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Abstract. The incessant need for energy has raised its cost to unexpected 
heights. In response to this situation, many projects have been started in order to 
save energy. In this context, RIDER project tries to develop a weak system de-
pendency of energy management framework which could be applied for differ-
ent systems. Particularly, our RIDER Decision Support System (DSS) focuses 
on proposing generic control rules and optimization techniques for energy man-
agement systems. Therefore, the DSS aims to compute the most relevant target 
values (i.e., setpoints) to be provided to the energy control system and then, im-
proving thermal comfort sensation or reducing energy costs. Literature proposes 
reusable system independent statistical models for thermal comfort. However, 
they are not easily interpretable in terms of a preference model which makes 
control not intuitive and tractable. Since thermal comfort is a subjective multi-
dimensional concept, an interpretable and reusable preference model is intro-
duced in this paper. Multi Attribute Utility Theory (MAUT) is used for this. 

Keywords: Thermal comfort, preference model, energy control, MAUT, Cho-
quet integral. 

1 Problematic Introduction 

Total building energy consumption accounts for about 40% of total energy demand 
and more than one half is used for space conditioning: heating, cooling, and ventila-
tion [1] [2] [3]. In the EU, about 57% of total energy consumption is used for space 
heating, 25% for domestic hot water, and 11% for electricity [4]. In response to this 
situation, many projects have been started in order to save energy. Recent studies 
have investigated efficient building control in order to find strategies that provide a 
comfortable environment from thermal, and indoor-air quality points of views, and 
minimize energy consumption at the same time [5]. Nevertheless, these optimization 
systems are strongly dependent on the energy management framework and cannot be 
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applied for other systems. Indeed, they are conceived by the energy manager depend-
ing on one building characteristics. So, its associated optimization routines are direct-
ly implemented on its control system and cannot be reused for further energy man-
agement. Additionally, these optimization routines are not supposed to be interpreted 
by human operators since they are integrated in regulation loops which made them 
necessarily dependent on the SCADA system (supervisory control and data acquisi-
tion). In order to solve this problem and satisfy the weak energy system dependency 
which is required by the RIDER project, control rules should neither be too specific 
nor integrated in control loops. They must rather be a high level supervision rules 
which can be suggested to the energy manager. That’s why; we propose that the 
RIDER DSS core functionalities should rather provide qualitative recommendations 
such as suggesting the most relevant target values to the energy control system. This 
approach ensures, the control rules interpretability, as well as, the weak dependency 
of the DSS w.r.t. the energy system and its control. 

This research is part of the RIDER project and deals only with its optimization as-
pects. In this paper, we focus on a specific optimization aspect based on human’s 
thermal sensation. In fact, the notion of comfort is subjective and multidimensional. 
Subjectivity entails that comfort cannot be modeled in a deterministic way and its 
multidimensionality comes from the fact that many variables can be considered in its 
definition: temperature but also hygrometry, radiant temperature and air velocity. 
These remarks explain why providing efficient energy management for optimal com-
fort may be considered as a multicriteria decision-making process in uncertain envi-
ronment, and must be modeled as such [6]. 

The next sections discuss about the modeling and the implementation of an original 
thermal comfort function and formalize, as well, some RIDER optimization problem 
based on the aforementioned comfort function. 

This paper is organized as follows. Section 2 discusses about most common ther-
mal comfort models and their relevance when they are used in optimization process. It 
explains our choice to have a model which interprets the comfort statistical model on 
the MAUT framework. Section 3 summarizes Labreuche’s method to identify our 
thermal comfort model, the way that this method was applied and extended to build a 
comfort overall utility function in our complex context, and finally shows the useful-
ness of this new formalization to infer comfort control rules. Finally, section 4 formu-
lates some control problems based on the new thermal comfort preference model. 

