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Abstract. A group of agents is faced with a collective decisional prob-
lem. The corresponding debate is viewed as a dynamic process. An initial
theoretical model based on a multicriteria decision framework was pro-
posed in [7] yet without semantic justifications and any explicit dynamic
representation. A second descriptive model has been proposed in [6], ac-
cording to which social influences and argumentation strategy govern
the dynamics of the debate. This paper seeks to justify the equations
introduced in [7], using the semantic concepts discussed in [6], in order
to provide a model for a debate held within the framework of control
theory that explicitly lays out the dynamic aspects and moreover offers
additional perspectives for purposes of controlling the debate.

Keywords: Debate, influence, decisional power, Choquet integral, con-
trol, collective decision, social network.

1 Introduction

A group of agents is faced with a collective decision; in response, a debate has
been organized to identify which alternative appears to be the most relevant
following a deliberation. This study will be limited to the binary, albeit com-
mon, situation involving two options denoted +1 and −1. It is assumed that
each agent has an inclination to choose one of the alternatives +1 and −1 ,
though due to the influence of other agents this inclination may differ from the
agent’s actual decision [3]. In general terms, it can be considered that each time
a speaker intervenes in the debate, agents may change their preference due to
social influences taking place within the group. Once agents’ preferences reach
a point of no longer changing, then the deliberation process ends and a group
decision is made. The aim of this debate is for every agent to hear the arguments
of all other agents by the end of the deliberation process and then to make a
final decision based on full knowledge of the facts.
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This deliberation is viewed as a dynamic process with its own dynamics and
where agents’ beliefs and preferences evolve as arguments are exchanged. The
deliberation outcome thus depends both on the order in which agents intervene
in the debate to explain their opinion and on the influence a given agent may
exert on a social network.

In this context, social influence is related to the statistical notion of the
decisional power held by an individual within a social network, as proposed in
[5] and [3].

One of the conclusions drawn in [3] concerns the integration of dynamic
aspects into the influence model. The authors’ framework is indeed a decision-
making process activated after a single step of mutual influence. In reality, such
mutual influence does not necessarily stop after just one step but may actu-
ally become iterative. This paper proposes a possible extension of the results
presented in [3] for use in the dynamic case. The evolution of agents’ beliefs
throughout the debate either change or reinforce the agents’ convictions rela-
tive to their initial preference. Intuitively, as well as from other standpoints, an
agent’s social influence depends on the relative strength of other agents’ convic-
tions. The idea for our model therefore is to define influence as a time-dependent
variable.

In [7], the concepts of influence and conviction during the simulation of a
debate are introduced. This article will follow up on the prior work proposed
in [1]. Our main improvement here over previous efforts relates to the fact that
in [7], coalitions of agents were modeled using capacities, and the change in
conviction during a debate was computed with a symmetric Choquet integral,
which is in fact an aggregation function typically introduced in multicriteria
decision making [2]. The main drawback in [7] pertains to a lack of semantic
justifications.

Reference [3] provides a formal framework to define the notion of influence,
while [7] introduces the revision equations relative to agents’ convictions and
preferences. Moreover, [6] suggests a cybernetic interpretation to merge both of
these models. The present paper is intended as a continuation of [7], with [6]
also used for guidance. The main contribution of this paper is to propose the
state equations of the cybernetic interpretation in order to describe the way
agents’ convictions may evolve over time. To achieve this goal, a capacity will
be introduced to model the relative importance of agents in the debate; such a
capacity is based on the decisional power of agents using the generalized Hoede-
Bakker index [3, 5]. Consequently, a number of simulations will be proposed to
illustrate the collective decision-making process.

The paper will be organized as follows. Section 2 will briefly recall the main
concepts of the models presented in [7] and [3]. From this formal framework,
Section 3 will establish the state equations that serve to model the dynamic
relationships between convictions and influences when a speaker-agent / listener-
agent pair is isolated. Following a presentation of preference changes, Section 4
will offer a few illustrations. Lastly, Section 5 will provide the conclusion and
outlook for future research.
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2 Concepts and notations

2.1 Notion of influence in a debate

The assumption behind our model is that an agent’s influence is correlated with
his capacity to alter the group decision. It addresses the concept of the ”weight”
of an agent’s choice in a collective voting procedure. This ”weight” parameter
cannot be static since it needs to evolve with agent preferences, which in turn
allow for the formation of certain coalitions that are more likely than others.

