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Abstract

This paper presents a novel schema to address the poly-
semy of visual words in the widely used bag-of-words model.
As a visual word may have multiple meanings, we show it
is possible to use semantic contexts to disambiguate these
meanings and therefore improve the performance of bag-of-
words model. On one hand, for an image, multiple context-
specific bag-of-words histograms are constructed, each of
which corresponds to a semantic context. Then these his-
tograms are merged by selecting only the most discriminative
context for each visual word, resulting in a compact image
representation. On the other hand, an image is represented
by the occurrence probabilities of semantic contexts. Finally,
when classifying an image, two image representations are
combined at decision level to utilize the complementary in-
formation embedded in them. Experiments on three chal-
lenging image databases (PASCAL VOC 2007, Scene-15 and
MSRCv2) show that our method significantly outperforms
state-of-the-art classification methods.

1. Introduction
Image classification, including object and scene classifi-

cation, is a central area in computer vision research. Among
the recent advances made on this topic, perhaps the most sig-
nificant one is representing images by the statistics of local
features, in particular the introduction of the bag-of-words
(BoW) model [22] in which local features extracted from
an image are first mapped to a set of visual words. An im-
age is then represented as a histogram of visual word oc-
currences. Combined with powerful classifiers such as the
Support Vector Machine, the BoW model has demonstrated
impressive performances on several challenging image clas-
sification tasks [4, 8, 30].

Words in natural languages are frequently polysemous.
One usual example is crane, meaning either a bird or a con-
struction equipment according to the context of use. So, in
the literature of natural language processing, lots of efforts
were made to disambiguate words based on their contexts
(e.g., [16, 33]). Polysemy is also critical for visual words:
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 Figure 1. Brief overview of our method. See text for more details.

as only local information is encoded, the same visual word
could be used to construct different types of objects. As a
simple example, we could easily imagine that the same im-
age structure, e.g., a ‘window’ like visual word, could be
interpreted as a ‘car window’ or a ‘plane window’ depend-
ing on the average color of the local background. Surpris-
ingly, the disambiguation of visual word has been studied
only marginally.

The role of context in natural language motivates us
to put a special emphasis on disambiguating visual words
by the contextual information extracted from images. Al-
though recent literature on utilizing context is abundant
[7, 10, 12, 20, 32], when a high-performance image classi-
fication system is required in practice, people almost always
use the basic BoW model or its variants [5]. In other words,
the use of context remains an open problem. In this paper,
we show that the contextual information can be used to sig-
nificantly boost the performance of BoW model.

The main idea of our method is illustrated in Fig. 1. For
an image, we first construct multiple BoW histograms, each
of which corresponds to a context. That means the same vi-
sual word would have different occurrence frequencies when
different contexts are considered. For example, in Fig. 1, the
occurrence frequency of the visual word denoted by ‘square’



is higher in context sky than in tree, because this visual
word often appears in sky areas. By embedding contex-
tual information, the visual words in each single histogram
are less ambiguous. Considering the huge dimensionality
if these context-specific histograms were all used, we pro-
pose a dimensionality reduction method by selecting only
the most discriminative context for each visual word. The
resultant histogram is called as context-embedded BoW his-
togram which has the same dimensionality as the standard
BoW histogram. This is the key contribution of our paper.

Furthermore, we show that the occurrence probabilities of
contexts (see Fig. 1), also provide useful information to de-
scribe images. Finally, when classifying images, both image
representations (context-embedded BoW histogram and oc-
currence probabilities of contexts) are combined at decision
level to take advantage of the complementary information
embedded in them.

2. Related works
Bag-of-Words model. Numerous works have recently
demonstrated the effectiveness of BoW model on image clas-
sification tasks. We focus here on those related to visual
word disambiguation.

To deal with synonymy and polysemy, one choice is elim-
inating the most and least frequent words which are supposed
to be the most ambiguous [22]. Another choice is to utilize
task-specific information to obtain less ambiguous vocabu-
lary [18]. In addition, the ambiguity of visual words can be
reduced by considering their co-occurrences [34].

