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Abstract 

This paper begins by discussing the implementation 
of monitoring and control strategies to improve 
industrial performance. Industrial performance is 
presently defined in terms of multiple and multi-level 
criteria, which need to be synthesized for overall 
improvement purposes. The Multi-Attribute Utility 
Theory (MAUT) provides tools relevant to decision-
making within this specific context. According to our 
approach, overall company performance is expressed 
as the aggregate value of each elementary 
performance relative to each criterion, with the 
aggregation operator being a Choquet integral. The 
paper then recalls previous studies regarding the 
design of efficient improvements within this same 
MAUT framework, before focusing on an analysis of 
overall performance gain in terms of elementary 
performance improvements. The contribution of an 
aggregate performance gain criterion plays a key role 
in this study. Two improvement strategies will 
moreover be examined and compared in light of this 
concept development. A case study has also been 
included to illustrate the proposals set forth in the 
paper. 

Keywords: operations management, performance 
improvement, industrial performance, criterion 
contribution, efficiency, multi-criteria decision-
making. 

1. Problem statement 

As a means of coping with the complexity of the 
current industrial context, new control strategies 
designed to introduce continuous improvements must 
include not only aspects of multi-criteria 
performance expression, but also pertinent relational 
modeling (Bititci, 1995; Berrah, 2000; Berrah et al., 
2001). Control strategies are in fact required to 
define, compare and select improvement actions with 
respect to the relationships existing between 
performance expressions (Bititci, 1995). Performance 
Measurement Systems (PMS), which are instruments 
that support decision-making (Bititci, 1995; Neely, 
1999; Kueng et al., 1999), fulfill such a purpose. 
From a global perspective, a PMS is a multi-criteria 

instrument for informing decision-makers on a 
variety of matters, e.g. performance level, criteria 
necessitating improvement. A PMS is composed of a 
set of performance expressions that need to be 
consistently organized with respect to company 
objectives (Berrah et al., 2001). In support of the 
decision, the set of performances must be processed 
in order to compare the various situations. By their 
very nature, PMS require the use of multi-criteria 
methods (Santos et al., 2002). The primary 
quantitative frameworks found in the literature on 
PMS are intended to reduce dimensionality and 
hence a product of the MAUT (Multi-Attribute 
Utility Theory) aggregation model school 
(Diakoulaki et al., 1992; Lee et al., 1995; Rangone, 
1996; Kim et al., 1997; Suwignjo et al., 2000), 
although a few studies have been based on 
outranking models (Mareschal et al., 1991; Babic et 
al., 1998). 

MAUT models allow defining the overall 
performance of a company with respect to its various 
elementary objectives (Berrah et al., 2004). 
Moreover, they serve to highlight priorities in the 
decision-maker's strategy (Clivillé et al., 2007). The 
aggregate performance model is thus able to 
incorporate a portion of the company's policy. 
According to our approach, the aggregation model is 
applied with a Choquet integral, which enables 
handling both the relative weighting of criteria and 
their interactions (Berrah et al., 2008a). 

This paper is based on previous work presented in 
Berrah et al. (2008a) and Sahraoui et al. 
(2007a,2007b), which has proposed decision-support 
tools able to assist managers improve design 
performance as regards company strategy, so as to 
reach a goal while minimizing costs. Multi-criteria 
optimization techniques are suggested to attain this 
goal and, in so doing, characterize an efficient 
improvement (Berrah et al., 2008b). The paper will 
focus here on a related issue: what exactly is the 
contribution of an elementary performance to overall 
performance gain? This concept of contribution plays 
a vital role in understanding the way improvements 
operate. The recommendations forwarded on 
elementary performance targeted for improvement 
still rely on this concept. Two different improvement 
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policies are semantically analyzed and justified 
through this point of view. The first is based on 
statistical considerations relative to the most likely 
profitable criteria contributions towards overall 
performance gain. The main idea herein is to 
determine those criteria on which the company 
should statistically improve, first in order to raise its 
overall performance as much as possible. The 
theoretical work behind this proposal was initially 
proposed in Labreuche (2004). The second 
improvement policy is related to the concept of 
efficient improvement (Sahraoui, 2007a,2007b), 
which states the principle of defining a step-by-step, 
locally-efficient improvement within a multi-criteria 
context until an anticipated comprehensive goal has 
been achieved. The corresponding iterative 
procedures are provided and then formalized into 
algorithms A1 and A2. In both cases, the contribution 
of an individual criterion to overall performance 
improvement plays a key role. Consequently, a 
monitoring function of criteria contributions over 
time is provided for a quantitative and theoretical 
comparison of both types of improvement rationale. 