2 Optimization and comfort 

Even when no malfunctioning is detected in a heating system, i.e., temperature values 
in a building match their setpoints, two users may be more or less tolerant with regard 
to the setpoint variations and thus not equally satisfied. It can be explained by the 
more or less tolerant user’s requirements are but also by other parameters than tem-
perature that may differ from one situation to another and then contribute to different 
thermal sensation. This illustrates that thermal comfort (and not only temperature) 
should be the variable to be controlled by the RIDER DSS in order to ensure building 



occupants’ satisfaction. However, comfort is a complex and subjective concept that 
cannot be modeled as a deterministic variable. That’s why, in literature, the most 
well-known thermal comfort is based upon a statistical approach [7] [8]. 

2.1 Thermal comfort model overview 

2.1.1 Comfort as a statistical model 
The Predicted Mean Vote PMV  [7] is the most used statistical thermal comfort in-
dex. It defines the mean thermal sensation vote on a standard 7 level scale from a 
group of approximately1300 persons. It is written as a function of 4 thermal environ-
mental variables: air temperature Ta, air humidity Hy, air velocity Va, and mean ra-
diant temperature Tr; and 2 human parameters: metabolic rate Me and cloth index Ci. 
The PPD (Predicted Percentage Dissatisfied) index is based on thePMV one and 
indicates the percentage of thermal dissatisfied persons. BothPMV andPPD indexes 
have been used since 1995 by the NF EN ISO 7730 standard to describe ergonomics 
of thermal environments [8].  

Such a thermal comfort representation verifies the RIDER DSS weak dependency 
constraint from one hand, and captures the inherent subjectivity and uncertainty re-
lated to thermal sensation from the other hand. The statistical based thermal comfort 
modeling is the result of a sample-ballot which makes it reusable for various applica-
tion contexts. Whereas comfort is intuitively related to a preference model, the for-
malism in [7] and [8] is far away from any classical preference modeling framework.
PMV and PPD  indexes are considered as if they were outputs of any behavioral 
model associated to a physical process. In particular, interactions among comfort 
attributes are considered as if they were physical ones which is not the case. The mo-
notony of PMV and PPD  with regard to attributes variations, is not obvious and can 
only be numerically computed. As a consequence, interpreting such a model to sup-
port control rules design for a human operator is not so intuitive. 

2.1.2 Comfort as a preferential model 
The representation of preferences is a central topic in decision-making and measure-
ment theory [9]. Usually, it amounts to find a real-valued overall utility function U
such that for any pair of alternatives , 'x x X∈  where X is a set of alternatives, 'x x≻

(x is preferred to x’) iff ( ) ( ')U x U x≥ . When alternatives are N-dimensional (attribute 

i N∈ takes its values in i
X ), i.e.,

1

n

i

i

X X
=

= ∏ , a widely studied model is the decompos-

able model of Krantz et al. [10], where U has the form 1 1 1( , .., ) ( ( ),.., ( ))
n n n

U x x g u x u x=  

where 
i

u are real-valued functions. Assuming that ≻  is a weak order onX , it is 

known that a representation with g being strictly increasing can be found iff ≻  satis-
fies independence and X  is separable [9]. The MAUT [11][12] is based upon the 
utility theory which is a systematic approach to quantify individual preferences. Utili-
ty theory consists in interpreting any measurement as a satisfaction degree in [0,1]  

where 0 is related to the worst alternative and 1 to the best one. Measurements are 



thus made commensurate and interpretable. In this way, a utility ( )
i i

u x  is attached to 

each measurement
i

x . 

Indirect interviewing methods such as MACBETH (Measuring Attractiveness by a 
Categorical Based Evaluation TecHnique) are generally applied to identify attribute 
elementary functions ( )

i i
u x in a weighted average aggregation model. However, 

when aggregation operators do not fulfill the weak difference independence property 
then constructing elementary utilities functions is more complicated [16]. Indeed, this 
property allows building the value function on attribute i  by asking questions directly 
regarding the preference of the decision maker on the attribute value range iX (inde-

pendently of other attributes values) rather than from questions regarding options in 
X . An extension of MACBETH for a Choquet integral aggregation function that 
respect weak difference dependence has been proposed in [13] [14]. 

