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Abstract

Designing the way a complex system should evolve
to better match the customers’ requirements pro-
vides an interesting class of applications for muti-
criteria techniques. The required models to support
the improvement design of a complex system must
include both preference models and system behav-
ioral models. A MAUT model captures the deci-
sions related to customers’ preferences whereas a
fuzzy representation is proposed to model the rela-
tionships between systems parameters and perfor-
mances to capture operational constraints. This lat-
ter part of the improvement design is supported by a
branch and bound algorithm to efficiently compute
the most relevant actions to be performed.

Keywords: decision support systems, multiple cri-
teria analysis, bi-capacity, multicriteria improve-
ment, CSP

1. Introduction

To satisfy a fluctuating demand and a high level
of quality and services, industrials have to develop
and integrate new features in their product mar-
ket leaders [15]. This increases the complexity in
the multi-disciplinary design to fulfill functional,
technical, environmental, economic and security re-
quirements. In this context, industrials focus more
specifically on optimization and evaluation activi-
ties of the design process to improve and adapt com-
plex systems. When designers choose architecture
and components of the future system they have to
check if their solutions do not violate any constraint
and if they satisfy the customers’ needs and the
technical specifications w.r.t. the system character-
istics. They have also to identify which and how pa-
rameters’ values must be changed to achieve the ex-
pected characteristics of the new system. Further-
more, these issues are of course not free of budgetary
constraints. Such activities are repetitive and te-
dious due to the large number of possible solutions
and design parameters that are sometimes continu-
ous. In order to provide designers with a decision
support tool able to assist them when optimizing
and evaluating architecture choices, we investigate
some mathematical models from multi-criteria deci-
sion, operational research and artificial intelligence.

In this brief problem statement, two main stakes
appear in the design of improvement of a complex

system: 1) which changes of the system’s char-
acteristics would warranty the fulfillment of cus-
tomers’ requirements and material constraints spec-
ifications; 2) which adjustments of the parameters
should provide with these expected characteristics
of the improved system. It may spark off two a pri-
ori opposite trends to tackle this preference versus
constraints problem. The aim of this paper is to
give an overview of our approach that tackles these
two issues rather than to focus on a technical detail
of our model.

The paper is structured as follows. First, section
2 formally enunciates the problem of interest and
provides the main notations in the paper. Next,
section 3 models the search of the characteristics
to be improved first as a multi criteria optimiza-
tion problem. Afterwards, section 4 is dedicated
to parameters’ adjustments that would provide the
expected characteristics. It is formulated as a con-
straints solving problem and a branch and bound
algorithm is provided in section 5 to solve it effi-
ciently.

2. Problem of interest and notations

In the design of improvement of complex systems,
multiple decision criteria need to be considered
[1, 15]. As an example, one can think of a military
information architecture [16] or the improvement of
the performance of an industrial device [2, 3]. Such
a complex system is characterized by input param-
eters z1, . . . , zp, e.g., the precise definition of all en-
tities in the military force and their links, or the
control parameters of the industrial device. The
set of all possible values of the vector of variables
(z1, . . . , zp) is denoted by Γ. A system is thus de-
fined by an element γ ∈ Γ. Not all elements of Γ
lead to admissible systems for the customer since
some requirements of the customer must usually be
fulfilled. The set of elements ΓA ⊆ Γ for which the
associated system satisfies these requirements are
the feasible values of the input parameters.

Yet, all elements of ΓA are not indifferent to the
customer. The company needs to construct a model
of the preferences of the customer based on his de-
cision criteria. These criteria are often a refinement
of the requirements.

The set of attributes is denoted by X1, . . . , Xn,
and the set of alternatives is X = X1×· · ·×Xn. For
the military architecture, these attributes quantify
the fulfillment of the operational mission and are



obtained by large simulations on architecture-labs
[16]. For the industrial process, these attributes are
the measures that quantify the quality (purity, con-
centration,...) [3].

Let T : ΓA → X be the transformation that pro-
vides the values on the attributes of the system ob-
tained from a vector γ ∈ ΓA of the input param-
eters. On the examples given above, the determi-
nation of T (γ) for γ ∈ ΓA is not easy. It requires
complex simulations or experiments, and are thus
costly and time consuming. For these reasons, one
often needs to content himself with a qualitative
influence model which links the parameters or ac-
tions to the expected characteristics [4, 5, 14]. For
instance, for the industrial system, improving the
training of the operators should have a positive im-
pact on the reject rate of the manufactured items.
This is a qualitative influence rule that may be un-
certain. It would be very difficult to quantify the
quantitative gain on the reject rate that a better
trained operator would yield. All these concepts
are summarized in (figure 1 – Labels L1 to L4).