This paper has been organized as follows. Section II 
briefly recalls the basic MAUT principles and 
discusses the characteristics of industrial 
performance expressions. The Choquet integral will 
be proposed as a solution for handling the interactive 
multi-criteria aspects of industrial performance. The 
aggregation framework motivates us to redefine 
concepts such as efficiency; performance 
improvement problems will be modeled as 
optimization problems. Section III then defines the 
contribution of elementary performance to overall 
performance gain. The algorithm used to compute 
this contribution will be provided. Section IV will 
introduce two different control policies derived from 
criteria contributions, in the aim of performing an 
efficient improvement. These policies will first be 
semantically compared before providing a more 
quantitative comparison, based on the previous 
theoretical analysis of elementary contributions to 
overall performance gain, by means of a case study 
(Section V). 

2. The aggregative model of overall 
performance 

2.1. MAUT: A model of preferences 

Defining an improvement within the multi-criteria 
performance context poses a number of problems. 
First of all, it must be possible to compare any two of 
the situations described by their elementary 
performance expressions. 

Decision support can thus consist of reducing 
dimensionality in order to facilitate analysis. It is 
generally recognized that humans lose their ability to 
make rational decisions once more than 3 to 5 criteria 

are involved. MAUT (Multi-Attribute Utility Theory) 
(Fishburn, 1970,1982; Keeney and Raiffa, 1976) 
provides the necessary set of tools to resolve this 
problem. 

Preference representation is a central topic in 
decision-making and measurement theory (Modave 
et al., 1998) and usually entails finding a real-valued 
utility function U , such that for any pair of 

alternatives ,x y  in a set X  of alternatives of 

interest, x y�  (i.e. x is preferred to y) iff 

( ) ( )U x U y≥ . When alternatives are n-dimensional, 

i.e. 
1

n

i

i

X X
=

= ∏ , one widespread model is the 

decomposable model developed by Krantz et al. 
(1971), where U  assumes the form 

1 1 1( ,.., ) ( ( ),.., ( ))n n nU x x g u x u x=  and where (.)iu  

are real-valued functions. Assuming that �  is a 

weak order on X , it is known that a representation 

with g  being strictly increasing can be derived iff �  

satisfies independence and X  is separable (Krantz et 
al., 1971). 

MAUT is based on utility theory, which offers a 
systematic approach to quantifying individual 
preferences. Utility theory consists of interpreting 
any measurement as a degree of satisfaction on [0,1] , 
with 0 related to the worst alternative and 1 to the 
best. Measurements are thus made to be 
commensurable and interpretable. In this manner, a 

utility function ( )i iu x  is associated with each 

measurementix , and MAUT is then intended to 

provide the synthesis utility U  that yields a solution 
to the comparison problem of two situations 
described by their elementary utilities. Many MAUT 
studies have examined both the required properties of 
decision-maker preferences to be included in the 
analytical form g  and the way in which g  can be 

identified. 

2.2. Overall performance in the MAUT framework 

In practice, elementary performance is provided by 
so-called performance indicators; this assessment 
stems from the straightforward comparison of 
objectives (as obtained by breaking down the overall 
objective considered) with recorded measurements. 
The performance expressions can thus be formalized 
by means of the following mapping (Berrah, 2000): 

P :

( , ) P( , )

O M E

o m o m P

× →
→ =  

O , M  and E  are respectively the universes of 
discourse for the set of objectives o, the set of 
measurements m and normalized performance 



[0,1]P ∈ . A performance expression therefore 
corresponds to an elementary utility function. 

Let's denote 
1 2( , ,..., )nP P P P=

�
 as a performance 

profile and C  the set of n criteria implied by PMS. 
An aggregation of performances can then be 
expressed as an operation that synthesizes the 
elementary performances into an overall expression: 

1 2 1 2

:[0,1]

( , ,..., ) ( , ,..., )

n

n n

g E

P P P P g P P P

→
→ =           

(1)

 
In light of MAUT, overall performance is thus 
viewed as a synthesized utility function. 