When comfort can be written under the decomposable form ( ,..., )U Ta Me =  

( ( ),..., ( ))
Ta Me

g u Ta u Me it makes thermal sensation more interpretable w.r.t attributes 

variations and avoids the coexistence of antagonist behavioral rules. For instance, 
comfort may be improved when humidity increases for one given ambient tempera-
ture whereas it can be disturbed by an increasing humidity for another ambient tem-
perature. The coexistence of such behavioral rules makes difficult for the energy 
manager to directly imagine attribute variations in order to control the energy system. 
Whereas co-monotony of comfort U  and Hyu  holds everywhere in HyX . Then, identi-

fying the elementary utility functions 
i

u would greatly facilitate the design of control 

rules. Moreover, in the real thermal comfort perception, there is no physical correla-
tion between attributes. Interactions between attributes should rather be considered as 
preferential interactions related to criteria associated to attributes [15] [16]. Fuzzy 
integrals provide adequate models to capture such interactions. It is then obvious that 
a preferential model of thermal comfort would be more appropriate for semantic rea-
sons. 

2.1.3 Discussion 
Let us now introduce these models in optimization issues. Optimization problem (1) 
and its dual (2) ―where ( , , , , , )Cost Ta Hy Tr Va Ci Meδ δ δ δ δ δ function evaluates the 

cost of the attributes variations( , , , , , )Ta Hy Tr Va Ci Meδ δ δ δ δ δ  and *PPD (resp. *C ) is 
a comfort setpoint (resp. a budget threshold)― formalize efficient comfort improve-
ment issues. 

( , , , , , )

( , , ,

, , ) *

minCost Ta Hy Tr Va Ci Me

PPD Ta Ta Hy Hy Tr Tr

Va Va Ci Ci Me Me PPD

δ δ δ δ δ δ
δ δ δ

δ δ δ
+ + +

+ + + ≤







 (1) 

100 ( , ,
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( , , , , , ) *

max Ta Ta Hy Hy

Tr Tr Va Va Ci Ci Me Me

Cost Ta Hy Tr Va Ci Me C

PPD δ δ
δ δ δ δ
δ δ δ δ δ δ

+ +

+ + + +

≤

−

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


 (2) 

Let PPD∇
��

 the gradient when ( ,..., ) *PPD Ta Me PPD= . It provides attributes that 

their local variations impact the most significantly the comfort variation (maximal 

component of PPD∇
��

). However, there are some practical and computational draw-



backs to this formulation. First, the gradient is generally not of common sense for the 
energy manager to be use in optimization process. Then, there is no information re-

garding the neighborhood in which this result is valid: maximal component of PPD∇
��

 
may change rapidly i.e. it depends on non linearity of PPDand this notion is mea-
ningless for the energy manager. Finally, we cannot a priori know whether we have to 
increase or decrease an attribute value to improvePPD . It necessitates computing the 
derivative. It depends on , , , , ,Ta Hy Tr Va Ci Meattribute values and the monotony of

PPD relatively to these attributes, which is not easily understandable for the energy 
manager. However, a preferential based thermal comfort modeling solves the afore-
mentioned drawbacks thanks to the co-monotony between utility functions iu and 

thermal comfort overall evaluation U , and offers as well a more relevant control 
system for thermal comfort attributes. 

In order to ensure the RIDER DSS weak dependency, the thermal comfort model 
has also to fulfill this condition. The statistical thermal comfort modeling satisfies 
already the weak dependency condition and can be applied for different system whe-
reas the preferential thermal comfort modeling does not always stratify this condition. 
It depends on the way with which utility functions iu were identified i.e. utility func-

tions should result from statistical techniques like in [7] and [8] which would roughly 
make the interviewing method more complex. 

