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Abstract. A new generation of instruments in astrophysics or vision
now provide spherical data. These spherical data may present a self-
similarity property while no spherical analysis tool is yet available to
characterize this property. In this paper we present a first numerical
study of the extension of multifractal analysis onto the sphere using
spherical wavelet transforms. We use a model of multifractal spherical
textures as a reference to test this approach. The results of the spherical
analysis appear qualitatively satisfactory but not as accurate as those of
the usual 2D multifractal analysis.

1 Introduction

Multifractal analysis is used to characterize the self-similarity property of ob-
jects. This analysis method has been used in various domains, each presenting
self-similar data, such as turbulence in physics [1], network traffic [2], DNA series
in biology [3] or in the study of natural images [4]. The development of new in-
struments in several domains, as astrophysics [5] or vision [6], leads to a new gen-
eration of data: spherical data. These new elements may present a self-similarity
property but no multifractal analysis has yet been proposed to characterize it.
In this paper, we introduce a spherical multifractal analysis based on spherical
wavelets as a natural extension of the usual 2D analysis. A numerical study is
carried out with help of synthetic spherical textures generated by an extension of
the Compound Poisson Cascade (CPC) model [7] on the sphere. These numeri-
cal experiments show that the spherical analysis appear qualitatively satisfactory
but not as accurate as those of the usual 2D multifractal analysis.

The paper is organized as follows. First, we recall on the 2D multifractal
analysis theory and introduce its extension onto the sphere. Next, we present a
family of multifractal processes on the sphere, namely the Compound Poisson
Cascades, to be used as a reference to test the method. Then, we perform numer-
ical experiments to test the spherical multifractal analysis. Finally, we comment
on our results and discuss about possible forthcoming improvements.

2 Multifractal Analysis on the Sphere

2.1 2D Multifractal Analysis

The self similarity property [8] refers to the fact that a part of an object resemble
the whole object itself. This property can be associated to some deterministic
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geometrical feature: a dilated version of some part of a snowflake is similar to
the entire snowflake. An object can also be self similar in a statistical sense. For
example, a dilated segment of an Internet traffic signal is statistically similar to
the whole signal. At least in some range no scale plays a specific role. Determin-
istic and stochastic fractals are examples of such objects. In the following, we
will refer to an object for either a function or a realization of a stochastic pro-
cess. Formally, the self similarity property is usually characterized by power law
scalings, and more precisely by the evolution of partition functions Sq(a) with
scale a. For positive functions f , partition functions can be defined as estimates
of the qth-order moments of the localized box averages for a covering set of Na

positions indexed by l:

Sbox
q (a) =

1
Na

Na∑

l=1

εq
a(l) ∝ aτ(q) where εa(l) =

1
a

∫ l+a/2

l−a/2
β0

(
x − l

a

)
f(x)dx ,

(1)
where β0 is a positive weighting function. In the simplest case, β0 = �x∈[−1/2,1/2].
The coefficients εa(l) are called aggregation coefficients [9]. For more general
functions, the partition functions are often defined as wavelet-based partition
functions as given by [2]:

Sswt
q (a = 2j) =

1
Nj

Nj∑

l=1

|df (j, l)|q ∝ 2jζ(q) , (2)

where df (j, l) are the L1 normalized discrete wavelet coefficients of the object f
under study and Nj is the number of wavelet coefficients at octave j = log2(a).
The function ζ(q) defines a set of so-called multifractal exponents. In the simplest
case, ζ(q) = qH so that all the exponents are described by a single parameter
H . The object is then called monofractal. A monofractal object is characterized
by a unique fractal dimension. This is for instance the case of the fractional
Brownian motion. In general, the function ζ(q) takes the form ζ(q) = qH + τ(q)
where the function τ(q) is a non-linear function such that τ(0) = τ(1) = 0 and
describes the deviation of ζ(q) from a linear function. The object is then called
multifractal. The function ζ(q) is then characterized both by H = ζ(1) and
τ(q) = ζ(q) − qH . The function τ(q) features the multifractality of the object.
The estimated function ζ(q) may also be used as an input set of parameters for
a model such as the Compound Poisson Cascades described in Sect. 3.1.