2.3. The Choquet integral model 

In this study, the aggregative model g  is a Choquet 
integral, which enables accommodating both the 
relative importance of each criterion and the 
interactions taking place among them. This choice 
will not be discussed herein (see Berrah et al. 
(2008a) for further justification). Let's simply note at 
this point that the interactions considered in our 
preference model are not the physical ones (material 
constraints) dealt with in Felix (1994), where action 
plans may exert a combined impact on several 
performance indicators. In our preference model, an 
interaction occurs between any two criteria once they 
need to be satisfied simultaneously (i.e. positive 
synergy) or when their simultaneous satisfaction is 
seen as a redundancy (negative synergy) (see 
Montmain, 2009 for a more precise comparison). 
 

kP  is the aggregate performance of the elementary 

performance profile 
1

( , ..., )k k

n

kP P P=
�

 

1 2 ( ) ( 1) ( )
1

( ) ( , ,..., ) ( ). ( )
k

k k k k

n

n
k k k
i i i

i

P P P P P P P AC Cµ µ µ−
=

= = −�
�

��  (2), 

where : ( ) [0,1]P Cµ →  is a fuzzy measure; (.) 

indicates a permutation, such that the partial 

performances (.) [0,1]kP ∈  are ranked 

(1 ) ( )
0 1

k k

n
P P≤ ≤ ≤ ≤�  and { }( ) ( )( ) , ..,i n

k
iA c c= . This 

expression can then be rewritten as: 

1 ( ) ( )

1

( ) ( 1) ( )
1

( ,.., ) ( ). ( ) .
n

k k k k

n i i

i

n
k k k

i i i
i

P P P P A PCµ µ µ
=

−
=

= − = ∆� �         (3) 

where 
( )

k

i
µ =

( )
( )

k

i
Aµ , 

( 1)
0k

n
µ + =  and 

( ) ( ) ( 1)

k k k

i i i
µ µ µ

+
∆ = − . 
Note that a simplex 

{ }(.) (1) ( )[0,1] / 0 1n
nH P P P= ∈ ≤ ≤ ≤ ≤�  is associated 

with each profile kP
�

: this corresponds to the ranking 
(.), where the Choquet integral assumes a linear 
expression. Such a remark proves critical to solving 
optimization problems that involve a Choquet 
integral, in terms of linear programming within 
simplex regions. 

2.4. Overall performance improvement 

Let IP
�

 be the initial performance profile of the 
company and FP

�
 its final one, i.e. 1( ,..., )I I I

n
P P P=
�

 

and 1( ,..., )F F F

n
P P P=
�

. The evolution from IP
�

 to FP
�

 

is considered as an improvement iff FP
�

 is preferred 
to IP

�
. In the MAUT framework, this condition 

provides the following definition of improvement: 

The three following propositions are equivalent: 

(1) F IP P
� �

� , i.e. FP
�

 is preferred to IP
�

 with respect 

to company development policy; 

(2) ( ) ( )F IC P C Pµ µ≥
� �

, where Cµ  models company 

development policy; 

(3) Substantial improvement has been achieved 

between the two observed states IP
�

 and FP
�

. 

2.5. Efficient improvement in the MAUT framework 

The following step has been introduced to assist 
decision-makers in their analysis by considering how 
performance could be improved. Decision-makers 
generally know which actions need to be carried out 
in order to increase an elementary performance. 
Their problem then is to design an improvement that 
leads to the required overall performance with a 
minimal increase allocated to each elementary 
performance, i.e. a minimum additional cost relative 
to each individual elementary performance. This 
notion of optimal improvement is directly correlated 
with the concept of efficient improvement. The 
notion of efficiency actually implies both the target 
objective and the resource allocation (costs, efforts, 
means, risks, etc.) associated with the improvement: 
an improvement is thus efficient if any restrictive 
modification to its allocated resources necessarily 
entails a decrease in overall performance. 

A performance improvement from IP
�

 to FP
�

 that 
induces a cost C and leads to an evolution, such that 

( ) ( )F I F IP P C P C Pµ µ⇔ ≥� , can be characterized 

by its overall performance gain ( ) ( )F IC P C Pµ µ−  

relative to its cost C. The higher the overall 
performance gain and the lower the cost, the more 
efficient the improvement becomes. 

Let 
1 2( , ,..., )I I I I

nP P P P=
�

 be the initial performance 

profile and ( )I IP g P=
�

 the associated aggregate 

performance. The problem to be solved then calls for 
identifying the most "efficient" way to improve 
overall performance, i.e. the least costly 
improvement in elementary performance that 

achieves an expected overall performance * IP P> . 
What then is the minimum investment in each 
criterion that enables attaining *P ? The response 
consists of computing the improvement vector that 



requires minimum investment. Let's denote 
* * * *

1 2( , ,..., )nδ δ δ δ=
�

 as the solution to this problem. 
*δ
�

 is thus associated with the most efficient strategy 
for a given (.)Cµ  model along with a predefined set 

of cost functions related to each PMS criterion. 