The hard assignment used in the standard BoW model
leads to large loss of information if some visual words have
close representations. To address this problem, soft assign-
ment in which a local feature is assigned to different number
(including zero) of visual words was proposed [26] and can
also help to address the synonymy.

Polysemy of visual words is partly caused by the discard
of spatial information. Hence, the use of spatial information
can also help to disambiguate visual words. A typical exam-
ple is the well-known spatial pyramid matching [15].

Topic model, such as Probabilistic Latent Semantic Anal-
ysis (pLSA) [11], also has the effect to address polysemy
[21]. For example, both bird and equipment topics can give
high probability to the word crane, but the occurrence proba-
bilities of different topics reduce this uncertainty. In contrast
to topic model, our method uses semantic contexts rather
than topics learnt from data collection. Please refer to sec-
tion 3.2 for more details.

In another related work [13], Khan et al. proposed to
use some category-specific color attention maps to weight lo-
cal shape features and then concatenate multiple histograms.
Our method also uses the idea of weighting local features.
However, we adopt semantic contexts (rather than color) to
generate attention maps and reserve only the most discrim-

inative context for each visual word (rather than concatena-
tion).

Context. Contextual information is often extracted by
modeling interactions between pixels, regions and objects.
Conditional random field [10, 20] and co-occurrence [7, 12]
are two commonly used modeling methods.

In contrast, our method does not model interactions but
adopts different local contexts to enrich the representation
of whole image. Similar idea is also presented in [3, 25],
in which images or videos are first decomposed into regions
and then multiple region-specific BoW histograms are com-
puted and combined. The differences between our method
and them are twofold. First, in our method, BoW histograms
are context-specific rather than region-specific. Second, our
method compresses multiple histograms rather than comput-
ing multiple kernels for them [3] or concatenating them [25],
therefore resulting in a more compact image representation.

Semantic attributes. The recent literature abounds in ap-
proaches making interesting use of semantic concepts and
giving proofs-of-concept. Farhadi et al. [6] used a set of se-
mantic attributes such as ’hairy’ and ’four-legged’ to identity
familiar objects, and to describe unfamiliar objects when im-
ages and bounding box annotations are provided. Lampert
et al. [14] showed that high-level descriptions in terms of
semantic attributes can be used to recognize object classes
without any training image, once semantic attribute classi-
fiers are trained from other classes of data.

In addition to describing objects semantically, there also
exist some methods which aim to describe the whole image
by semantic features. Vogel and Schiele [27] used attributes
describing scene to characterize image regions and combined
these local semantics into a global image description for nat-
ural scene retrieval. Wang et al. [28] proposed to represent
an image by its similarities to Flickr image groups which
have explicit semantic meanings. Li et al. [17] built a se-
mantically meaningful image hierarchy by using both visual
and semantic information, and represent images by the es-
timated distributions of concepts over the entire hierarchy.
Torresani et al. [24] used the outputs of a large number of
object category classifiers to represent images.

Our approach bears similarity with [24] and [28], as we
also use semantic classifiers to describe images. But differ-
ent from them, we propose to use the semantic features to
disambiguate the visual words in BoW framework and show
it outperforms the existing approaches.

3. Approach

In this section, we first explain how to define, learn and
predict semantic contexts from training images, and then ex-
plain how we describe test images with them.



3.1. Semantic contexts

Following the procedure given in [23], we define 110
semantic contexts by hand with the intention of providing
abundant semantic information for image description. (see
Fig. 2). Two types of contexts are distinguished: global con-
texts including the contexts of global scene and local con-
texts including the contexts of local scene, color, shape, ma-
terial and object.

