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Abstract

Most of numerical methods for deterministic simulations of rarefied gas flows use
the discrete velocity (or discrete ordinate) approximation. In this approach, the kinetic
equation is approximated with a global velocity grid. The grid must be large and fine
enough to capture all the distribution functions, which is very expensive for high speed
flows (like in hypersonic aerodynamics). In this article, we propose to use instead
different velocity grids that are local in time and space: these grids dynamically adapt
to the width of the distribution functions. The advantages and drawbacks of the
method are illustrated in several 1D test cases.

Keywords: kinetic equations, discrete velocity model, deterministic method, rarefied gas dy-
namics

1 Introduction

Most of deterministic numerical methods for rarefied flow simulations are based on a discrete
velocity approximation of the Boltzmann equation, see for instance [25, 23, 8, 7, 6, 19, 20,
16, 26, 14].

In almost all these methods, the distribution function is approximated with a global
velocity grid, for every point in the position space, for every time. This makes the method
robust (conservation, entropy dissipation, positivity, stability, etc.) and relatively simple,
but very expensive for many cases. Indeed, the grid must be large enough to contain all the
distribution functions of the flow, and fine enough to capture every narrow distributions. The
first constraint makes the grid very large for high speed flow with large temperatures. The
second constraint makes the grid step very small, and hence a very large number of discrete
velocities are needed. This is for instance the case for atmospheric re-entry problems, where
the flow is hypersonic. These problems, especially in 3D, are very difficult to be simulated
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with such methods, due to the discrete velocity grid that contains a prohibitively large
number of points.

Of course, particle solvers like the popular Direct Simulation Monte-Carlo method (DSMC)
do not suffer of such problems [5]. However, if one is interested in deterministic Eulerian
simulations, it is important to find a way to avoid the use of a too large number of dis-
crete velocities. Up to our knowledge, there are a few papers on this subject. Aristov
proposed in [1] an adaptive velocity grid for the 1D shock structure calculation. However,
the approach is very specific to this test case and has never been extended. More recently,
Filbet and Rey [12] proposed to use a rescaling of the velocity variable to make the support
of the distribution independent of the temperature and of the macroscopic velocity. Then
the Boltzmann equation is transformed into a different form (with inertia terms due to the
change of referential). In [2], Baranger et al. proposed an algorithm to locally refine the
velocity grid wherever it is necessary and to coarsen it elsewhere. But this approach, which
has been proved to be very efficient for steady flows, is still based on a global grid, and
cannot be efficient enough for unsteady flows. Finally, Chen et al. [9] proposed to use a
different velocity grid for each point in the position space and every time: from one point to
another one, the grid is refined or coarsen by using an Adaptive Mesh Refinement (AMR)
technique. This seems to be very efficient, but all the grids have the same bounds (they all
use the same background grid). It seems that a similar method was proposed at the same
time by Kolobov et al., see [17, 15].

In this paper, we propose a method that has several common features with the method
of [27] and [12] but is still very different. The main difference is that each distribution is
discretized on its own velocity grid: each grid has its own bounds and step that are evolved in
time and space by using the local macroscopic velocity and temperature. These macroscopic
quantities are estimated by solving the local conservation laws of mass, momentum, and
energy. The interaction between two space cells requires to use reconstruction techniques to
approximate a distribution on different velocity grids. This paper is a preliminary work, for
1D flows, that proposes a complete algorithmic approach. Several test cases illustrate the
properties of the method and show its efficiency.

The outline of the paper is the following. In section 2 is presented a simple 1D kinetic
Bhatnagar-Gross-Krook (BGK) model and its standard discrete velocity approximation. In
section 3, the local discrete velocity grid approach is described. The numerical tests are
given in section 4.

2 A simple 1D kinetic model and its standard velocity

discretization

We consider a one-dimensional gas described by the mass density of particles f(t, x, v) that
at time t have the position x and the velocity v (note that both position x and velocity v are
scalar). The corresponding macroscopic quantities can be obtained by the moment vector
U(t, x) = 〈mf(t, x, .)〉, where m(v) = (1, v, 1

2
|v|2) and 〈φ〉 =

∫

R
φ(v) dv for any velocity
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dependent function. This vector can be written component wise by U = (ρ, ρu, E), where ρ,
ρu, and E are the mass, momentum, and energy densities. The temperature T of the gas is
defined by relation E = 1

2
ρ|u|2 + 1

2
ρRT , where R is the gas constant.

The evolution of the gas is governed by the following BGK equation

∂tf + v∂xf =
1

τ
(M(U) − f), (1)

where M(U) is the local Maxwellian distribution defined through the macroscopic quantities
U of f by

M(U) =
ρ√

2πRT
exp

(

−|v − u|2
2RT

)

, (2)

and τ = CT ω/ρ is the relaxation time. The constant C and ω will be given in section 4 for
each test case.

From this equation, it is easy to establish the so called conservation laws that describe
the time evolution of the moment vector U :

∂tU + ∂x 〈vmf〉 = 0. (3)

For the numerical approximation of equation (1), a popular method is the discrete
ordinate–or discrete velocity–method. It consists in choosing a grid V of K points vk, and
then in replacing the kinetic equation (1) by the finite set of K equations

∂tfk + vk∂xfk =
1

τ
(Mk(U)− fk) (4)

where fk(t, x) is an approximation of f(t, x, vk) andMk(U) is an approximation ofM(U)(vk).
This approximation is the discrete Maxwellian whose parameters are such that it has the
same discrete moments as the distribution f , as proposed in [18, 19]. This gives a conservative
discrete velocity model.

In order to describe the solution correctly, the discrete velocity grid V must capture
all the distribution functions, that is to say at any time t, and for every position x. This
means that V must be large enough to capture distributions with large mean velocity or
large temperature, and fine enough to capture distributions with small temperature. See
an illustration of this problem in figure 1. In this figure, we show a 2D aerodynamical flow
with three typical distributions functions (one in the upstream flow, one in the shock, and
another one at the boundary). The corresponding velocity grid is shown in the same figure.