Let's also denote ( , )i i ic P δ  as the cost related to a 

partial improvement from iP  to i iP δ+ . For the sake 

of simplicity, ( , )I
i i ic P δ  is assumed to be a linear 

function with respect to iδ , i.e.: ( , ) .I
i i i i ic P cuδ δ= , 

with icu  being a unit cost. The cost function for an 

overall improvement from ( )I IP PCµ =
�

 to 

( )PCµ δ+
��

, with 1( ),.., nP P P=
�

 and 1( ),.., nδ δ δ=
�

, can 

be written as (with the cost separability assumption): 

1

( , ) ( , )
n

i
i i ic P c Pδ δ

=

=�
��

          (4) 

The search for an efficient improvement may then be 
formalized into the following optimization 
problem (P1): 

Objective function: 
min ( , )c P δ

��
 

Constraints: 
( ) *P PCµ δ+ =

��

 - (behavioral constraint) 

, 1
i ii

l r
ii Pδ δ δ∀ ≤ ≤ − − -(boundary constraints) 

where 
i

gδ  and 
i

dδ  are threshold parameters derived 

from the application (e.g. improvement with respect 
to criterion i cannot exceed 30%). 
 
A second associated optimization problem (P2) can 
now be considered for the efficiency 
characterization: it consists of computing the 
maximum expectable improvement for a given 
additional investment Bδ . (P2) is defined as follows: 
 

Objective function: 

max ( )PC
δ

µ δ+�

��
 

Constraints: 
( , )c P Bδ δ=

��
- (behavioral constraint) 

, 1
i ii

g d
ii Pδ δ δ∀ ≤ ≤ − − - (boundary constraints) 

The MAUT model thus enables incorporating 
managers' preferences into an analytical format that 
facilitates the introduction of concepts such as 
efficiency in the form of optimization problems. 

The piecewise linearity of Cµ  enables solving (P1) as 

a linear programming problem. Cµ  indeed behaves 

like a WAM on each simplex 

[ ]{ }(.) (1) ( )0,1 / 0 1
n

n
H P P P= ∈ ≤ ≤ ≤ ≤

�
� . This remark 

serves to break down the initial problem into !n  
linear programming sub-problems. Nonetheless, this 

solution can only be considered for low n values 
(Berrah et al., 2008a). 

Another idea calls for considering the problem as a 
whole and then introducing complementary linear 
programming considerations (Sahraoui et al., 
2007a,2007b). To this end, let's start with the 
following statement: Guaranteeing that a potential 
solution belongs to a given (.)H  implies adding 

( 1)n−  constraints to the problem definition: 

( ) ( 1)( ) ( 1), I I

i ii ii P Pδ δ++ + +∀ ≤ . Next, by noting that all 

realizable solutions related to a linear programming 
problem belong to a convex hull, the associated 
vertices x

�
 exhibit a particular profile due to the three 

types of inequalities included in the problem model 
( , 0

i i

g di δ δ∀ = =  for the sake of simplicity): 

(a) ( ), 0 ii δ∀ ≤  

(b) ( ) ( ), 1i ii Pδ∀ ≤ −                    (5) 

(c) ( ) ( 1)( ) ( 1), i ii ii P Pδ δ++ + +∀ ≤ . 

A vertex x
�

 is thus defined by n equations: ( 1)n−  

from the preceding constraints taken to equality 
conjointly with  

( ) ( )
1

( ) *.( )
n

I I
i i

i

C P PPµ δ µ δ
=

+ = ∆ + =�
�� ��

, where ( )iµ∆ ‘s 

are coefficients of the linear expression for Cµ  in 

simplex (.)H , defined by type (c) inequalities. The 

set of constraints is generated for any simplex (.)H  

and all vertices are computed. The minimum distance 
between IP

�
 and a vertex yields the solution to the 

global problem. 

Let's now remark that after rearrangement, a vertex 
x
�

 is a vector with 3 distinct coordinate blocks: 
- (a) unchanged coordinates with respect to the 

initial vector P
�

 ( ( )( ) ( )0 ii ix Pδ = � = ), 

- (b) coordinates equal to 1 
( ( ) ( ) ( )1 1i i iP xδ = − � = ), 

- (c) a subset of coordinates with the same value 
β ( ( ) ( ) ( ) ( ) ( ) ( )i i j j i jP P x xδ δ �+ += = ). 

Linear programming results indicate that *IP δ+
��

 
can only assume exceptional values as coordinates, 

which means that after rearrangement, *P δ+
��

 can 
always be rewritten in the following form, denoted F 
(Sahraoui et al., 2007a):  

( ) ( )[1,...,1, ,..., , ,..., ]Ti jP Pβ β          (6) 

This proves to be a relevant piece of information for 
decision-making and serves to generalize the obvious 
result obtained with a WAM, e.g. 

( ) ( )
[1,...,1, , ,..., ]

i j

I I TP Pβ . Further details are provided 

in Sahraoui et al. (2007b). 



