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Abstract. The incessant need for energy has raised its tcosinexpected
heights. In response to this situation, many ptejbave been started in order to
save energy. In this context, RIDER project trieslévelop a weak system de-
pendency of energy management framework which cbeldpplied for differ-
ent systems. Particularly, our RIDER Decision Sup@ydtem (DSS) focuses
on proposing generic control rules and optimizateshniques for energy man-
agement systems. Therefore, the DSS aims to contipeitmost relevant target
values (i.e., setpoints) to be provided to the gneontrol system and then, im-
proving thermal comfort sensation or reducing epeasts. Literature proposes
reusable system independent statistical modelshinmal comfort. However,
they are not easily interpretable in terms of dguesce model which makes
control not intuitive and tractable. Since thermainfort is a subjective multi-
dimensional concept, an interpretable and reusatgiference model is intro-
duced in this paper. Multi Attribute Utility TheofAUT) is used for this.

Keywords: Thermal comfort, preference model, energy conttAUT, Cho-
quet integral.

1 Problematic I ntroduction

Total building energy consumption accounts for aldfl%s of total energy demand
and more than one half is used for space conditgpriieating, cooling, and ventila-
tion [1] [2] [3]. In the EU, about 57% of total engg consumption is used for space
heating, 25% for domestic hot water, and 11% fecteicity [4]. In response to this
situation, many projects have been started in otdesave energy. Recent studies
have investigated efficient building control in erdo find strategies that provide a
comfortable environment from thermal, and indoardiality points of views, and
minimize energy consumption at the same time [gveNitheless, these optimization
systems are strongly dependent on the energy maneagdramework and cannot be
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applied for other systems. Indeed, they are coedely the energy manager depend-
ing on one building characteristics. So, its asged optimization routines are direct-
ly implemented on its control system and cannotéased for further energy man-
agement. Additionally, these optimization routirses not supposed to be interpreted
by human operators since they are integrated inlaggn loops which made them
necessarily dependent on the SCADA system (supepisontrol and data acquisi-
tion). In order to solve this problem and satidfg iveak energy system dependency
which is required by the RIDER project, controlasilshould neither be too specific
nor integrated in control loops. They must ratherabhigh level supervision rules
which can be suggested to the energy manager. sThdty; we propose that the
RIDER DSS core functionalities should rather previglalitative recommendations
such as suggesting the most relevant target vaduttee energy control system. This
approach ensures, the control rules interpretapbsis well as, the weak dependency
of the DSS w.r.t. the energy system and its control

This research is part of the RIDER project and glealy with its optimization as-
pects. In this paper, we focus on a specific ogition aspect based on human’s
thermal sensation. In fact, the notion of comfersubjective and multidimensional.
Subjectivity entails that comfort cannot be modeiledh deterministic way and its
multidimensionality comes from the fact that marmyiables can be considered in its
definition: temperature but also hygrometry, ratitemperature and air velocity.
These remarks explain why providing efficient elyenganagement for optimal com-
fort may be considered as a multicriteria decigsimaking process in uncertain envi-
ronment, and must be modeled as such [6].

The next sections discuss about the modeling amdrthlementation of an original
thermal comfort function and formalize, as wellm®RIDER optimization problem
based on the aforementioned comfort function.

This paper is organized as follows. Section 2 dises about most common ther-
mal comfort models and their relevance when theyuaed in optimization process. It
explains our choice to have a model which intesptleé comfort statistical model on
the MAUT framework. Section 3 summarizes Labreushaethod to identify our
thermal comfort model, the way that this method apglied and extended to build a
comfort overall utility function in our complex ctaxt, and finally shows the useful-
ness of this new formalization to infer comfort trehrules. Finally, section 4 formu-
lates some control problems based on the new theon#ort preference model.

2 Optimization and comfort

Even when no malfunctioning is detected in a hgasiystemj.e., temperature values

in a building match their setpoints, two users lhaymore or less tolerant with regard
to the setpoint variations and thus not equallysBatl. It can be explained by the
more or less tolerant user’s requirements are Isot lay other parameters than tem-
perature that may differ from one situation to &aeotand then contribute to different
thermal sensation. This illustrates that thermahfoot (and not only temperature)

should be the variable to be controlled by the RROESS in order to ensure building



occupants’ satisfaction. However, comfort is a clem@nd subjective concept that
cannot be modeled as a deterministic variable. '3haly, in literature, the most
well-known thermal comfort is based upon a statidtapproach [7] [8].