It is common experience that during the discussion phase, some agents will
change their initial opinions. The reasons for this change, in assuming that it is
not a random occurrence, may be of different types. The most natural reason
is that they have been swayed by the arguments of a particular agent or group
(coalition) of agents, or that they feel somewhat obliged, owing to a hierarchical,
political or perhaps even more obscure reason, to follow the opinion of that
particular agent or coalition. Another reason may be that they are acting in
reaction against a given agent or coalition, by systematically embracing the
opposite opinion. We use the generic word ”influence” herein to refer to all these
types of phenomena [4].

Models have been introduced into game theory in order to represent influence
in social networks. The point of departure is the concept of the Hoede-Bakker
index, a notion that computes the overall decisional power of an agent within a
social network, which in this case is a group of n agents. This index was developed
in 1982 [5]; an extended definition of decisional power was proposed in [3] and will
now be summarized. The reasons behind the existence of influence phenomena,
i.e. why a given individual finally changes his decision, is more a matter of the
psychological sciences and lies beyond the scope of such approaches.

Let’s start by considering a set of agents {a1, · · · , an}, denotedN = {1, · · · , n}
in order to simplify notations along with a power set denoted 2{a1,···,an}. Each
agent is inclined to choose either +1 or −1. An inclination vector, denoted i, is
an n-vector consisting of +1 and −1. The j-th coordinate of i is thus denoted
iaj ∈ {−1,+1} and represents the inclination of agent aj . Let I = {−1,+1}n be
the set of all inclination vectors.

It can then be assumed that agents influence one another; moreover, due to
influences arising in the network, the final decision of an agent may differ from his
original inclination. In other words, each inclination vector i ∈ I is transformed
into a decision vector B(i), where B : I → I, i 7→ B(i) is the influence function.
The coordinates of B(i) are expressed by (Bi)aj , j ∈ {1, · · · , n} and (Bi)aj is the
decision of agent aj . Lastly, gd : B(I)→ {−1,+1} is a group decision function,
assigned the value +1 if the group decision is +1 and the value −1 for a group
decision of −1.

An influence function B may correspond to a common collective behavior.
For example, in [3] a majority influence function Maj[t] parametrized by a real
t has been introduced. More precisely, for a given i ∈ I,

Maj[t]i =
{

1N if |i+| ≥ t
−1N if |i+| < t
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where i+ = {k ∈ N |ik = +1} and 1N (resp. −1N ) is the vector equal to 1 (resp.
-1) everywhere.

This set-up corresponds to the intuitive collective human behavior: when a
majority of players have an inclination of +1, then all players decide +1. Many
classifications of potential collective behavior (polarization, groupthink, mass
psychology, etc.) can thus be described mathematically.

An influence function may also be defined as a simple rule. For example, the
following rule may be associated with the Guru function: “when aGuru thinks
+1, then all agents decide +1“. Another example would be the opportunistic
behavior, i.e.: “when most of my supervisors decide +1, then I decide +1”.

It can also be anticipated that mapping B : I → I is learned from experiment.
The identification of B may be perceived as a data-mining step using knowledge
bases in which collective decisions have been recorded as minutes of company
meetings.

Definition 1. The Hoede-Bakker index of agent aj is defined for a given B and
a given gd by:

GHBaj =
1

2n−1

∑
{i|iaj=+1}

gd(B(i)).

The main drawback with the Hoede-Bakker index is that it blurs the actual role
of the influence function, by analyzing the final decision only in terms of success
and failure. The decision is successful for an agent once his inclination matches
the group decision.

In [3], the authors distinguish the influence component from the group deci-
sion component and moreover propose a first modified index of decisional power,
whereby the agent’s decision must coincide with the group’s decision to consti-
tute a success for the agent. Lastly, these authors provided a second modified
decisional power, allowing the inclination vectors to be assigned unequal proba-
bilities.