To construct such a grid, we start with a remark on the local Maxwellians. Since a
Maxwellian centered on u and of temperature T decreases very fast for large v, it is very
small outside any interval [u− c

√
RT, u+ c

√
RT ] with c sufficiently large. A good choice for

such an interval is obtained with c = 3
√
RT : as it is well know in statistics for the normal

distribution, 99% of the particles described by the local Maxwellian have their velocity in
this interval. For kinetic simulations, we generally take a slightly larger interval with c = 4.
The corresponding interval [u − 4

√
RT , u + 4

√
RT ] is what we call the “support” of the
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local Maxwellian and contains the “essential” information on the distribution. When a
distribution is not too far from its corresponding local Maxwellian (which is true when the
Knudsen number is not too small, away from shock and boundary layers), most of particles
described by this distribution have their velocity localized in the support of the corresponding
local Maxwellian. This is interesting, since this support can be analytically determined as a
function of the macroscopic velocity and temperature, as it has been shown above.

Consequently, a first constraint for the global velocity grid is that its bounds vmin and
vmax satisfy the following inequalities:

vmin ≤ min
t,x

(

u(t, x)− 4
√

RT (t, x)
)

, vmax ≥ max
t,x

(

u(t, x) + 4
√

RT (t, x)
)

, (5)

so that all the distributions can be captured in the grid. Since it is reasonable to require
that there are at least three points between the inflexion points of any Maxwellian, the step
of the global grid should be such that

∆v ≤ min
t,x

√

RT (t, x). (6)

Of course, such an approach requires to first estimate some bounds on the macroscopic fields
that are global in time and space.

Note that the points of V are not necessarily uniformly distributed, since the grid could
be refined only wherever it is necessary and coarsened elsewhere, as it is proposed in [3] for
steady flows (with a simple and automatic way to define such a grid). However, for unsteady
problems, the situation is more complex. Indeed, first, the estimations of the correct bounds
and step of the grid are not necessarily available for every problems (the velocity or the
temperature could reach much larger values that were not expected at some times of the
simulation), like in complex shock interactions, for instance. Moreover, even if it is possible,
this could lead to a grid which is extremely large and dense, hence leading to a very expensive
simulation (see an example in section 4.2). Finally, when there are distributions that are
very far from their local Maxwellian, their support can be quite different, and there is no
analytical way to determine it. This can require several tries to find a correct global velocity
grid, which is also expensive.

It is therefore very attractive to try to use a local velocity discretization of the distribution
function, which means to use local discrete velocity grids (LDV) for each time and position.
In other words, at each time t and position x, we would like the corresponding distribution
f(t, x, .) to be approximated on its own velocity grid, which might be different from the grids
used at other times or other positions. The clear advantage of this idea is that we can define
an optimally small grid for each distribution, thus we avoid the problems mentioned above.
This approach is developed in the next section.
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3 A local discrete velocity grid approach

3.1 The method

Now we assume that at time tn, the distribution function in each space cell [xi− 1

2

, xi+ 1

2

] is
approximated on a set Vn

i of K local discrete velocities. For simplicity, we assume here
that all the local grids have the same number of points K, and the points are uniformly
distributed. The first point is denoted by vnmin,i and the last one by vnmax,i. That is to say,
we have

Vn
i =

{

vni,k = vnmin,i + (k − 1)∆vni , k from 1 to K
}

, where ∆vni =
vnmax,i − vnmin,i

K − 1
.

On this local grid, f(tn, xi, .) is approximated by K values that are stored in the vector
fn
i = (fn

i,k)
K
k=1. Each discrete value fn

i,k is an approximation of f(tn, xi, v
n
i,k).

The corresponding macroscopic quantities U(tn, xi) are approximated by Un
i with the

following quadrature formula

Un
i = 〈mfn

i 〉Vn

i

=

K
∑

k=1

m(vni,k)f
n
i,kωk, (7)

where the ωk are the weights of the quadrature. In this paper, the trapezoidal quadrature
formula is used: ω1 = ωK = 1/2 and ωk = 1 for k from 2 to K − 1.

When one wants to compute an approximation of f at the next time step tn+1, two
problems occur. First, how to determine the local discrete velocity grid Vn+1

i ? We will show
below that this can be simply made by using the conservation laws. Second, how to exchange
information between two space cells, since the local grids are not the same? This is where
we use some interpolation procedure in the method. Let us now describe our algorithm step
by step.

Step 1: Macroscopic quantities at tn+1.

We approximate the conservation relation (3) with the following first order upwind scheme

Un+1
i = Un

i − ∆t

∆x

(

Φn
i+ 1

2

− Φn
i− 1

2

)

, (8)

where the numerical fluxes are defined by

Φn
i+ 1

2

=
〈

v+mfn
i

〉

Vn

i

+
〈

v−mfn
i+1

〉

Vn

i+1

, (9)

which is indeed an approximation of the flux
〈

vmf(tn, xi+ 1

2

)
〉

at the cell interface. Here,

we use the standard notation v± = (v ± |v|)/2. Note that each half flux is computed on the
local velocity grid of the corresponding distribution. The vector Un+1

i is an approximation
of U(tn+1, xi), and we note un+1

i and T n+1
i the corresponding velocity and temperature.
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Step 2: discrete velocity grid Vn+1
i .

We define this grid by using the new velocity and temperature un+1
i and T n+1

i to get the
bounds

vn+1
min,i = un+1

i − 4
√

RT n+1
i and vn+1

max,i = un+1
i + 4

√

RT n+1
i . (10)

Then the new grid Vn+1
i is defined as in the previous time step, that is to say by

Vn+1
i = {vn+1

i,k = vn+1
min,i + (k − 1)∆vn+1

i , k from 1 to K},
with ∆vn+1

i = (vn+1
max,i − vn+1

min,i)/(K − 1).
(11)

Step 3: distribution function at time tn+1.

Here, equation (1) is approximated by a first order upwind scheme, with an implicit
relaxation term. If the velocity variable is not discretized, we get for every v:

fn+1
i (v) = fn

i (v)−
∆t

∆x
v+(fn

i (v)− fn
i−1(v))−

∆t

∆x
v−(fn

i+1(v)− fn
i (v))

+
∆t

τn+1
i

(M(Un+1
i )(v)− fn+1

i (v)).

If now we take into account that each distribution fn+1
i , fn

i , f
n
i−1, and fn

i+1 are defined on their
own local velocity grid, this scheme must be modified by using a reconstruction procedure.