For each semantic context, we learn a classifier by SVM
with linear kernel (hereafter called as context classifiers). For
the global contexts, the classifiers are learned on whole im-
ages described by BoW histograms. For the local contexts,
the classifiers are learned on some randomly sampled image
regions described again by BoW histograms. As to the train-
ing images, there are two cases. For the semantic contexts
that appear in PASCAL 2007 (20 objects e.g., motorbike)
and Scene-15 databases (15 global scenes e.g., bedroom),
the training images as well as the annotations are directly
obtained from the databases. For other semantic contexts,
training images are automatically downloaded from Google
image search by using the name of context as query. Af-
ter the manual annotation, about 400 relevant images are re-
served for each context. They are used as positive images for
the corresponding context while images from the other con-
texts are considered as negatives. The context classifiers as
well as the training images are publicly available at http:
//users.info.unicaen.fr/˜ysu/semantic.

In test phase, images (for global contexts) or regions (for
local contexts) are input to context classifiers and a sigmoid
function is used to transformed the original decision values
to probabilities (refer to [2]).

3.2. Context-embedded image representation

In this subsection, we first formulate the process of em-
bedding contexts into BoW model, and then elaborate how
to construct the context-embedded image representation by
using the previously learned context classifiers.

Assume that, for an image I , a set of local features
fi, i = 1, . . . , N are extracted from it, where N is the num-
ber of local features. The BoW model consists of V visual
words vj , j = 1, . . . , V . The traditional BoW feature for vj
measures the occurrence probability of vj on image I , say
p(vj |I). In practice, p(vj |I) is usually computed by:

p(vj |I) =
1

N

N∑
i=1

δ(fi, vj), (1)

where

δ(fi, vj) =

{
1 if j = argmin

j=1,...,V
d(fi, vj)

0 else
(2)

and d is a distance function (e.g., the L2 norm).
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Figure 2. Grouped semantic contexts and some illustrative training
images. The values in parentheses are the number of semantic con-
texts within corresponding groups. In this paper, the contexts of
global scene are refereed as global contexts, while the context of
local scene, color, shape, material and object are referred as local
contexts.

As mentioned in section 1, a visual word could have dif-
ferent meanings in different contexts. Marginalizing p(vj |I)
over different contexts gives:

p(vj |I) =
C∑

k=1

p(vj |ck, I)p(ck|I), (3)

where ck is the k-th context, C is the number of contexts,
p(vj |ck, I) is the context-specific occurrence probability of
vj on image I , p(ck|I) is the occurrence probability of con-
text ck on image I .

Eq. 3 bears similarities to that in Probabilistic Latent Se-
mantic Analysis (pLSA) [11]. But different from pLSA, we
do not assume the conditional independence that conditioned
on the context ci visual words vi are generated independently
from the specific image I , i.e., p(vj |ck, I) 6= p(vj |ck). In-
stead, we believe that the words generated by a given context
constitute some characteristic signatures of the image. As
an illustration, if for a particular image, window like visual
word occurs simultaneously with the blue context, it could
be a good cue for hypothesizing the presence of a plane in
the image. Another difference from pLSA is that we do not
consider contexts as latent variables, which we believe would
be hard to estimate, but define them offline and predict them
for every image by context classifiers (see previous section).

On the other hand, the second term of Eq. 3, which gives
the distribution of different contexts on image I , can also
provide rich information to describe the image, as shown by

http://users.info.unicaen.fr/~ysu/semantic
http://users.info.unicaen.fr/~ysu/semantic
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Figure 3. Construction of context-embedded BoW histogram. For
an image, probabilistic distributions for local contexts are generated
by the corresponding context classifiers. Then, a BoW histogram is
constructed for each context by weighting local features according
to its distribution. Finally, for a specific classification task, a context
selection process is used to choose the most discriminative context
for each visual word.

[27]. For example, knowing an image is composed of one
third of sky, one third of sea and one third of beach, brings a
lot of information regarding the content of this image.

At the end, images are eventually represented by a
context-embedded BoW histogram, i.e., p(vj |ck, I) and a
vector of context-occurring probabilities, i.e., p(ck|I), which
are then combined at decision level (see section 3.3).

