ L. Indeed, the lower cut-off for the elementary DTI is of
the order of the size of a subject, while the free walking distance between two velocity
updates is much larger.

We now define the i-th pedestrian potential function Φt
i(w) for unit vectors w ∈ S1

by:

Φt
i(w) =

k

2
|Di(w, t)w − Lai|2. (3.6)
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The coefficient (kL2)−1 gives the order of magnitude of the potential and of the force. By
(3.2) and the fact that the velocity u is dimensionless, the force and consequently (kL2)−1

have the physical dimension of a reaction rate. Therefore, we can view the quantity
(kL2)−1 as providing the typical magnitude of the pedestrian reaction. The force Fi(t) is
defined by

Fi(t) = −∇wΦ
t
i(ui(t)) (3.7)

= −k
(

(

Di(ui(t), t)− Lai(t) · ui(t)
)

∇wDi(ui(t), t)

−Di(ui(t), t)L (ai(t) · ui(t)
⊥)ui(t)

⊥
)

. (3.8)

We note that gradients of functions defined on S1 are tangent fields to S1. Therefore,
by formula (3.7), Fi(t) is orthogonal to ui(t) as it should. This is reflected in (3.8). The
first term is proportional to ∇wDi(ui(t), t), while the second one is proportional to u⊥

i ,
and both are orthogonal to ui(t).

Definition (3.7) reflects the fact that, under the force Fi, the pedestrian decreases his
potential Φt

i. Therefore, the pedestrian turns towards the direction of the local minimum
of the attraction basin of Φt

i to which he belongs at time t. This rule can be viewed
as a local version of the global minimum rule set up by (2.12). Of course, this local
minimum may not be the global one expressed by (2.12). However, whether in actual
life, a pedestrian spontaneously chooses the global minimum or a local one close to his
current direction of motion is not clear. Therefore, to our opinion, this local rule is as
legitimate as the global one, until experiments can clarify this point. Of course, the two
rules coincide if the local minimum is equal to the global one. So the discrepancy between
them may be quite small in practice.

3.3 Mean-field kinetic model

We now introduce a statistical description of the system. Instead of using the ’exact’
positions, velocities and preferred directions of pedestrians, we rather describe the system
in terms of the probability distribution f(x, u, a, t). Specifically, f(x, u, a, t) dx du da is
the probability of finding pedestrians in a small physical volume dx about point x, within
an angular neighborhood du of velocity direction u, and within an angular neighborhood
da of preferred direction a at time t. We recall that x ∈ R2, u, a ∈ S1. If there are
no interactions between the pedestrians, i.e. if the acceleration term F is due to purely
external causes, f(x, u, a, t) can be rigorously proved to satisfy the following Fokker-Planck
equation:

∂tf + cu · ∇xf +∇u · (Ff) = d∆uf. (3.9)

This equation is a consequence of Ito’s formula of stochastic calculus. The left hand-
side is a transport operator. It expresses the material derivative of f in the phase space
spanned by (x, u), due to the motion of the particles with velocity cu and acceleration
F . The right-hand side is a velocity diffusion term which comes from the velocity noise.
Let θ be the angle between u and the first coordinate direction. Then, u = (cos θ, sin θ),
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u⊥ = (− sin θ, cos θ), and each term of (3.9) is written as follows:

u · ∇xf = cos θ ∂x1f + sin θ ∂x2f, ∇u · (Ff) = ∂θ(Fθf), ∆uf = ∂2
θf,

where the force term F = Fθu
⊥ is by definition orthogonal to u because |u| = 1.

We note that there is no operator acting on the a-dependence of f . This is because
we assume that the target direction a is a quantity attached to the agents which is not
changed with time. This assumption could easily be modified to take into account a
possible change of the target direction with the motion of the pedestrians. However, even
with this simplifying hypothesis, the statistics of target directions has a definite influence
on the dynamics through the interaction force described below.

Here, the acceleration term F is not due to external forces but to interactions between
the particles. So the rigorous derivation of (3.9) is more difficult and is left to future work
(see e.g. [12]). The acceleration F is coupled to f through continuous equivalents of (3.7),
and is written:

F (x, u, a, t) = −∇wΦ(x,u,a,t)(u), (3.10)

where Φ(x,u,a,t)(w) is the potential of a pedestrian at time t located at x with velocity u
and target velocity a. The potential is a function of the test direction w. It is given by

Φ(x,u,a,t)(w) =
k

2
|D(x,u,t)(w)w − La|2, (3.11)

in terms of the DTI D(x,u,t)(w) of pedestrians located at position x at time t with velocity
u in the test direction w.

To compute the DTI, we first define the interaction region of such a pedestrian by:

S(x, u, t) = {y ∈ R
2 | |y − x| ≤ δ(x, t) ,

y − x

|y − x| · u ≥ κ}, (3.12)

where δ(x, t) will be estimated later on. Then, the continuous equivalent of (3.5) leads to:

D−1
(x,u,t)(w) = max

{∫

y∈S(x,u,t)

∫

(v,b)∈T2 D̃
−1(y − x, v − w) f(y, v, b, t) dy dv db

∫

y∈S(x,u,t)

∫

(v,b)∈T2 f(y, v, b, t) dy dv db
,
1

L

}

.(3.13)

We have denoted by T2 the two-dimensional torus T2 = S1 × S1. In (3.13), the quantity
D̃(y − x, v − w) is the elementary DTI of a pedestrian located at position x and velocity
w in the encounter with a particle located at y and having velocity v. It is given by:

D̃−1(y − x, v − w) =



























min
( |v − w|2
∣

∣(y − x) · (v − w)
∣

∣

,
1

ℓ

)

,

if (y − x) · (v − w) < 0,

and |y − x|2 −
(

(y − x) · v−w
|v−w|

)2 ≤ R2,

0 otherwise.

(3.14)

The significance of formulas (3.13) and (3.14) and the roles of the parameters ℓ and L are
the same as in the time-continuous IBM of section 3.2.
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Collecting (3.13) and (3.14) allows us to compute the potential Φ(x,u,a,t)(w) given by
(3.11). After computing the gradient, the force (3.10) has the expression:

F (x, u, a, t) = −k
(

(

D(x,u,t)(u)− La · u
)

∇wD(x,u,t)(u)

−D(x,u,t)(u)L (a · u⊥)u⊥
)

. (3.15)

Now, we can provide an estimate of δ(x, t). As the density increases, the mean inter
particle distance decreases like N−1/2(x, t) where N(x, t) is the local density:

N(x, t) =

∫

(u,a)∈T2

f(x, u, a, t) du da. (3.16)

Therefore, the DTI should decrease in the same proportion. One way to achieve this
scaling is by taking δ(x, t) ∼ N−1/2(x, t). Indeed, since D̃(y − x, v − w) is of the order of
|y−x| (by (3.14)), the average DTI D(x,u,t)(w) is of the same order. And since |y−x| ≤ δ,
we obtain the expected scaling of D(x,u,t)(w) like N

−1/2(x, t). In practice, we need to take

δ(x, t) = C N−1/2(x, t). (3.17)

with C sufficiently larger than 1 to ensure that the estimate (3.13) will take into account
enough pedestrians.

Finally, the KM consists of the kinetic equation (3.9), with the acceleration computed
through (3.15).

3.4 Mean-field kinetic model: discussion

The mean-field model expresses how the statistical distribution of the pedestrians in
position, velocity and target direction evolves with time. This evolution combines a
transport operator (left-hand side of (3.9)) which describes pedestrian motion towards
their target direction and collision avoidance, and a velocity diffusion operator (right-
hand side of (3.9)), which models velocity uncertainty. The pedestrian speed c is supposed
constant because the model focuses on directional changes only. Directional changes are
modeled through a force term F (3.15), which describes how pedestrians find the best
compromise between their target and the necessity of avoiding pedestrians passing by.