Definition 2. Let p : I → [0, 1] be a probability distribution, with p(i) being
the probability of an i occurrence. The modified decisional power of agent aj for
given B, gd and p can then be expressed as:

φaj (B, gd, p) =
∑

{i|(Bi)aj=+1}

p(i).gd(B(i))−
∑

{i|(Bi)aj=−1}

p(i).gd(B(i)).

To conclude this summary section, for each agent aj the probabilities of success
and failure are recalled as follows:

SUCaj (B, gd, p) =
∑
{b∈I|(b)aj=gd(b)}

p ◦B−1(b)

FAILaj (B, gd, p) =
∑
{b∈I|(b)aj=−gd(b)}

p ◦B−1(b).

Note that: φaj (B, gd, p) = SUCaj (B, gd, p)− FAILaj (B, gd, p).
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2.2 Convictions and preferences during a debate

This section will present the dynamic model of the debate proposed in [7]. The
influence an agent may exert on the others in the debate is modeled by a capacity
over 2{a1,···,an}.

Definition 3. A capacity v over 2{a1,···,an} is a set function v : 2{a1,···,an} →
[0, 1] such that v(∅) = 0, v({a1, · · · , an}) = 1 and ∀A,A′ ⊆ {a1, · · · , an}, A ⊆
A′ ⇒ v(A) ≤ v(A′).

The profile of an agent aj includes his preference, importance (i.e. his capacity
v(aj)) and preference intensity named conviction in the following (it is to be
denoted caj ∈ [0, 1]).

It is an agreed rule of the debate that agents are to speak in turns. In the
proposed model set-up, the agent as (speaker-agent) who is currently speaking
and any agent al (listener-agent) who is listening are formally isolated from the
remainder of the group. More precisely, a capacity val,as , defined relative to the
pair of agents (al, as), is introduced as follows:

val,as(al) = v(al)
v({al,as}) , val,as(as) = v(as)

v({al,as}) and val,as({al, as}) = 1.
The change of conviction can then be modeled using the symmetric Choquet

integral, which is also called the Sipos integral. The definition of the Choquet
and Sipos integrals will now be provided.

Definition 4. Let c = (ca1 , . . . , can) ∈ [0, 1]n be a vector of convictions, () be
a permutation on {1, . . . , n} such that ca(1) ≤ . . . ≤ ca(n) and v a capacity on
2{a1,···,an}.

The Choquet integral of c with respect to v is expressed as:

Cv(c) =
n∑
i=1

[
ca(i) − ca(i−1)

]
v({(i), · · · , (n)}) with ca(0) = 0.

Definition 5. Let c = (ca1 , · · · , can) ∈ [−1, 1]n be a vector capable of assuming
negative values, () be the permutation on {1, · · · , n} such that ca(1) ≤ ca(p) < 0 ≤
ca(p+1) ≤ · · · ≤ ca(n) and v a capacity on 2{a1,···,an}.

The symmetric Choquet Integral of c with respect to v is given by:

Čv(c) =
p−1∑
i=1

[ca(i) − ca(i+1) ]v({(1), · · · , (i)}) + ca(p)v({(i), · · · , (p)})

+ca(p+1)v({(p+ 1), · · · , (n)}) +
n∑

i=p+2

[ca(i) − ca(i−1) ]v({(i), · · · , (n)}).

In [7] the Sipos integral is defined on the set of agents {al, as} and denoted
Čval,as . The changes of conviction proposed can then be summarized as follows:

If agents al and as have the same preference, then one of them is more con-
vinced, and this situation entails two possible cases.
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– If cas > cal then the new conviction of agent al becomes:
Čval,as (cas , cal) = cal + (cas − cal)val,as(as).

– If cal > cas then the new conviction of agent al becomes:
Čval,as (cas , cal) = cas + (cal − cas)val,as(al).

If agents al and as have different preferences, then the new conviction of agent
al is:
– Čval,as (cas , cal) = −casval,as(as) + calval,as(al).

The main drawback to this model is its lack of semantic justification with
regard to capacity v (i.e. influence is merely a normalized relative importance);
in addition, the concept of conviction has not been formally defined and the
revision equations are not provided in an appropriate formalism, in which time
would appear explicitly (i.e. dynamic aspects).

3 Presentation of our dynamic model

This section presents our dynamic model for simulating a debate outcome. To
begin, let’s note that within the framework of this paper, the influence function
used in [3] is perceived as a disturbance function applied to the set of all possible
inclination vectors.