2.1  Thermal comfort model overview

2.1.1 Comfort asa statistical model
The Predicted Mean VotPMV [7] is the most used statistical thermal comfort i
dex. It defines the mean thermal sensation vota @tandard 7 level scale from a
group of approximately1300 persons. It is writtsnaafunction of 4 thermal environ-
mental variables: air temperatufe, air humidityHy, air velocityVa, and mean ra-
diant temperatur@r; and 2 human parameters: metabolic M&and cloth indexCi.
The PPD (Predicted Percentage Dissatisfied) index is basedhePMV one and
indicates the percentage of thermal dissatisfiedgres. BotiPMV andPPDindexes
have been used since 1995 by the NF EN ISO 773@atd to describe ergonomics
of thermal environments [8].

Such a thermal comfort representation verifiesRHIBER DSS weak dependency
constraint from one hand, and captures the inheseljectivity and uncertainty re-
lated to thermal sensation from the other hand. Sthtstical based thermal comfort
modeling is the result of a sample-ballot which ek reusable for various applica-
tion contexts. Whereas comfort is intuitively reldtto a preference model, the for-
malism in [7] and [8] is far away from any classipeeference modeling framework.
PMV and PPD indexes are considered as if they were outputsngf keehavioral
model associated to a physical process. In paaticuhteractions among comfort
attributes are considered as if they were physinak which is not the case. The mo-
notony of PMV and PPD with regard to attributes variations, is not obw@nd can
only be numerically computed. As a consequencerpnéting such a model to sup-
port control rules design for a human operatoioisso intuitive.

2.1.2 Comfort asa preferential model
The representation of preferences is a centrat timpdecision-making and measure-
ment theory [9]. Usually, it amounts to find a realued overall utility functior

such that for any pair of alternativesx'0 X where X is a set of alternativess> x'
(x is preferred toc’) iffU(x) = U(x"). When alternatives are N-dimensional (attribute

i ON takes its values i ), i.e., X = |‘| X, a widely studied model is the decompos-

able model of Krantz et al. [10], whetehas the formv (x,..,x )= gy (%),..,4 (%))
where u, are real-valued functions. Assuming thatis a weak order oR , it is

known that a representation withbeing strictly increasing can be fouiifl - satis-

fies independence and is separable [9]. The MAUT [11][12] is based upthe
utility theory which is a systematic approach tautify individual preferences. Utili-
ty theory consists in interpreting any measurenant satisfaction degree [m1]

where 0 is related to the worst alternative and the best one. Measurements are



thus made commensurate and interpretable. In this @ utility u,(x) is attached to
each measuremext

Indirect interviewing methods such as MACBETH (M&@isg Attractiveness by a
Categorical Based Evaluation TecHnique) are gelyeagiplied to identify attribute
elementary functionsi (x) in a weighted average aggregation model. However,

when aggregation operators do not fulfill the wel#fkerence independence property
then constructing elementary utilities functionsrisre complicated [16]. Indeed, this
property allows building the value function on istiite i by asking questions directly
regarding the preference of the decision maketherattribute value rang¥; (inde-

pendently of other attributes values) rather th@amfquestions regarding options in
X . An extension of MACBETH for a Choquet integralgaggation function that
respect weak difference dependence has been pobjpoles] [14].

When comfort can be written under the decomposdbien U(Ta,...,Me)=

g(u,(Ta),..., 4y, (Me) it makes thermal sensation more interpretable \aitributes

variations and avoids the coexistence of antagdyesiavioral rules. For instance,
comfort may be improved when humidity increasesdioe given ambient tempera-
ture whereas it can be disturbed by an increasimgidity for another ambient tem-

perature. The coexistence of such behavioral rolekes difficult for the energy

manager to directly imagine attribute variation®ider to control the energy system.
Whereas co-monotony of comfast andu,, holds everywhere irx,,, . Then, identi-

fying the elementary utility functions would greatly facilitate the design of control

rules. Moreover, in the real thermal comfort petaep there is no physical correla-
tion between attributes. Interactions betweenlatteis should rather be considered as
preferential interactions related to criteria assed to attributes [15] [16]. Fuzzy
integrals provide adequate models to capture sutelnaictions. It is then obvious that
a preferential model of thermal comfort would berenappropriate for semantic rea-
sons.