The force F is tailored to decrease the potential function Φ(x,u,t)(w). This potential
describes how well the target point is approached when the pedestrian (initially located
at position x, velocity u and target velocity a at time t) moves in direction w (formula
(3.11)). For a set of test velocities w, the pedestrian computes his DTI D̃(y − x, v − w)
with a pedestrian located at y with velocity v (formula (3.14)) and averages it over all
pedestrians located in his vision cone S(x, u, t) (formula (3.12)), giving rise to D(x,u,t)(w)
(formula (3.13)). This averaged DTI provides him with an estimate of the distance he
can move in the direction w and allows him to compute his potential Φ(x,u,t)(w). Finally,
the pedestrian turns to ensure the decay of the potential and to get closer to his goal
(formula (3.10)). The interaction term is spatially non-local, through (3.13). In the next
section, we derive a spatially local approximation of this non-local term.
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3.5 Mean-field kinetic model with local interaction

If we observe the system at a large distance, the various length scales involved in the
interaction terms appear to be small. Therefore, under this assumption, it is legitimate
to assume that there exists a small dimensionless quantity η ≪ 1 such that

δ = ηδ̂, R = ηR̂, L = ηL̂, ℓ = ηℓ̂, (3.18)

where all ’hat’ quantities are assumed to be O(1). Simultaneously, we assume that the
pedestrian reaction rate remains O(1). We recall that the pedestrian reaction rate is
measured by the coefficient kL2 (see discussion after Eq. (3.6)). This assumption implies
that

η2k = k̂ = O(1). (3.19)

We introduce the change of variables y = x+ ηξ, with ξ ∈ R2, in (3.13) and keep only
the leading order terms in the expansion in powers of η. In this scaling Eqs. (3.9) and
(3.10) are unchanged, except that all unknowns f η, F η, Φη now depend on η. Then, the
condition y ∈ S(x, u, t) is equivalent to the condition ξ ∈ Cu,κ,δ̂, where

Cu,κ,δ̂ = {ξ ∈ R
2
∣

∣ |ξ| ≤ δ̂ and
ξ

|ξ| · u ≥ κ}. (3.20)

We have

D̃−1(y − x, v − w) =
1

η
D̂−1(ξ, v − w),

with

D̂−1(ξ, v − w) =



















min
( |v − w|2
∣

∣ξ · (v − w)
∣

∣

,
1

ℓ̂

)

, if ξ · (v − w) < 0,

and |ξ|2 −
(

ξ · v−w
|v−w|

)2 ≤ R̂2,

0 otherwise.

(3.21)

Consequently,

D−1
(x,u,t)(w) =

1

η
D̆−1

(x,u,t)(w),

with

D̆−1
(x,u,t)(w) = max







∫

ξ∈C
u,κ,δ̂

∫

(v,b)∈T2 D̂
−1(ξ, v − w) f(x+ ηξ, v, b, t) dξ dv db

∫

ξ∈C
u,κ,δ̂

∫

(v,b)∈T2 f(x+ ηξ, v, b, t) dξ dv db
,
1

L̂







.(3.22)

Finally, we have

Φ(x,u,a,t)(w) =
k̂

2

∣

∣D̆(x,u,t)(w)w − L̂a
∣

∣

2
.

Since we look for a local approximation, we assume that η ≪ 1. The distribution f
is assumed to evolve only on the large scale. Therefore, in the Taylor expansion of (3.22)
with respect to η, we may keep only the leading order term and neglect the higher order
ones. As a result of this approximation, ξ disappears from the arguments of the function
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f in both the numerator and denominator. The integration with respect to ξ can thus be
performed beforehand, leading to the quantity ∆−1

κ,δ̂
(u, v − w) defined by

∆−1

κ,δ̂
(u, v − w) =

1

Area(Cu,κ,δ̂)

∫

C
u,κ,δ̂

D̂−1(ξ, v − w) dξ, (3.23)

and Area(Cu,κ,δ̂) is the two-dimensional area of Cu,κ,δ̂. This leads to the following expression
of D̆, dropping all the hats for simplicity:

D̆−1
(x,u,t)(w) = max

{∫

(v,b)∈T2 ∆
−1
κ,δ(x,t)(u, v − w) f(x, v, b, t) dv db
∫

(v,b)∈T2 f(x, v, b, t) dv db
,
1

L

}

. (3.24)

Again, δ(x, t) is linked to the total density through (3.17). Graphical representations of
D̂−1 and ∆κ,δ can be found in Figs. 5 and 6 respectively. They illustrate that the function
∆κ,δ only depends on u · v−w

|v−w|
and |v−w| (i.e. two real variables) while a general function

of (u, v − w) depends on a vector of S1 and a vector of R2, i.e. three real variables. This
is due to the fact that D̂ itself only depends on ξ · (v−w) and |v−w|. The function ∆κ,δ

can be numerically computed a priori.
We note that the expression of ∆κ,δ simplifies in the special case κ = −1. In this case,

there is no blind zone: all their collision partners in the disk

Bδ = {ξ ∈ R
2
∣

∣ |ξ| ≤ δ}, (3.25)

are taken into account by the pedestrians. Consequently, the averaging (3.23) is over the
whole disk Bδ (see Fig. 7). The dependence of ∆−1,δ upon u disappears. The resulting
function, denoted by ∆δ(|v − w|), is given by:

∆−1
δ (|v − w|) = 1

Area(Bδ)

∫

Bδ

D̂−1(ξ, v − w) dξ. (3.26)

Additionally, it is an elementary matter to remark that when |v − w| → 0, we have

∆−1
δ (|v − w|) ∼ |v − w| ln |v−w|

ℓ
. Another consequence of this simplification is that the

potential Φ does not depend on u. It can be simply written Φx,a,t(w). This simplification
will be exploited in the hydrodynamic limit (see section 4.4).

We summarize this section: due to the assumption that f evolves on the large scale
only and thus can be taken constant in the interaction region of a given pedestrian, the
interaction force only depends on f at that location. This local approximation scaling
(3.18), (3.19) leads to the kinetic model (3.9) with a local evaluation of the force. The
force is still computed from the potential (3.11) through (3.10). However, the evaluation
of the DTI is now given by a local velocity average (3.24), where the velocity convolution
kernel ∆−1

κ,δ(u, v−w) can be analytically computed. In the simpler case where there is no
blind zone, the kernel reduces to a function of |v − w| only, and the potential Φx,a,t(w)
does not depend on u.
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ξ⊥

ξ‖v − w

ℓ

|ξ‖|

|v−w|

Figure 5: The function D̂(ξ, v − w). For a fixed value of v − w (in red), the parallel and
transverse components of ξ are respectively denoted by ξ‖ = ξ · v−w

|v−w|
and ξ⊥ = ξ−ξ‖. The

domain of definition of ξ → D̂(ξ, v − w) (domain where it is finite) is characterized by
ξ‖ < 0 and |ξ⊥| ≤ R (see (3.21)) and is the shaded blue area on the figure. The function

ξ → D̂(ξ, v − w) is constant along all vertical segments and has value
|ξ‖|

|v−w|
except in

the dark blue area where it is constant equal to ℓ. The transition happens along the line
ξ‖ = −ℓ|v − w| (the vertical blue line on the figure).

v − w

ξ⊥

Cu,δ

ξ‖

δ

cos−1 κ

u

Figure 6: The function ∆κ,δ(u, v−w) is obtained by averaging the function ξ → D̂−1(ξ, v−
w) (see Fig. 5) on the cone Cu,δ (represented by the green shaded area). The blue-green

shaded area is the intersection of the cone Cu,κ,δ and the support of ξ → D̂−1(ξ, v − w).
It highlights the fact that the function ∆κ,δ depends on u · v−w

|v−w|
and |v − w|.
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δ

The disk Bδ

ξ⊥

ξ‖v −w

Figure 7: Case κ = −1 (i.e. there is no blind zone: all collision partners in the disk Bδ

of radius δ are taken into account). The function ∆δ(|v − w|) is obtained by averaging
the function ξ → D̂−1(ξ, v − w) (see Fig. 5) on the disk Bδ (represented by the green
shaded area). The blue-green shaded area is the intersection of Bδ and the support of
ξ → D̂−1(ξ, v − w). The function ∆δ depends only on |v − w|.