The preferences of the customer are usually com-
plex and require an elaborate multi-criteria model.
Among the criteria of the customer, one usually
have operational and monetary ones. For a cus-
tomer that aims to possess a complex system, the
performance of the product is compulsory. A low
cost cannot compensate for bad operational perfor-
mance. As a result, the operational criteria act as
veto. Many other interactions such as conditional
relative importance of criteria are most often en-
countered.

Moreover, we denote by C(γ) the cost of produc-
ing solution γ in practice (respectively, C(γ, γ∗) is
the cost to improve the system γ into γ∗). At the
end the company would like to determine the so-
lution that reaches the expected quality e at the
lowest cost.

The design of improvement of complex systems is
thus a thorny problem as soon as parameters and
criteria are numerous. Thus design includes prefer-
ence models and system behavioral models, quanti-
tative and qualitative knowledge, optimization and
combinatory aspects into a multi dimensional as-
sessment context. This paper proposes a formal
model of the required knowledge to this problem
and computational models to identify efficient im-
provement actions in practice.

3. Multi-criteria improvement

This section aims to formulate the improvement
problem as a multi-criteria optimization problem.
Defining an improvement in a multi-criteria context
raises some problems.

3.1. The aggregative model

First of all, one must be able to compare any two
described situations by means of their elementary

u(T (γ)) = F (u1(T1(γ)), . . . , uk(Tk(γ)), . . . , un(Tn(γ)))L6

6 6 6

u1(T1(γ)) · · · uk(Tk(γ)) · · · un(Tn(γ))L5

6 6 6

T1(γ) ∈ X1 · · · Tk(γ) ∈ Xk · · · Tn(γ) ∈ XnL4

6 6 6

T1 · · · Tk · · · TnL3

6 6

γ = (γ1, . . . , γp) ∈ ΓAL2

6 6 6

γ = (γ1, . . . , γp) ∈ ΓL1

Figure 1: Picture of the concepts used in the evalu-
ation of complex systems. L1: space of parameters;
L2: restrictions with the operational constraints;
L3: observation of the process; L4: space of at-
tributes; L5: space of utilities; L6: overall satisfac-
tion.

characteristics. The MAUT, i.e., Multi- Attribute
Utility Theory [6, 7, 9] provides a possible alterna-
tive to tackle this problem in case of quantitative as-
sessments. Usually, it amounts to find a real-valued
utility function U such that for any pair of alter-
natives, x, x′ in some set X of alternatives of inter-
est, x < x′ (x is preferred to x′) iff U(x) ≥ U(x′).
When alternatives are n-dimensional, i.e., X =
X1×· · ·×Xn, a widely studied model is the decom-
posable model of Krantz et al. [10], where U has the
form U(x1, . . . , xn) = F (u1(x1), . . . , un(xn)) where
the ui are real-valued utility functions in [0, 1], N
the set of n criteria and F : [0, 1]n → [0, 1] is an
aggregation operator.

Thus a utility function ui : Xi → [0, 1] is as-
sociated to each characteristic Xi of system γ: it
quantifies the degree of satisfaction provided by a
value xi regarding the performance of the system
relatively to the criterion i. Let us note

Pi(γ) = ui(Ti(γ)) = ui(xi)
(figure 1 – labels L4 and L5) the performance of
system γ with regard to criterion i. Pi(γ) will be
denoted Pi when there is no ambiguity.