So, to grant to the comfort preferential based model the ability to be system inde-
pendent without having to proceed by the statistical way, we propose to identify utili-
ty functions from the existent statistical modelPPD . Labreuche has proposed an 
original approach to compute both the utilities and the aggregated overall utility func-
tion

1
( , .., )

n
U x x when U is a Choquet integral without any commensurateness assump-

tion [17]. It is important to highlight that using a Choquet integral facilitates optimiza-
tion problem solving ((1) and (2)) thanks to its linearity by simplex. Next section 
describes the Choquet integral and Labreuche’s method to identify utility functions 
and the Choquet integral parameters. 

2.2 Measurements overall utility without commensurateness hypothesis 

2.3.1 The Choquet integral 
The Choquet integral family provides adequate models to capture decisional beha-
viors when there are preferential interactions between criteria. They enable accom-
modating both the relative importance of each criterion and the interactions among 
them [18][19]. In our preference model, an interaction occurs between any two crite-
ria once they need to be satisfied simultaneously (i.e., positive synergy) or when their 
simultaneous satisfaction is seen as a redundancy (negative synergy). 

 
1

( ) ( )1 2 ( ) ( 1) ( )
1

( ) ., ,..., ( ). ( )
i

n

i i

n

n i i i
i

uU C u u u u u Aµ µµ
=

−
=

= = ∆= − ∑∑  (3) 

U , in (3), is the aggregate utility of the elementary utility profile 
1

( , ..., )
n

u u u=
�

(to 

simplify 
i

u abusively denotes ( )
i iu x when no misinterpretation is possible) where 



: 2 [0,1]Cµ →  is a fuzzy measure on the subsets of criteria in C ; (.) indicates a per-

mutation, such that the elementary utilities (.)u  are ranked: (1) ( )0 1
n

u u≤ ≤ ≤ ≤…  and 

{ }( ) ( ) ( ),..,k
i i nA c c= . This expression can also be rewritten as in the last part of (3) where

( ) ( ) ( 1)i i i
µ µ µ

+
∆ = − and ( ) ( )( )i iAµ µ= , ( 1) 0nµ + = . 

Note that a simplex { }(.) (1) ( )[0,1] / 0 1n
nH u u u= ∈ ≤ ≤ ≤ ≤�

…  corresponds to the rank-

ing (.), where the Choquet integral assumes a linear expression. Such a remark proves 
that optimization problems that involve a Choquet integral can be solved with linear 
programming techniques within simplexes. 

2.3.2 Construction of Choquet integral and elementary utilities with-
out any commensurateness assumption 

Since we want to represent PPD with the decomposable model of Krantz, weak 
separability property has to be first verified. A preference relation ≻  is said weak 
separable iff, it verifies (4) for every attribute i N∈ whereN denotes the attribute set, 

, 'i i ix x X∈ two possible values of i , and \ \, '
n

j

j i

N i N i Xy y
≠

∈ ∏ two possible alternatives 

described for andk N k i∀ ∈ ≠ . 

 ( ) ( ) ( ) ( )\ \ \ \ \ \, ' , , ' , , ' , , ' ' , 'i i N i N i i N i i N i i N i i N ix x y y x y x y x y x y∀ ⇔≻ ≻  (4) 

Labreuche [17] supposes that the weak separability property is verified for the 
overall utility function U ( PPD in our case) and suggests a method to check com-
mensurateness among attributes i and k . For this, he proposes to analyze the gradient 
function related to ix w.r.t kx variations. It returns on studying the function

( ) ( )\: ,i k i N if x U x x U xε+ −֏  where 0ε > . If if is a constant function, then there is 

no interaction between attributes i and k  (it means that even when there is a ranking 
change between utilities related to i and k  their “weights” in (3) do not change in the 
new simplex). And, thus, attributes i and k  do not interact. Otherwise, ifif  is not a 

constant function, then attributes i and k interact with each other (the “weight” in (3) 
depends on their ranking). In this case, i  and k  are considered as commensurate and 

it is possible, then to compute the value*k kx X∈ for the attributek  where 

( ) ( )*
k i ik

u u xx = [17]. At the end of this step, subsets of commensurate attributes 

jS N⊆ are constructed, where j
j

S N=∪ and , ji k S∀ ∈ , i  and k  are commensurate. 