4 Macroscopic model

4.1 Necessity of a closure Ansatz

Macroscopic models are obtained by taking averages of functions of the particle velocity
u over the distribution function f(x, u, a, t). The resulting macroscopic quantities are
e.g. the density ρ(x, a, t) or the mean velocity U(x, a, t) of pedestrians at position x with
target direction a at time t:

ρ(x, a, t) =

∫

u∈S1
f(x, u, a, t) du, (4.1)

U(x, a, t) =
1

ρ(x, a, t)

∫

u∈S1
f(x, u, a, t) u du. (4.2)

It is necessary to keep the dependence of the macroscopic quantities over the target
direction a. Indeed, in general, the statistics of the target directions is not known or may
change from situation to situation. In situations where the statistics of target directions
is known and does not change with time, it is also possible to introduce the total density
N(x, t) (already met at (3.16)) and the average velocity V (x, t) of the pedestrians at
position x and time t, irrespective of their target direction. The latter is defined by:

V (x, t) =
1

N(x, t)

∫

(u,a)∈T2

f(x, u, a, t) u du da.

In the present work, we will only consider CM which retain the statistics of target direc-
tions.
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To pass from the KM (3.9) to a CM for the quantities ρ and U , the most direct
method is the moment method. It consists in integrating the kinetic equation (3.9) with
respect to the particle velocity u, after pre-multiplication by polynomial functions of u.
Unfortunately, in general, this method does not yield a closed model for ρ and U because
higher order moments (i.e. integrals of higher order polynomials of u) may be involved
in the resulting system. These higher moments need to be expressed in terms of ρ and
U through a suitable closure relation. Closure relations are usually provided through an
Ansatz which expresses f itself as a function of ρ and U . The validity of this Ansatz is
subject to caution. When dissipative phenomena are present, such as in gas dynamics, it
is possible to justify it through the hydrodynamic limit (see a review on these questions
e.g. in [23]). Here, the hydrodynamic limit can be developed solely in the special case
where the interaction is local (as in section 3.5) and in the absence of any blind zone
behind the subject. We will first propose two other closure methodologies which apply to
general cases, but which cannot be justified by a hydrodynamic procedure.

The first closure scheme, referred to as the ’monokinetic closure’, is developed in sec-
tion 4.2. It is valid when there is rigorously no noise (i.e. no uncertainty in the pedestrian
velocities). It postulates a monokinetic distribution function: in the neighborhood of a
given location x at time t, all pedestrians having the same target direction a have the
same velocity U(x, a, t). In other words, in this neighborhood, the statistics of possible
velocities is given by a Dirac delta in the velocity variable, located at U(x, a, t). The
resulting CM belongs to the class of second-order models of traffic: it involves two bal-
ance equations for the mass and momentum densities respectively and bears analogies
with pressureless gas dynamics models [13, 14]. These models have somehow unpleasant
features, such as the possible formation of mass concentrations.

For this reason, a second closure scheme, referred to as the ’VMF closure’, is proposed
in section 4.3. The model supposes that some noise is involved in the pedestrian velocities;
this is indeed more realistic than the zero-noise assumption of the previous closure. The
distribution of velocities is supposed to be a von Mises-Fisher (VMF) distribution. The
VMF distribution is a natural extension of the standard Gaussian distribution for random
variables defined on the sphere [67]. Like in the monokinetic closure scheme, the resulting
CM belongs to the class of second-order models of traffic but the form of the momentum
equation has not been previously found anywhere else.

Finally, in section 4.4, we develop the hydrodynamic limit in the special case of a local
interaction with no blind zone. The hydrodynamic limit supposes that, for a pedestrian,
the process of turning towards the velocity which minimizes the potential Φ is very short.
Therefore, the velocity distribution can be approximated by an equilibrium which reflects
the instantaneous equilibrium between the turning process and the noise. Such a distribu-
tion, which will be our closure Ansatz, is called a ’Local Thermodynamical Equilibrium’
(LTE), by analogy to the standard terminology of statistical mechanics. The LTE is very
peaked around the velocity which minimizes the potential, with some spread due to the
noise. An important point is that, while the LTE depends on the potential, the potential
also depends on the LTE through the definition of the DTI. Therefore, the allowed DTI
are determined by a fixed point equation. The resulting LTE can be interpreted as a Nash
equilibrium of a game consisting for the pedestrians in finding the best compromise be-
tween reaching their target and avoiding collisions with other pedestrians. The framework
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for a game-theoretic interpretation of LTE can be found in [28]. The resulting model is a
first-order model, in the traffic terminology sense. It consists of a conservation equation
for the mass density, while the mass flux is determined functionally from the LTE, i.e.
from the DTI that have been found by solving the consistency equation.

4.2 Monokinetic closure

4.2.1 Monokinetic closure: derivation

In this section, in order to derive a macroscopic model, we assume a monokinetic distri-
bution function. For the monokinetic assumption to be valid, we need to remove the noise
term, and consider the following equation:

∂tf + cu · ∇xf +∇u · (Ff) = 0, (4.3)

coupled to (3.10). The monokinetic closure consists of the Ansatz:

f(x, u, a, t) = ρ(x, a, t)δU(x,a,t)(u), (4.4)

where δU(u) is the Dirac delta located at U (see a graphical representation at Fig. 8 (red
arrow)). Note that, by definition, U(x, a, t) ∈ S1 i.e. is a vector of norm 1. This Ansatz
means that there is only one definite velocity U(x, a, t) at any given point x, time t, for
any preferred direction a. It is easily shown [23] that the distribution (4.4) is an exact
solution of (4.3) provided that ρ and U satisfy the following set of macroscopic equations:

∂tρ+∇x · (cρU) = 0, (4.5)

∂tU + cU · ∇xU = F̄ (x, a, t), (4.6)

with F̄ (x, a, t) = F (x, U(x, a, t), a, t) and F given by (3.10). In other words,

F̄ (x, a, t) = −∇wΦ̄(x,a,t)(U(x, a, t)), with Φ̄(x,a,t)(w) = Φ(x,U(x,a,t),a,t)(w), (4.7)

and Φ given by (3.11). The potential Φ̄(x,a,t)(w) can be written:

Φ̄(x,a,t)(w) =
k

2
|D̄(x,a,t)(w)w − La|2, (4.8)

where D̄(x,a,t)(w) = D(x, U(x, a, t), w, t) is given by:

D̄−1
(x,a,t)(w) = max

{∫

y∈S̄(x,a,t)

∫

b∈S1
D̃−1(y − x, U(y, b, t)− w) ρ(y, b, t) dy db
∫

y∈S̄(x,a,t)

∫

b∈S1
ρ(y, b, t) dy db

,
1

L

}

(4.9)

with

S̄(x, a, t) = {y ∈ R
2 | |y − x| ≤ δ(x, t),

y − x

|y − x| · U(x, a, t) ≥ κ}, (4.10)

and the functions D̃(y − x, v − w) and δ(x, t) still given by (3.14) and (3.17).
We note that, by definition (4.7), F̄ is orthogonal to U . Then, multiplying (4.6)

scalarly by U and using that the operator ∂t + cU · ∇x is a derivative, we get:

(∂t + cU · ∇x)(|U |2) = 0.