3.1 Decisional power and capacities

One of the new ideas presented in this paper is the ability to design a capacity
based on the decisional power included in the above model.

For any inclination vector i in I, Bi is the decision vector obtained from
i whose influence is modeled by B. gd(Bi) is the final decision of the group,
whereby the group decision function is modeled by gd . For any i ∈ I, gd(Bi)
belongs to {−1,+1}, which implies that the modified decisional power for any
agent aj as denoted φaj (B, gd, p) lies in the interval [−1, 1].

Note that if the decisional power of an agent is close to −1, this means
that the agent only rarely chooses the alternative to what the collective body
ultimately chooses: he fails most of the time (FAIL). On the other hand, when
his decisional power is close to 1, the agent is most often successful (SUCC); his
decisional power therefore is strong. Hence, for any agent aj , we can normalize
φaj (B, gd, p) in order to obtain his importance.

As an example, without any further information, the importance of agent aj ,
i.e. his capacity v(aj), can be defined as follows:

Definition 6. The importance of agent aj for a given B, gd and p is vφ(aj) =
1
2φaj (B, gd, p) + 1

2 .

Note that for any agent aj , v(aj) ∈ [0, 1] with v(aj) = 0 if and only if φaj (B, gd, p) =
−1 and v(aj) = 1 if and only if φaj (B, gd, p) = 1.

A capacity vφ can then be generated over 2{a1,···,an}, with constraints, ∀A,A′ ⊆
{a1, · · · , an}, A ⊆ A′ ⇒ v(A) ≤ v(A′). Without any further knowledge, it may
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be stated: vφ(A) = max
aj∈A

v(aj), ∀A ⊂ {a1, · · · , an} and vφ({a1, · · · , an}) = 1. This

last condition is necessary because it is uncertain that an agent can be found
whose capacity is equal to 1.

Let’s conclude this section with the following remark. The decisional power
of individuals aj on which vφ : 2{a1,···,an} → [0, 1] is based, measures those
cases where the final decision of aj matches the group decision. An agent with
considerable decisional power is expected to sway several other agents; thus,
decisional power is construed as an estimation of his influence within the group,
although this is not an influence index in the sense of [3].

3.2 Time-varying probabilities

This subsection focuses on the design of probability p as a time-varying function,
to be denoted p[k] at time k. Along with this time-varying probability, a time-
varying extended decisional power, as presented in [3], can be computed. The
following method proposes basing the probability computation on the convic-
tions of agents with respect to the available alternatives. In this part therefore,
the conviction vectors are assumed to be known. c(k) (resp. c′(k)) denotes the
conviction vector of agents w.r.t. alternative +1 (resp. −1) at time k:

c(k) = (ca1(k), · · · , caj (k), · · · , can(k)), where caj (k) is the conviction of agent
aj w.r.t alternative +1 at time k.

c′(k) = (c′a1
(k), · · · , c′aj (k), · · · , c′an(k)), where c′aj (k) is the conviction of

agent aj w.r.t alternative −1 at time k.
Their respective computations will be provided in the next section.
The conviction of an agent concerning a given alternative is correlated with

the probability that this particular agent chooses this alternative, i.e. the prob-
ability of his inclination as defined in [3].

Let i ∈ I be an inclination vector. Each coordinate iaj is the preference of
agent aj and constitutes one of the two alternatives.

Definition 7. Let i ∈ I be an inclination vector. The conviction vector of i
at time k is c(i, k) = (c̄a1(k), · · · , c̄an(k)), where for any j, c̄aj (k) is caj (k) if
iaj = 1 and is c′aj (k) if iaj = −1.

Let i ∈ I be an inclination vector and let’s define ci(k) ∈ [0, 1] as an average
conviction at time k for i. This value summarizes the distributions of agents’
convictions in i at time k. ci(k) is an ”aggregated conviction” of the group of
agents for i. This aggregation should take into account the relative importance
of agents and their interactions. Consequently, it seems only natural to state the
following definition.

Definition 8. Let i ∈ I be an inclination vector and v[k] be a capacity defined
at time k on 2{a1,···,an}, then ci(k + 1) = Cv[k](c̄a1(k), · · · , c̄an(k)), where Cv[k]
is the Choquet integral with respect to v[k].