Once jS
 
are identified, the utility functions iu and capacities jµ can be computed. 

According to [20], iu cannot be built from one attribute regardless to the other ones. 

iu ’s construction in [17] is thus based on the overall utility U .  [17] supposes that U

is continuous and all iu functions are strictly increasing over( , ii X∀ =ℝ ℝ in [17]). In 



order to build iu and µ two reference vectors ,
j j

j

S S k
k S

X
∈

∈ ∏Ο G should be computed 

for each attribute subset jS . They refer respectively to an unacceptable (Null) situa-

tion level and a Good situation level. For vectors 
jSΟ (resp. 

jSG ), the first attribute 

value O
lx  (resp. G

lx ) is chosen by the decision maker and the others O
k lx ≠  (resp. G

k lx ≠ ) 

are computed such as ( ) ( )O O
k l lk l lu ux x≠ ≠ = (resp. ( ) ( )G G

k l lk l lu ux x≠ ≠ = ) for jk S∀ ∈ and

k l≠ . To make sure that 
jSG corresponds to a better situation than

jSΟ , G
k lx ≠  must be 

preferred to O
k lx ≠ . 

Based on the identified reference vectors, an affine utility function iυ is defined by 

(5), where ( ) 0O
i ixυ = , ( ) 1G

i ixυ = , AΟ is the restriction of ( )1 ,...,O O
N nx x=Ο  to 

A N⊂ (resp. AG is the restriction of ( )1 ,...,G G
N nx x=G to A N⊂ ).  

 \

\

( , ) ( )
, , ( )

( , ) ( )
O G i N i N

i i i i i G
i N i N

U x U
x x x x

U x U
υ −

 ∀ ∈ =  −
O O

O O
 (5) 

Since several solutions for 
jSΟ and 

jSG may be envisaged, a normalization condi-

tion is required: when ( )\( , ) ( ) 1
j jj

S N S NS
U U− =∑ G Ο Ο  is checked, then normalized 

utilities iu and normalized capacities
jSµ are respectively (6) and (7): 

( ) ( ) ( )i i i i Nu x x Uυ= + O   (6) \, ( ) ( , ) ( )
jj S A N A N

A S A U Uµ∀ ⊂ = −G O O  (7) 

Finally, the Choquet integral (see (3)) that represents the overall utility U of the 
normalized utilities iu based upon the generalized capacity µ given by (8) is 

achieved: 

 ( ), ( ) ( )
jj

S jS
A N A A Sµ µ∀ ⊂ = ∩∑  (8) 

3 Decomposable form of the aggregation model of comfort 
Interactions between , , , , ,and Ta Hy Tr Va Ci Meare preference interactions rather 

than physical correlations [15]. In fact, preferences are perfect to model human per-
ception or opinion about comfort which is a subjective concept and cannot be treated 
like a physical process output as in [8]. Choquet integral is a relevant solution to 
model preference interactions among thermal comfort attributes and confers to the 
comfort aggregated concept its semantic interpretability. Also, the simplex piecewise 
linearity of Choquet integral facilitates optimization processes. 

So, in order to solve problems described by (1) and (2), approximating thePPD
with a Choquet integral, is then of interest. It first reduces thePPD complexity by 
giving the possibility to have a linear formulation. Second, it allows easy prediction of 
PPD variation with regards to one attribute fluctuation since we have elementary 
utility functions. 



In order to simplify the Choquet comfort modeling, we suppose that people hosted 
by a same building have almost the same activity level and are dressed pretty much 
the same depending on seasons. Considering those assumptions, Ci andMeattributes 
can be removed from the model variables (they are seen as constant parameters in-
stead of variables). Thus, depending on seasons and the activity nature of a building, 
both Ci  and Me are evaluated by average values i.e., 1.2Me met=  for average ad-

ministrative employees and 0.7Ci clo=  for a shirt/pant dressing sample [8]. 