Therefore, the constraint |U | = 1 is satisfied at any time provided it is satisfied at time
t = 0.
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Direction of U

VMF distribution MU (u)

Dirac delta distribution δU (u)

uy

ux

Figure 8: The VMF distribution (in blue) and the Dirac delta distribution (in red) as
functions of u in polar coordinates. The direction of the mean velocity U is given by
the black semi-line. The width of the VMF distribution about its maximum u = U is a
function of β(|U |). In both cases, the mean velocity U is a function of (x, a, t) determined
by the fluid model. We have |U | = 1 in the Dirac delta distribution case and |U | < 1 in
the VMF case.

4.2.2 Monokinetic closure: discussion

The model expresses the conservation of mass (4.5) and evolution of velocity (4.6). The
mass conservation equation (4.5) takes the form of a classical continuity equation and
expresses that the rate of change of ρ in any arbitrary small volume is solely due to the
mass flow across the boundary of this volume. The velocity equation (4.6) expresses that
the rate of change of U along the flow lines (i.e. the left-hand side of (4.6) which takes
the form of a material derivative of U) is proportional to the force F̄ exerted on these
particles. The target direction a does not explicitly appear in (4.5) and (4.6) except
through this force term which couples all target directions altogether.

The force term (4.7) describes how the bulk fluid velocity U changes in time: it
tends to decrease the potential (4.8), whose minima express the best satisfaction of the
target direction while avoiding collisions. The potential is computed as follows. By the
monokinetic assumption (4.4), all pedestrians within a given fluid element which have
the same target direction a also have the same velocity U(x, a, t). Then, the elementary
DTI of these pedestrians with pedestrians located at y and having target direction b is
computed. Again, by the monokinetic assumption (4.4), these particles have velocities
U(y, b, t). Therefore, this elementary DTI computed with the test velocity update w is
given by D̄(y− x, U(y, b, t)−w), where D̃(y−x, v−w) is the elementary DTI (see 3.14).
Then, these elementary DTI are averaged over particles located in the cone of vision of
x, defined at (4.10). This provides the averaged DTI D̄(x,a,t)(w) with test velocity update
w (formula 4.9). The average DTI is used to construct the potential Φ(x,a,t)(w) which
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expresses how far the pedestrian is from his target point when walking in the direction w.
The expression of the force term is non-local in space: it involves the complex average

(4.9) over a neighborhood of the point where the force evaluation is made. This non-
locality expresses the ability of the pedestrian to anticipate the likelihood of a collision
with the neighbors. However, a local version of this model can be designed, based on the
local version of the kinetic model of section 3.5. This local version is simply obtained by
replacing (4.9) by its local version issued from (3.24). It leads to

D−1
(x,a,t)(w) = max

{∫

b∈S1
∆−1

κ,δ(x,t)(U(x, a, t), U(x, b, t) − w) ρ(x, b, t) db
∫

b∈S1
ρ(x, b, t) db

,
1

L

}

, (4.11)

with the function ∆κ,δ(u, v − w) defined by (3.23). As seen in section 3.5, in the special
case κ = −1 (i.e. there is no blind zone behind the subject), the function ∆κ,δ(u, v − w)
is replaced by ∆δ(|v − w|), which does not depend on u. In this case, the DTI does not
depend on a and is given by the expression:

D−1
(x,t)(w) = max

{∫

b∈S1
∆−1

δ(x,t)(|U(x, b, t)− w|) ρ(x, b, t) db
∫

b∈S1
ρ(x, b, t) db

,
1

L

}

, (4.12)

In all these cases, the evaluation of the force still requires an integration in the target
direction variable.

Apart from the complex expression of the force term, this model belongs to the class
of pressureless gas dynamics models [13, 14]. Such models have some pathologies: they
do not guarantee that the monokinetic closure assumption (see Fig. 8 (red arrow)) is
preserved in time. Specifically, particle trajectories with same target direction a but
initially located at different positions x0 and x′

0 can meet at later times. This results
in the appearance of a discontinuity of U (because the two meeting particle trajectories
may have different velocities) and the blow-up of ρ. This classical phenomenon is similar
to the appearance of caustics in geometrical optics. The non-local force term F̄ (x, a, t)
at the right-hand side of (4.6) is likely to be too weak to repel the trajectories at close
encounters. To prevent this blow-up, it is necessary to introduce some kind of ’internal
energy’. This is the motivation for the VMF closure below.

4.3 VMF closure

4.3.1 VMF closure: derivation

In the previous section, it was not needed to take the moments of the noiseless kinetic
equation (4.3), since the monokinetic Ansatz (4.4) provides an exact solution of it. Here,
we will consider an Ansatz which is a priori not a solution of the kinetic equation (3.9)
(but which hopefully is close to one). But as a counterpart, we will be able to take into
account the noise term. With this aim, we take the first two moments of (3.9).

First, integrating (3.9) with respect to u leads to the mass conservation equation in
the same form as previously:

∂tρ+∇x · (cρU) = 0. (4.13)
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Indeed, the Fokker-Planck equation (3.9) is of the form

∂tf +∇x · (cuf) = ∇u · (A1 + A2), (4.14)

where

A1(u) = −Ff, A2(u) = d∇uf, (4.15)

are tangent vector fields to S1. Therefore, thanks to Stokes’s formula,
∫

u∈S1
∇u · (A1 + A2) du = 0.

Since u, x and t are independent variables, integration with respect to u commutes with
derivation with respect to t and x and, with the definitions (4.1), (4.2), the integral of
the left hand-side of (4.14) leads to the left-hand side of (4.13).

We now turn to the equation for ρU . Multiplying (4.14) by u and integrating with
respect to u leads to

∂t(ρU) +∇x · (cΣ) =
∫

u∈S1
∇u · (A1 + A2) u du, (4.16)

with the 2× 2 tensor Σ defined by

Σ =

∫

u∈S1
f u⊗ u du,

and u ⊗ u is a matrix of components (u ⊗ u)ij = ui uj. Thanks to Stokes’s formula, we
have:

∫

u∈S1
∇u · (A1 + A2) u du = −

∫

u∈S1
(A1 + A2) du. (4.17)

In particular, for A2, applying Stokes’s formula once more, we get
∫

u∈S1
(∇u · A2) u du = −d

∫

u∈S1
∇uf du = −d

∫

u∈S1
f u du = −dρU.

The other integrals, namely Σ and that related to A1 cannot be expressed analytically
from ρ and U . In particular, Σ involves second order moments of f with respect to u. To
proceed, we need a closure assumption.

By analogy with gas dynamics, we assume that the velocity distribution is a von Mises-
Fisher (VMF) distribution about the mean direction of U . The VMF distribution is what
generalizes the Gaussian measure to the circle and more generally, to spheres [67]. In the
present context, its expression is given by

MU(u) =
1

Z
exp{β (u · Ω)}, Ω =

U

|U | , (4.18)

The quantity Z is a normalizing constant such that MU is a probability density on S1:
∫

u∈S1
MU du = 1. (4.19)
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Then we have

Z =

∫

u∈S1
exp{β (u · Ω)} du.

Introducing the angle θ = (̂Ω, u), we can write:

Z =

∫ 2π

0

exp{β cos θ} dθ = 2πI0(β). (4.20)

We recall that Ik(x) denotes the modified Bessel function of the first kind:

Ik(x) =
1

π

∫ π

0

exp{x cos θ} cos(k θ) dθ, ∀x ∈ R, ∀k ∈ N.

The constant β plays the role of an inverse temperature: If β is large, MU(u) is extremely
peaked in the direction u = Ω while if β is small, MU(u) is almost isotropic. It will be
determined later on. A graphical representation of the VMF distribution MU(u) as a
function of u in polar coordinates is given at Fig. 8 (blue curve). The function MU(u) is
maximal at u = U . Its graphical representation is bell-shaped in a neighborhood of this
maximum with a width roughly proportional to

√
β.