The overall evaluation of a system characterized
by γ ∈ ΓA is then defined as:

F (u(T (γ))) =
F (u1(T1(γ)), . . . , un(Tn(γ)))
where T1, . . . , Tn are the n components of T (i.e,
∀i, Ti(γ) = xi ), u1, . . . , un are the utility functions
and F is the aggregation function (figure 1 – Labels
L4 to L6). Then the search of an efficient solution
γ∗ that reaches the expected quality e at the lowest
cost can be stated as the following optimization
problem:

Argmin
γ∈ΓA ,F (u1(T1(γ)),...,un(Tn(γ)))=e

C(γ) (1)

Let γ ∈ ΓA be the initial system to be improved,



and a = (u1(T1(γ)), . . . , un(Tn(γ))) = (P1, . . . , Pn)
the initial elementary performances of γ. Problem
(1) can often be refined as the improvement of the
initial solution γ. Most of the time the decision-
maker wants to know how to improve option a into
a new profile b such that the overall evaluation F (b)
reaches a given expectation level [12]

The optimization problem 1 may be a very com-
plex operation since we have seen that T is not
known explicitely, and it is very complex to per-
form one computation of T . The qualitative model
that is proposed here prevents a more conventional
and global approach with Lagrange multipliers be-
cause the partial derivatives that would be required
with Lagrange multipliers techniques (and thus the
short changes it would recommend) would not have
any relevancy here. That is the reason why we
breakdown the design of the improvement into two
steps: defining the most profitable criteria to be im-
proved first and then identifying the parameters to
be changed to fulfill this improvement (section 4).

3.2. Criteria improvement indicator

Since solving problem (1) is too complex, an alter-
native approach is to use algorithms, such as steep-
est descent to iteratively converge to the optimal
solution. In the steepest descent method, one needs
to know the direction where it will be more reward-
ing to change the current vector γ ∈ ΓA. Based on
the assessment a := T (γ) of γ on the criteria, we
first need to identify on which criteria the modifica-
tion of a is the more rewarding.

To solve this problem, an index (called worth in-
dex) denoted by ωA(F )(a) quantifying the worth
for the profile a to be improved in criteria among
A ⊆ N , subject to the evaluation function F , has
been proposed in [11]:

ω∧
A(F )(a) =

∫ 1

0

F ((1− τ)aA + τ, aN\A)− F (a)

c(a, ((1− τ)aA + τ, aN\A))
dτ

(2)
where (dA, aN\A) denotes a profile that has com-
ponent of d on criteria A, and the components of
a on the other criteria. This expression gives the
mean value of the gain F (gA, aN\A)−F (a) only for
improvement vectors gA = (1 − τ)aA + τ on the
diagonal from aA (for τ = 0) to 1A (for τ = 1)
related to the cost of the improvement τ(1 − aA).
The reason for considering the diagonal from aA to
1A is that it is assumed that the improvements on
all criteria are homogeneous. The subset A∗ of cri-
teria that maximizes the worth index indicates the
performance that are the most profitable to be im-
proved first. After improvement, if γ′ is the new
system, it is characterized by a performances vector
b. We may abusively denote C(γ′) = C(b).

Note that cost functions in equation 2 may be
related to decisive factors that are not necessarily
monetary considerations. Indeed, they can be re-
lated to risk appraisal, temporal requirement, re-

sources availability, ... In that case, there is no re-
lationship at all between cost functions in equation
2 and C(γ′).

3.3. Approaching the optimal profile
iteratively

As we have seen previously, it may be difficult to
reach profile b. We make recommendation to itera-
tively improve from a to b such that F (b) ≥ e. We
propose the following process

1. Define the expectation level e.
2. Define an initial profile γ ∈ ΓA.
3. Compute a1 := T1(γ), . . . , an := Tn(γ).
4. Deduce p = F (u1(T1(γ)), . . . , un(Tn(γ))) = F (a).

If p ≥ e STOP.
5. Compute A∗ = Arg max

A⊂N

ω∧
A(F )(a) as proposed

in section 3.2.
6. Based on these figures, the user modifies γ. He

tries to act on the criteria in A∗.
7. GOTO Step 3.

The next sections consist in solving step 6.

4. Parameters adjustment

4.1. Objectives and action relationships

The MAUT framework merely captures the pref-
erences of designers without any further considera-
tions regarding the material constraints behind the
improvement implementation. Step 5 of the itera-
tive procedure in section 3.3 provides the criteria
A∗ to be improved first: it provides indications re-
garding the most efficient improvement to be per-
formed but it says nothing about the way this im-
provement can be operated (i.e., at this stage no
help is provided regarding step 6 of the procedure
in section 3.3). These operational constraints how-
ever shall not be ignored in designing the imple-
mentation component of the improvement project.
Sections 4 and 5 provide a decision support for step
6. They aim to search for parameters’ values in ΓA

that could improve criteria in A∗.
Two actions are related to a parameter γi: its

value can be increased or decreased. The two ac-
tions “γi increase” and “γi decrease” are mutually
exclusive. Thus, there are 2 × p potential actions:
a1, . . . , a2p (p couples of exclusive actions). Adding
the potentiality of leaving untouched a parameter,
this gives 3p global actions or action plans that re-
sult from the application of a unique elementary
action on each parameter.