3.2.1 Context-embedded BoW histogram

In this work, p(vj |ck, I) is constructed by modeling the prob-
abilistic distribution of context ck on image I which is esti-
mated by dividing image I into a set of regions Ip and pre-
dicting the occurrence probabilities of ck for each region (by
using context classifiers). By denoting Ip(fi) the set of im-
age regions which cover the local feature fi, we define:

p(vj |ck, I) =
1

N

N∑
i=1

δ(fi, vj)p(ck|Ip(fi)), (4)

where p(ck|Ip(fi) can be considered as the weight of local
feature fi. In practice, p(ck|Ip(fi)) is computed by averag-
ing the outputs of the context classifier (for ck) on Ip(fi).

Keeping p(vj |ck, I) for all visual words and all contexts
would lead to a V × C-dimensional descriptor. In this
work C is 75 since only local contexts are used to construct
p(vj |ck, I) and V is usually from hundreds to thousands. If
we use this V × C-dimensional descriptor to train a classi-
fier, the number of parameters to be learned would be too
large with respect to the number of training images, produc-
ing a high risk of over-fitting. Our intuition is that, for a

given classification task, a visual word usually appears in a
limited set of contexts rather than all contexts. For example,
as in Fig. 1, the visual word denoted by ’square’ almost only
appears in the context sky and river. In practice, we show in
section 4 that using only one context per visual word already
gives very good results. By doing that, for a given classifica-
tion task, an image is finally represented by

Dlc(I) = (p(v1|ck1
, I), . . . , p(vj |ckj

, I), . . . , p(vV |ckV
, I)),

where ckj
is the selected context for visual word vj and

the given classification task. We call this representation as
context-embedded BoW histogram which has the same di-
mensionality as the standard BoW histogram. The whole
process described above is illustrated in Fig. 3.

Up to now, the only remaining problem is how to choose
context for each visual word. This is a feature selection prob-
lem and in theory any criterion can be used for that, e.g.
max-likelihood. Although more consistent with the proposed
probabilistic framework, the max-likelihood criterion does
not allow to use category labels of images and therefore per-
forms worse than some supervised ones in practice. In this
work, we adopt a supervised t-test based criterion for context
selection. Specifically, for each visual word vj and each con-
text ck, we assume that the value of p(vj |ck, I) follows the
Gaussian distribution N (µ+

j,k, σ
+
j,k) on positive images and

N (µ−j,k, σ
−
j,k) on negative images. For a given visual word,

we compute the t-test statistic between these two distribu-
tions for every possible context and take the context giving
the highest value. It therefore selects the context for which
the representation of positive images is as different as possi-
ble from that of negative images, i.e., the most discriminative
context. As this context selection process is supervised, the
selected contexts depend on the classification task to be ad-
dressed. That is to say, the selected contexts for aeroplane
classification and person classification will be very different.

3.2.2 Context-occurring probability

As to p(ck|I), it can be easily computed by averaging the
outputs of the context classifiers (for ck) on all image re-
gions in Ip. This process is similar to the computation of
p(ck|Ip(fi)) in previous subsection. In addition, we also rep-
resent image I by the occurrence probabilities of global con-
texts. These probabilities are computed by running the corre-
sponding context classifiers on the whole image. Finally, an
image is represented by concatenating the occurrence proba-
bilities of both global and local contexts, i.e.,

Dgc(I) = (p(c1|I), . . . , p(cC |I), p(cC+1|I), . . . , p(cC′ |I)),

where C ′ is the number of all contexts (110 in our case) and
C is the number of local contexts (75 in our case).



3.3. Combination of both representations

Up to now, we have constructed two image representa-
tions, i.e.,Dlc(I) andDgc(I), which encode local and global
contextual information respectively. After that, Dlc(I) and
Dgc(I) are combined at the decision level. Specifically, we
train classifiers onDlc(I) andDgc(I) separately. When clas-
sifying an image, the outputs of two classifiers are combined
by a linear combination model. The optimal weights are
learned on a validation set.