2.1.3 Discussion
Let us now introduce these models in optimizatiesues. Optimization problem (1)
and its dual (2 —where Cos{(dTad Hyd Tid Vad Cid Mgfunction evaluates the
cost of the attributes variatiof@Ta, o Hy,oTr,dVad Cido Mg and PPD* (resp.C*) is
a comfort setpoint (resp. a budget thresheldprmalize efficient comfort improve-
ment issues.

MinCos{(dTad Hyd Ttd Vad Cio Mg max100— PPD(Ta+JdTa Hy+d Hy
PPD(Ta+dTa Hy+d Hy T J Tr (1) <Tr+dTr,va+dVa Ci+dCi Mero M@  (2)
Va+dVa Ci+ 5 Ci Metd M@< PPD Cos(0Tad Hyo Tro Vad Cio Mg< C

Let OPPD the gradient wheRPD(Ta..., Me= PPD*. It provides attributes that
their local variations impact the most significgnthe comfort variation (maximal
component of JPPD). However, there are some practical and computakidraw-



backs to this formulation. First, the gradient éngrally not of common sense for the
energy manager to be use in optimization procelsn,Tthere is no information re-

garding the neighborhood in which this result isdzanaximal component oflPPD
may change rapidlye. it depends on non linearity d&fPDand this notion is mea-
ningless for the energy manager. Finally, we caanmtiori know whether we have to
increase or decrease an attribute value to impgP®e. It necessitates computing the
derivative. It depends drg, Hy, Tr,Va Ci, Meattribute values and the monotony of

PPDrelatively to these attributes, which is not easihderstandable for the energy
manager. However, a preferential based thermal @emiodeling solves the afore-
mentioned drawbacks thanks to the co-monotony ketweility functionsu, and

thermal comfort overall evaluatiod , and offers as well a more relevant control
system for thermal comfort attributes.

In order to ensure the RIDER DSS weak dependeheythtermal comfort model
has also to fulfill this condition. The statisticddermal comfort modeling satisfies
already the weak dependency condition and can pkedgfor different system whe-
reas the preferential thermal comfort modeling duatsalways stratify this condition
It depends on the way with which utility functionswere identifiedi.e. utility func-

tions should result from statistical techniques lik [7] and [8] which would roughly
make the interviewing method more complex.

So, to grant to the comfort preferential based rhdue ability to be system inde-
pendent without having to proceed by the statibtiGy, we propose to identify utili-
ty functions from the existent statistical mo&&D . Labreuche has proposed an
original approach to compute both the utilities dmel aggregated overall utility func-
tionu(x,..,x )whenu is a Choquet integral without any commensurateasssmp-

tion [17]. It is important to highlight that usirgChoquet integral facilitates optimiza-
tion problem solving ((1) and (2)) thanks to iteearity by simplex. Next section
describes the Choquet integral and Labreuche’s adeth identify utility functions
and the Choquet integral parameters.

2.2  Measurementsoverall utility without commensurateness hypothesis

231 The Choquet integral
The Choquet integral family provides adequate n®delcapture decisional beha-
viors when there are preferential interactions lketwcriteria. They enable accom-
modating both the relative importance of each kdteand the interactions among
them [18][19]. In our preference model, an inte@tibccurs between any two crite-
ria once they need to be satisfied simultaneoudy, positive synergy) or when their
simultaneous satisfaction is seen as a redundawegpative synergy).