Now let us determine for each partial performance
Pi = ui(Ti(γ)) the set Si of actions aj that support
an improvement of Pi and the set Di of actions aj

that distract from Pi. These notations were initially
introduced in [4]. We will use the same notations
in the algorithm proposed in this section to help
clarify the discussion in section 6. For any action
aj ∈ Si, δs

ij is the influence degree that an action



aj may support an improvement with regard to Pi.
For any action aj ∈ Di, δd

ij is the influence degree
that an action aj may distract from an improvement
with regard to Pi.

To our mind, this qualitative model seems to
match the genuine expertise that is generally avail-
able with regard to the transformation T in a com-
plex system: the effects of a parameter variation has
upon the characteristics Xi of a system can gener-
ally be only described in a purely qualitative and
non determinist manner. When a characteristic Xi

evolves, it then implies a variation of the associ-
ated performance Pi. A designer also usually qual-
itatively knows the way Pi evolves when there is a
change in Xi, i.e., the monotony of the function that
links Pi and Xi, at least locally.

The set of these fuzzy relationships between ac-
tions and system performances provide the neces-
sary representation to support the choice of the ac-
tions to be performed to improve all the criteria in
A∗ with a maximal degree of influence. The way the
actions can be selected is proposed in the following.

Let us denote Pi (i ∈ N) the elementary perfor-
mance indicators, with the 2× p associated actions
aj (j ∈ {1, . . . , 2p}, actions a2j−1 and a2j are mu-
tually exclusive). An action aj may belong to Si, to
Di or may exert no influence on Pi. Relations in-
volving actions and performance indicators can be
represented through a digraph, such that (see ex-
ample in Fig. 2): for an action aj and an indicator
Pi, the arc arcij between aj and Pi is (see figure
4.1)

arcij =

{

+δs
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Figure 2: An influence graph

The performances related to criteria in A∗ are
denoted by P +

i otherwise by P 0
i . For any Pi, we

can now consider the sets Si and Di to be fuzzy sets,
as proposed in [4]. Let us introduce two functions
associated with Si and Di.

• Support function of performance Pi:
sPi

(aj) = δs
ij if action aj supports Pi

with degree δs
ij , and sPi

(aj) = 0 otherwise.
• Distract function of performance Pi:

dPi
(aj) = δd

ij if action aj distracts from Pi

with degree δd
ij , and dPi

(aj) = 0 otherwise.

For each performance indicator Pi, the two fuzzy
sets Si and Di are defined by the functions sPi

and
dPi

, in their capacity as membership functions. Si

is the fuzzy support set of Pi, whereas Di is the
distraction set of Pi. Note that this model could be

extended: elements of Si and Di could be subsets of
actions (and not elementary actions as proposed by
Felix) that should necessarily be conjointly applied
to improve performance indicator Pi (whereas each
action of this subset cannot achieve the expected re-
sult separately). For example, logical configuration
constraints may be added to constraint actions to
be conjointly carried out as proposed in [8]. These
constraints do not introduce further difficulties in
our approach. They might be managed when ad-
missible configurations are filtered and the combi-
natory problem is reduced thanks to this additional
knowledge.

4.2. Computation of an action plan
consistent with the criteria in A∗

Let us suppose that the most suitable criteria A∗ to
be improved have been determined as proposed in
section 3.

Definition 1 An action plan AP ⊆ {a1, . . . , a2p}
is a subset of consistent actions, i.e. if the action "γi

increase" (resp. "γi decrease") belongs to AP, then
"γi decrease" (resp. "γi increase") cannot belong to
AP (i.e., . actions "γi increase" and "γi decrease"
are mutually exclusive).

There might be additional constraints among the
actions. For instance, it may not be possible to per-
form two actions at the same time. Such constraints
exist in the configuration problem [8]. However, we
do not consider such constraints explicitly in this
paper.
Let us note a2q−1 the action “decrease γ” and a2q,
the action “increase γ”, q = 1 · · · p.