3. Elementary performance contributions 
to overall performance gain 

Let's proceed by considering the following question: 
what is the contribution of criterion i to the overall 

performance gain from 
I

P
�

 to 
*

P
�

? This contribution 
cannot be a priori computed with just the initial data 
of (P1): , , ,I

iP C i cuµ ∀
�

 and *P . Criteria contributions 

actually depend on the way in which overall 

performance evolves from 
I

P
�

 to 
*

P
�

. Let's now 
consider the following illustration (see Fig. 1): 

Three possible paths ����������	�  from 
I

P
�

 to 
*

P
�

 are 

depicted in Figure 1. The total cost *C  is provided by 

(P1): it is identical for all paths ��  from 
I

P
�

 to 
*

P
�

, 

whereas the criteria contributions to *
( ) ( )

I
P PC Cµ µ−
� �

 

depend on the individual path.  
 
 
 
 
 
 
 

 

 

Fig. 1: Contributions and trajectories 

The contributions of criterion 1, 1
jC
�

, 1, 2 3j and=  

are: 
1

*
1 1 1.( )IC P Pµ= ∆ −�� , 

1 1

' *
1 1.( )IC P Pµ= ∆ −��  and 

1 1

' *
1 1 1. .( )IC dp P P dpµ µ= ∆ + ∆ − −	� . Similarly, for 

criterion 2 , 2C �� , 1, 2 3j et=  are:  
'
2

*
2 2 1 2 2 1.( ) .( )I I IC P P P Pµ µ= ∆ − + ∆ −�� , 

2 2

' *
2 1 2 2 1.( ) .( )I I IC P P P Pµ µ= ∆ − + ∆ −��  and  

2

' *
2 2 1 2 2 1.( ) .( )I I IC P dp P P P dpµ µ+ −= ∆ − + ∆ −	� . 

It can easily be verified that:  
*

1 2( ) ( ), IC P C Pj C Cµ µ− = +∀
� �

� �� �
 

with ' '
1 21 2 1µ µ µ µ+ = + =∆ ∆ ∆ ∆  (i.e. Choquet 

integral continuity). 

Consequently, for a given path �� , the a posteriori 

contribution of criterion iC ��  can easily be 

computed. On the other hand, the a priori 

contribution of a criterion to *( ) ( )IP PC Cµ µ−
� �

 is not 

a precise quantity. In the following discussion, a 
method will be proposed to compute the lower and 
upper endpoints of the interval containing all possible 
values for the contribution of any criterion i. The aim 

here is to provide both the minimum and maximum 
expected profitability. A criterion must necessarily 

contribute at least up to mini i
NC C= �

�
, yet it is 

entirely possible for the contribution to reach 

maxi iC CΠ = �

�
. [ , ]i i

NC CΠ  characterizes the level of 

inaccuracy in the a priori contribution of criterion i 

to the overall gain *( ) ( )IP PC Cµ µ−
� �

. 

The principle used to compute [ , ]
i i

NC CΠ  will now be 

given; it involves a three-step procedure. 

Step 1: The non-oriented, complete graph Γ is built 
first; it ties all of the !n  simplexes 

[ ]{ }(1) ( )
0,1 / 0 .. 1

n

n
H P P Pσ σ σ= ∈ ≤ ≤ ≤ ≤

�
 together. 

Let 
I

H
σ

 be the simplex where IP
�

 belongs and 
F

H
σ  

the simplex of *P
�

. 
I

H
σ  would thus be the source of 

Γ  and 
F

H
σ  the sink. 

•  For eachHσ , it is verified that at least one point 

( )P σ
�

 exists such that: {1;..; },i n∀ ∈  *( )
i i

I
iP P Pσ≤ ≤ ; 

•  If such a point does not exist, then H
σ

 is to be 

deleted along with all arcs whose H
σ

 is an endpoint; 

•  Lastly, once each node H
σ

 has been verified, a 

filtered graph ΓF is obtained. 

Step 2: For each node H
σ

 in ΓF, the range of allowed 

values for ( )
i

P σ  is computed for each criterion i: 

[ ( ); ( )]Inf Sup

i i
B Bσ σ . This computation is given by the 

following expression: 

11

*

( )
( )( )

( )( ) max ; ( ) minInf Sup

i i j
j ij i

I
jB P B Pσ

σσ
σσ σ

−− ≥≤
= =            (7) 

