
HAL Id: hal-00808622
https://hal.science/hal-00808622

Submitted on 9 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining learning methods and time-scale analysis for
defect diagnosis of a tramway guiding system

Zahra Hamou Mamar, Pierre Chainais, Alex Aussem

To cite this version:
Zahra Hamou Mamar, Pierre Chainais, Alex Aussem. Combining learning methods and time-scale
analysis for defect diagnosis of a tramway guiding system. 16th Mediterranean Conference on Control
and Automation, Jul 2008, France. pp.1780 -1785. �hal-00808622�

https://hal.science/hal-00808622
https://hal.archives-ouvertes.fr


Combining learning methods and time-scale analysis for defect

diagnosis of a tramway guiding system

Zahra Hamou Mamar, Pierre Chainais and Alex Aussem

Abstract— This paper presents a diagnosis system for de-
tecting tramway rollers defects. First, the continuous wavelet
transform is applied on vibration signals measured by specific
accelerometers. Then, the Singular Values Decomposition (SVD)
is applied on the time-scale representations to extract a set of
singular values as classification features. The resulting multi-
class classification problem is decomposed into several 2-class
sub-problems. The predicted probabilities are coupled using a
pairwise coupling method. Empirical results demonstrate the
efficiency and robustness of the overall diagnosis system on
measurement data.

I. INTRODUCTION

In this paper, we discuss a novel computed assisted deci-

sion support system for the automatic monitoring of the guid-

ing system of a tramway on tires combining methods from

statistical learning and wavelet analysis. The TRANSLOHR

Figure 1(a), chosen by the city of Clermont-Ferrand and

other cities (Padoue, Aquila,...), is a new tramway on tires.

The bearing system is equipped with a guiding system

consisting of a single central rail. The tramway used for

our experimental tests has 4 axles equipped on both sides

with two pairs of rollers at the front and at the back,

Figure 1(b)&(c). There are therefore 8 pairs of rollers. To

limit noise and parasitic vibrations, the rollers are covered

with a composite overlay that ensures better comfort and

silence without squeaks. This overlay can be damaged and

worn (see Figure 2) because of the accidental presence of

metallic pieces, stones on the rail, etc. The wear of the

overlay induces a change in the behavior of the guiding

system which becomes quite uncomfortable and generates

undesirable vibrations. This can lead to other irreversible

damages. A permanent monitoring to prevent these defects

can guarantee the availability of the tramway, the comfort

and the safety of the users.

Most often, the monitoring of a transportation system is

based on visual controls performed by experts or technicians.

Such tasks are expensive and time consuming ; moreover the

diagnosis is sometimes unreliable. The use of an automatic

monitoring system reduces the maintenance costs and makes

them more efficient. Several works deal with the diagnosis,

detection and classification of defects in the transportation

domain [5]–[7]. The corrective maintenance by vibration
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analysis is the best tool for this purpose. In the literature,

several studies showed the effectiveness of the vibration

analysis in many monitoring of machinery elements such as

roller bearings and gears. Most of the detection approaches

are generally based on the acceleration signatures analysis to

detect the presence and growth of peaks in spectra at certain

frequencies [8], [9]. This paper focuses on the vibration

monitoring of the guiding system of a tramway on tires. In

this work, we develop a system for the automatic monitoring

of the state of the overlay of the rollers. This system uses

the measurement of the vibrations due to damaged rollers in

the rail.

In this paper, we discuss a method that combines learning

methods and time-scale analysis in order to locate the

defective pair of rollers and to identify the nature of the

defect at the same time. The state of each pair of rollers

must be determined as precisely as possible: new (no defect),

(slightly or very) worn, with holes. Once the continuous

wavelet transform is applied, the vibration signal is repre-

sented by a gray level image, known as the scalogram. The

position of the pairs of rollers is obtained from the temporal

segmentation. Each one is then represented by a matrix of

wavelet coefficients, a known segment on the scalogram.

The singular value decomposition SVD is then applied to

the matrices corresponding to each pair of rollers to reduce

the complexity of the mutli-class classification problem.

The first part of this article presents the conditions of

data acquisition and the material configuration for the mea-

surement of the vibratory signals. Then we present, the

various treatments carried out on the vibratory signals:

the continuous wavelet transform, temporal and frequency

segmentation. The feature extraction from the scalogram

segment using several classifiers is then described. A multi-

class classification to identify the state of the pairs of rollers

is illustrated in the third part. Several statistical classifiers

are assessed using cross-validation techniques.