Definition 2 An admissible action plan for A∗ is
a subset of actions that conjointly improves all the
performances indicators in A∗.

Let Ω be the set of the 3p potential action plans.
For any J ⊆ {1, . . . , 2p}, let APJ = {aj : j ∈ J},
J+

i the subset of indices for actions in APJ∩Si, and
J−

i the subset of indices for actions in APJ ∩Di.
The idea here is to compute the degree of admis-

sibility of action plan APJ as regards the perfor-
mances to be improved in A∗.

A possible solution for the degree of admissibil-
ity of action plan APJ with regard to elementary
performance Pi may be: ∀i ∈ N

sPi
(APJ) =

{

min
j∈J+

i

δs
ij if min

j∈J+

i

δs
ij > max

j∈J
−

i

δd
ij

0 otherwise
(3)

The choice of the “min/max” operations in
minj∈J+

i
δs

ij > maxj∈J−

i
δd

ij is a drastic contraint

which leads to a form of veto upon any perfor-
mance criterion. Thus, it models a cautious view-
point in the lack of knowledge about the impor-
tance of each elementary performance on the overall



one. Other less constaining operators may be envis-
aged. For example, a more flexible model based on
“max/max” operations as stated in the following
may be introduced:

sPi
(APJ) =











maxj∈J+

i
δs

ij

if maxj∈J+

i
δs

ij > maxj∈J−

i
δd

ij

0 otherwise

(4)
The choice of the operator semantics is not the sub-
ject of this paper and the cautious model (equation
3) has been retained here.

The degree of admissibility of action plan APJ ,
relative to the subset of elementary performances
Pi in A∗, is then given by:

sA∗(APJ) =











min
i∈A∗

sPi
(APJ) if ∀i ∈ N \A∗

(j ∈ J ∧ δd
ijexists) ⇒ sPi (APJ ) > 0)

0 otherwise

(5)

The condition (j ∈ J ∧ δd
ijexists)⇒ sPi

(APJ) >
0) for any i ∈ N \A∗ simply means that improving
criteria in A∗ should not imply a decrease with re-
gard to criteria in N \ A∗, and when an action aj

damages a performance in N \ A∗ then there nec-
essarily exists a compensative action a′

j such that

δs
ij′ > δd

ij . Nevertheless, let us note that when the
performances profile is Pareto optimal, improving
criteria in A∗ will necessary entail a decrease with
regard to some other criteria. In this case, the for-
mula in (5) needs to be relaxed.

It can finaly be imagined that a subset of cri-
teria B∗ included in N \ A∗ for which a mini-
mal decrease is tolerated is defined. Constraint
“(j ∈ J ∧ δd

ijexists) ⇒ sPi
(APJ) > 0)” is main-

tained in equations (5) only for performance indica-
tors in N \ (A∗ ∪B∗). For performances in B∗:

sPi
(APJ ) =







min
j∈J+

δs
ij if min

j∈J+
δs

ij > max
j∈J−

δd
ij

−max
j∈J−

δd
ij otherwise

(6)
Then, the solution will have to conjointly maximize
sA∗(APJ ) and sB∗(APJ ). A threshold can also be
introduced to quantify admissible decreases.

The degree of admissibility in (5) can also be
“smoothed” if elementary performances are not as-
signed the same relative importance. Using the
“min” operator, a right of veto is conferred upon
any criterion. For a more flexible attitude, we could
assign a weighting distribution to the performance
indicators. Let us denote wi the weight relative to
Pi, which enables computing the following:

sA∗(APJ , w) =











min
i∈A∗

(max(1− wi, sPi
(APJ)))

if ∀i ∈ N \A∗ sPi
(APJ) > 0

0 otherwise

(7)
In this paper, the weights distribution in (7) is de-
rived from A∗: wi = 1 for i ∈ A∗ and wi = 0
otherwise. Relations (5) and (7) are equivalent in

this simple case. However, we have already pro-
posed further methods to build weights distribu-
tions in the framework of multicriteria performances
improvement when objectives are more precisely de-
fined [13]. Hence, the interest of (7) is justified.

As a final step, we define Ω̃ as a fuzzy set of ac-
tion plans APJ by the function sA∗(APJ , w), as a
membership function, before considering the α-cut
of Ω̃ (an α-cut of a fuzzy set is the subset of ele-
ments whose degree of membership is greater than
or equal to α).