Step 3: ΓF defines a set of paths 1..,k k mPath = , with 

I
H

σ  as the source and 
F

H
σ  the sink without the 

presence of any cycles. For each node H
σ

 in 
k

Path , a 

determination can be made of [ ( ); ( )]Inf Sup

i i
B Bσ σ  and 

( )
i

µ σ∆ , in addition to the linear coefficient of Cµ  for 

criterion i in simplex H
σ

. Let kPath

A
B  be the series of 

disjoint intervals ( )
i

I σ  such that 

( ) [ ( ); ( )]Inf Sup

i i i
I B Bσ σ σ⊆  and 

*

/ ( )

( ) [ ; ]
k

i i

H Nodes Path

I
iI PP

σσ

σ
∈

=� . With ( )L I  denoting the 

length of interval I , the following can then be 
computed: 

/ ( )

min ( ). ( ( ))
Pathk

k

i i

H Nodes Path

L I
σσ

µ σ σ
∈

∆�
AB

 and  

/ ( )

max ( ). ( ( ))
Pathk

k

i i

H Nodes Path

L I
σσ

µ σ σ
∈

∆�
AB

 

 
Ultimately: 

 

1 2( , )P P P=
�

x2

x1

0

*P
���

*P

1
�

2
�

3
�

1 2 1 1 2 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H2: x2>x1

1 2 2 1 1 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H1: x1>x2

dp

bissectrice

1 2( , )P P P=
�

x2

x1

0

*P
���

*P

1
�

2
�

3
�

1 2 1 1 2 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H2: x2>x1

1 2 2 1 1 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H1: x1>x2

dp

bissectrice

I I I
1 2( , )P P P=

�

x2

x1

0

*P
���

*P

1
�

2
�

3
�

1 2 1 1 2 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H2: x2>x1

1 2 2 1 1 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H1: x1>x2

dp

bissectrice

1 2( , )P P P=
�

x2

x1

0

*P
���

*P

1
�

2
�

3
�

1 2 1 1 2 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H2: x2>x1

1 2 2 1 1 2( , ) . .P P P Pµ µ µ= ∆ + ∆C

H1: x1>x2

dp

bissectrice

I I I

1 2 1 1 2 2( , ) . .µ µ µ= ∆ + ∆C P P x x

1 2

' '
1 2 1 2( , ) . .µ µ µ= ∆ + ∆C P P x x

1 2( , )P P P=
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/ ( )

min min ( ). ( ( ))
Pathk

k
k

i i i
Path

H Nodes Path

NC L I
σσ

µ σ σ
∈

= ∆�
AB

/ ( )

max max ( ). ( ( ))
Pathk

k
k

i i i
Path

H Nodes Path

C L I
σσ

µ σ σ
∈

Π = ∆�
AB

           (8) 

Let's note that 
i

NC  and 
i

CΠ  can be indexed by time k 

for monitoring purposes. [ ( ), ( )]
i i

NC k C kΠ  could in fact 

be computed at each intermediate point kP
�

 of the 
trajectory from IP

�
 to *P

�
. We then obtain the 

following relation:  
[ ( ), ( )] [ ( 1), ( 1)]

i i i i

N NC k C k C k C kΠ Π⊇ + + . This implies 

that the level of inaccuracy related to the contribution 
of a criterion to overall improvement gain 

*
( ) ( )

I
P PC Cµ µ−
� �

 naturally decreases as kP
�

 

approaches *P
�

. Once *P
�

 has been reached at 
*k k= , * *( ) ( )

i i

NC k C kΠ= , i.e.: 
* *([ ( ); ( )]) 0

i i

NL C k C kΠ = . At this point, there is 

obviously no remaining inaccuracy relative to the a 
posteriori contribution. The manager thus knows at 
any point in time the full range of expected values for 
the contribution of each criterion. These 
computations enable quantitatively comparing any 

two control policies from 
I

P
�

 to 
*

P
�

 in terms of 
criteria contribution. This aspect has been illustrated 
in the following section. 
Given the elementary increase vector 1( ),.., nδ δ δ=

�
, 

we can finally introduce 
i

Nw  and 
i

wΠ  such that: 

.
i

N N
i iC w δ=  and .

i i iC w δΠ Π= , which leads to: 

  
i i

N
iw w wΠ≤ ≤�             (9) 

where iw�  is the expected average contribution of 

criterion i  to overall performance gain 
*

( ) ( )
I

P PC Cµ µ−
� �

. 
i

Nw  and 
i

wΠ  are the lower and 

upper bounds of the expected weight, respectively. 

4. The improvement control problem 

The problem to be solved now consists of 
determining a step-by-step evolution over time for 
the performance profile P

�
, from IP

�
 to *P

�
. *P

�
 is 

the set-point of this control problem, with P
�

 being 
the controlled variable. 