II. SIGNALS PROCESSING

A. Acquisition system

The complexity of the guiding system, under study, and the

deadlines imposed by the client do not allow for modeling

the physical system. We choose than the diagnosis approach

by pattern recognition method [3]. Several trial runs carried

out in Duppigheim (Strasbourg, France) allow us to construct

the data basis for each class with a known configurations

(combinations of "new", "worn" and "with holes" rollers on

different axles). Three classes are retained and studied in this



work, class C1 : new rollers, class C2 : with holes and class

C3 : worn.

We have recorded several sets of signals for different.

The measurement system1 consists of three accelerometers,

fixed on the rail, recording the horizontal and vertical vi-

brations of the rail caused by the defective rollers. Two

photoelectric cells around the sensors provide references in

time and position. For each passage at a normal speed (eg. 35

Km/h),the measurement system provides us with six signals

(3 horizontal and 3 vertical components). Each acquisition

lasts 8 seconds at sampling frequency Fe = 44100Hz. Thus,

the available bandwidth for analysis is roughly within [2Hz-

20kHz]. In fact, only the sum of the two components (lateral

and vertical) is used.

The SYSCOGA detector will be related to a maintenance

station so as to send, for each tramway passage, the recorded

vibratory signals, the date and the hour, the direction of

circulation as well as the tramway number which is ensured

by an identification system. The data collected pass through

a set of treatments: a continuous wavelet transform, temporal

and frequency segmentations, feature extraction and a multi-

class classification. The final application will have to provide

a report of each pair of rollers state. The decision to stop the

tramway or to change the defective rollers, will be taken by

an expert or a technician. The access to the diagnosis details

will be ensured by a human-machine interface.

B. Data pre-processing

1) Temporal segmentation: For each passage of the

tramway, the signal is a priori related to information com-

ing from the 8 pairs of rollers that generate vibrations

altogether, at the same time. However, it is a reasonable

physical assumption to consider that only the closest pair

of rollers to the sensor generates the measured vibrations.

Temporal segmentation based on the references provided by

the photoelectric cells allows us to locate the passage of each

of the 8 pairs of rollers over the sensor within each signal.

Therefore, 8 segments of signal can be identified and labeled

CGk, for k = 1, ..., 8.

2) Time-scale representation: Thanks to the approach

defined above, each pair of rollers is related to known

segment on the signal, Figure 3. To identify its state, a local

frequency information is required. Such a remark naturally

leads to use a time-frequency or a time-scale analysis. These

methods are largely used in the railway transports field to

detect the rails defects [14], [15] and also in the industrial

sectors to perform a diagnosis in the revolving machines and

the internal combustion engine [16].

In the present study, one hopes to detect the defect which

range from the millimeter to ten centimeters. Two principal

types of defects can be distinguished. The first type corre-

sponds to the structural defects of the rollers which produce

vibrations at low frequencies (or on large scales). The second

produces vibrations at high frequencies (small scales) and

1The measurement system is the property of Signal Development com-
pany.

is characterized by the surface defects Figure 3. To get a

good frequency resolution both at low and high frequencies,

a time-scale analysis is preferable: the relative precision

is constant over the whole range of analyzed frequencies

(∆ν/ν is constant).

The wavelet transform of a finite energy signal x(t) with

the analyzing wavelet ψ(t) is the scalar product of x(t) with

a scaled and conjugated wavelet [1]:

Tx(a, b) =
1√
a

∫ +∞

−∞

x(t)ψ∗

(

t − b

a

)

dt,

where ψ∗(t) stands for the complex conjugation of the

mother wavelet ψ(t), a the scaling parameter (a ≈ 1/ν) and

b is the time localization parameter.

We use the second derivative of the Gaussian function,

known as the "Mexican-hat wavelet" [1].

C. Scalogram analysis

The scalogram such as presented on Figure 3 consists of

a gray level picture of the energy density function of the

wavelet transform, |Tx(a, b)|2. The black regions at high

and low frequency correspond to a high energy can possibly

correspond to defects. The access to this concentrated energy

permit to understand what happens in this frequency band.

The diagnosis process consists then, to extract and to classify

these areas of interest to identify the nature of the defect.