Definition 3 An action plan is said to be α-
admissible for A∗ when its degree of admissibility
is equal to or greater than α.

Definition 4 An α-admissible set of action plans
is ultimately defined as a subset of action plans
AΠα, such that:

AΠα = {APJ : sA∗(APJ , w) ≥ α}. (8)

We can now conclude this section by seeking an
efficient α-admissible action plan. A cost cj is as-
sociated with each action aj : cj(aj). The cost of
action plan APJ ∈ AΠα can thus be computed as
follows: c(APJ ) =

∑

j∈J

cj(aj). (9)

An efficient, α-admissible action plan APJ is then
given by:

Arg min{c(APJ) : APJ ∈ AΠα}. (10)

When the number of actions is high this computa-
tion clearly raises a combinatory problem; section 5
presents an efficient resolution approach.

This result concludes the parameters design
stage. An efficient α-admissible action plan can thus
be planned. It provides a decision support to step
6 in the iterative improvement procedure defined in
section 3.3.

This computation only qualitatively defines the
actions to be performed: we merely know whether
the values of selected parameters are to be increased
or decreased. The designer must then proceed by
trial and error, from experience when applying the
required actions. Applying an efficient α-admissible
action plan to initial profile a provides a new per-
formance profile b such that F (b) ≥ F (a). If F (b)
remains lower than the expected quality e, further
improvement iterations are required as indicated in
section 3.3. The new improvement always requires
the same following steps: first, compute the most
profitable criteria to be improved, and then identify
the admissible action plan consistent with these per-
formances improvements requirements. Improve-
ment is carried on until objective e is reached.

5. The constraint solving problem for
performance improvement

When the number of actions is high the compu-
tation of admissible action plans clearly raises a



combinatory problem. Our objective is to deter-
mine the set of admissible action plans with minimal
cost and maximal admissibility degree. In practice,
∀α ∈ ]0, 1], Argmin{c(APJ ) / APJ ∈ AΠα} is com-
puted. This section presents a Branch and Bound
algorithm with appropriate heuristics to solve this
problem efficiently.

5.1. Properties and definitions

Since the order the actions are carried out is not
considered, identifying an admissible action plan in
the set of actions A, consists in searching a sub-
set AP ⊆ A which satisfies admissibility and cost
properties. Thus the search space is isomorphic
to 2A. If we take into account mutually exclusive
actions (p couples of actions (γincrease, γdecrease))
then |A| = 2p and the search may be reduced to
3p < 2|A|.

Lemma 5 Let A, SAP and B be three sets of ac-
tions such that (SAP,B) is a partition of A.
Let Z ⊆ B be such that no admissible action plan of
A containing SAP and any action of Z can be built.
Obviously, the set of admissible action plans of A
containing SAP is identical to the set of admissible
action plans of A′ = A \ Z containing SAP .

This lemma means that if any action in Z cannot
be added to SAP to build an admissible action plan
then, if there exists an admissible action plan AP
containing SAP , then the actions in AP \SAP must
necessary be searched in A \ Z.

Let now consider the constraints related to α-
admissibility of an action plan. They will allow us
to derive properties to reduce the search.

Definition 6 Restricting actions (RA):
∀C ⊆ N,∀α ∈ [0 . . . 1],

RA(A, C, α) = {aj ∈ A,∃i ∈ C/δs
ij < α}

Definition 7 Locking actions (LA):
∀C ⊆ N, LA(A, C) = {aj ∈ A, ∃i ∈ C/δd

ij ≥ max
k/ak∈A

δs
ik}

Definition 8 Incompatible actions (INC): An
action aj is said to be incompatible with another
action aj′ if and only if any of the three following
conditions is verified ∀C ⊆ N :
• i : ∃i ∈ C, aj supports Pi with degree δs

ij, aj′

distracts from Pi with degree δd
ij′ and δd

ij′ ≥ δs
ij.

• ii : ∃i ∈ C, aj distracts from Pi with degree δd
ij,

aj′ supports Pi with degree δs
ij′ and δs

ij′ ≤ δd
ij.

• iii : aj and aj′ are mutually exclusive actions.
INC(A, C, a) = {a′ ∈ A, a′ is incompatible with a}.

Property 9 An admissible action plan cannot con-
tain two incompatible actions.