U =Gt ) =2 ()~ Yo JH ()= 2000, 4 3)

U, in (3), is the aggregate utility of the elementatility profile = (u_,...,u )(to
simplify u abusively denotesi (x) when no misinterpretation is possible) where



u:2° - [0,1] is a fuzzy measure on the subsets of criteri€ jn(.) indicates a per-
mutation, such that the elementary utilitids are rankedO0<u, <...<u, <1and

Atki) ={C(i) ,..,qn)} . This expression can also be rewritten as indakepart of (3) where

Dty = fyy = My, @NAKGy = 1A, Mgy = 0.
Note that a simplexd ; ={d0[0,1 /0<u, <...<u, <3} corresponds to the rank-

ing (.), where the Choquet integral assumes atiagpression. Such a remark proves
that optimization problems that involve a Choqueegral can be solved with linear
programming techniques within simplexes.

232 Construction of Choquet integral and elementary utilities with-
out any commensur ateness assumption
Since we want to represeMPD with the decomposable model of Krantz, weak
separability property has to be first verified. Aeference relatiorr is said weak
separabléff, it verifies (4) for every attribute0N whereN denotes the attribute set,

X%, X; 0 X two possible values af, andy,,;, y'y, O |‘| X, two possible alternatives

described forldk O Nandk # i.

X X0 Yo » Y ()n(’)ﬁ\i)i( X :y\i) ‘:’(ixy xv)i( X, y\) 4)

Labreuche [17] supposes that the weak separalpfibperty is verified for the
overall utility functionU (PPDin our case) and suggests a method to check com-

mensurateness among attribuiesd k . For this, he proposes to analyze the gradient
function related tox w.r.t x variations. It returns on studying the function
fix > U(X +& %, )-U(X wheres>0. If f,is a constant function, then there is
no interaction between attributésind k (it means that even when there is a ranking
change between utilities relateditand k their “weights” in (3) do not change in the
new simplex). And, thus, attributésand k do not interact. Otherwise, if is not a

constant function, then attributésnd k interact with each other (the “weight” in (3)
depends on their ranking). In this caseand k are considered as commensurate and
it is possible, then to compute the valwe( X, for the attributek where

u (X ) =u (%) [17]. At the end of this step, subsets of commeatsumttributes

SJ O Nare constructed, WhelLeJSj = Nand Oi,k DSj , I andk are commensurate.
j

Once S are identified, the utility functions, and capacitieg/; can be computed.
According to [20],u, cannot be built from one attribute regardless to dther ones.
u ’s construction in [17] is thus based on the overdlity U . [17] supposes thal
is continuous and all; functions are strictly increasing ovR(di, X; =R in [17]). In



order to buildu and 1 two reference vector®g ,G ¢ [ U X should be computed
KOs

for each attribute subs& . They refer respectively to an unacceptable (Nsitl)a-
tion level and a Good situation level. For vectﬁr§ (resp.GSl ), the first attribute
value x° (resp.x’) is chosen by the decision maker and the otb@rs(resp. x,, )

are computed such ag,, (x2,) =u (x°) (resp.u,, (x&,) =y (x°)) forOkO S and
k#1.To make sure thas ¢ corresponds to a better situation tkkn, X, must be

preferred tox?,, .

Based on the identified reference vectors, an effitility function v, is defined by
(5), wherey (x°)=0, 0, (x*)=1, 0, is the restriction of0, =(x°,...,x°) to
AD N (resp.G,is the restriction o6 :(xf,...,x?)to AO N).

"ON\i ~ ON
ox 0 o (0 = G2l (5)

Since several solutions fd@s and G may be envisaged, a normalization condi-
tion is required: wherd’ (U(GS Oug)-U( N)):1 is checked, then normalized

utilities u, and normalized capaciti¢§l are respectively (6) and (7):

u(x) =4 () +U0y) (6) LADS 4 (A=UG,0,)-U0y  (7)

Finally, the Choquet integral (see (3)) that repnt¢s the overall utilityJ of the
normalized utilitiesu based upon the generalized capacitygiven by (8) is

achieved:
TADN.u(A=Y, (4 (An S) (8)

3 Decomposable form of the aggregation model of comfort
Interactions betweema, Hy, Tr,Va Ciand Meare preference interactions rather

than physical correlations [15]. In fact, preferem@re perfect to model human per-
ception or opinion about comfort which is a subijgzitoncept and cannot be treated
like a physical process output as in [8]. Choqurtedral is a relevant solution to
model preference interactions among thermal condtiributes and confers to the
comfort aggregated concept its semantic interpii@tabAlso, the simplex piecewise
linearity of Choquet integral facilitates optimizat processes.