Now, we assume the VMF closure Ansatz, namely that f is proportional to MU and
is written:

f(x, u, a, t) = ρ(x, a, t)MU(x,a,t)(u), (4.21)

where ρ(x, a, t) and U(x, a, t) are the moments (4.1) and (4.2) of f . That (4.21) satisfies
(4.1) is obvious in view of the normalization condition (4.19). However, that it satisfies
(4.2) requires a relation between β and |U | as we see now. Eq. (4.2) requires that

∫

u∈S1

1

Z
exp{β (u · Ω)} u du = U. (4.22)

We decompose u onto the direction spanned by Ω and its orthogonal:

u = (u · Ω)Ω + (u · Ω⊥)Ω⊥.

Inserting this decomposition into (4.22) and noting that the first term is an even function
of θ and the second one, an odd function of θ, we find that (4.22) is equivalent to:

∫

u∈S1

1

Z
exp{β (u · Ω)} (u · Ω) du = |U |.

or equivalently, to:

1

Z

∫ 2π

0

exp{β cos θ} cos θ dθ = |U |.

This equation can be put in the form

I1(β)

I0(β)
= |U |. (4.23)
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The left-hand side is a monotonically increasing function of β ∈ [0,∞) onto [0, 1) [25].
Therefore, as long as |U | < 1, there exists a unique β such that (4.23) holds. We will
denote this root by β = β(|U |).

That |U | should be less than 1 is a consequence of the kinetic model. Since the
microscopic velocities u are normalized, the norm of their average over the probability
MU should be less than 1. The parameter |U | is the classical order parameter of nematic
materials (see applications to swarm dynamics in [33, 25, 65]). If |U | is close to 0, then,
β is close to 0 and the distribution is almost isotropic. This indicates a disordered state,
with microscopic velocities u pointing in all possible directions, so that their average
almost cancels out. On the other hand, if |U | is close to 1, then β is very large and the
distribution is strongly peaked about the mean velocity Ω. This is the case where almost
all microscopic velocities are pointing in the direction of Ω.

Since Z depends on β through (4.20) and β depends on |U | through (4.23), we will
now write β = β(|U |), Z = Z(|U |). The VMF distribution (4.21) is now written (omitting
the dependences of ρ and U upon (x, a, t) for clarity):

f(u) = ρMU (u) =
ρ

Z(|U |) exp
{

β(|U |)
|U | (u · U)

}

. (4.24)

Now, with (4.24), the tensor Σ can be computed. Introducing again the angle θ, we
have:

Σ =

∫

u∈S1
f u⊗ u du =

1

Z

∫

u∈S1
exp{β (u · Ω)} (u⊗ u) du

=
ρ

Z

∫ 2π

0

(

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)

exp{β cos θ} dθ

=
ρ

Z

∫ 2π

0

(

1+cos 2θ
2

0
0 1−cos 2θ

2

)

exp{β cos θ} dθ

= ρ

(

1
2
(1 + I2(β)

I0(β)
) 0

0 1
2
(1− I2(β)

I0(β)
)

)

.

In the third line, the off-diagonal terms have been canceled out because sin θ is an odd
function of θ. Therefore, introducing

γ‖(|U |) = 1

2|U |2
(

1 +
I2(β)

I0(β)

)

, γ⊥(|U |) = 1

2|U |2
(

1− I2(β)

I0(β)

)

, (4.25)

with β = β(|U |), we can write Σ as:

Σ = ρ
(

γ‖(|U |) U ⊗ U + γ⊥(|U |) U⊥ ⊗ U⊥
)

. (4.26)

Since I2/I0 < 1, the matrix Σ is positive definite. The limit β → 0 is undefined since
|U | → 0 and U

|U |
has no definite limit. In the limit β → ∞, the matrix converges to

ρU ⊗ U , and we recover the corresponding term of the monokinetic closure (second term
at the left-hand side of (4.6)).
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The last term to be computed is the contribution of the force, i.e. the A1 term at
the right-hand side of (4.17). Using the first eq. (4.15) and (3.10), this contribution is
written:

−
∫

u∈S1
A1(x, u, a, t) du = ρ(x, a, t) F̄ (x, a, t),

F̄ (x, a, t) =

∫

u∈S1
F (x, u, a, t)MU(x,a,t)(u) du, (4.27)

with F (x, u, a, t) given by (3.10). The quantity F̄ (x, a, t), which has a similar physical
interpretation as in the monokinetic closure case (see (4.7)), is the total force exerted
on a ensemble of particles at position x and time t having same target direction a. The
computation of F (x, u, a, t) follows that of section 3.3 and is not repeated here. The only
change brought by the VMF closure is in (3.13), which can be written:

D−1
(x,u,t)(w) = max

{∫

y∈S(x,u,t)

∫

b∈S1
E−1(y − x, w, U(y, b, t)) ρ(y, b, t) dy db

∫

y∈S(x,u,t)

∫

b∈S1
ρ(y, b, t) dy db

,
1

L

}

. (4.28)

with

E−1(y − x, w, U) =

∫

v∈S1
D̃−1(y − x, v − w)MU(v) dv. (4.29)

The quantity E−1(y − x, w, U) can be computed once for all.
We now summarize the macroscopic model based on the VMF closure. It consists of

the two equations for the mass and momentum:

∂tρ+∇x · (cρU) = 0. (4.30)

∂t(ρU) +∇x ·
(

cρ
(

γ‖U ⊗ U + γ⊥ U⊥ ⊗ U⊥
))

= ρ F̄ − dρU, (4.31)

together with the expression (4.27) of the force F̄ . We have omitted the dependences of the
coefficients γ upon |U |. This is a system for ρ(x, a, t) and U(x, a, t). The target direction a
appears implicitly through the expression of the force F̄ which couples all target directions
together. The properties of this system, and particularly, its hyperbolicity, will be studied
in future work.

4.3.2 VMF closure: discussion

The interpretation of the two equations (4.30), (4.31) is the same as for the monokinetic
closure (see discussion at section 4.2.2). Eq. (4.30) expresses the mass conservation, while
eq. (4.31) describes how the mean velocity evolves in time. Compared to the monokinetic
closure, Eq. (4.31) is more naturally written in terms of the momentum ρU and presents
three major differences.

The first one is the expression of the transport term ∇x ·
(

cρ (γ‖ U⊗U + γ⊥ U⊥⊗U⊥)
)

,
which, compared to (4.6), involves two terms. The first one, proportional to U ⊗ U is
similar to the term involved in (4.6), but is multiplied by a coefficient γ‖(|U |) which is less
than 1. The second term, proportional to the tensor U⊥⊗U⊥, is unusual in fluid models.
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It arises from the VMF closure, itself justified by the fact that microscopic velocities are
constrained to be of norm 1. For such fluids, significant differences from classical fluid
dynamics models have already been found [25, 29]. Similar unconventional models have
been found even if the microscopic velocities are not constrained to be of norm 1 when
the particles are subject to a self-propulsion force [6]. The impact of this new term on
the hyperbolicity of the model will be studied in future work.

The second difference is the presence of a velocity damping term (second term at the
right-hand side of (4.31)). This damping term is produced by the noise. At the kinetic
level, the dynamics induced by the velocity diffusion operator is that of the heat equation
on the circle S1. It makes the velocity distribution function more and more isotropic.
Under this dynamics, the average velocity tends to zero which is what the damping term
at the right-hand side of (4.31) expresses.

The third difference is in the computation of the force term F̄ . It is constructed by
averaging elementary force terms over the probability distribution MU(u) (see (4.27)).
The potential of each elementary force term depends on the averaged DTI of the particles
belonging to the corresponding fluid element. This averaged DTI involves the average of
the elementary DTI over the probability distribution MU(u) again (formulas (4.28) and
(4.29)). The result of this procedure is a non-local expression of the force involving both
the mass and velocity distributions ρ and U .