Definition 10 ∀C ⊂ N we say that a subset of
action APJ is an α-admissible action plan for C if
all of the following conditions are fullfiled:

• APJ improve all criteria in C.
• ∀j ∈ J, INC(APJ , N \ C, aj) = ∅

(11)

Property 11 Let a ∈ RA(A, C, α) then a cannot
belong to any α-admissible action plan for C.

Remark 12 Providing C in previous definitions of
LA and INC allows them to be very general con-
cepts. But due to the strong constraint in equation
5, C = N in the following. General definitions
(with C 6= N) will be useful when equation 5 will
be relaxed as mentionned in section 4.2.

Property 13 Let SAP and B be two disjoint sets
of actions. let consider ak ∈ LA(SAP ∪ B, N) ∩ B
then no action plan containing ak and SAP can be
built.

Property 14 Let SAP and B two disjoint sets of
actions and a ∈ B.
Let ak ∈ INC(B \ {a}, N, a) then no α-admissible
action plan for A∗ containing ak and SAP ∪ {a}
can be built.

5.2. General principle

The search space is represented as a binary tree
which is explored in depth first. The basic idea is
that each node is associated to an action. From each
node start two branches denoted

a
→ and

¬a
→ where a

is the action associated to the node. A path origi-
nated from the root of the tree is a potential action
plan where branches

¬a
→ mean that actions a do not

belong to the action plan and branches
a
→ mean

that actions a belong to the action plan.

a2a2

a1

a1a1

a2a2

a2 a2

a1

Figure 3: The search space is a binary tree

Remark 15 In any path originated from the root
of the tree there cannot be two nodes associated to
the same action.

The search for the least costly α-admissible ac-
tion plan requires exploring the binary tree. Heuris-
tics based on the previous properties are then to be
introduced to reduce the search combinatory. An
appropriate management of constraints enables to
relevantly cut branches and significantly reduce the
search as much as possible.

At each node the selected action is the one that
generates the most drastic new constraints when
considering the path from the root of the tree to
the current node. This allows eliminating as much
actions as possible as soon as possible

Remark 16 Eliminating an action means to asso-
ciating this action to the next node and only explor-
ing the branch

¬a
→ (the branch

a
→ is cutted)



Definition 17 Considering the path P ending at
any node, we can define two sets of actions SAP
and B such that:

SAP = { actions a / branch
a
→ belong to P}

B = { actions a / branch
a
→ or

¬a
→ does not belong to P }

SAP is an α-admissible sub-action plan improv-
ing criteria C ⊂ A∗ ⊆ N and B is the set of
remaining actions potentially able to complete SAP
and improve all criteria in A∗ .
When exploring a branch

a
→ the search is reduced

by eliminating some actions in B as follows:

B′ = B \ (LA(B \ INC(B, N, a), N))

and when exploring a branch
¬a
→:

B′ = B \ (LA(B \ {a}, N))

From properties 13 and 14 on one hand, and lemma
5 on the other hand these reductions do not impact
the space of solutions.
The actions in B \ B′ will then be eliminated which
means (as seen in remark 16) that these actions will

be associated to next nodes in the path but only
¬a
→

branches will be explored.

Remark 18 The complexity of computing LA(B),
INC(B, N, a) is linear to |B|, while the dimension
of the suppressed branches in the search space is re-
lated to 2|B|.

5.3. Preferences on the action plans

To be able to identify the most interesting action
plans, we need to define an order of preference on
them. For that we are going to consider the Pareto
non-dominated action plans with respect to the two
metrics: degree of admissibility sA∗(APJ ) and cost
c(APJ). Since the preference over these two met-
rics are opposite, we will use the Pareto order with
regard to the couple (θ, φ) = (sA∗(APJ),−c(APJ )).

Definition 19 We define ≺Pareto on IR2 by
(θ, φ) ≺Pareto (θ′, φ′)

⇐⇒ θ < θ′ ∧ φ ≤ φ′ , θ = θ′ ∧ φ < φ′

and ⊳ on IR2 × (IR2)p (for any p) by
(θ, φ) ⊳ {(θ1, φ1), . . . , (θp, φp)}

⇐⇒ ∃j ∈ {1, . . . , p} (θ, φ) ≺Pareto (θj , φj).

We denoted D the set of the Pareto non-
dominated admissible action plans.

Remark 20 One may replace the partial order ⊳

by a complete one (for instance, using only one of
the two metrics). In this case, the vector D will
be composed of only one single action plan and the
pruning will be more efficient.