So, in order to solve problems described by (1) @&)d approximating thePD
with a Choquet integral, is then of interest. tsffireduces thePD complexity by
giving the possibility to have a linear formulatid®econd, it allows easy prediction of
PPD variation with regards to one attribute fluctuatisimce we have elementary
utility functions.



In order to simplify the Choquet comfort modelingge suppose that people hosted
by a same building have almost the same activitglland are dressed pretty much
the same depending on seasons. Considering thesmpsons,Ci andMe attributes
can be removed from the model variables (they eem @s constant parameters in-
stead of variables). Thus, depending on seasonshanaictivity nature of a building,
both Ci and Meare evaluated by average values iMe=1.2met for average ad-

ministrative employees an@i = 0.7clo for a shirt/pant dressing sample [8].

3.1 Weak separability assumption and Choquet integral-based local model

In order to write thePPD function as an overall utility function, it's nessary to
check, first, the weak separability property amatsgattributesTa, Hy, Tr,andVa

which, intuitively, seems to be not the case. Hera counterexample of the weak
separability non-satisfaction computed for the @e(¥a, Hy, Tr,Va), (23,50, 23, 0.)2

< (25,50,23,0.2however( 23100,230«( 25100,23). Therefore, we can say that
PPD(Ta Hy Tr, Vg defined forTal[10,30] , Tr 0[10,40] , HyJ[0,100% , and
VaD[O, Im/ s] [8] is not a weak separable function. Second, tle@atony assump-
tion of Labreuche’s construction must be checkeghiA, intuitively, this assumption
cannot be proved for the considered areasapHy, Tr,andVa. It is obvious that an
increasing temperature is appreciated until an ugpeshold. Above this threshold,
people get hot and their thermal sensation proyedgsdecreases. This fact implies
that the elementary utility function of the ambi¢aiperaturau,, :[10,30‘] - [0,1]

has at least one monotony change.
Fig., 1 and 2, illustrate respectively tHPD curve for (Tr =23°, Hy=25%,

Me=1.2met , Ci=0.7clo , Ta[10,30] and vaO[0,im/{d ) and (Tr=23" ,
Hy[0,100% , Me=1.2met, Ci=0.7clo , Ta([10,30] and Va=0.2m/s ). lso-
temperature curves of both figures have the sarapesifor respectively alfaand
Hy values. So, we can realize that the miniPBDis reached for slightly different

Tavalues, which means that the weak separability gmtggds not verified in the con-
sideredPPD domain. Fig., 1 and 2, show, also, tlRD function has two different
monotonies w.r.fTavalues which means that, cannot be considered as strictly

increasing foﬂ'aD[lO,30’] . Since none of the two required assumptions ifiedr

we cannot build an overall Choquet integral forP@D attributes domains. However,
these assumptions can be checked for different boaains and, then, a Choquet
integral can be computed for each of these domBiased on this, we have to identi-
fy domains in which the shape of ti#PD function has the same monotony and veri-
fies, as well, the weak separability property iaccording to figures 1 and 2, for

TaD[25,30’], we have both assumptions verified. So it is gmesto compute a
Choquet integral defined locally WaD[ZS, 30’]. Hence, théPDfunction can lo-



cally be approximated by a Choquet integral. Thhhique allows the computation
of local preference models for the thermal comftirmeans that depending on situa-
tions, attribute utility functions change. In faone attribute influence on the thermal
comfort becomes more or less important dependingaealue range.

S

Fig. 1. PPD(Ta,Va) Fig. 2. PPD(Ta, Hy)

3.2 A fuzzy inference system to estimate comfort

In practice, theePDindex can only be controlled throudfe, Hy, andVaattributes
whereVais equivalent to a room airflow of the heating exeper. So, more specifi-
cally, we need to associate elementary utility fioms to these attributes to simplify
control issues. Beside3y is beyond control except if we close the shuttErgther-
more, it can be checked that interactions Witlare not preferential onéR. interac-
tions are related to physical relationships witd which are not semantically consi-
dered by the Choquet integral model and do notespond to the Labreuche’s con-
struction. That's why, in order to simplify our meldand, also, reduce the complexity
of the identification of local validity domains, wkecide to removeér from ourPPD
approximation. Therefore, a Choquet integral is poted for a fixedrin tridimen-
sional local domains of validity ofa, Hy,andVa. In this case, a fuzzy interpolation
forTris proposed to consider @l range.