The discrete distributions fn
i , f

n
i−1, and fn

i+1 are used to reconstruct piecewise continuous
in velocity functions f̄n

i , f̄
n
i−1, and f̄n

i+1 that are defined as follows:

f̄n
i (v) =

{

pni (v) if vnmin,i ≤ v ≤ vnmax,i

0 else,
(12)

where pni is a piecewise continuous function of v constructed through the values (vni,k, f
n
i,k)

K
k=1,

like a piecewise interpolated polynomial. Since any kind of interpolation could be used, this
reconstruction will be discussed in section 3.3. Then we define the discrete values of fn+1

i

on its grid Vn+1
i by

fn+1
i,k = f̄n

i (v
n+1
i,k )− ∆t

∆x
vn+1
i,k

+
(f̄n

i (v
n+1
i,k )− f̄n

i−1(v
n+1
i,k ))− ∆t

∆x
vn+1
i,k

−
(f̄n

i+1(v
n+1
i,k )− f̄n

i (v
n+1
i,k ))

+
∆t

τn+1
i

(Mk(U
n+1
i )− fn+1

i,k ),

(13)

for k = 1 to K.
Our scheme is then given by relations (8–13). Now, we give some properties of this

scheme.

Property 3.1. For scheme (8–13), the global mass, momentum, and energy are constant
(the scheme is conservative):

∑

i

Un
i ∆x =

∑

i

U0
i ∆x.
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Proof. This is a direct consequence of the discretization of the conservation laws (8) with
a conservative scheme: indeed, when we take the sum of (8) for every i, the sum of the
numerical fluxes cancels out, and we obtain that the total quantities do not change during
one time step. This gives the result.

Even if this property is obvious, we believe it deserves to be noted: first, we point out
that the scheme is not given by (8) only, but by all the relations between (8) and (13). Then
relation (8) has to be seen as macroscopic conservation laws in which the fluxes are computed
by using the discrete kinetic equation (13). Even if (13) is not conservative, the use of (8)
implies that the macroscopic mass, momentum, and energy densities are conserved. This is
a property shared by several recent schemes based on a dual macro-micro time evolutions or
IMEX methods, see for instance [21, 4, 11].

Property 3.2. Assume that for every cell i, fn
i is non negative at each point of its local

velocity grid and that the corresponding reconstructed piecewise function f̄n
i is non negative

for every v. Then, under the CFL condition ∆t ≤ ∆x/maxi,k(|vn+1
i,k |), fn+1

i,k is non negative
at each point of its local velocity grid, for every space cell.

Proof. As it is standard for the upwind scheme for convection problems, it is sufficient to
note that (13) can be written as a linear combination of f̄n

i , f̄
n
i−1, f̄

n
i+1, and M(Un+1

i ). The
CFL condition of the proposition ensures that the coefficients of this combination are non
negative, which gives the result.

We point out that, while the result of this property is rather standard, it is in fact
quite weak here. Indeed, first, the non negativeness of the distribution is obtained only if
the reconstruction step preserves the non negativeness of the fn

i . This is true for linear
interpolation, but it is not for many higher order reconstructions. Moreover, this property
itself is not sufficient to ensure that the sequence fn

i can be defined at every time step:
indeed, step 2 requires T n+1

i to be non-negative to define the local grid Vn+1
i . Unfortunately,

it seems hardly possible to prove that this property is true for the scheme presented above.
This why a modified schemes are presented in the next section.

Finally, we want to comment on the choice of the time step in this scheme. Indeed, note
that, according to property 3.2, step 3 requires a time step defined through the local grids
Vn+1
i at time tn+1 to correctly define fn+1

i . However, this time step is already needed at step
1 to define Un+1

i , while at this step, Vn+1
i is not already known. This means that we have to

use a single time step for steps 1 and 3 that also satisfies the CFL condition based on Vn+1
i .

A simple algorithm is the following:

(a) We choose ∆t1 = ∆x/maxi,k(|vni,k|)

(b) We do step 1 and step 2.

(c) For step 3, we compute ∆t2 = ∆x/maxi,k(|vn+1
i,k |):

• if ∆t2 > ∆t1, then fn+1 can be advanced with ∆t1
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• if ∆t2 < ∆t1, then we set ∆t1 = ∆t2, we do not compute fn+1 but we directly go
back to (b) (steps 1 and 2 of the scheme are done again)

However, note that in practice, we do not need this algorithm: we always use ∆t1 =
∆x/maxi,k(|vni,k|) without any stability problem. Indeed, we carefuly checked the sign of
the solution at each time step and at every space and velocity point, for all the test cases
presented in this paper: we did not observe any loss of positivity and any stability problem.

3.2 Modified versions of the scheme

First, note that if we compute the moments of fn+1
i after step 3, we do not recover the

moments Un+1
i defined at step 1. Indeed, according to (13) we have

〈

mfn+1
i

〉

V
n+1

i

=
∑

V
n+1

i

m(vn+1
i,k )fn+1

i,k ωk

=
∑

V
n+1

i

m(vn+1
i,k )f̄n

i (v
n+1
i,k )ωk −

∆t

∆x





∑

V
n+1

i

m(vn+1
i,k )(vn+1

i,k

+
f̄n
i (v

n+1
i,k ) + vn+1

i,k

−
f̄n
i+1(v

n+1
i,k ))ωk

−
∑

V
n+1

i

m(vn+1
i,k )(vn+1

i,k

+
f̄n
i−1(v

n+1
i,k )− vn+1

i,k

−
f̄n
i (v

n+1
i,k ))ωk





+
∆t

τn+1
i

(

Un+1
i −

〈

mfn+1
i,k

〉

V
n+1

i

)

.

If we compare the terms of this expression to the definition of Un+1
i given by (8) and (9),

we find the two vectors cannot be equal. The reason is that in the first expression, we have
several quantities on the form

∑

V
n+1

i

φ(vn+1
i,k )f̄n

i (v
n+1
i,k )ωk, while in the second expression,

these quantities are
∑

Vn

i

φ(vni,k)f
n
i,kωk, and they are not equal in general since the grids Vn+1

i

and Vn
i are different. Of course, these quantities are close, since they approximate the same

values, but they are not equal.
This means that we have two different approximations of the same macroscopic values:

Un+1
i and the moments of fn+1

i . We have numerically compared these quantities and there
is indeed no significant difference. However, this difference suggests a modification of the
scheme: after step 3, we add one more step in which we define Un+1,⋆

i =
〈

mfn+1
i

〉

V
n+1

i

, and

Un
i is replaced by Un,⋆

i in step 1. Then the modified scheme (called the “moment correction
method”) is the following:

Step 1: Macroscopic quantities at tn+1.