4. Experiments
4.1. Experimental setup
Local features. Four types of local features, such as de-
scribed in [6], are used in our experiments: SIFT, Texton fil-
terbank (36 Gabor filters at different scales and orientations),
LAB and Canny edge detection. Specifically, SIFT features
are computed for 2000 image patches with randomly selected
positions and scales (with scales from 16 to 64 pixels), and
are quantized to 1024 k-means centers. Texton and LAB fea-
tures are computed for each pixel, and quantized to 256 and
128 k-means centers respectively, while Canny edge features
are quantized to 8 orientation bins. Combining these features
gives a 1416-dimensional BoW feature vector.

Context classifiers. The context classifiers are learned by
SVM with linear kernel (here we use the implementation of
LIBSVM [2]), the inputs to which are BoW feature vectors
constructed by pooling local features within image regions
(for region-level classifiers) or whole images (for image-
level classifiers). The SVM parameter C is set to 10, which
is determined by fivefold cross-validation. As to the image
regions, on each training image we sampled 100 regions with
random positions and scales (with scales from 20% to 40%
of the image size).

Databases. Three publicly available image databases are
used for evaluation: PASCAL VOC 2007 [4], Scene-15 [15]
and MSRCv2 [29].

PASCAL VOC 2007 is the last challenge for which the
test data annotations are publicly available. The data set con-
tains 9963 images of 20 object classes which were collected
from users uploads to the Flickr website. For the challenge’s
classification task, the goal is to determine whether or not
each test image contains at least one instance of each object
class of interest. Performance is measured by calculating the
average precision (AP) for each class, and the mean average
precision over the 20 categories (mAP), following the proto-
cols given in [4].

Scene-15 database contains 15 scene categories, each of
which has 200 to 400 gray-level images. These images
come from the COREL collection, personal photographs,
and Google image search. Following the experimental setup
used in [15], 100 images per category are randomly sampled

as training samples (remaining as testing samples). One-
versus-all strategy is used for multiclass classification and
the performance is reported as the average classification rate
on 15 categories.

MSRCv2 is an object category database. We follow the
experimental setup used in [35] which chose 9 categories
out of 15: cow, airplane, face, car, bike, book, sign, sheep
and chair in order to make objects from different categories
do not appear in the same image. In experiments, 15 train-
ing images and 15 testing images are randomly sampled for
each category. One-versus-all strategy is used for multiclass
classification and the performance is reported as the average
classification rate on 9 categories.

Image classification. For each category, two SVM classi-
fiers with chi-square kernel is learned for Dlc and Dgc re-
spectively. The value of SVM parameter C and the nor-
malization factor γ of chi-square kernel are determined by
fivefold cross-validation. The optimal weights for classi-
fier combination is learned on the validation set of PAS-
CAL 2007 database and adopted directly for Scene-15 and
MSRCv2 databases.

To enhance the performance of BoW histogram and Dlc,
we additionally use spatial pyramid matching (SPM), as pro-
posed in [15]. Using a three level pyramid, 1×1, 2×2, 3×1
(totally 8 channels), gives final image representation with a
dimensionality 8×1416.

4.2. Qualitative results

In this subsection, we give some examples to show the
effect of context selection. As explained in section 3.2, we
choose only a single context for each visual word, depend-
ing on the category to be classified. Hence, for each cat-
egory, we can count the frequency that each context is se-
lected, and higher frequency means higher importance for
classifying this category. By doing so, multiple category-
specific frequency histograms can be generated. Fig. 4 gives
the frequency histogram for category cow, motorbike and liv-
ing room. It can be seen that the contexts which are related to
the category to be classified tend to have high relative impor-
tance (frequency). Take Fig. 4(b) as example, besides motor-
bike, the context street and wheel also play an important role
in motorbike classification.