Fig. 3 shows the way the 5 different tridimensionabdelU = cover all Tr

comfort
range. A local Choquet integral model approximatesPPD function for these fixed
values offr: 15, 20, 23, 25 and 30°. Théh, ", approximates thePD function

only in its associated valid local domain. Comfrah finally be computed for afy
value thanks to an interpolation between two locatiels as proposed by the triangu-
lar membership functions in figure 3.

In all computed local approximationa, Hy,andVahave been checked as com-
mensurate which means that utilities and capagyr@imations are all based on
two reference vecto®g andGg associated to the unique commensurate subset

S :{Ta Hy V@. According to [17], the Choquet integral is uniqueen commen-

surate subsets are composed with the coalitiodl eftteibutes. In this case, it can be
checked that all our local constructions are unifiud. Utilities and capacity func-
tions require to be normalized. Because there iy one commensurate subset,

checking the normalization conditiom.(PPD(Gsi)— PPD(Og)) =1is easy but must

be verified in each local domain.



Average approximation errors between the local @eb@pproximation and the
PPDfunction are computed based on 9261 different sitieris and it never exceeds
9.8% onTax Hyx Vavalid domains. The next section describes how thesiglimen-
sional comfort models can be useful to control baiding thermal comfort.

1%
My M, M5 M, M

0

¥ ¥ t t 1
10 15 20 23 25 30 35 Tr

Fig. 3. Five tridimensionalJ /<" based interpolation

3.3 Interpretablecontrol rules

The computation of these local Choquet integralth ji6] implies that we have
simultaneously built utility functions for each rétuteUr,, U, , andu,,in each do-

main of validity. These last can then be used d@epoto build control rules. Thanks to
the utility functions, from each local Choquet gtal model, the influence of each

attribute variationdTa, dHy, anddVaon theU_ ™ monotony can be computed. Of

comfort

course, these influences models are not as prasise hoped for because they result
from the interpolation of two local Choquet intelgnaodels; but they still useful to
give helpful control recommendations. In fact, tlen-existence of a unique overall
Choquet integral defined for the whd®D domain inhibits all comparison between
utilities in two different local domains. Howevat,is not such a problematic thing
because, for each local domain, we are yet abilgetatify its valid rules i.e., (9) is an
identified thermal comfort control rule for the Edanodel M3 (fig. 3). It models the
attributeHy influence upotJ I'-2% for the local domain M3. Then this rule can be
formulated as a recommendation when environmerdatitions satisfy the local
domain M3. The “gains” related to these relatiopstare theA,U(i) Choquet integral

parameters (3) for M3. Hence, the energy managew&rthe negative or positive
influence of any attribute upon comfort functionany domain, the polyhedrons in
which this influence is valid, and the expected actpfrom an attribute variation. It
allows enunciating control rules such as (9).

M,:Tad[22,2§ ,HyO[ 50,10p ,anal[ 0.25)1
if Hy /" thenU N\ because,, N\ andJ = Au[,zfy' 2 50.10p{ 02508 514y,

comfort —

9

comfort

Hence, thanks to tiePD approximation by local Choquet integrals, we obiiset
of rules for the thermal comfort control. Theseeautan directly be applied by the
energy manager as suggested just above becausaréhieyerpretable rules in term of
satisfaction degrees (like comfort itself) whichpart of our work objectives. The
Choquet integral based models can also be inclidegtimization problems to effi-



ciently improve comfort or reduce energy costs mattically as it is explained in the
next section. This can be achieved thanks to the@ét integral linearity by simplex.