Un+1
i = Un,⋆

i − ∆t

∆x

(

Φn
i+ 1

2

− Φn
i− 1

2

)

, (14)
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where the numerical fluxes are defined by

Φn
i+ 1

2

=
〈

v+mfn
i

〉

Vn

i

+
〈

v−mfn
i+1

〉

Vn

i+1

, (15)

Step 2: discrete velocity grid Vn+1
i (step unchanged).

vn+1
min,i = un+1

i − 4
√

RT n+1
i and vn+1

max,i = un+1
i + 4

√

RT n+1
i . (16)

Vn+1
i = {vn+1

i,k = vn+1
min,i + (k − 1)∆vn+1

i , k from 1 to K},
with ∆vn+1

i = (vn+1
max,i − vn+1

min,i)/(K − 1).
(17)

Step 3: distribution function at time tn+1 (step unchanged).

fn+1
i,k = f̄n

i (v
n+1
i,k )− ∆t

∆x
vn+1
i,k

+
(f̄n

i (v
n+1
i,k )− f̄n

i−1(v
n+1
i,k ))− ∆t

∆x
vn+1
i,k

−
(f̄n

i+1(v
n+1
i,k )− f̄n

i (v
n+1
i,k ))

+
∆t

τn+1
i

(Mk(U
n+1
i )− fn+1

i,k ),

(18)

for k = 1 to K.

Step 4: Moment correction step.

Un+1,⋆
i =

〈

mfn+1
i

〉

V
n+1

i

=

K
∑

k=1

m(vn+1
i,k )fn+1

i,k ωk. (19)

This means that the macroscopic quantities at time tn+1 are modified to be the moments
of fn+1

i , and that the discrete conservation laws at the next time step are initialized with
these moments. This is similar to a technique used in the “moment guided” method proposed
in [10].

For this modified scheme, the non-negativeness property 3.2 is still true, but unfortu-
nately, the conservation property 3.1 is lost: Indeed, even if we deduce from the discrete
conservation laws (14) that

∑

i

Un+1
i ∆x =

∑

i

Un,⋆
i ∆x,

there is no way to link the corrected moment Un,⋆
i to the moment vector Un

i obtained at the
previous time step, for the same reason as given at the beginning of this section. Indeed, it is
likely that Un,⋆

i is different from Un
i , even if they approximate the same value. Consequently,

the scheme is not conservative anymore.
Finally, we conclude this section by another modification that ensures the positivity of the

temperature T n+1
i in the previous modified scheme. We propose to replace the quadratures

used to compute the macroscopic vector Un,⋆
i and the numerical flux Φn

i+ 1

2

(see (19) and (15))

by the exact integral of the corresponding reconstructed functions, that is to say:
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• in step 1, (15) is replaced by

Φn
i+ 1

2

=
〈

v+mf̄n
i

〉

+
〈

v−mf̄n
i+1

〉

,

• in step 4, (19) is replaced by
Un,⋆
i =

〈

mf̄n
i

〉

,

where we remind that 〈φ〉 =
∫

R
φ(v) dv for any velocity dependent function. If the re-

construction procedure uses a polynomial interpolation, these integrals are just integrals of
piecewise polynomial functions and can be evaluated explicitly. With this definition, the
discrete conservation law (14) reads

Un+1
i =

〈

m
(

(1− ∆t

∆x
|v|)f̄n

i +
∆t

∆x
v+f̄n

i−1 −
∆t

∆x
v−f̄n

i+1

)

〉

= 〈mφ〉

where φ is a piecewise continuous function of v. Now we have the following property.

Property 3.3. Under the CFL condition ∆t ≤ ∆x/maxi,k(|vni,k|), the function φ is non

negative, and hence T n+1
i is positive.

Proof. Observe that φ is a linear combination of f̄n
i , f̄

n
i−1, f̄

n
i+1. The last two coefficients are

always non negative. As a consequence of the CFL condition, the first coefficient, which is
1 − ∆t

∆x
|v|, is non negative if |v| is small enough (that is to say |v| ≤ maxi,k(|vni,k|)). If v is

larger, the coefficient is negative, but by construction f̄n
i (v) = 0 (see (12)). Consequently,

φ is non negative for every v, and hence Un+1
i is realized by a non negative distribution.

It is then a standard result that the corresponding density, energy and temperature are
positive.

However, we observe that in practice, the first modified scheme (14–19) preserves the
positivity. This is why we do not use this second modified scheme in the numerical tests
presented in this paper.

3.3 Reconstruction: from fn
i,k to f̄n

i

To compute f̄n
i (v

n+1
i,k ) in equation (13), we have to use a reconstruction procedure. First,

if vn+1
i,k is external to Vn

i , we set f̄n
i (v

n+1
i,k ) = 0: indeed, if the grid Vn

i is large enough, the

distribution is very very small outside the grid, and it is reasonable to set it to 0. If vn+1
i,k is

inside Vn
i , it is not a node of Vn

i in general, and we use a piecewise polynomial interpolation.
We observed that first order polynomial interpolation is not accurate enough (a lot of discrete
velocities are needed to get correct results). However, higher order interpolation produces
oscillations, especially in very rarefied regimes, which is probably due to the large velocity
gradients (and even discontinuities) of the distribution functions in such regimes.

Consequently, we use the essentially non oscillatory (ENO) interpolation (see [24] or [13]):
with 3 or 4 point interpolation, the accuracy is good and there is almost no oscillation.

The reconstruction algorithm is summarized below.
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1. If |vn+1
i,k | > max(|vnmin,i|, |vnmax,i|), then set f̄n

i (v
n+1
i,k ) = 0

2. else

(a) find the interval [vni,k′, v
n
i,k′+1] inside Vn

i that contains vn+1
i,k

(b) compute the q point ENO polynomial function P defined on the stencil {vni,k′−(q−1), v
n
i,k′+q}

(c) set f̄n
i (v

n+1
i,k ) = P (vn+1

i,k )

Of course, the same procedure is applied to the other reconstructed values f̄n
i+1(v

n+1
i,k ) and

f̄n
i−1(v

n+1
i,k ) in (13).