2.2 Extension of the Multifractal Analysis to the Sphere

We propose to extend the multifractal analysis described above to the sphere
by using the same formulas but with spherical wavelets. We use a continuous
spherical wavelet transform. The multifractal analysis is then only valid for q ≥ 0
otherwise it will be numerically unstable and will raise theoretical problems
[10]. Different constructions of spherical wavelet transforms (SWT) have been
proposed.
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P. Schröder and W. Sweldens [11] wanted to extend the discrete wavelet trans-
form to any manifolds and in particular to the sphere. They have used a sub-
division grid on the sphere (see Fig. 1(a)). Such a grid is based on the iterative
division of the faces of an icosahedron in 4 new faces of equal area. These authors
have constructed spherical wavelet functions with help of the lifting scheme and
used these functions for compression. Two softwares are based on this transform:
SD (http://www.multires.caltech.edu/software/sd/) developed by P. Schröder in
1998 and itkSWaveletSource [12] developed by Y. Gao et al. in 2007.

The extension of the wavelet construction made by J.-L Starck et al. [13] was
motivated by the study of the cosmological microwave background (CMB) in
astrophysics. These data are therefore mapped on the HEALPix (Hierarchical
Equal Area isoLatitude Pixelization, http://healpix.jpl.nasa.gov) grid [14] (see
Fig. 1(b)). The meshes of this grid are distributed on isolatitudes and have the
same area so that every mesh has the same weight. The spherical wavelet con-
struction of J.-L Starck et al. based on the spherical harmonic transform is imple-
mented in a software available from the MRS Home Page (http://jstarck.free.fr/
mrs.html).

J.-P. Antoine et al. [15] have introduced a spherical wavelet transform based on
a correspondence between the plane and the sphere. The translation and dilation
used in the definition of the 2D wavelet transform are replaced respectively by
the rotation and the stereographic dilation on the sphere. The rotation R(ρ),
where ρ is a set of Euler angles, and dilation Da operators are then defined by

(R(ρ)f)(ω) = f(R−1
ρ ω) . (3)

(Daf)(ω) = λ(a, θ)1/2f(D−1
a ω) . (4)

where f(ω) is a function of the spherical coordinates ω = (θ, φ). The stereo-
graphic dilation maps the sphere without its South Pole on the plane. It imposes
the use of an equiangular grid (see Fig. 1(c)). The two major defaults of this grid
are the oversampling of the poles and the area variation of meshes. However, we
chose this tool because it is efficient and easy to use in practice. The spherical
continuous wavelet transform of f(ω) is the convolution between the function
and the rotated and dilated versions of the mother wavelet Ψ

W f
Ψ (ρ, a) = 〈Ψa,ρ|f〉 =

∫

S2
dμ(ω)[RρDaΨ ] (ω)f(ω) . (5)

Then, the spherical multifractal analysis will be performed by replacing
df (j, l) by W f

Ψ (ρ, a) in (2) for a discrete sequence of tangential scales aj =
2 tan((π/4)2−j), 1 ≤ j ≤ J . This wavelet transform is implemented in the Mat-
lab toolbox YAWTb (Yet Another Wavelet Toolbox, developed by L. Jacques et
al. in 2002, http://rhea.tele.ucl.ac.be/yawtb/) [16].

The multifractal coefficients ζ(q) can only be calculated using a L1 normalized
wavelet. In practice, if Ψ (2) is the L2 normalized spherical wavelet function, the
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(a) (b) (c)

Fig. 1. (a) Subdivision grid [11]; (b) HEALPix grid [14]; (c) Equiangular grid [15]

L1 normalized spherical wavelet function Ψ (1) is such as (see proposition 2.1 in
[15])1

Ψ(θ, φ) = Ψ (1)(θ, φ) =
Ψ (2)(θ, φ)
1 + cos θ

. (6)

3 Compound Poisson Cascades (CPC) on the Sphere

A tunable self similar process generated on the sphere is used to validate the
multifractal analysis described above. We have chosen the CPC model, a family
of multifractal processes that can be defined in N dimensions [7] and in particular
directly on the sphere (without any texture mapping), as explained below.