As explained before, the context selection depends on the
classification task to be addressed. It means an image will
be described differently in different classification tasks. For
example, in Fig. 5, for motorbike classification, the two most
important contexts are motorbike and street. This choice can
be easily explained. For person classification, the contexts
black and sky dominate the image description. These two
contexts seem to have no relation with person, whereas one
possible explanation is that in daily life people often wears
dark and blue clothes.
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 Figure 4. Selection frequencies of different contexts for three categories: cow, motorbike and living room. The contexts with high frequency
are marked by their names.
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 Figure 5. Saliency maps of the two top-ranked contexts for different
classification tasks. The value of each pixel on the saliency map is
computed by averaging the outputs of corresponding context clas-
sifier on the image regions covering this pixel.

4.3. Comparison with related methods

In this subsection, we first compare our methods with the
standard BoW model. Table. 1 summarizes the performances
of BoW model, context-embedded BoW histogram (Dlc),
context-occurring probability (Dgc) and their combination
(Dlc + Dgc) on three databases. By embedding local con-
texts, the performance of BoW model is improved by 2.8%
on PASCAL 2007, 2.1% on Scene-15 and 2.3% on MSRCv2.
AlthoughDgc (only 110-dimension) does not give better per-
formance than BoW model, combining it with Dlc leads to

additional improvement, demonstrating that they are com-
plementary with each other. Finally, the improvement of our
method (Dlc + Dgc) to BoW model is 5.3% on PASCAL
2007, 4.5% on Scene-15 and 4.5% on MSRCv2.

For more detailed comparison, Fig. 6 gives the perfor-
mance improvement for each category in PASCAL 2007
database. It can be seen that Dlc performs better than
BoW model on 18 of 20 categories (except for bus and cat),
whereas Dlc +Dgc performs better than BoW model on all
categories. In particular, for category pottedplant, the im-
provement of average precision is more than 10%. We be-
lieve the reason of this large improvement is that pottedplants
are very diverse in appearance and usually in small scales
therefore their classification mainly depends on the contex-
tual information.

In [1], images are represented by the mixing coeffi-
cients of topics which are learned from visual words via
pLSA. This representation is similar to the proposed context-
occurring probability (Dgc). Thus, we re-implemented the
method in [1] and compare it with Dgc. To be fair, the num-
ber of topics is set to the dimensionality of Dgc. The per-
formances of this pLSA-based method are 52.8% on PAS-
CAL 2007, 77.0% on Scene-15 and 78.3% on MSRCv2 re-
spectively, which are worse than those of Dgc (refer to Ta-
ble. 1). In addition to pLSA, we compare our method with
another attribute-based methods [28]. In [28], an image is
represented by a descriptor of 103 dimensions, each of which
corresponds to the similarity of this image to a Flickr image
group. Although the dimensionality is a little higher, Dgc

gives much better performance (55.1%) on PASCAL 2007
than this 103-D similarity-based descriptor (44.9%, cited di-
rectly from [28]).

4.4. Influence of local context regions

In the computation of Dlc, the number of randomly sam-
pled image regions (i.e., the size of Ip) is a key parameter.
Hence, we do several experiments on PASCAL 2007 to eval-
uate the effect of region number as well as their locations
(random sampling vs. regular grid) using only Dlc. From



PASCAL 2007 Scene-15 MSRCv2
BoW + SPM 59.2 83.3± 0.7 86.2± 2.3
Dlc 62.0 85.4± 0.5 88.5± 2.4
Dgc 55.1 79.1± 0.9 82.8± 2.8
Dlc + Dgc 64.5 87.8± 0.5 90.7± 1.8
result from dataset creator 59.4 [4] 81.4 [15] 80.4± 2.5 [35]

Table 1. Performance comparison with the standard BoW+SPM
model.
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Figure 6. Performance (mAP) improvement of our methods to the
standard BoW+SPM model on PASCAL 2007 database.

these experiments we conclude that sampling regions on a
regular grid does not give better results than sampling them
randomly. However, random sampling raises questions about
the stability of results and how many regions to use. If we
sample 10, 50 or 100 regions per image, the mAP are re-
spectively 60.8%, 61.5% and 62.0%. Taking more than 100
regions does not improve the results significantly. Regard-
ing stability, the standard deviations observed over 5 runs, if
we sample 10, 50 or 100 regions per image, are respectively
0.5%, 0.3% and 0.2%. Hence, if 100 regions are randomly
sampled, the choice for these regions does not have a great
effect on the performance of Dlc.