Remark 3.1. If we use a first order interpolation (linear reconstruction), the positivity of
the distribution function is preserved, this can be proved easily. But, for the higher order
ENO interpolation that we use in practice, there is no reason why the positivity should
always be preserved. It could be interesting to look for modified interpolations that preserve
positivity. However in all the test cases that have been studied here, this drawback does not
induces a loss of positivity of fn+1

i in (13).

3.4 Non symmetric local discrete velocity grids

When the flow is far from equilibrium, the distribution functions are different from their local
Maxwellian, and might have a non symmetric shape. In particular, their support might be
non symmetric as well (see for instance the heat transfer problem in the rarefied regime as
shown in section 4.3). However, the local grids defined in section 3.1 are based on the local
Maxwellians and are necessarily symmetric. In this section, we propose a method to modify
the grid if necessary. This method can be applied to both versions (8–13) and (14–19) of
our scheme.

First, note that up to now, we have defined uniform local grids with a constant number
of points. However, the method is readily extended to non uniform grids with a variable
number of points : we just have to replace K by Kn

i ad ωk by ωn
i,k in every expressions of

section 3.1.
Then, the idea is to enlarge the grid Vn+1

i if fn+1
i,k is not small enough at its boundaries.

This is made by using a splitting between the relaxation step and the transport step: we
first compute the intermediate quantity f

n+1/2
i,k by using the transport equation as

f
n+1/2
i,k = f̄n

i (v
n+1
i,k )− ∆t

∆x
vn+1
i,k

+
(f̄n

i (v
n+1
i,k )− f̄n

i−1(v
n+1
i,k ))− ∆t

∆x
vn+1
i,k

−
(f̄n

i+1(v
n+1
i,k )− f̄n

i (v
n+1
i,k )),

(20)

for k = 1 to K. At the end of the transport step, the values of the distribution function
f
n+1/2
i at the boundary points vn+1

i,max and vn+1
i,min of Vn+1

i are compared to the maximum value
of the distribution in the grid: if the relative difference between one of these boundary values
and the maximum value in the grid is larger than a tolerance (that was taken to 10−4 in our
tests), then new grid points wR = vn+1

i,max +∆vn+1
i or wL = vn+1

i,min −∆vn+1
i are added outside
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the grid, and the corresponding values of f
n+1/2
i,k are computed by using (20) again. This

step is repeated until the left and right relative differences are smaller than the specified
tolerance. At the end of this step, the modified grid Vn+1

i now has Kn+1
i velocities. Finally,

fn+1
i,k is obtained from the relaxation step through the relation

fn+1
i,k = f

n+1/2
i,k +

∆t

τn+1
i

(Mk(U
n+1
i )− fn+1

i,k ), (21)

for k = 1 to Kn+1
i .

Note that that the method suggested here is just a modification ot the previous schemes.
For scheme (8–13), the discrete kinetic equation (13) is replaced by the transport/relaxation
splitting (20–21). After the use of the transport step (20) on Vn+1

i , it is used iteratively to
add new points outside the grid, until the distribution is small enough, which leads to an
“enlarged” grid, still denoted by Vn+1

i . Then, the relaxation step (21) is used. Scheme (14–
19) can be modified accordingly.

It would also be interesting to use an automatic refinement of the local grid around the
possible discontinuities, but this is not studied in this paper.

3.5 Extensions to other collision models

This algorithm can be adapted to any collision model which is local in space, like the ES-
BGK or Shakhov models, or even the Boltzmann collision operator itself. Indeed, as long
as the grids are defined by using the velocity and the temperature, we only have to use the
conservation laws (density, momentum, and energy), that are satisfied by all the standard
models. The fact that a model like ES-BGK contains non-conservative quantities has no
influence on the algorithm.

This is slightly different if one wants to use higher order moments to define the local
velocity grids. Indeed, we could imagine that the shear stress and the heat flux, for instance,
could also be used to define non isotropic and non symmetric local velocity grids, even if this
is not what we advocate now. In that case, we would have to use moment equations that
are not conservation laws (evolution of the pressure tensor and the energy flux). Then, the
applicability of our algorithm depends on the time approximation of the collision operator.
If we use an explicit time discretization, the right-hand side of the higher-order moments
equations can be explicitly computed with the distributions at time tn. However, if we use
a semi-implicit time discretization (as we do in this paper), the discrete moment equations
can be solved only if the right-hand side can be written as a function of the moment vector
at time tn+1: this is true for relaxation models like BGK er ES-BGK and Shakhov models,
but this is not true in general (for the Boltzmann collision operator for instance).

However, note that this discussion makes sense only when the velocity is at least of
dimension 2 (since ES-BGK model and Boltzmann collision operator do not exist for a one
dimensional velocity), which will be studied in a forthcoming work.
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4 Numerical results

In this section we present three numerical tests to illustrate the main features of our method
(denoted by LDV, for local discrete velocity grid). It is compared to a standard discrete
velocity method (with a global velocity grid) denoted by DVM (see [18]). First, the numerical
scheme is tested on the Sod test case for three different regimes: the rarefied, fluid, and free
transport regimes. The second test is the two interacting blast waves problem in which
very high temperature differences make the standard DVM inefficient. The third test case is
devoted to the heat transfer problem, where the use of non symmetric local grids is shown
to be necessary when the Knudsen number increases. In these tests, the gas constant R is
208.1, except for the free transport regime in section 4.1.3 where R = 1.