3.1 Compound Poisson Cascades in the Plane

A 2D CPC is a stochastic process used to synthesize gray level images. The pixel
located at (x, y) takes the value given by

Q�(x, y) =

∏
(xi,yi,ri)∈C�(x,y) Wi

�

[∏
(xi,yi,ri)∈C�(x,y) Wi

] . (7)

where (xi, yi, ri) result from a Poisson point process in the half space above the
image plane. The coordinates xi and yi are uniformly distributed on the plane
and the ri ( ≤ ri ≤ 1) are distributed with density ∝ 1/r3

i . The 3D points are
weighted by i.i.d. random multipliers Wi > 0. The pixel value is computed as
the product of the multipliers belonging to a cone pointing to this pixel (see Fig.
2(a)). In another interpretation of (7), the multiplier Wi can be seen as a light
source influencing a part of the image. The size of its base is dilated depending
on the height ri of the multiplier (see Fig. 2(b)). Such models generate purely
multifractal textures characterized by the non linear function τ(q). For instance,
Sbox

q (a) ∝ aτ(q). The distribution of the multipliers Wi prescribes τ(q) since

1 We have implemented the L1 spherical Mexican Hat wavelet in our YAWTb version.
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(a) (b) (c) (d)

Fig. 2. IDC construction (a) and (b) in 2D; (c) and (d) on the sphere

τ(q) = q(�Wi −1)+1−�W q. These very singular textures are often called bare
textures (H = 0). More regular and smoother multifractal textures are obtained
using a self-similar 1/||k||H (H > 0) low-pass filter in the Fourier domain. The
resulting texture is then characterized by the function ζ(q) = qH + τ(q). Such
filtered CPC are called dressed textures.

3.2 Extension of the Compound Poisson Cascades to the Sphere

The extension of CPC on the sphere uses the same principle as the 2D construc-
tion (see Fig. 2(c) and 2(d)). However, several choices are possible to define a
dilation on the sphere, e.g. the stereographic dilation or the dilation of a solid
angle. We have chosen this last dilation because it is the most direct equivalent
of the dilation in the plane and it receives intuitive physical interpretation. The
spherical texture (see Fig. 3(a)) is then generated by using (7), replacing the
2D coordinates by spherical ones (θ, φ) and adapting the distribution of scales
ri (not detailed here for briefness). As explained in Sect. 3.1, the resulting bare
spherical texture, characterized by the function τ(q), has to be filtered to get a
dressed texture characterized by ζ(q) = qH + τ(q). This filtering is carried out
in the (discrete) spherical harmonic domain [17] which is equivalent to the (dis-
crete) Fourier domain. In brief, a function on the sphere f(θ, φ) can be expanded
on the set of spherical harmonics Y m

l (θ, φ) of degree l and order m

f(θ, φ) =
∑

l≥0

∑

|m|≤l

f̂(l, m)Y m
l (θ, φ) . (8)

where the f̂(l, m) are the spherical harmonic coefficients of f . A convolution
theorem exists on the sphere to describe azimuthally symmetric filters ĥ(l, 0):

̂(f ∗ h)(l, m) = 2π

√
4π

2l + 1
f̂(l, m)ĥ(l, 0) . (9)

Using the rough correspondence between the spherical indices (l, m) and the
Fourier vector

√
l2 + m2 ∼ k [18], we have chosen
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ĥ(l, m) =
1
2π

√
2l + 1

4π

1
√

l2 + m2H
. (10)

as the spherical equivalence of the 1/||k||H filter. We know that this filtering
is still approximative due to aliasing problems but it appears to be sufficiently
precise since for this specific choice, aliasing effects are small. The resulting
dressed texture can be characterized by a set of multifractal exponents ζ(q) =
τ(q) + qH (see Fig. 3(b)).

(a) (b)

Fig. 3. CPC textures on the sphere: (a) bare texture characterized by τ (q) and (b)
dressed texture characterized by ζ(q) = τ (q) + qH

4 Numerical Study

The multifractal analysis introduced in Sect. 2 is applied on a set of spherical tex-
tures generated with the model presented in Sect. 3. The spherical multifractal
analysis will give an estimate τ̂ (q) of the exponents τ(q) prescribed in the syn-
thesis of the CPC processes (see [7] for details). To evaluate the quality of the es-
timated τ̂ (q), we compare our results to the theoretical τ(q), to the τ̂box(q) using
(1) for bare textures only and to the well-known results of the same experiments
performed in the plane. The filtering using spherical harmonics is performed
with the S2Kit (http://www.cs.dartmouth.edu/∼geelong/sphere/) package [19]
and the spherical wavelet transform is done with YAWTb. The wavelet used is
the spherical Mexican Hat Wavelet, often picked up in astronomical applications
of spherical wavelets [20].