4 Some control problemsbased on the piecewise Choquet integral

The model of comfort is now built in the control thie energy system of a building
floor. Let us suppose that the control variablesanbient temperature and airflow of
all the offices at this floor. There is a General Freatment (GAT)—a central heat-
ing exchangerfor the whole building and additional individualdtig exchangers
in the offices. Basic control functions are alreadplemented in the GAT.

In RIDER DSS, comfort appears as an overall peréoee of the control problem.
It must help the energy manager to satisfy eaciviohadal comfort expectation with a
minimal cost. Indeed, persons do not have the saxpectations w.r.t thermal com-
fort, on one hand, and one office heat loss dependts exposure to sunlight, and its
neighboring offices isolation characteristics, bea dther hand.

RIDER DSS supports the energy manager to managéfisamntly different tem-
perature setpoints in each office at the floor idep to warranty the comfort levels
and minimize as well the energy cost. Then, in ptdesatisfy both requirements: cost
and comfort constraints, RIDER DSS aims to com@aaequate setpoints to be pro-
vided to the GAT control system. In this paper,cs@sider that RIDER DSS manag-
es only the energy system performances (utilitedated to measurements) without
worrying about the way these performances are aeti€GAT control). RIDER DSS
aims to prove that reasoning using an aggregatetfocb objective function already
provides substantial savings. Let us consider soan¢able issues by RIDER DSS:

— Control. The control issue may be used to adjust the taksensation of an unsa-
tisfied officer and whenever any disturbance ditggrom the comfort expecta-
tion;

— Adaption. Thermal sensation is not the same in the nodedsioffices of the
building and the south sided ones. Furthermoresthmight exposure varies every
day and during the day;

— Anticipation. Season changes and occupation rates, are progeedphenomena
that directly impact energy management.

For instance, (10) is a formalization of a simpdatrol problem based on the comfort
preference modeF that has been identified from tR€Dmodel in this paper. This
formalization aims to control variablégaand Va (the offices airflow) in order to
improve the thermal sensation of an unsatisfiedcefbccupantomfori K without

decreasing the comfort of its neighboring offikéwhen Ta(k) andVa(k) change.

min dTa(k)

Comfor{ R = HTa+rd Td k Hy k T¢ k Vao Ma)k Ci Me Comfdi (10)
JdTa(k)=0

Ok" # k, Comfor( K) = setpoirft k&



Becausd- has been approximated with Choquet integrals, thisniggation prob-
lem can be locally linearized and, so, becomes aityetsactable problem [21]. Fur-
thermore, the gain between comfort degree amdor dVavariations is locally a
constant computed witifaand Varelated utility functions and also the Choquet
integral parameters in the simplex search space. Thisvghue makes the improve-
ment interpretable for control purposes. Finally, dmsaf validity of the Choquet
integral based approximations provide the necessarmgdsoto reason with a constant
gain.

Similarly, the adaptation and anticipation probleras be easily formalized as the
control one and their resolution are also simplifieahtts to the local linearity of the
Choquet integral expression.

5 Conclusion

This work focuses on proposing generic optimization negkes for energy manage-
ment systems based on a thermal comfort preference nibegpblains why and how
associating comfort to a MAUT preference model forgpenanagement issues. The
introduced thermal comfort model can be easily gdizexdh for different building
occupants and simplifies the energy control issuefadt) thanks to the MAUT, the
interpretation of attributes influences on the thdrseasation in term of utility func-
tions makes the multidimensional comfort control procesenractable. The intro-
duction of MAUT techniques in energy control coniplg shifts the energy control
paradigm. For example, the aggregated model for adraflows designing new low-
er temperature setpoints that could not be envisaged i@ advanced multivariable
control techniques. Indeed, relationships betweeaibatés are preferential interac-
tions and not physical influences: each attribute lmarcontrolled independently but
any change of an attribute entails a variation @fatal utility that may have conse-
quences on the comfort overall utility. RIDER aims toye that reasoning using an
aggregated comfort objective function provides sulistarsavings. Within the
MAUT, it can reasonably be imagined that temperasatpoints of a building could
be decreased from one to two degrees. It represasunisséantial economic gain that is
probably much more significant than any optimizatibnhe energy manager control
system. Furthermore, the control recommendations megudtom this model are ob-
viously transferable to any energy facilities.