4.5. Influence of dimension reduction

As mentioned in section 3.2, we rank contexts for each
visual word and select only the most discriminative one, re-
sulting in the V -dimensional descriptor Dlc. Although it is
also possible to reserve more contexts (e.g., top 2, 3 or 5)
for each visual word with the cost of higher dimensional-
ity of Dlc, Fig. 7 shows that it does not result in signifi-
cant performance improvement (at most 0.2%). Instead of
context selection, we can use other dimensionality reduc-
tion methods, such as Principal Component Analysis (PCA)
or Linear Discriminant Analysis (LDA), to obtain a low di-
mensional image descriptor. To validate their effects, we
use PCA and LDA to project the C-dimensional descriptor
(p(v|c1, I), p(v|c2, I), ..., p(v|cC , I)) for each visual word
into a low dimensional subspace. Fig. 7 gives the perfor-
mance of PCA (up to 5-D) and LDA (only 1-D due to the bi-
nary classification task on PASCAL 2007 database), which
are worse than that of context selection. In sum, selecting
only one context for each visual word gives the best tradeoff
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Figure 7. Performance (mAP) comparison of different dimension
reduction methods on PASCAL 2007 database. TopN means that
the top-ranked N contexts are reserved. The numbers after PCA
and LDA denote the dimensions of subspace.
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Figure 8. Comparison with the state-of-the-art results on PASCAL
2007 [4, 9, 31, 36], Scene-15 [15, 30] and MSRCv2 [19, 35].

between performance and dimensionality.

4.6. Comparison with state-of-the-art results

The results of our method on PASCAL 2007, Scene-15
and MSRCv2 databases are 64.5%, 87.8% and 90.7% re-
spectively (refer to Table. 1), which are comparable to or bet-
ter than the state-of-of-art results on these databases. Please
see Fig. 8 for details.

5. Conclusion and discussion
In this paper, we presented a novel method to disam-

biguate visual words with the help of local and global seman-
tic contexts. Extensive experimental results demonstrated
that, by embedding contextual information, our method im-
proves the performance of the standard bag-of-words model
by a large margin, say 5.3% on PASCAL VOC 2007, 4.5%
on Scene-15 and 4.5% on MSRCv2. Furthermore, our
method achieves comparable or better performances com-
pared with the recent state-of-the-art approaches on these
challenging image classification tasks.

Finally, it is worthwhile to discuss the practicality of our
method. Indeed, it takes some time to collect images and
train classifiers for all the semantic contexts. However, this
is an offline training phase and the context classifiers are
generic therefore they can be used in any image classifica-
tion task. In the testing phase, since the context classifiers
are linear SVMs, the construction of the probabilistic distri-



bution of contexts is quite efficient. Thus, the computation
time of context-embedded BoW histogram is comparable to
that of traditional bag-of-words histogram.

6. Acknowledgement
This work was partly realized under the Quaero Pro-

gramme, funded by OSEO, French State agency for inno-
vation.

References
[1] A. Bosch, A. Zisserman, and X. Munoz. Scene classification

via pLSA. In ECCV, 2006. 6
[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for

support vector machines. ACM Transactions on Intelli-
gent Systems and Technology, 2:27:1–27:27, 2011. Soft-
ware available at http://www.csie.ntu.edu.tw/

˜cjlin/libsvm. 3, 5
[3] V. Delaitre, I. Laptev, and J. Sivic. Recognizing human ac-

tions in still images: a study of bag-of-features and part-based
representations. In BMVC, 2010. 2

[4] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2007 results. http://pascallin.ecs.soton.
ac.uk/challenges/VOC/voc2007/. 1, 5, 7

[5] M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Chal-
lenge 2010 results. http://pascallin.ecs.soton.
ac.uk/challenges/VOC/voc2010/. 1