The time-varying probability is built by recurrence on k. We start at time k = 0
and will proceed by presenting how to compute p[k + 1] using p[k].
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At time k = 0:
Each agent assigns a score to each alternative in the interval [0, 1]. For each
agent, if we were to denote n+1 ( resp. n−1 ) as the score of +1 (resp.
−1), then the convictions could be computed by caj (0) = n+1

n+1+n−1
and

c′aj (0) = n−1
n+1+n−1

. We then have caj (0) + c′aj (0) = 1. Initially, at time k = 0,
if iaj is the preference of aj then the probabilities of the agent aj regarding
his preference and the other alternative would be: paj (iaj )[k = 0] = caj (0)
and paj (−iaj )[k = 0] = 1− caj (0).
We assume that before the debate starts, the inclination of each agent does
not depend on the social network. The probability distribution associated
with a priori probabilities is thus the product of the individual probabilities
paj at k = 0, leading to the following probability:

∀i ∈ I, p(i)[0] =
n∏
j=1

paj (iaj )[0].

It is thus possible to compute the following
– the decisional power for any agent aj at k = 0: φaj (B, gd, p[0]);
– the capacity vφ[0] over 2{a1,···,an}, for k = 0, as proposed in Subsection

3.1: vφ[0](aj) = 1
2φaj (B, gd, p[0]) + 1

2 , and the capacity on a set A is the
maximum of the capacity of agents present in the considered coalition.

How to compute p[k+1], φaj (B, gd, p[k+1]), vφ[k+1] using p[k], φaj (B, gd, p[k])
and vφ[k]
The capacity vφ[k] is used to compute ci(k+1), i.e. the aggregation conviction
for the inclination vector i at time k+1: ci(k+1) = Cvφ[k](c̄a1(k), · · · , c̄an(k)).
The time-varying probability p[k + 1] can then be defined as follows:

∀i ∈ I, p(i)[k + 1] =
ci(k + 1)∑
j∈I c

j(k + 1)
.

It then becomes possible to compute:
– the decisional power for any agent aj at k + 1: φaj (B, gd, p[k + 1]);
– the capacity vφ[k + 1] over 2{a1,···,an}, at time k + 1, as proposed in

Subsection 3.1.

We have thus defined a time-varying probability. Note that the proposed
method seems to be rather intuitive since it corresponds to the notion that an
agent’s social influence depends on the degree of assurance in the convictions of
the other agents when he speaks.

3.3 Conviction state equations

The aim of this section is to establish the state equations that serve to model the
dynamic relationship between convictions and influences. Let’s consider al to be
any listener-agent and as a speaker-agent. Their convictions at time k for the
alternative +1 (resp. −1) are then cal(k) and cas(k) (resp. c′al(k) and c′as(k)).
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Two variables are necessary to model the rhetorical quantity exchanged be-
tween the two agents al and as, namely: the difference in their conviction and
their relative importance at time k, as modeled by the capacities vφ[k](as) and
vφ[k](al).

Four rhetorical exchanges can be distinguished. These four situations are
presented in the case when the agent al prefers alternative +1. Two sub-cases
can then be identified for agent as: his preferred alternative is either the same
as al’s or the other one. Each case can be divided once again into two sub-
cases: as’s conviction is either greater or less than al’s conviction. When agent
al prefers alternative −1, convictions c′ replace convictions c in the formula.
More precisely, the equations appearing in the computation of cal(k + 1) when
both agents express the same preference are the same as those used to compute
c′al(k+1) in the case of opposite preferences and viceversa. Hence, the rhetorical
exchanges can be summarized by the following exchanges: synergistic exchange,
revisionist exchange, and antagonistic exchange. Let’s take a closer look at each
of them.
Synergistic exchange

In this case, the preference of agent al is reinforced by the intervention of

Fig. 1. Synergistic Exchange

agent as, who resolutely looks favor-
ably upon the same alternative.

The conviction of agent al then
increases, to an extent proportional
to the difference between both con-
victions as well as to the capacity of
speaker-agent as.