The basic idea herein is to define some exceptional 
points kP

�
 on the trajectory from IP

�
 to *P

�
 in order 

to plan an expected step-by-step evolution of kP
�

. 
Providing the series of intermediate points kP

�
, from 

IP
�

 to *P
�

, enables defining the guidelines that 
managers would like the company improvement 
strategy to follow. This represents a purely 
managerial perspective. The contribution of a 
criterion to the overall performance gain introduced 
in Section 3 is key to this control perspective. 

 

4.1.  A statistical perspective: The worth index 

This first perspective has been inspired by the work 
of Labreuche in (Labreuche, 2004); in this paper, the 
author proposes an importance index for determining 
the criteria based on which a candidate first needs to 
improve in order to raise his overall score within a 
MAUT framework to the greatest extent possible. 
These results have been transposed here in the case 
of industrial performance improvement. Let's note 
that no quantitative objective *P  is provided in 
Labreuche's paper, and the qualitative aim merely 
stipulates doing one's best. 
Let's start by briefly recalling the notion of worth 
index, as developed in (Labreuche, 2004). This work 
was initiated in (Grabisch et al., 2001) with no initial 
profile IP

�
 being specified. Labreuche's goal was to 

generate advice on the criteria for which company 
performance first needs to be improved from a 
statistical perspective. This identification step 
depends on the aggregation model H  as well as on 
partial performances 

1 2( , ,..., )I I I I
nP P P P=

�
. To offer 

advice on the criteria slated for improvement, 
Labreuche has proposed introducing an index 
denoted by ( )( )C I

A H Pω
�

 for the aggregation function 

H  and initial profile IP
�

. For anyA C⊂ , ( )( )C I
A H Pω

�
 

will be the worth for profile IP
�

, to be improved in 
the criteria set among A, subject to the evaluation 
functionH . The author then constructed ( )( )C I

A H Pω
�

, 

which will be large if improving IP
�

 with respect to 
criteria A  yields a strong improvement in the overall 
evaluation ( )H P

�
. The recommended set of criteria to 

be improved first is the overlap *A C⊂  that 
maximizes ( )( )C I

A H Pω
�

. Put more precisely, 
improving the criteria in *A  maximizes the chances 
that overall performance reaches the highest level 
possible. Labreuche also proposed an axiomatic 
construction for the worth index ( )( )C I

A H Pω
�

. In the 

following discussion, only the case H Cµ=  will be 

considered. 

Let's now turn our attention to two profiles , '
� �IP P  

and A C⊂ . The following notations are introduced: 

\' ,
A

I

C AP P� �� �  is the compound profile, whose partial 

performances are such that: '
i

I

iP P>  if i A∈ , else 
I

iP . For any subset of criteria A C⊂ , 
A

P  is the 

restriction of P
�

 on A. 
One possible formula for the worth index is: 

'

' '

[ ,1 ] \

1
( )( ) [ ( , ) ( )].

(1 ) A

I
A A

A A AP P

i A i

c I I I

C AI
C P C P P C P dP

P
µµ µω

∈

∈

= −
− �∏

� �     (10) 

( )( )
A

c IC Pµω
�

 is thus the mean value of gain relative to 

the aggregate performance calculated over all 
expected values the improvement could assume 



' [ ,1 ]A

I
A AP P∈  within the upper hypercube (see Fig. 2). 

Let's also note that the upper bound of the integral 
equals 1A

 (i.e. no quantitative objective *P  has been 

specified). 

When cost functions with respect to partial 
improvements are introduced, a natural extension 
becomes: 

'

\

[ ,1 ]

' '

'

1
( )( )

(1 )

[ ( , ) ( )].

( , )A

C A

I
AA

i A

A P P
i A

I I
A Ac I

I I I
A A

C C
C P

P

P P P dP

c P P P
µ µ

µω
∈

∈

=
−

−
−�∏

�
�

   (11) 

The benefit 
\

'( , ) ( )
C A

I I
AC CP P Pµ µ−

�  is replaced by the 

benefit-to-cost ratio: \

'

'

( , ) ( )

( , )
C A

A

I I
A

I I
A A

C CP P P

c P P P
µ µ−

−

�

. 

In this framework, the alliance max ( )( )* / A

c I

A
C PA µω

�
 

stems from a statistical interpretation: 
* ( )( )C I

A
H Pω

�
 

actually provides the criteria that maximize the 

expectancy of '

\( , ) ( )A

I I
C AP P C PCµ µ−

�
/ '( , )I I

A A Ac P P P−  

appearing as a variate. No accurate value can be 

provided for overall improvement with * ( )( )C I

A
H Pω

�
, 

which merely guarantees that criteria in *A  
maximize the chance of reaching a high overall 
performance. 
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This statistics-based advice is expected for the theory 
games community, but proves to be somewhat 
disturbing for the field of industrial systems 
engineering. We will now see how Labreuche's 
model can be slightly modified and integrated into a 
step-by-step improvement procedure whenever a 
quantitative goal *P  has been assigned to the 
improvement. 