4.1 Sod test case

4.1.1 Rarefied regime

We consider a classical Sod test in a rarefied regime for the BGK model (1) with the param-
eters ω = −0.19 and C = 1.08 · 10−9 used in the relaxation time τ . The space domain is the
interval [0, 0.6] discretized with 300 points. The initial state is given by a local Maxwellian
distribution whose macroscopic quantities are

T (x) = 0.00480208, ρ(x) = 0.0001, u(x) = 0 for x ∈ [0, 0.3]

T (x) = 0.00384167, ρ(x) = 0.0000125, u(x) = 0 for x ∈]0.3, 0.6]. (22)

The DVM and LDV methods are compared to a reference solution given by the DVM
method computed for a large and fine velocity grid (obtained after a convergence study).
This velocity grid has 600 points uniformly distributed in the interval [vmin, vmax] where

vmin = min
t,x

(

u(t, x)− 6
√

RT (t, x)
)

, vmax = max
t,x

(

u(t, x) + 6
√

RT (t, x)
)

, (23)

which leads to bounds equal to ±6. Of course, such bounds cannot be determined a priori,
and several computations with larger and larger velocity grids have to be done before the
correct bounds are found. This illustrates the difficulty to use a standard DVM when the
extreme values of the velocity and the temperature are not known a priori. Indeed, here, the
temperature in the shock after the initial time is higher than the two initial left and right
temperatures. If the velocity grid is computed with formula (5) and (6) and the bounds are
estimated with the initial values of T and u (which gives bounds equal to ±4) , then the grid
is not large enough: the results are not correct, even if the number of velocities is increased
so as to reach the grid convergence, which is obtained here with 100 velocities. This is shown
in figure 2.

At the contrary, our LDV method dynamically adapts to the time variations of u and
T and gives very accurate results with 30 discrete velocities only in each local grid, as it is
shown in figure 2. Consequently, the LDV method is very efficient for this case.

Note that in this test, the reconstruction procedure used the 4-points ENO interpolation.
See section 4.1.3 for an analysis of the influence of the order of interpolation.
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4.1.2 Fluid regime

Now, we consider the same Sod test case, but in the fluid regime. This regime corresponds
to the limit case of equation (1) when τ is set to 0. Note that since both DVM and LDV
methods are used with a time semi-implicit scheme, taking τ = 0 means that fn+1 is set
to M(Un+1) at each time step (and hence the choice of the interpolation procedure has no
influence), and we get two different numerical schemes for the compressible Euler equations
of gas dynamics.

Here, the reference DVM has 100 velocities only and bounds equal to ±5.2 . The DVM
with the grid computed with the initial values of T and u has also 100 velocities with bounds
equal to ±4 , but it still gives incorrect values (see figure 3), for the same reasons as mentioned
in the previous section. At the contrary, our LDV method gives very accurate results with
10 velocities only.

Note that the results obtained in this fluid regime are very close to those obtained in the
rarefied regime (even if the shock profile is stiffer in the fluid regime, as expected). This can
be understood by computing the Knudsen number of the rarefied regime. In this test, the
initial mean free path is between 3 10−5 (left state) and 2 10−4 (right state). It is difficult to
define a Knudsen number here, since there is no macroscopic length scale, but if we choose
the length of the computational domain, we find a Knudsen number between 5 10−5 and
3 10−4, which is quite small.

4.1.3 Free transport regime

We consider the free transport regime corresponding to the limit case in (1) when τ tends
to +∞. In this section, we take R = 1 and the standard dimensionless values for the Sod
test case. The space domain is [−1, 1] and is discretized with 300 points. The distribution
function is initialized by the local Maxwellian distribution function with

ρ = 1, u = 0, p = 1 in [−1, 0[,

ρ = 0.125, u = 0, p = 0.1 in [0, 1].
(24)

For this test case the numerical results are compared to the analytical solution of the free
transport equation.

It is very difficult to accurately approximate the free transport equation with a stan-
dard DVM: the macroscopic profiles obtained with the DVM show several plateaux. These
plateaux are not due to the space and time approximation, but are only due to the velocity
discretization. Indeed, it can be easily proved that the macroscopic profiles of the DVM
solution at time t have plateaux of length t∆v, where ∆v is the step of the global uniform
grid. This is clearly seen in figures 4–6 (top), where the DVM has 30 discrete velocities with
bounds equal to ±4 . This phenomenon is known as the ray effect that appears with the
discrete ordinate approximations of the radiative transfer equation.

When we test this problem with our LDV method, with 2 point piecewise linear interpo-
lation, and 30 velocities in each local grids, the results are very bad: we observe very large
oscillations (see figures 4–6, bottom). This is probably due to the fact that this interpolation
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is not accurate enough. Then we use 3 and 4 point ENO interpolations, and we observe in
the same figures that the solution is now much closer to the exact solution. Moreover, while
we have the same number of discrete velocities in each local grid as in the DVM, we observe
that the plateaux are completely eliminated.

However, there are still some oscillations in the results obtained with the LDV (note that
these oscillations are not amplified and that the numerical solution remains bounded for
larger times). The oscillations are probably due to the fact that these results were obtained
without the moment correction method. Indeed, if we do now the same simulation with this
moment correction method (scheme (14–19)), the results are very good: there are much less
oscillations, almost no plateau phenomenon, and the results are much closer to the analytical
solution, see figures 7–9.

Up to now, we do not know the reason for these oscillations and it is not clear why they
are eliminated when we use the moment correction method. Our intuition is that in the
original method, there is some incompatibility between the discretization of the conservation
laws and the discretization of the kinetic equation: namely, the moments of the discrete
kinetic equation do not lead to the discrete conservation laws that are solved. This is
why the discrete conservation laws and the discrete kinetic equation lead to two different
approximations of the moment vector at time tn+1. The moment correction method forces
these quantities to be equal.

4.2 Two interacting blast waves

This section is devoted to the test case called “the two interacting blast waves” (see [22]).
Here, the relaxation time is defined with ω = −0.19 and C = 1.08 10−9. The space domain is
the interval [0, 1] which is still discretized with 300 points. The initial distribution function
is a local Maxwellian distribution whose macroscopic quantities are given by ρ = 1 and u = 0
everywhere, and

T = 4.8, in [0, 0.1], T = 4.8 10−5 in ]0.1, 0.9], T = 4.8 10−1 in ]0.9, 1].

On the left and right boundaries, we use Neumann boundary conditions: we set the values
of f , u, and T in boundary ghost-cells to their values in the corresponding real boundary
cells.

Here, the bounds of the global grid of the DVM are determined by the largest initial
temperature (we get ±126.5), and its step size is given by the smallest initial temperature.
Then we find that the coarsest global grid that satisfies conditions (5)-(6) has not less than
2 551 velocities! In figures 10–12, we observe that the LDV method requires only 30 velocities
to give results that are very close to the DVM method (with 2 551 velocities), both before
and after the shock. This proves the high efficiency of the LDV approach for this case. Note
that here again, we use a 4 point ENO interpolation in the LDV method.