We can derive a local version of the interaction force, using the local kinetic framework
of section 3.5. In this framework, the averaged DTI is given by:

D−1
(x,u,t)(w) = max

{
∫

b∈S1
E−1
κ,δ(x,t)(u, w, U(x, b, t)) ρ(x, b, t) db

∫

b∈S1
ρ(x, b, t) db

,
1

L

}

, (4.32)

with

E−1
κ,δ(u, w, U) =

∫

v∈S1
∆−1

κ,δ(u, v − w)MU(v) dv. (4.33)

The function Eκ,δ can be computed numerically.
In the special case κ = −1 (no restriction of the interaction region to a forward vision

cone), the function ∆κ,δ becomes independent of u and the formulas simplify into

D−1
(x,t)(w) = max

{
∫

b∈S1
E−1
δ(x,t)(w,U(x, b, t)) ρ(x, b, t) db
∫

b∈S1
ρ(x, b, t) db

,
1

L

}

, (4.34)

with

E−1
δ (w,U) =

∫

v∈S1
∆−1

δ (|v − w|)MU(v) dv, (4.35)

and ∆δ(|v − w|) given by (3.23). Again, the function E−1
δ (w,U) can be numerically

computed once for all. We note that D−1
(x,t)(w) does not explicitly depend on u. It results

that the potential does not depend explicitly on u either, and can be written

Φ(x,a,t)(w) =
k

2
|D(x,t)(w)w − La|2. (4.36)
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The elementary force can now be expressed by a gradient with respect to the u variable:

F (x, u, a, t) = −∇uΦ(x,a,t)(u). (4.37)

This was not possible before. Indeed, because of the explicit dependence of Φ on u, we
had to distinguish between the variables u and w in the expression of the force (3.10).
In the present case, thanks to (4.37), eq. (4.27) for the force F̄ (x, a, t) can be simplified.
Indeed, using Stokes formula in (4.27) together with (4.37), we get, for each component
k = 1, 2 and denoting by ek the k-th basis vector:

F̄k(x, a, t) = −
(
∫

u∈S1
∇uΦ(x,a,t)(u)MU(x,a,t)(u) du

)

ek

= −
∫

u∈S1
∇uΦ(x,a,t)(u)MU(x,a,t)(u) (ek · u⊥)u⊥ du

=

∫

u∈S1
Φ(x,a,t)(u)∇u ·

(

MU(x,a,t)(u) u
⊥
k u⊥

)

du,

which, after easy computations, leads to

F̄ (x, a, t) = β
(

|U(x, a, t)|
)

∫

u∈S1
Φ(x,a,t)(u)MU(x,a,t)(u) du

U(x, a, t)

|U(x, a, t)|

−
∫

u∈S1
Φ(x,a,t)(u)MU(x,a,t)(u)

(

1 + β
(

|U(x, a, t)|
)(

u · U(x, a, t)

|U(x, a, t)|
)

)

u du. (4.38)

Inserting (4.36) into (4.38) leads to an alternate expression of the force (in the case
κ = −1).

4.4 Hydrodynamic limit

4.4.1 Hydrodynamic limit: derivation

Here, we consider the situation of section 3.5. We assume that the various length scales
associated to the interactions between pedestrians are very small. Additionally, we assume
that κ = −1, i.e. the interaction region is the disk Bδ and there is no blind zone behind
the subjects (see (3.25)). In this case (see bottom of section 3.5), the potential does not
explicitly depend on u. In the present section, we take advantage of this simplification
to perform the hydrodynamic limit of the mean-field model (3.9). The hydrodynamic
limit consists in supposing that the changes in pedestrian velocities due either to the
interaction force F or to the noise with diffusion constant d occur on very short time
scales. To highlight this scaling assumption, we introduce a small parameter ε ≪ 1 and
rescale the force and diffusion constants in such a way that

F =
1

ε
F̂ , d =

1

ε
d̂. (4.39)

Dropping the ’hats’ for simplicity and writing all unknowns with a superscript ε, we
can write the mean-field model (3.9) with local interaction force and no blind zone as
follows:

∂tf
ε + cu · ∇xf

ε =
1

ε
QDfε

(f ε), (4.40)
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where the operator QDf
(f) (the so-called ’collision operator’ of kinetic theory) describes

the rate of change of the pedestrian velocities due to their interaction with the other
pedestrians and the noise. We parametrize the collision operator by the DTI Df . Be-
cause of the local interaction assumption, QDf

(f) operates only on u and a, leaving (x, t)
untouched. Therefore, we describe it as an operator acting on functions of f(u, a) only.
For a given function u ∈ S1 → D(u) ∈ R+, the collision operator is written

QD(f) = −∇u · (FD f) + d∆uf, (4.41)

where the force FD(u, a) is written in terms of the potential ΦD(u, a) by:

FD(u, a) = −∇uΦD(u, a), ΦD(u, a) =
k

2
|D(u)u− La|2. (4.42)

For a given function f(u, a), Df(u) is defined by

D−1
f (u) = max

{∫

(v,b)∈T2 ∆
−1
δf
(|v − u|) f(v, b) dv db

∫

(v,b)∈T2 f(v, b) dv db
,
1

L

}

, (4.43)

and ∆δ(|v − u|) is the known function given by (3.26). Finally, δf is given by

δf = C
(

∫

(v,b)∈T2

f(v, b) dv db
)−1/2

. (4.44)

It is an immediate matter to check that this sequence of definitions is equivalent to the
mean-field model (3.9) with local interaction force (3.10), (3.11) and (3.24), in the case
κ = −1 (up to the change of scale (4.39)). Here, we note that the first equation (4.42)
is equivalent to (3.10), because in the case κ = −1, the potential Φx,a,t(w) does not
explicitly depend on u. These two formulas are not equivalent if the potential (3.11)
depends explicitly on u, which is the case when κ > −1. This is why this section is
restricted to the case κ = −1.

Now, by inspecting (4.40) in the limit ε → 0, we deduce that f ε → f 0 where f 0 is the
solution of

QD
f0
(f 0) = 0. (4.45)

Any such solution is called a Local Thermodynamical Equilibrium (LTE). By the fact that
the operator f → QDf

(f) only operates on (u, a), this equation specifies the dependence
of f 0 on (u, a), leaving the dependence on (x, t) undetermined at this level.

In order to determine the LTE’s, we first suppose that D: u ∈ S1 → D(u) ∈ R+ is a
given function. We note that for a fixed function D, the operator f → QD(f) is a linear
Fokker-Planck operator. We introduce the function

MD(u, a) =
1

ZD(a)
exp

(

− ΦD(u, a)

d

)

, (4.46)

with ZD(a) the normalizing constant such that
∫

u∈S1
MD(u, a) du = 1. (4.47)
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The function u ∈ S1 → MD(u, a) for a given a ∈ S1 is represented graphically on Fig. 9
(blue curve) as a function of u in polar coordinates. We notice that MD is maximal where
the potential ΦD (represented by the black dashed curve) is minimal. Around its maxima,
the graphical representation of MD is bell-shaped. The corresponding widths are roughly
proportional to the noise level

√
d.

Direction of U

uy

ux

LTE distribution MD(u)

Potential ΦD(u)

Direction of the global
minimum of ΦD

Direction of a local
minimum of ΦD

Figure 9: The LTE distribution u ∈ S1 → MD(u, a) for a given a ∈ S1 as a function of u in
polar coordinates (blue curve). The distribution MD is maximal where the potential ΦD

(black dashed curve) is minimal. The minima of ΦD and maxima of MD are indicated by
black semi-lines. The global maximum of MD corresponds to the global minimum of ΦD.
The distribution MD has bell-like shapes around its maxima. Their width are roughly
proportional to the noise level

√
d. The direction of the mean velocity U is given by the

red semi-line. It is fully determined by MD and therefore, by ΦD and is a function of
(x, a, t) like ΦD. We have |U | < 1.