References

1. Yang, I.H,, Yeo, M.S., Kim, K.W. Application of ditial neural network to predict the optimal start
time for heating system in building. Energy Coni@rsand Management. 44, 2791-2809 (2003).

2. Pérez-Lombard, L., Ortiz, J., Pout, C. A reviewhwnldings energy consumption information. Energy
and Buildings. 40, 394-398 (2008).

3. Morosan, P.D., Bourdais, R., Dumur, D., BuissorBuilding temperature regulation using a distri-
buted model predictive control. Energy and Buildin@2010).

4. Chwieduk D. Towards sustainable-energy buildingspléed Energy. 76, 211-217 (2003).



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Jiangjiang, W., Zhigiang, J.Z., Youyin, J., Chunfa, Particle swarm optimization for redundant

building cooling heating and power system. In: AgglEnergy, vol. 87, issue. 12, pp. 3668-3679. El-
sevier, Ltd (2010).

Pohekar, S.D., Ramachandran, M. Application of irwiteria decision making to sustainable energy
planning-A reviewln: Renewable and Sustainable Energy Reviews, voss8ei 4, pp. 365-381. El-
sevier, Ltd (2004).

. Fanger P.O. Thermal comfort: analysis and apptioatiin environmental engineering. New York,

McGraw-Hill (1972).

. Norme, NF EN ISO 7730. Ergonomie des ambiancesrigeles : Détermination analytique et inter-

prétation du confort thermique a l'aide de calciéls indices PMV et PPD et du confort thermique lo-
cal. AFNOR (2006).

. Modave, F., Grabisch, M.. Preference representdityoa Choquet integral: Commensurability hypo-

thesis. IPMU'98, Paris, France, 164-171 (1998).

Krantz, D.H., Luce, R.D., Suppes, P., Tversky, Auidations of measurement, In: Additive and Po-
lynomial Representations, vol. 1. Academic PreS3 1)L

Fishburn, P.C. Utility Theory for Decision-Makingphn Wiley & Sons, New York (1970).

Fishburn, P.C. The foundations of expected utiltgrdrecht: Reidel, 1982. Keeney, R. L. und Raiffa,
H. Decisions with Multiple Objectives — Preferencasd Value Tradeoffs, Cambridge University
Press (1976).

Labreuche. C., Grabisch. M. The Choquet integnatfie aggregation of interval scales in multicrite-
ria decision making. Fuzzy Sets & Systems, vol., PRz 11-26. (2003).

Grabisch. M., Labreuche. C. A decade of applicatibthe Choquet and Sugeno integrals in multi-
criteria decision aid. Quarterly Journal of Operasi Research, vol. 6, pp. 1-44. (2008).

Roy, B. A propos de la signification des dépendarergre critéres: quelle place et quels modes de
prise en compte pour l'aide a la décision?. RAIR@2ORes. 43, 255-275 (2009).

Montmain, J, Trousset, F. The translation of willa act: achieving a consensus between managerial
decisions and operational abilities. Informatiom@ol Problems in Manufacturing (INCOM), Mos-
cow, Russia (2009).

Labreuche, C. Construction of a Choquet integrdlthe value functions without any commensurate-
ness assumption in multi-criteria decision makiBgropean Society of Fuzzy Logic and Technology
(EUSFLAT-LFA), Aix-les-Bains, France (2011).

Grabisch, M., Roubens, M. The application of fuirggrals in multicriteria decision-making. In: Eu-
ropean Journal of Operational Research, vol. 8944p-456. (1996).

Grabisch, M. k-Ordered Discrete Fuzzy Measures Erelr Representation. In: Fuzzy sets and sys-
tems, vol. 92, pp. 167-189. (1997).

Labreuche C., Grabisch, M. The Choquet integrattieraggregation of interval scales in multicréeri
decision making. In: Fuzzy Sets & Systems, vol.[§¥,11-26. (2003).

Sahraoui, S., Montmain, J., Berrah, L., Mauris,USer-friendly optimal improvement of an overall
industrial performance based on a fuzzy Choquegial aggregation. IEEE International Conference
on Fuzzy Systems, London, UK (2007).