Finally, we plot in figure 13 some local velocity grids for different space positions: in
these plots, each vertical line is a local velocity grid, and its nodes are the small dots on the
line. Note that before the waves interaction (top), the velocity grids in the middle of the
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domain are much smaller than the grid in the left state, which is due to the different order of
magnitude of the temperature at this time. After the interaction, the temperature is more
homogeneous, and the grids as well (see the bottom plot in this figure).

4.3 Heat transfer problem

In this test, we consider the evolution of a gas enclosed between two walls kept at temperature
TL = 300 and TR = 1000. At these walls, the distribution function satisfies the diffuse
boundary condition

f(x = 0, v > 0) = MρL,0,TL
, f(x = 1, v < 0) = MρR,0,TR

(25)

where

ρL = −
∫

v<0
vf(x = 0, v)dv

∫

v>0
vM1,0,TL

dv
, ρR = −

∫

v>0
vf(x = 1, v)dv

∫

v<0
vM1,0,TR

dv
, (26)

and Mρ,0,T denotes ρ/
√
2πRT exp(−v2/2RT ) for every ρ and T . The initial data is the

Maxwellian with density ρ0 (to be defined later), velocity u0 = 0, and T0 = 300. Here, the
relaxation time is defined with ω = −0.5 and c = 6.15 · 10−9.

The boundary conditions are taken into account in our numerical scheme by a ghost cell
technique, as it is standard in finite volume schemes. Left and right ghost cells are defined
for i = 0 and i = imax +1, and the velocity grids Vn

0 and Vn
imax+1 in these cells are defined so

as to correctly describe the corresponding wall Maxwellians. Then, the density ρL and ρR,
that are defined as the ratio of an outgoing mass flux at a wall to the corresponding incoming
Maxwellian mass flux, are approximated by using the boundary cell and the corresponding
ghost cell, that is to say:

ρL = −
〈v−fn

1 〉Vn

1

〈v+M(1, 0, TL)〉Vn

0

, ρR = −
〈v+fn

imax
〉Vn

imax

〈v−M(1, 0, TR)〉Vn

imax+1

.

For this test, we use the moment correction method with fourth order ENO interpolation,
except for the computations discussed at the end of this section (see remark 4.1 below). We
also use several Knudsen numbers Kn here. This number is parametrized by the initial
density ρ0. We first analyze the LDV method in the transitional regime (ρ0 = 1.88862 10−5,
which gives Kn = 10−2): here, both the LDV and DVM are converged with 30 velocities
(the bounds of the global grid are ±1825.34), while the space domain [0, 1] is discretized
with 1000 points. However, the results obtained with the LDV are not accurate enough (see
figure 14). An analysis of this problem shows that this is due to the local grid close to the
right boundary which is not large enough: for small times, the distributions at these points
are highly non symmetric.

To correct this problem, we use the algorithm proposed in section 3.4 to enlarge the local
grids in a non symmetric way. Then, the LDV with 30 velocities now gives results that are
indistinguishable from the DVM, see figure 15.
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Then, we test the LDV method in the rarefied regime (Kn = 1, ρ0 = 1.88862 10−7):
the LDV (with enlarged non symmetric local grids) and the DVM are converged with 300
velocities, while the space domain [0, 1] is discretized with 300 points. Here again, both
methods give results that are almost indistinguishable (see figure 16). Unfortunately, the
number of velocities required to get converged results is very large here, even for the LDV (300
velocities). This is probably due to the fact that the distribution function is discontinuous
with respect to the velocity in this test, with very large jumps: our velocity grids, even
the local ones, are uniform, and cannot capture these discontinuities when the number of
velocities is too small. However, we show in figure 17 the results obtained with 50 velocities
only, and we observe that the LDV gives results that are more accurate than the DVM.

Finally, we did the same computations for Kn = 10 (ρ0 = 1.88862 10−8) and Kn = 1000
(ρ0 = 1.88862 10−10) and we observed the following. First, the plateau phenomenon in the
DVM approach with 100 velocities is clearly seen with Kn= 10 (while it was only slightly
visible for Kn = 1). For Kn = 1000, the results are almost the same. For the LDV, when
the number of discrete velocities is the same as for the DVM, the results are close to the
reference solution (no plateau, no oscillations) for Kn = 10 and Kn = 1000, which is much
better than with the DVM (see figures 18 and 19). When the number of velocities is not
large enough (30 points tested here), both method give wrong results, even if the LDV is
better.

Remark 4.1. We also compare our LDV method with and without the moment correction
step, for P1 and fourth order ENO interpolation. We do not find it usefull to add the
corresponding curves in this paper, but our observations are summarized below:

• for Kn = 0.01, there is not much difference if the moment correction method is used
or not:

– with fourth order ENO interpolation, both methods give good results, even if we
note a solution which is slightly less smooth without the moment correction step
(there are a few small peaks).

– if the P1 interpolation is used, both methods give a wrong solution (with small
oscillations without the moment correction method).

• for larger Kn, (Kn = 1, 10, 1000):

– if the moment correction method is not used, we observe oscillations whose am-
plitude increases with Kn, regardless of the interpolation.

– with the moment correction method and the P1 interpolation, the difference be-
tween the numerical results and the reference solution increases with Kn, except
if the number of discrete velocities is increased too.

4.4 CPU time comparisons

We have compared the CPU cost of our method (on a single processor Pentium(R) Dual-
Core CPU E65002.9GHz) to the standard DVM with a global grid, by using the fortran
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subroutine cpu time, and the following test cases:

• Sod test: we compared the DVM with 30 discrete velocities (shown in figures 4–6 (top)
to our LDV with 30 points, 4 points ENO interpolation, and the moment correction
method (shown in figures 7–9);

• Blast waves: test case shown in figures 10–12 (bottom);

• Heat transfer: comparison between the LDV with 50 velocities and non symmetric
grids, to the DVM with 50 velocities (see figure 17).

We observed (see table 1) that our method with local velocity grids is more expensive
than the global grid method for Sod et heat transfer tests. Since the number of velocities
in the grids is smaller with our method, this increase in CPU cost is probably due to the
very large number of interpolations made in the evaluation of reconstructed distributions.
At the contrary, for the blast wave problem, the number of velocities is so large in the global
grid that our method is less expensive. However, as expected, the gain factor in CPU time
(which is 45) is smaller than the gain factor in number of velocities (which is 85).