Thanks to (4.42), we can write:

QD(f) = −d∇u ·
(

MD∇u

( f

MD

)

)

. (4.48)

By applying Green’s formula, we deduce that for any function f(u, a) with appropriate
regularity, we have:

∫

(u,a)∈T2

QD(f)
f

MD

du da = −
∫

(u,a)∈T2

MD

∣

∣

∣
∇u

( f

MD

)

∣

∣

∣

2

du da. (4.49)

Therefore, the equation

QD(f) = 0, (4.50)

is equivalent to saying that there exists a function ρ: a ∈ S1 → ρ(a) ≥ 0 such that

f(u, a) = ρ(a)MD(u, a). (4.51)
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Indeed, inserting (4.51) into (4.48) clearly leads to (4.50). Reciprocally, if (4.50) is satis-
fied, then, applying (4.49) leads to the fact that ∇u(f/MD) = 0, i.e. f/MD is a function
of a only, which is exactly saying (4.51).

Therefore, an LTE is necessarily of the form (4.51). However, there is a consistency
condition to be satisfied. For f = ρMD to be a solution of (4.45), we need to ensure
that D = Df . In other words, D is not arbitrary, but must be the DTI associated to f .
Inserting (4.51) into (4.43), this constraint is written:

D−1(u) = max

{
∫

(v,b)∈T2 ∆
−1
δρMD

(|v − u|) ρ(b)MD(v, b) dv db
∫

b∈S1
ρ(b) db

,
1

L

}

. (4.52)

For any function ρ: a ∈ S1 → ρ(a) ≥ 0 we look for functions Dρ: u ∈ S1 → Dρ(u) ≥ 0
of this functional equation. The questions whether it admits a solution and how many
such solutions exist is left to future work. Here, we assume that there exists at least one
isolated branch of solutions Dρ. Therefore, the LTE are of the form ρMDρ , with Dρ a
solution of (4.52). By restoring the dependence upon (x, t), we conclude that the solutions
of (4.45) are of the form

f 0(x, u, a, t) = ρ(x,t)(a)MDρ(x,t)
(u, a), (4.53)

where, for any (x, t), the function u → Dρ(x,t)(u) satisfies (4.52) with ρ(b) replaced by
ρ(x,t)(b). By the normalization condition (4.47), ρ(x,t)(a) appears as the density of pedes-
trians at point x and time t with target velocity a. It has the same meaning as ρ(x, t, a)
in the monokinetic or VMF closures, but is written differently to highlight its dependence
on the target velocity a. Indeed, the LTE at point (x, t) depends functionally on the
function a → ρ(x,t)(a). By contrast, the LTE at (x, t) does not depend on the function
(x, t) → ρ(x,t)(a). This motivates this dissymetric treatment of the dependences of ρ on
a on the one hand and (x, t) on the other hand. Now, we are looking for the equations
specifying how ρ(x,t)(a) varies with (x, t).

To do so, we first notice that, because of the divergence form of (4.48), we have
∫

u∈S1
QDf

(f) du = 0. (4.54)

Therefore, integrating (4.40) with respect to u and using (4.54) leads to

∂tρ
ε +∇x · (cρεUε) = 0, (4.55)

with ρε(x, a, t) the density and Uε(x, a, t) the mean velocity of pedestrians at position x,
time t and target direction a, given by:

ρε(x, a, t) =

∫

u∈S1
f ε(x, u, a, t) du, (ρεUε)(x, a, t) =

∫

u∈S1
f ε(x, u, a, t) u du. (4.56)

Eq. (4.55) is the continuity equation for pedestrians of target velocity a and is valid all
the time (i.e. even when ε is not small). Now, taking the limit ε → 0 in (4.56) and using
the fact that f ε → f 0, where f 0 satisfies (4.53), we get

ρε(x, a, t) → ρ(x,t)(a), Uε(x, a, t) → Uρ(x,t)(a), (4.57)
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with

Uρ(a) =

∫

u∈S1
MDρ(u, a) u du. (4.58)

Of course, taking the limit ε → 0 in the continuity eq. (4.55) leads to

∂tρ(x,t)(a) +∇x · (cρ(x,t)(a)Uρ(x,t)(a)) = 0. (4.59)

To summarize, the hydrodynamic model provides the spatio-temporal evolution of the
density ρ(x,t)(a) of pedestrians with target direction a. It consists of the single continuity
eq. (4.59). The different target directions are coupled together through the computa-
tion of the average velocity Uρ(a) by means of (4.58). It requires the determination of
the DTI at the same point. The DTI Dρ(u) is the solution of the functional equation
(4.52), parametrized by the function ρ(a). This computation is local in space-time but
must be realized at any discretization point in space-time (x, t). Therefore, the practical
determination of the velocity Uρ(x,t)(a) may require high computational power. However,
the local character of the problem is perfectly adapted to massively parallel or graphical
computers. Note that this hydrodynamic model belongs to the class of first order models
of traffic, since the velocity is fully determined by the knowledge of the density.

4.4.2 Hydrodynamic limit: discussion

The rationale of this model is best understood if a time discretization is performed.
Suppose that the distribution ρnx(a) of pedestrians at position x and target direction a
is known at time tn = n∆t. We update this density at time tn+1 using the following
time-discrete version of the continuity eq. (4.59) by the Euler method:

ρn+1
x (a) = ρnx(a)−∆t∇x · (cρnx(a)Uρnx (a)) = 0. (4.60)

To use this scheme, it is necessary to compute the velocity Uρnx (a). For this purpose,
the DTI Dρn(u) need to be computed by solving the functional equation (4.52), where
ρn is substituted for ρ. Once Dρn is known, the LTE (4.53) can be computed and as a
by-product, the mean velocity Uρn

(x)
(a) through (4.58) (see Fig. 9: the mean velocity is

represented by the red semi-line).
The heart of the model is the process of finding the velocities, given the density ρn

of pedestrians having prescribed target velocities. This process is decomposed as follows.
First, knowing the density ρn, the DTI in all directions are computed by solving the
functional equation (4.52). We note that the DTI Dρn(u) is independent of the target
direction a and only describes the ability of a pedestrian to move in the direction u, given
the density ρn. The functional equation (4.52) describes how each pedestrian optimizes his
actual velocity, i.e. minimizes the potential ΦDρ , taking into account all other pedestrians
around. This functional equation expresses a Nash equilibrium of a non-cooperative
anonymous game with a continuum of players. Such games are characterized by an infinite
number of players forming a continuum [4]. They are non-cooperative i.e. they exclude
the possibility for the players to cooperate to improve their gain [32]. Finally, they are
anonymous in the sense that two players with the same strategy cannot be distinguished
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[63]. Recently, this category of games has been at the heart of the theory of ’Mean-
Field Games’ [47]. Here, the strategy variable of the players is the velocity u, while the
target direction a is the players’ type (see an introduction to game theory in [11]). The
players’ utility function is the opposite of the potential φD(u, a). The functional eq. (4.52)
expresses that each pedestrian separately cannot improve his utility function by choosing
a different velocity u, which is the definition of a Nash equilibrium. This model is a
particular example of the framework relating game theory and kinetic theory developed
in [28]. This viewpoint will be further expanded in future work.

We stress the local character of the model: this optimum is realized locally, i.e. at
any point x and at all times t. Once the equilibrium Dρn has been found, the LTE and
the mean velocity Uρn follow directly. We note that the dependence of Uρ upon ρ is
functional, i.e. the value Uρ(a) for a given target velocity a depends on ρ(b) for all values
of b ∈ S1. This can be understood easily. If there are more pedestrians heading towards
a given direction, say b0, the DTI will be affected in all directions u and correlatively, the
mean-value of the velocity of pedestrians heading towards direction a will be changed,
even if a is very different from b0.