This situation, as represented in
figure 1, corresponds to the case when
al and as have the same preference and
moreover cas > cal . The intuitive difference equation is then written:

cal(k + 1)− cal(k) = (cas(k)− cal(k))vφ[k](as), which is equivalent to:
cal(k + 1) = cal(k) + (cas(k)− cal(k))vφ[k](as).

Revisionist exchange

Fig. 2. Revisionist Exchange

In this situation, agent al under-
stands the argument of agent as, who
has the same preference but a more
moderate support. Agent as appears
to speak with restraint relative to al’s
point of view, and this exposes al’s
doubt. al’s conviction is thus mitigated
by as’s intervention. This situation,
which is depicted in figure 2, corre-
sponds to the case when al and as have
the same preference with cal > cas . The intuitive difference equation is then writ-
ten as:
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cal(k + 1) − cal(k) = (cal(k) − cas(k))(1 − vφ[k](al)) which is equivalent to:
cal(k + 1) = cas(k) + (cal(k)− cas(k))vφ[k](al).

Agent al observes the indecision on the part of agent as who nevertheless
shares his opinion: as contributes to al’s doubt. The level of conviction decreases
due to as’s intervention. which is proportional on the one hand to 1− vφ[k](al)
(resulting from al’s lack of assurance relative to his social position within the
group) and on the other hand to the difference between both agents’ convictions.
Antagonistic exchange

Fig. 3. Antagonistic Exchange

In this situation, the two agents do
not share the same preference: agent
al nevertheless understands the advan-
tages of as preference. A convincing in-
tervention from as may contribute to
making al dubious, whereas an unper-
suasive intervention might on the con-
trary strengthen al’s preference.

(1 − c′as(k)) is a measure of as’s
hesitation and provides al with an es-
timation of the strength of as’s op-
position. Depending on the strength
of this hesitation, the previous differ-
ence equations can again be used with
(1− c′as(k)), yielding two situations to
be distinguished (see figure 3).

An overly weak preference expressed by as implies weak opposition from al’s
point of view and reinforces al’s opinion, resulting in a likely strengthening of
al’s conviction.

The intuitive difference equation is then:

Case 1: 1− c′as ≥ cal
cal(k + 1) − cal(k) = ((1 − c′as(k)) − cal(k))(vφ[k](as)), which is equivalent
to cal(k + 1) = cal(k) + (1− cas(k)− cal(k))(vφ[k](as)).

Case 2: 1− c′as < cal .
In this case al’s conviction weakens following as’s intervention.
cal(k+1)−cal(k) = −(cal(k)−(1−c′as(k)))(1−vφ[k](al)), which is equivalent
to cal(k + 1) = (1− c′as(k)) + (cal(k) + c′as(k)− 1)(vφ[k](al)).

All these various types of exchanges can be synthesized using a Sipos integral.

Proposition 1. If agents as and al express the same preference, then:

cal(k + 1) = Čvφ [k](cas(k), cal(k));

If agents as and al do not share the same preference, then:

cal(k + 1) = Čvφ [k](1− c′as(k), cal(k)).
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As a conclusion to this section of the paper, the decisional power φ pro-
vides a semantic interpretation for the capacity v in the recurrence equations
presented in [7], with conviction here being related to the probability an agent
will choose one alternative over the other (i.e. probability distribution over in-
clination vectors). The model in [7] thus becomes interpretable within a game
theory framework [3]. The revision equations for conviction appear as input-
output balances according to the alternatives assessment. Introducing time into
the equations in [7] implies that revision equations of conviction are now seen
as state equations of agents’ mental perception. This new interpretation then
provides a semantics for the debate model in [7]: it incorporates the notions of
influence and decisional power, as proposed in [3], with a formalism close to that
of dynamic models found in control theory, as suggested in [6].

4 Illustration

4.1 Preference calculus

This section discusses how to compute preferences during the debate. Initially,
each agent aj assesses both alternatives +1 and −1 lying in the interval [0, 1].
These assessments are denoted n+1

aj and n−1
aj , respectively. It is then possible to

build initial preferences and convictions as follows: Let a in {−1, 1}

– aj prefers alternative a with the highest score,

– aj ’s conviction relative to alternative a equals
naaj

naaj
+nāaj

.