3.1 Weak separability assumption and Choquet integral-based local model 

In order to write the PPD  function as an overall utility function, it’s necessary to 
check, first, the weak separability property among its attributes , , ,andTa Hy Tr Va

which, intuitively, seems to be not the case. Here is a counterexample of the weak 

separability non-satisfaction computed for the vector ( ), , ,Ta Hy Tr Va , ( )23,50,23,0.2

( )25,50,23,0.2≺ however( ) ( )23,100,23,0.2 25,100,23,0.2/≺ . Therefore, we can say that 

( ), , ,PPD Ta Hy Tr Va defined for [ ]10,30Ta∈ ° , [ ]10,40Tr ∈ ° , [ ]0,100%Hy∈ , and 

[ ]0,  1 /Va m s∈ [8] is not a weak separable function. Second, the monotony assump-

tion of Labreuche’s construction must be checked. Again, intuitively, this assumption 
cannot be proved for the considered areas of , , ,andTa Hy Tr Va. It is obvious that an 

increasing temperature is appreciated until an upper threshold. Above this threshold, 
people get hot and their thermal sensation progressively decreases. This fact implies 
that the elementary utility function of the ambient temperature [ ]Ta : 10,30° [0,1]u →  

has at least one monotony change. 
Fig., 1 and 2, illustrate respectively the PPD curve for ( 23Tr = ° , 25%Hy = ,

1.2Me met= , 0.7Ci clo= , [ ]10,30Ta∈ ° and [ ]0,1 /Va m s∈ ) and ( 23Tr = ° ,

[ ]0,100%Hy∈ , 1.2Me met= , 0.7Ci clo= , [ ]10,30Ta∈ ° and 0.2 /Va m s= ). Iso-

temperature curves of both figures have the same shape for respectively all Va and 
Hy values. So, we can realize that the minimalPPD is reached for slightly different 

Tavalues, which means that the weak separability property is not verified in the con-
sidered PPD  domain. Fig., 1 and 2, show, also, that PPD function has two different 
monotonies w.r.t.Ta values which means that Tau cannot be considered as strictly 

increasing for [ ]10,30Ta∈ ° . Since none of the two required assumptions is verified, 

we cannot build an overall Choquet integral for allPPD attributes domains. However, 
these assumptions can be checked for different local domains and, then, a Choquet 
integral can be computed for each of these domains. Based on this, we have to identi-
fy domains in which the shape of the PPD function has the same monotony and veri-
fies, as well, the weak separability property i.e., according to figures 1 and 2, for

[ ]25,30Ta∈ ° , we have both assumptions verified. So it is possible to compute a 

Choquet integral defined locally for [ ]25,30Ta∈ ° . Hence, thePPD function can lo-



cally be approximated by a Choquet integral. This technique allows the computation 
of local preference models for the thermal comfort. It means that depending on situa-
tions, attribute utility functions change. In fact, one attribute influence on the thermal 
comfort becomes more or less important depending onTavalue range. 

 

Fig. 1. ( ),PPD Ta Va  

 

Fig. 2. ( ),PPD Ta Hy  

3.2 A fuzzy inference system to estimate comfort 

In practice, thePPD index can only be controlled through , ,andTa Hy Vaattributes 

where Va is equivalent to a room airflow of the heating exchanger. So, more specifi-
cally, we need to associate elementary utility functions to these attributes to simplify 
control issues. Besides, Tr  is beyond control except if we close the shutters! Further-
more, it can be checked that interactions with Tr are not preferential ones.Tr  interac-
tions are related to physical relationships with Ta which are not semantically consi-
dered by the Choquet integral model and do not correspond to the Labreuche’s con-
struction. That’s why, in order to simplify our model and, also, reduce the complexity 
of the identification of local validity domains, we decide to removeTr from ourPPD
approximation. Therefore, a Choquet integral is computed for a fixedTr in tridimen-
sional local domains of validity of , ,andTa Hy Va. In this case, a fuzzy interpolation 

forTr is proposed to consider allTr range.  