5 Comparison with previous work

In this section, we compare our results to the literature. We refer to [52, 53] for a discus-
sion of the original discrete IBM. The time-continuous IBM (section 3.2) obviously bears
analogies with the social force model [35, 37, 38]. However, in our model, the elementary
binary interactions are combined in a non-linear way (i.e. they are nonlinearly additive,
see [9, 53] for a discussion of this point). The velocity potential (3.6) is reminiscent of the
’steering potential’ model of [41]. However, in [41], the potentials of the various obstacles
are added linearly by contrast to the present work, as already mentioned. Analogies also
exist with the optimal control model of [40]. Indeed, in our work, the potential is similar
to a cost function that the pedestrian dynamic tends to minimize. In [40], three types
of costs are considered: (i) the cost of drifting away from the planned trajectory, (ii)
the cost of walking too close to other pedestrians and (iii) the cost of acceleration. In
our constant velocity model, we have not considered any cost associated to accelerating
(i.e. turning), which is probably incorrect. We also replace cost (ii) by a constraint (the
distance traveled in direction w cannot exceed the DTI Di(w)), and we minimize cost
(i) subject to this constraint. The smoother expression of cost (ii) in [40] allows for the
inclusion of advanced features, such as the body compressibility. However, adding more
features increases the number of parameters that need to be calibrated from the data.
Our model has quite few parameters which need to be calibrated, which is an advantage
in the context of scarce noisy data.

We now turn to the mean-field kinetic model (section 3.3). As already mentioned,
kinetic models are scarce in the literature [9]. Ref. [7] proposes a general kinetic framework
for traffic and crowd dynamics but the specific features of pedestrian interactions are not
detailed. The model presented in section 3.3 seems to be one of the very first crowd
kinetic models based on a detailed analysis of pedestrian behavior.

Most fluid models for crowds have been envisioned as extensions of road traffic mod-
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els. Fluid models for traffic roughly fall in two categories: (i) first-order models which
are composed of the continuity equation and an algebraic equation relating the flux to
the density and (ii) second-order models, where the continuity equation is complemented
with an evolution equation for the mean velocity. The prototype of first-order models is
the Lighthill-Whitham-Richards (LWR) model [49], while second-order models are repre-
sented by the Payne-Whitham (PW) [58] and Aw-Rascle (AR) [5] models. Clearly, our
first two fluid models, the monokinetic closure (section 4.2) and the VMF closure (section
4.3) belong to the class of second-order models, while the third one, obtained through the
hydrodynamic limit (section 4.4), is a first order model.

We first discuss the hydrodynamic model of section 4.4 in reference to the literature
on first-order models. The difficulty with extending the LWR model of traffic to crowds
is the passage from one to two dimensions in the prescription of the flux. While the
traffic flux is a scalar quantity, the pedestrian flux is a vector and a prescription is needed
to decide of its direction. In this respect, there are three classes of first order crowd
models: (i) those where the direction of the flux is fixed locally as a function of the
density or its gradients [10, 19], (ii) those where the direction is fixed by a non-local
average [60] and (iii) those where the direction is given through the solution of a Partial
Differential Equation (PDE), such as the Eikonal equation [42, 43, 44]. Our model bears
the strongest analogies with the third type. Indeed, in the determination of the flow
direction the Eikonal equation is replaced by the functional equation (4.43), which offers
a similar level of implicitness. Additionally, in [43], the pedestrians minimize their travel
times through an estimate which gives more weight to crowded areas. Therefore, the
optimization principles underlying the dynamics of both our model and [43] are similar.
However, in [43], only the total density is taken into account in the travel time estimation,
while our model also includes information about the velocities and target velocities. In
particular, the following behavior (i.e. the fact that a pedestrian does not necessarily see
a pedestrian moving in the same direction as himself as an obstacle) is likely to be better
taken into account in our model.

Second-order models for crowds are more scarce. Basically, referring to the classifi-
cation in the paragraph above, only classes (i) (local prescription of the direction of the
flux within the PW model [1] or AR model [8]) and (iii) (coupling of a PW model with
an eikonal equation for the flux direction [46]) have been explored. The models of [36, 39]
may be seen as belonging to class (i), although they involve a third equation (the energy
balance equation). Our monokinetic and VMF closure models (sections 4.2 and 4.3) bear
the strongest analogies with these last two references as they are obtained using similar
methodologies (by closing a moment hierarchy from a kinetic equation). The least differ-
ence arises in the case of the monokinetic closure, which is close to a zero-temperature
fluid equation. The non-local expression of the force or its local approximation still make
the specificity of our model. In [36, 39], the effects of the interactions between the pedes-
trians are mostly embedded in the energy balance equation. The VMF closure offers
more differences with the fluid mechanical view of [36, 39]. Indeed, the latter postulate a
Maxwellian (i.e. Gaussian) velocity distribution of pedestrians. This is obviously unlikely
since pedestrians cannot reach arbitrarily large velocities. Our microscopic dynamics,
which constrains the velocities to be of constant norm, more closely mimics the real be-
havior of a pedestrian (at least at moderate densities where he is able to walk most of the
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time at his free speed). As a consequence of this velocity constraint, the closure cannot be
Maxwellian, but is a VMF distribution instead. We have seen in section 4.3.2 that very
specific features emerge from this unusual ’hydrodynamics’. Obviously, these features are
not taken into account in standard fluid models.

Finally, the last point of our discussion is a comparison between the three models
presented in this paper. The third one, which is related to game-theoretic concepts,
captures nicely the mechanisms by which pedestrians achieve a consensus and maintain
traffic efficiency even in very crowded environments. However, it is restricted to local
interactions and uniform vision (i.e. no blind zone). Although actual pedestrians do
have a blind zone, the approximation involved in the ”no-blind zone” model may find its
justification as follows: pedestrians walking behind the subject are unlikely to significantly
modify the value of his DTI. Indeed the threat of a collision of the subject with these
pedestrians is weak, since both are walking with the same speed. Therefore, the DTI
is identical, weather its computation includes all pedestrians in the neighbourhood of
the subject or excludes those who are inside the blind zone. Consequently, there is little
approximation involved in replacing the actual vision cone by the entire neighbourhood of
the subject. Considering interactions within their local approximation makes the model
only suitable to the large-scales, where the interaction region of the subjects is small
compared to the size of the scene. Another drawback of the model is the complexity
of solving the fixed point equation for the DTI everywhere in space-time. Unless a fast
algorithm is found and massively computers are used, this can lead to overwhelming
computer costs.

For this reason the second model, which relies on the VMF closure constitutes a
good compromise between physical accuracy and computational efficiency. Its usability
however is subjected to its well-posedness, i.e. to its hyperbolicity, a property which
still remains to be investigated. Finally, the first model, which relies on the monokinetic
closure, is the simplest one. At least, it guarantees local-in-time well-posedness, i.e. the
model has a unique solution until two pedestrian trajectories issued from initially different
points meet. At such a meeting point, a mass concentration occurs, which is obviously
unphysical. A way out this unpleasant feature would be to restore non constant speeds
and to allow pedestrians to slow down in case of a close encounter, which they obviously
do in practice. Consideration of non-constant speeds is the subject of future work.

6 Conclusion

In this article, we propose a hierarchy of macroscopic models derived from the heuris-
tic behavioral Individual-Based Model of [53] and discuss them in view of the available
literature. This IBM supposes that pedestrians optimize their trajectory towards their
goal subject to the constraint of avoiding collisions with neighboring pedestrians. We
first propose a novel kinetic model. In a second step, we derive three different fluid mod-
els. The first two ones consist of balance equations for the density and mean velocity of
the pedestrians. They differ by the proposed closure relations, based on a monokinetic
Ansatz for the first one and on the VMF distribution for the second one. The third model,
which has more restrictive assumptions, consists of a single mass conservation equation,
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with mass flux functionally related to the density distribution. The functional relation
expresses the realization of a Nash equilibrium where each pedestrian finds his optimal
direction of motion towards his target in the midst of the other pedestrians and in the
presence of noise. These models are the first available kinetic and fluid models derived
from the heuristic behavioral Individual-Based Model of [53]. Future work will be devoted
to the study of these various models, both from the theoretical and numerical viewpoints,
and to their confrontation with the experimental data.
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