Figure 3 shows a typical example of the scalogram of

a signal. Some information are directly visible by eye. Let

Frot the rotation frequency of the rollers. The scalogram

is clearly divided into three parts. At the bottom is a low

frequency band, f < Frot, corresponding to the first type

of defects (warped roller, structural deformation...) ; the

rotational frequency Frot is represented by an horizontal

dashed line at scale a = 212 corresponding to 10.76Hz
(depending on the tramway speed). At the top is a high

frequency band f & Fnoise with Fnoise ≃ 350 Hz (corre-

sponding to the scale a ≃ 27), essentially consisting of noise

(the vibrations attenuate quickly in high frequencies). The

medium frequency band corresponds to Frot . f . Fnoise,

f ∈ [10Hz − 350Hz]. This intermediate band is the most

informative. One clearly notices the existence of black peaks,

fig. ??(zone A), look at zone A. Such peaks can be associated

to defects of a size of the order of several millimeters to

ten centimeters on the overlay of a pair of rollers. These

zones which represent defects are visually recognize, but it is

very difficult to scientifically define the features, a quantized

values, that represents a defect and differentiate the defect

types. To preserve all information for a better separation

between the various classes we have used the matrix of all

wavelet coefficients for each pair of rollers CGk. In this first

study, we will only focus on local defects associated to the

medium frequency band defined above.

III. PATTERN RECOGNITION

The previous pre-treatment step: time-scale analysis, tem-

poral and frequency segmentation described in section II-B

provided us with a suitable representation of the collected



data. To each pair of rollers CGk (k = 1, ..., 8) is associated

a rectangular sector on the scalogram (see Fig. 3), which

corresponds to a matrix of wavelet coefficients CWTk.

Unfortunately, the increase in the number of variables does

not improve systematically the quality of the training. It

decreases the number of parameters to be estimated (Hughes

phenomena [4]). In fact, the so-called "Curse of Dimension-

ality" makes the classification task more difficult. To solve

this problem, a reduction of the dimensionality is necessary.

A. Feature selection/extraction

Feature selection/extraction is the key part in the field of

pattern recognition. In practical applications, many feature

extraction technologies are used nowadays. However, there

is no single feature extraction method is consistently superior

to other methods. The result of the method highly depends on

the problem. In recent years, the Singular Values Decomposi-

tion (SVD) [2] has become an important tool in statistical data

analysis and signal processing used to efficiently decrease the

amount of data processed for many applications.

The classification approach we adopt is to extract, from

the time-scale representation belonging to a class, a signature

which is robust, reliable, with few parameters and discrim-

inating. To perform this step of feature extraction we used

the (SVD) method.

Let CWTk a m x n matrix of squared wavelet coefficients

associated to CGk with m ≥ n. Every CWTk matrix can

be decomposed as:

CWTk = UΣV t,

where U is an m x m orthogonal matrix, V is an n x

n orthogonal matrix and called the left and right singular

vectors respectively. Σ is an m x n diagonal matrix such as,

Σ = (σ1, σ2, ..., σp). The components σij = 0 if i 6= j
and σii ≥ 0 with σ1 ≥ σ2 ≥ ... ≥ σp. The σ′

is are called the

singular values of CWTk.

Marinovic and Eichmann [10], [11] looked at a feature

extraction technique based on the singular value decompo-

sition of the Wigner distribution. Their technique used only

the singular values to determine the classification features.

In the same spirit, we use the vector of the singular values

as the vector forms, the representative of the pair of rollers

to be classified. For the step of classification, a vector of

the data base for a known class is called "vector form". The

use of the singular values (sv) as a input vector form of

the classifier is employed for the face recognition in several

works. Its effectiveness is shown in [13] for a small size data

base.

B. Multi-Class Classification

According to the frequency and the temporal segmentation

of the scalogram made before, each pair of rollers (new or

defective) is represented by an (21, 32768) matrix of wavelet

coefficients. After an extraction of characteristics using the

SVD method, the vector forms consist of the first 5 singular

values. So our default detection problem translates into a

standard supervised multi-class classification problem with

a set of N observations of M different types, Ω = {ωi,i
= 1,..., M}. Each observation consists of a pair of vectors

(xi,yi) where yi are the class labels associated with xi, for

i = 1, ..., N . (xi,yi) are assumed to be independent and

identically distributed.

Our multi-class classifier is constructed by combining

several simpler two-class sub-classifiers. Many strategies

can be used to combine two-class classifiers as a multi-

class classifier. The most common approaches are so-called

"One-Against-All" and "One-Against-One". "One-Against-

All" trains k classifiers (k is the number of classes), in which

the ith, (i = 1, .., k), classifier tries to separate class i from

the rest. In contrast, "One-Against-One" needs to construct

one classifier for two arbitrary classes, i.e. m(m − 1)/2
classifiers all together [17]. The article [18] details and

compares these two classification strategies using SVM. In

view of their analysis, this "One-Against-One" approach is

chosen for this study.

The 3-class ("New", "Worn", "Holes") classification prob-

lem is decomposed into a set of 3 simpler 2-class problems.