Preference changes depend on how convictions evolve over time. For any
agent aj , it is assumed that a threshold εaj > 0 exists such that when the
difference between two convictions lies below this threshold, then agent aj cannot
have a preference. This threshold value may be characteristic of each agent. To
summarize: if |caj − c′aj | < εaj , then aj has no preference; if |caj − c′aj | ≥ εaj ,
aj prefers the alternative with the highest conviction.

An agent without a preference cannot intervene, which is stated as one of
the debate rules.

4.2 Simulations of debates outcome

In order to illustrate the principle of the above dynamic representation of a
debate, the four following elementary models for influence function B have been
implemented:

– B is the identity, i.e. for any inclination vector i, it can be stated that: Bi = i;
– B is the opposite of identity, i.e. for any inclination vector i, it is stated that:
Bi = −i;

– B is a mass psychology effect function. More precisely, let’s denote iε =
{k ∈ N |ik = ε}, where B satisfies the following: for each i ∈ I: |iε| > t, then
iε ⊆ (Bi)ε, where t ∈ [1, n] and ε = +1 or −1;
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Fig. 4. Identity

– B is a majority influence function that models behavior of the following
types: if a majority of agents have an inclination +1, then all agents decide
+1; if not, all agents decide −1.

Fig. 5. Opposite of identity

For these four cases, the group decision function gd is, a mere majority and
a basic capacity is designated, as proposed in Section 1.3.

Let’s now consider a group of n = 8 agents. The initial convictions of agents
relative to both alternatives are considered as variates: 50 random drawings of
these 8 initial probabilities have been carried out. For each of these 50 initial
conviction vectors, the order of agents’ intervention in the debate can then be
considered: 200 permutations are randomly selected (among the 8! possible rank-
ings) for each initial conviction vector.

Each of the four elementary illustrations has been plotted in the following
figures (i.e. one for each B function). For each of the 50 initial conviction vectors
selected randomly, a bar represents the number of +1 and −1 outcomes (light
gray for +1 and dark gray for −1)

Each figure is to be associated with the maximum number of rounds required
to achieve the ground decision for each initial conviction vector. In the proposed
simulations, this number does not exceed 8 rounds in any of the cases chosen for
B.

The indifference threshold is ε = 0.01 for any agent. Agents speak in turn
according to the order generated by the 200 permutations, upon the condition
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that they are able to express a clear opinion, specifically: agent aj can speak if
|caj − c′aj | ≥ ε.

For the same initial conviction vector, it can be observed that for each func-
tion B, the outcome of the debate may depend on the order the agents intervene
in the debate. This type of situation can be interpreted as a weak expression
of preferential contexts, whereby any perturbation is able to change the debate
outcome. From this point of view, influence function B is a disturbance function
for this dynamic model of a debate. As a consequence, simulations allow verify-
ing that the order the agents intervene in the debate and their influence are both
decisive variables with regard to the convergence of conviction state equations.

Fig. 6. Majority

Fig. 7. Mass Psychology Effect

The social influence of an agent may thus be considered as a disturbance in
the deliberation process, except if it is relevantly used by the debate manager
to guide the discussion. In this latter case, social influence can be viewed as an
actuator that enables controlling the debate outcome or at least accelerating
its convergence. For example, when the debate outcome is practically certain
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(i.e. the bar is almost completely light or dark gray), then the simplest control
might consist of choosing the order of agents intervention that minimizes the
maximum number of rounds. More complex controls could clearly be foreseen,
yet the aim of this paper has merely been to propose a dynamic model of the
debate within a framework close to control theory representations, making for a
natural implementation of control techniques in the future.

4.3 Debate as a decision-making process

This part of the paper will present a potential application of the dynamic model
discussed herein. The aim is to apply the model like a voting system. For this
example in particular, both alternatives −1 and +1 are not considered to be
equivalent: +1 is the right decision, while −1 is associated with an erroneous
decision. This situation could occur in classification problems when the agents
are competitive classification algorithms.