We point out that the implementation of our method has not been optimized in this
work, and such an optimization would probably make the method faster. However, these
comparisons show that our algorithms have to be improved to be less computationally ex-
pensive, in particular to reduce the cost of the reconstructions of the distribution in their
local grids. This is now investigated in a forthcoming work for 2D problems.

5 Conclusion and perspectives

We have presented a new velocity discretization of kinetic equations of rarefied gas dynamics:
in this method, the distribution functions are discretized with velocity grids that are local
in time and space, contrary to standard discrete velocity or discrete ordinate methods. The
local grids dynamically adapt to time and space variations of the support of the distribution
function, by using the conservation laws.

This method is very efficient in case of strong variations of the temperature, for which a
standard discrete velocity method requires a very large number of velocities. Moreover, it
allows to eliminate the plateau phenomenon in very rarefied regimes.

We mention that in this study, the space discretization is a simple first order upwind
method, which is known to have a very low accuracy. However, our method is quite in-
dependent of the space approximation: any higher order finite volume or finite difference
approximation could be used. For instance, a second order upwind scheme with limiters can
be used very easily by adding a flux limiter in (8) and slope limiters in (12). However, in
this preliminary work, we find it simpler to use a first order scheme to analyze the properties
of the method, and to compare its advantages and drawbacks. We defer the investigation
of higher order schemes to a work in progress in which our method will be extended to
multi-dimensional problems and its computational cost will be reduced.
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Moreover, several aspects of the method should be better understood, in particular, why
are there some oscillations if the moment correction method is not used, in the rarefied and
free transport regimes, even with high order ENO interpolation? A mathematical analysis
of the numerical method could be interesting here.
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for the future” Programme IdEx Bordeaux – CPU (ANR-10-IDEX-03-02).
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Figure 1: Three distribution functions in different space points of a computational domain
for a re-entry problem, and the corresponding global discrete velocity grid V.
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Figure 2: Sod test case, rarefied regime: temperature (top) and velocity (bottom) profiles,
at time 7.34 10−2. The solid line is the reference solution obtained with the DVM with the
enlarged global grid (600 points), the dotted line is the DVM with an incorrect grid (100
points), while the dot-dashed line is the LDV method (30 points).
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Figure 3: Sod test case, fluid regime: temperature (top) and velocity (bottom) profiles, at
time 7.34 10−2. The solid line is the reference solution obtained with the DVM with the
enlarged global grid (100 points), the dotted line is the DVM with an incorrect grid (100
points), while the dot-dashed line is the LDV method (10 points).
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Figure 4: Sod test case, free transport: temperature at time 0.3. Top: comparison between
the exact solution (dot-dashed) and with a 30 points DVM (solid). Bottom, comparison
between the exact solution (dot-dashed) and several LDVs with 30 points: with first order
interpolation (’o’), with 3 points-ENO (dotted), with 4 points-ENO (solid).
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Figure 5: Same as figure 4 for the velocity.
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Figure 6: Same as figure 4 for the density.
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Figure 7: Sod test case, free transport: temperature at time 0.3, comparison between the
exact solution (dot-dashed) and several LDVs with 30 points and the moment correction
method: with first order interpolation (’o’), with 3 points-ENO (dotted), with 4 points-ENO
(solid).
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Figure 8: Sod test case, free transport: velocity at time 0.3, comparison between the exact
solution (dot-dashed) and several LDVs with 30 points and the moment correction method:
with first order interpolation (’o’), with 3 points-ENO (dotted), with 4 points-ENO (solid).
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Figure 9: Sod test case, free transport: density at time 0.3, comparison between the exact
solution (dot-dashed) and several LDVs with 30 points and the moment correction method:
with first order interpolation (’o’), with 3 points-ENO (dotted), with 4 points-ENO (solid).
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Figure 10: “Two interacting blast waves”: temperature, before the shock at time 0.008 (top)
and after the shock at time 0.05 (bottom). The solid line is the solution obtained with the
LDV method (30 points), the dotted line is the solution computed with the DVM method
(2 551 velocities).
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Figure 11: “Two interacting blast waves”: velocity (same as figure 10).
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Figure 12: “Two interacting blast waves”: pressure (same as figure 10).
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Figure 13: “Two interacting blast waves”: some local velocity grids for different space
positions, before the shock at time 0.008 (top) and after the shock at time 0.05 (bottom).
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Figure 14: Heat transfer problem, transitional regime: temperature (top) and velocity (bot-
tom) at time 1.3 10−3, Kn = 10−2. The solid line is the solution given by the LDV method
(30 velocities), the dot-dashed line is the DVM method (30 velocities).
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Figure 15: Heat transfer problem, transitional regime (test of the non symmetric local grid):
temperature (top) and velocity (bottom) at time 1.3 10−3, Kn = 10−2. The solid line is the
solution given by the LDV method (30 velocities), the dot-dashed line is the DVM method
(30 velocities).
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Figure 16: Heat transfer problem, rarefied regime: temperature (top) and velocity (bot-
tom) at time 1.3 10−3, Kn = 1. The solid line is the solution given by the LDV method
(300 velocities, non symmetric local grids), the dot-dashed line is the DVM method (300
velocities).
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Figure 17: Heat transfer problem, rarefied regime: temperature (top) and velocity (bottom)
at time 1.3 10−3, Kn = 1. The solid line is the solution given by the LDV method (50
velocities, non symmetric local grids), the dot-dashed line is the DVMmethod (50 velocities),
the dashed line is the DVM method with 300 velocities (reference solution).
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Figure 18: Heat transfer problem, rarefied regime: temperature (top) and velocity (bottom)
at time 1.3 10−3, Kn = 10. The solid line is the LDV method with 100 velocities, the dot-
dashed line is the DVM method (100 velocities), the dashed line is the solution given by the
DVM method (400 velocities, reference solution).
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Figure 19: Heat transfer problem, rarefied regime: temperature (top) and velocity (bottom)
at time 1.3 10−3, Kn = 1000. The solid line is the LDV method with 100 velocities, the
dot-dashed line is the DVM method (100 velocities), the dashed line is the solution given by
the DVM method (400 velocities, reference solution).
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Sod Blast waves Heat transfer
DVM 0.344 949 64
LDV 5.136 20 14

Table 1: CPU time comparisons (in seconds) between the LDV and DVM methods
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