[6] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing
objects by their attributes. In CVPR, 2009. 2, 5

[7] C. Galleguillos, A. Rabinovich, and S. Belongie. Object cat-
egorization using co-occurrence, location and appearance. In
CVPR, 2008. 1, 2

[8] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. Technical Report 7694, California Institute of
Technology, 2007. 1

[9] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient
object localization and image classification. In ICCV, 2009. 7

[10] X. He, R. Zemel, and A. Carreira-Perpinan. Multiscale con-
ditional random fields for image labeling. In CVPR, 2004. 1,
2

[11] T. Hofmann. Probabilistic latent semantic analysis. In Proc.
of Uncertainty in Artificial Intelligence, 1999. 2, 3

[12] S. Ito and S. Kubota. Object classification using heteroge-
neous co-occurrence features. In ECCV, 2010. 1, 2

[13] F. Khan, J. van de Weijer, and M. Vanrell. Top-down color
attention for object recognition. In ICCV, 2009. 2

[14] C. Lampert, H. Nickisch, and S. Harmeling. Learning to de-
tect unseen object classes by between-class attribute transfer.
In CVPR, 2009. 2

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene
categories. In CVPR, 2006. 2, 5, 7

[16] C. Leacock and M. Chodorow. Combining local context and
WordNet similarity for word sense identification. WordNet:
An electronic lexical database, 49(2):265–283, 1998. 1

[17] L.-J. Li, C. Wang, Y. Lim, D. Blei, and L. Fei-Fei. Building
and using a semantivisual image hierarchy. In CVPR, 2010. 2

[18] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative vi-
sual codebooks using randomized clustering forests. In NIPS,
2007. 2

[19] N. Morioka and S. Satoh. Building compact local pairwise
codebook with joint feature space clustering. In ECCV, 2010.
7

[20] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and
S. Belongie. Objects in context. In ICCV, 2007. 1, 2

[21] J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman.
Discovering objects and their location in images. In ICCV,
2005. 2

[22] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In ICCV, 2003. 1, 2

[23] Y. Su, M. Allan, and F. Jurie. Improving object classification
using semantic attributes. In BMVC, 2010. 3

[24] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object
category recognition using classemes. In ECCV, 2010. 2

[25] M. Ullah, S. Parizi, and I. Laptev. Improving bag-of-features
action recognition with non-local cues. In BMVC, 2010. 2

[26] J. van Gemert, C. Veenman, A. Smeulders, and J. M. Geuse-
broek. Visual word ambiguity. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(7):1271–1283, 2010.
2

[27] J. Vogel and B. Schiele. Semantic modeling of natural scenes
for content-based image retrieval. International Journal of
Computer Vision, 72(2):133–157, 2007. 2, 3

[28] G. Wang, D. Hoiem, and D. Forsyth. Learning image simi-
larity from flickr groups using stochastic intersection kernel
machines. In ICCV, 2009. 2, 6

[29] J. Winn, A. Criminisi, and T. Minka. Object categorization by
learned universal visual dictionary. In ICCV, 2005. 5

[30] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In
CVPR, 2010. 1, 7

[31] J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao. Group-sensitive
multiple kernel learning for object categorization. In ICCV,
2009. 7

[32] B. Yao and L. Fei-Fei. Modeling mutual context of object and
human pose in human-object interaction activities. In CVPR,
2010. 1

[33] D. Yarowsky. Word-sense disambiguation using statistical
models of Roget’s categories trained on large corpora. In Pro-
ceedings of the 14th conference on Computational linguistics-
Volume 2, 1992. 1

[34] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation pat-
terns: from visual words to visual phrases. In CVPR, 2007.
2

[35] Y. Zhang and T. Chen. Efficient kernels for identifying
unbounded-order spatial features. In CVPR, 2009. 5, 7

[36] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classifica-
tion using super-vector coding of local image descriptors. In
ECCV, 2010. 7

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/