The agents are expected to provide the correct answer most of the time, but
they typically disagree on individual cases. One common solution is to employ
a voting process in order to yield a group decision, i.e. let d1, d2 . . . dn be the
respective decision of the various agents, then the group decision is written as:

Fig. 8. Simulation-weighted vote and de-
bate

 1 if
n∑
i=1

di > 0

−1 else

For example, let the agents be 7 dif-
ferent classification algorithms whose
success rates equal respectively: 0.6,
0.7, 0.8, 0.8, 0.6, 0.7, and 0.6. The
group success rate according to a nor-
mal vote would thus be 0.86. A bet-
ter aggregation process will achieve a
higher success rate.

The first idea here is to use a
weighted vote, i.e. let α1, . . . αn ∈
[0, 1]n : 1 if

n∑
i=1

αidi > 0

−1 else

One possible set of weights is the individual success rate of each agent; however,
it is possible to compute the Shapley-Shubik power index [9], and our example
delivers a value of 1

7 for each agent. This is exactly the same value achieved in
a normal vote. Since the weights do not differ considerably for a small number
of agents, the sign of the weighted sum is the same as that produced during
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the normal vote. This finding indicates that even if some agents possess a more
powerful vote, the final decision is always shared by at least 4 agents.

If we were to use our debate model as the voting process, such an outcome
would not occur. The least agents also happen to be those who most readily
change their point of view. More precisely, we can run the debate with identity
as the B function and as success rates for convictions. It is assumed that 7
competitive classification algorithms are available and moreover that the correct
solution is supposed to be alternative +1.

As said above, the initial probability of the 7 algorithms to choose alternative
+1 are: 0.6, 0.7, 0.8, 0.8, 0.6, 0.7, and 0.6. The debate stops when all classifi-
cation algorithms are in agreement. We will assume then that their answers are
independent random variables and that 10,000 cases are studied by each agent.
For each case, the agent’s answer is inferred according to his probability of being
correct.

Next, for each of these 10,000 cases, we compute the group decision according
to 3 methods:

– the choice with a majority vote procedure,
– the choice with a weighted majority vote procedure,
– the decision derived using our debate model.

While simple and weighted majorities yield the correct answer at a rate of
86 %, our method produced a 94 % rate. Hence, the aggregation by a debate
significantly increases success rate.

In order to verify this good result, we tried using different situations of the
same model. For 7 agents, several values for the probability of making the right
decision were randomly generated, and the 3 corresponding rates computed (re-
sults are presented in Figure 8). In this figure, both the weighted voting rate
and our debate output vs. this rate are plotted. Note that the same rate for
the simple vote can be obtained with very different sets of probabilities. The
debate always yields a better rate, although its preferences change according to
the specific probability profile. The weighted vote success rate is quite close to
that of the simple vote, except for very unique probability sets where several
agents (algorithms) perform much better than the others.

5 Conclusion and outlook

The state equations derived in this paper allow simulating macroscopically the
outcome of a debate according to the initial inclinations of agents and the social
influences taking place within the group (whereby the influence function is a
priori known). The deliberation outcome depends not only on the order in which
the agents intervene in the debate to explain their opinions, but also on the
influence an agent is able to exert on a social network.

The model formalism proposed in this paper is close to the one used in control
theory to model the dynamic behavior of technical systems. Guiding a debate
might then be seen as a control problem, whose aim could, for example, be how
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to reach a consensus as quickly as possible or how to reinforce one alternative
over the other, etc.

A debate is thus seen as a continuous dynamic system: a state equation
representation has been preferred to the multicriteria decision-making framework
in [7] given that time explicitly appears in the revision of convictions. The model
semantic has also been inspired from the game theory concepts proposed in [3]:
influence and decisional power in a social network. In our dynamic extension,
decisional power is a time-varying variable itself and may be used as the actuator
signal in the debate control loop. The system of state equations established in
this paper allows stochastically simulating the outcome of a debate and effects
of a control strategy on this particular issue.

One possible application of this model would obviously be to simulate a de-
bate outcome in order to obtain certain indications regarding the final collective
decision. When simulations are performed for a large number of initial agent
convictions and speaker intervention rankings, the probability that outcome is
±1 can be estimated. Hence, the dynamic influence model can be applied to
either make the debate outcome more certain (this may appear to be a dis-
honest method when agents are actual human beings, yet remains a relevant
technique when agents are artificial, such as sensors or classifiers) or modify the
convergence dynamics of the debate.
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