Fig. 3 shows the way the 5 different tridimensional model TrTr
comfort

xU = cover all Tr

range. A local Choquet integral model approximates the PPD function for these fixed 

values ofTr : 15, 20, 23, 25 and 30°. Then, TrTr
comfort

xU =  approximates thePPD function 

only in its associated valid local domain. Comfort can finally be computed for anyTr
value thanks to an interpolation between two local models as proposed by the triangu-
lar membership functions in figure 3. 

In all computed local approximations, , ,andTa Hy Vahave been checked as com-

mensurate which means that utilities and capacity approximations are all based on 
two reference vectors

1SΟ and
1SG associated to the unique commensurate subset

{ }1 , ,S Ta Hy Va= . According to [17], the Choquet integral is unique when commen-

surate subsets are composed with the coalition of all attributes. In this case, it can be 
checked that all our local constructions are unique [17]. Utilities and capacity func-
tions require to be normalized. Because there is only one commensurate subset, 

checking the normalization condition ( ) ( )( )1 1
. 1S SPPD PPDα =−G Ο is easy but must 

be verified in each local domain.  



Average approximation errors between the local Choquet approximation and the 
PPD function are computed based on 9261 different simulations and it never exceeds 
9.8% on Ta Hy Va× × valid domains. The next section describes how these 5 tridimen-

sional comfort models can be useful to control one building thermal comfort. 

 

Fig. 3. Five tridimensional TrTr x
comfortU =

based interpolation 

3.3 Interpretable control rules  

The computation of these local Choquet integrals with [16] implies that we have 

simultaneously built utility functions for each attribute , , andTa Hy Vau u u in each do-

main of validity. These last can then be used in order to build control rules. Thanks to 
the utility functions, from each local Choquet integral model, the influence of each 

attribute variation , , andTa Hy Vaδ δ δ on the TrTr
comfort

xU = monotony can be computed. Of 

course, these influences models are not as precise as we hoped for because they result 
from the interpolation of two local Choquet integral models; but they still useful to 
give helpful control recommendations. In fact, the non-existence of a unique overall 
Choquet integral defined for the wholePPDdomain inhibits all comparison between 
utilities in two different local domains. However, it is not such a problematic thing 
because, for each local domain, we are yet able to identify its valid rules i.e., (9) is an 
identified thermal comfort control rule for the local model M3 (fig. 3). It models the 

attributeHy influence upon Tr 23
comfortU = ° for the local domain M3. Then this rule can be 

formulated as a recommendation when environmental conditions satisfy the local 

domain M3. The “gains” related to these relationships are the ( )iµ∆  Choquet integral 

parameters (3) for M3. Hence, the energy manager knows the negative or positive 
influence of any attribute upon comfort function in any domain, the polyhedrons in 
which this influence is valid, and the expected impact from an attribute variation. It 
allows enunciating control rules such as (9). 

[ ] [ ] [ ]
[ ] [ ] [ ]

3

22,28 50,100 0.25,1
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f then because and .comfort Hy comfort Hy
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i Hy U u U Hyδ µ δ× ×

∈ ∈ ∈

= ∆ր ց ց
 (9) 

Hence, thanks to thePPD approximation by local Choquet integrals, we obtain a set 
of rules for the thermal comfort control. These rules can directly be applied by the 
energy manager as suggested just above because they are interpretable rules in term of 
satisfaction degrees (like comfort itself) which is part of our work objectives. The 
Choquet integral based models can also be included in optimization problems to effi-



ciently improve comfort or reduce energy costs automatically as it is explained in the 
next section. This can be achieved thanks to the Choquet integral linearity by simplex. 