5.4. Algorithm

The objective of the algorithm is to determine the
set D from the set of actions A. First, we eliminate
RA(A, A∗, α). As seen in property 11 and by ap-
plying lemma 5 these reductions do not impact the
space of solutions.

The selected action at each node is such that:
a = Arg max

a′∈B
{|INC(B, N, a′)|}

The heuristics behind this decision criterion is:
the more restricting the variable, the more deci-
sional in the search process because the current path
will be forsaken as soon as possible if necessary.

• The algorithm computes D = Algo(A, ∅, ∅, ∅) which

is the set of non-dominated action plans in the sense

of ⊳.

• Function Algo(B, C, SAP,D′) :
If (B 6= ∅) then

- select a such that : |INC(B, N, a)|
is maximal;
- SAP ′ ← SAP ∪ {a};

- B
′

← B \ INC(B, N, a);

- C
′

← C and new criteria improved
by a;
If (SAP ′ is an action plan) then

©1 - B
′

← ∅ //cut the branch;
If ((SA∗ (SAP ′), −c(SAP ′)) 6⊳ D′)
then

- store SAP ′ in D′;
- remove all dominated el-
ements of D′;

end If
else
©2 - APt ← element of
D′/SA∗(APt) = SC′(SAP ′);

If (( APt does not exist ) or
(c(SAP ′) < c(APt)) ) then

- Algo(LA(B′, N), C ′, SAP ′,D′);
else

- B
′

← ∅
//cut the branch;

end If
end If
- Algo(LA(B \ {a}, N), C, SAP,D′);

else
©3 //cut the branch;

end If
return D′;

End

Algorithm 1: Algorithm for the determination of D.

Let SAP ∪ {a} be the current α-admissible
sub-action plan improving the criteria in
C ⊂ A∗ and B the set of remaining ac-
tions after eliminating incompatible and locking
actions. The branch

a
→ is cut in the following cases:

•1• If SAP ∪ {a} is an admissible action plan for
A∗: any additional action cannot improve the
admissibility degree and it would necessarily
increase the improvement cost

•2• If SAP ∪{a} is not an action plan for A∗ and
∃AP ∈ D such that : c(SAP ∪ {a}) ≥ c(AP )
and SA∗(AP ) ≥ SC(SAP ∪ {a})

•3• If SAP ∪{a} is not an action plan for A∗ and
B = ∅



In condition •1•, if (sA∗ (SAP ∪ {a}), −c(SAP ∪ {a})) 6⊳ D

we store SAP ∪ {a} in D and we remove all domi-
nated elements from D.

All the solutions given in D are α-admissible ac-
tion plans. We can still decide if we prefer action
plans with the highest admissibility degree what-
ever their costs or the ones with the lowest cost as
soon as they are α-admissible.

6. Discussion

This paper is devoted to propose a tradeoff be-
tween the managerial and implementation aspects
of industrial improvements. The MAUT model dis-
cussed in sections 3 enables synthesizing manager
preferences with respect to the partial performances
to be improved first. Manager preferences are in-
deed recorded in an analytical form that facilitates
the search for strategic improvements in terms of
optimization problems, and this therefore provides a
powerful artifact for recording overall company per-
formance and deriving a rationale from a manage-
rial perspective. In our opinion, the MAUT model
is incompatible with operational constraints, thus
requiring it to be complemented with other mod-
els that take into account the operational context.
More specifically, a model of relationships between
the objectives and potential improvement action
plans is needed to successfully complete the imple-
mentation component of the improvement. It is ex-
plained herein how both models must be used in an
iterative procedure to design an efficient improve-
ment of a system. Many choices have been made at
different stages of the decision making procedure.
These local choices clearly impact the computation
of the best action plan. The choice of the min op-
erator in equations 3 and 5 is the most influential
because the branch & bound heuristics depend on
it. All these choices require further semantic anal-
yses to propose a more robust model. This is the
concern of our futur works.

In conclusion, the way in which these models
are conjointly used within our entire design proce-
dure is intended to prove that both models must be
used in tandem in order to address the managerial
and implementation issues involved in an improve-
ment project. The challenge consists of developing
the consensual transition from motivation to action,
between managerial decisions and operational capa-
bilities. This challenge constituted the source of our
proposal.
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