Each sub-classifier is learning using the data of two classes

only. To obtain the class decision ("New" vs "Worn", "New"

vs "Holes", "Worn" vs "Holes") the "One-Against-One"

approach is used. Each classifier is trained using only the data

of these two classes to obtain posterior probabilities for the

class decisions. The resulting pairwise classifier probabilities

Prij are combined in order to obtain posterior probabilities

Pr(Ci|(X = x)) for the finale class decisions [12] :

Pr(Ci|(X = x)) =
1

∑K

j=1,j 6=i
1

Prij
− (K − 2)

. (1)

where Prij are the two-class network classifiers probabilities

for all class pairs (i, j) with i 6= j.

C. Results

In this section, we report on several experimental in-

vestigations that were designed to assess the performance

of our fault diagnosis approach for guiding rollers. The

selected features are used as input into several well-known

classification algorithms. Experiments are used with WEKA’s

open source machine learning software in Java [19]. WEKA

implements a vast collection of classification procedures.

In this paper, we consider multi-layer perceptrons (MLP),

radial basis function (RBF) and support vector machines

(SVM). Weka implements the sequential minimal optimiza-

tion (SMO) algorithm for training a support vector classifier.

Normalized Gaussians are used in the RBF network. The

k-means clustering algorithm is used to provide the basis

functions and learns a logistic regression on top of that.

Symmetric multivariate Gaussians are fit to the data from

each cluster. The MLP uses back-propagation to classify

instances. The neuron activation functions are all sigmoid.

Linear kernel functions are used for the SVM.

Each sensor is trained individually on the data base built

for each one. Thus, for each sensor, two data basis are built

with dimension (150×5). Each one of them is composed of



50 signatures specific to the rollers without defect and 100

signatures corresponding to the defective rollers. Once the

training carried out, the hit-rate (defined as the percentage of

correctly classified instances) was estimated using the leave-

one-out (LOO) technique for the three classifiers. The overall

hit rate is 98% for the MLP. In comparison, RBF and SVM

achieve respectively 95.33% and 94.66%. So, for sake of

conciseness, we only display in more details the performance

of the best classifier on our data, namely the MLP, for each

accelerometer. Classically, the possible outcomes of a two-

class prediction can be True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN). True

positives are the defects that are correctly detected. A variety

of accuracy measures can be calculated from a contingency

table :

• Sensitivity = TP / (TP + FN);

• Specificity = TN / (FP + TN).

• Precision = TP/(TP + FP), defined as the fraction of

the retrieved information, which is relevant.

• Recall = TP /(TP + FN), defined as the fraction of

the retrieved information relevant versus all relevant

information.

• Kappa statistic, κ = (TP + TN)/(TP + TN +
FP +FN), is the proportion of specific agreement.

The results obtained with MLP classifier for the three

sensors are illustrated in Table I. We use precision, recall

and kappa statistic as our evaluation criteria. As may be seen,

despite the limited number of observations, the predictions

did not degrade much from the training sets to the test

sets, indicating good generalization ability. Overall, all the

classifiers that were used show a great robustness and a good

capacity of generalization.

Classifier : MLP

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

First accelerometer: Hit rate = 98%, κ = 0.95

1 0.98 0.02 0.96 0.98 0.97 0.996
2 0.98 0.02 0.99 0.98 0.98 0.996

Second accelerometer: Hit rate = 95%, κ = 0.89

1 0.92 0.03 0.94 0.92 0.93 0.994
2 0.97 0.08 0.96 0.97 0.96 0.994

Third accelerometer: Hit rate = 98%, κ = 0.95

1 0.98 0.02 0.96 0.98 0.97 0.997
2 0.98 0.02 0.99 0.98 0.98 0.997

TABLE I

PERFORMANCE OBTAINED WITH THE MLP.

IV. Conclusion

We have presented, in this work, the complete structure

of the process of diagnosis, combining continuous wavelet

transform, SVD decomposition and machine learning meth-

ods. Future experiments will be conducted on more classes

M > 3 with different levels of worn. This will enable us to

check the stability of our approach. The Syscoga detector,

the acquisition system and the treatments, will be integrated

and operational at the end of 2008.
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Fig. 1. (a) The Translohr on tires. (b) The bearing system. (c) The guiding system: a pair of rollers. (d) The damaged overlay.

Fig. 2. (a) New roller. (b) Roller with holes defect. (c) Roller with wears defect.



Fig. 3. The temporal segmentation of the whole vibratory signal.

Fig. 4. Time-scale representation (Scalogram).