4 Some control problems based on the piecewise Choquet integral 

The model of comfort is now built in the control of the energy system of a building 
floor. Let us suppose that the control variables are ambient temperature and airflow of 
all the offices at this floor. There is a General Air Treatment (GAT) ―a central heat-
ing exchanger―for the whole building and additional individual heating exchangers 
in the offices. Basic control functions are already implemented in the GAT. 

In RIDER DSS, comfort appears as an overall performance of the control problem. 
It must help the energy manager to satisfy each individual comfort expectation with a 
minimal cost. Indeed, persons do not have the same expectations w.r.t thermal com-
fort, on one hand, and one office heat loss depends on its exposure to sunlight, and its 
neighboring offices isolation characteristics, on the other hand. 

RIDER DSS supports the energy manager to manage significantly different tem-
perature setpoints in each office at the floor in order to warranty the comfort levels 
and minimize as well the energy cost. Then, in order to satisfy both requirements: cost 
and comfort constraints, RIDER DSS aims to compute adequate setpoints to be pro-
vided to the GAT control system. In this paper, we consider that RIDER DSS manag-
es only the energy system performances (utilities related to measurements) without 
worrying about the way these performances are achieved (GAT control). RIDER DSS 
aims to prove that reasoning using an aggregated comfort objective function already 
provides substantial savings. Let us consider some tractable issues by RIDER DSS: 

─ Control. The control issue may be used to adjust the thermal sensation of an unsa-
tisfied officer and whenever any disturbance distracts from the comfort expecta-
tion; 

─ Adaption. Thermal sensation is not the same in the north sided offices of the 
building and the south sided ones. Furthermore the sunlight exposure varies every 
day and during the day; 

─ Anticipation. Season changes and occupation rates, are proceeding to phenomena 
that directly impact energy management. 

For instance, (10) is a formalization of a simple control problem based on the comfort 
preference model F  that has been identified from thePPDmodel in this paper. This 
formalization aims to control variables Ta and Va (the offices airflow) in order to 
improve the thermal sensation of an unsatisfied office occupant ( )comfort k without 

decreasing the comfort of its neighboring offices'k when ( )Ta k  and ( )Va k change. 
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BecauseF has been approximated with Choquet integrals, this optimization prob-
lem can be locally linearized and, so, becomes an easily tractable problem [21]. Fur-
thermore, the gain between comfort degree and Taδ or Vaδ variations is locally a 
constant computed with Ta and Va related utility functions and also the Choquet 
integral parameters in the simplex search space. This gain value makes the improve-
ment interpretable for control purposes. Finally, domains of validity of the Choquet 
integral based approximations provide the necessary bounds to reason with a constant 
gain. 

Similarly, the adaptation and anticipation problems can be easily formalized as the 
control one and their resolution are also simplified thanks to the local linearity of the 
Choquet integral expression. 

5 Conclusion 

This work focuses on proposing generic optimization techniques for energy manage-
ment systems based on a thermal comfort preference model. It explains why and how 
associating comfort to a MAUT preference model for energy management issues. The 
introduced thermal comfort model can be easily generalized for different building 
occupants and simplifies the energy control issues. In fact, thanks to the MAUT, the 
interpretation of attributes influences on the thermal sensation in term of utility func-
tions makes the multidimensional comfort control process more tractable. The intro-
duction of MAUT techniques in energy control completely shifts the energy control 
paradigm. For example, the aggregated model for comfort allows designing new low-
er temperature setpoints that could not be envisaged even in advanced multivariable 
control techniques. Indeed, relationships between attributes are preferential interac-
tions and not physical influences: each attribute can be controlled independently but 
any change of an attribute entails a variation of its local utility that may have conse-
quences on the comfort overall utility. RIDER aims to prove that reasoning using an 
aggregated comfort objective function provides substantial savings. Within the 
MAUT, it can reasonably be imagined that temperature setpoints of a building could 
be decreased from one to two degrees. It represents a substantial economic gain that is 
probably much more significant than any optimization of the energy manager control 
system. Furthermore, the control recommendations resulting from this model are ob-
viously transferable to any energy facilities. 
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