Two sets of 30 spherical and 2D textures corresponding to the so-called log-
exponential CPC with theoretical τ(q) = 1 − (1 + T )q/(1 + qT ) have been com-
puted: bare textures with parameter T = 0.7 and the corresponding dressed
textures with filter parameter H = 0.55. The choice T = 0.7 corresponds to very
multifractal textures, that is very non linear τ(q).
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As a first consistency check, we have estimated the multifractal coefficients
using the aggregation coefficients method. This analysis can be performed in the
direct space. This is quite difficult to implement because of the need to locate
the grid vertices and the huge number of iterations. This implementation is also
very expensive in computation time and is dependent on the spherical grid. An-
other implementation trades on the process used in YAWTb to compute wavelet
coefficients. This method uses the spherical harmonic transform. It permits an
efficient use of the aggregation coefficients mentioned in (1). The results of the
aggregation coefficients analysis are presented in Fig. 4. The exponents τ̂box(q)
accurately estimate the theoretical τ(q) which validates the spherical CPC syn-
thesis procedure.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

q

τ(
q)

 

 

Theory
Aggregation cefficients

Fig. 4. Estimates based on aggregation coefficients τ̂box(q) for bare textures

Scaling exponents estimates are obtained from linear regressions in log2 Sq(j)
vs. j = log2(a) diagrams over 5 octaves. The values of q are chosen in the range
0 ≤ q ≤ 5. This range is restricted to positive values because the estimation for
negative values is numerically unstable. Furthermore, estimates for q ≥ 5 are
expected to be either statistically inaccurate or uninformative.

Figure 5(a) presents the wavelet-based estimates τ̂swt(q) for the bare spherical
textures compared to the theoretical values τ(q) and the results of the same exper-
iments with flat 2D images. The corresponding spherical Sswt

q functions present
a quite nice power law behavior onto a large range of scales and the behavior
(trend and curvature) of τ̂swt(q) is quite similar to the theoretical τ(q). How-
ever, SWT-based estimates suffer from systematic bias in contrast with estimates
based on box averages τ̂box(q) that were close to perfect. A noticeable defect of
τ̂swt(q) is that it is not consistent with the fundamental property of bare CPCs
τ̂swt(1) = −0.05 
= 0. The 2D equivalent wavelet analysis performed with planar
2D textures based on the same CPC model would give more consistent results.

The behavior (trend and curvature) of ζ̂swt(q) is quite similar to the theoretical
ζ(q), see Fig. 5(b). However, we observe again that the ζ̂swt(q) systematically
underestimate the expected ζ(q). As a consequence, the parameter H is badly
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estimated since Ĥ = ζ̂swt(1) = 0.46 < H = 0.55. This bias is consistent with the
bias previously observed on the τ̂swt(q) for bare textures. This indicates that the
spherical 1/||k||H filtering operation seems to work satisfactorily.

For some given model and using equivalent statistics, the variance of spherical
estimates is of the same order of magnitude as the variance of 2D estimates (of
the order of 5%, not represented here for sake of clarity).
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(b)

Fig. 5. (a) SWT τ̂swt(q); (b) Multifractal analysis of dressed textures, ζ(q) of the form
qH + τ (q)

5 Conclusions and Perspectives

The purpose of this work was to study the relevance of a natural generalization
of the wavelet based multifractal analysis from the usual 2D cartesian space
to the sphere. Such a tool would be useful to characterize the scale invariance
of spherical data. We have presented a numerical study of this approach based
on the use of the CPC stochastic processes with prescribed multiscaling prop-
erties. These processes can be synthesized directly on the sphere without any
mapping artifact. For better efficiency, we have implemented the multifractal
analysis based on aggregation coefficients using the YAWTb wavelet transform
process. This analysis confirms that the synthetic processes have the prescribed
properties indeed. Despite their ability to capture the main behavior of the
scaling exponents, the wavelet based estimates τ̂swt(q) and ζ̂swt(q) are not as
accurate as their usual 2D equivalent. Note that many intricate problems arise
from the spherical geometry. Indeed, we can not exclude that the chosen mesh
grid (equiangular, subdivision, HEALPix,...) have some influence. In particular,
theequiangular grid is not a multiresolution grid. This problem is combined to
the use of continuous spherical wavelets which doesn’t form the desired mul-
tiresolution basis commonly used in 2D. This preliminary work shows that the
extension of multifractal analysis on the sphere using spherical wavelets may
work but is not so immediate. Forthcoming work is needed to get more accurate
estimates.
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