We are thus authorizing an upper bound Sup
CP  not 

necessarily equal to 1C  (as a consequence, the upper 

bounds in (10) and (11) will beSup
AP  and not 1A). This 

has been denoted as follows: 

( )( ),A

c I Sup
CC P Pµω

�

 with ( )( ) ( )(,1 )A A

c I c I
CC CP Pµ µω ω=

� �
          (12) 

Let's now return to the control problem of P
�

 from 
IP

�
 to *P

�
. ( )( ),A

c I Sup
CC P Pµω

�
 can be used for strategic 

control purposes. Let's also set 
*Sup

CP P=
�

, where *P
�

 is a 
solution for (P1). The aim here is to plan an expected 
step-by-step evolution over time for kP

�
 from IP

�
 to 

*P
�

. 

The algorithm (A1) then consists of the following: 

Given , , ,I
iP C i cuµ ∀

�
 

00, : Ik P P= =
� �  

while 
*

( ) ( )
k

C CP Pµ µ<
� �

 

Compute: 

*

* * *
( )( ) max ( )( )/ , ,

AA

c k c k

A C

C CA P P P Pµ µω ω
⊂

=
� � � �

 

Improve partial performances with respect to the 

criteria contained in *
A , until reaching time 1k + . 

Verify that all improved performance be kept in the 

upper hypercube 
*___k

A AP P . 

Note 1k
P

+�
 as the new attained performance profile 

at 1k + . 

Evaluate overall performance 1
( )

k
C Pµ

+�
. 

1k k= +
 

End while 
The series of points k

P
�

 now defines the required 
trajectory. 

Be aware that this step-by-step procedure is indeed 
feasible because *P

�
 remains a solution of (P1) with 

any 
k

P
�

 as the initial profile within the upper 

hypercube 
I

P
�

— *P
�

 (for proof, consider that L1 norm 
is used in (P1) and no regression is authorized with 
respect to any criterion). (A1) ensures that from any 

kP
�

 to 1kP +�
, the improved criteria correspond to 

those that maximize the chance of reaching a high 
level of performance at time 1k + . This constitutes 
an optimum in the statistical sense: on average, the 
criteria of *A  guarantee maximum expectancy for 
overall improvement at 1k + , which does not 

necessarily mean that each intermediate 
k

P
�

 
corresponds to an efficient improvement. 
Constraining the improvement to be efficient at each 

intermediate 
k

P
�

 corresponds to another perspective, 
which will now be explained. 

4.2. The local efficiency perspective 

Let's once again consider the control problem of P
�

 
from IP

�
 to *P

�
. We are no longer interested here in 

maximizing the chances of reaching high 
performance at each step k, as suggested by the worth 
index method, and the decisive strategic factor is now 

to guarantee efficiency at any intermediate point 
k

P
�

. 

The basic notion is to "locally" reuse (P1) in order to 
define such a series of points kP

�
. Intermediate points 

kP
�

 indeed prove necessary whenever *P  appears as 
an ambitious set-point requiring extensive time 
before being reached. Managers must define short 
terms and gradual improvements, for which it is 
simpler to plan adequate implementation. These 
intermediate points can be anticipated as a locally-
efficient improvement. The guidelines consist of 
providing short-term objectives to be reached 
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P2

P3

P1

P2

P3

1A°
°I
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efficiently and thus proceeding, step-by-step, until 
*P

�
. Below is the A2 algorithm description: 

Given , , ,I
iP C i cuµ ∀

�
 

Provide a real series of overall objectives kP , such 

that ( ) *
I k

C P P Pµ ≤ ≤
�

 (e.g. if *P
�

 is reached in p 

steps, we may choose 

* ( )
( . 1,..,,)

I

k I
C

C
P P

P P k k p
p

µ
µ

−
= =+

�
�

. This is a 

passing suggestion, with the idea being merely to 
ensure short-term and gradual improvements). 

00, : Ik P P= =
� �

.
 

while 
*

( ) ( )
k

C CP Pµ µ<
� �

 

Solve (P1) with k
P
�

 as the initial point and 
1k

P
+

 as 
the set-point, along with boundary constraints 

*, 0, 1l r

i i i
i Pδ δ∀ = = − , which is responsible for 

providing 
1k

P
+�

. 
1k k= +  

End while 
The series of points k

P
�

 serves to define this 
required trajectory. 

This strategy guarantees a local efficient 

improvement once k
P
�

 has been reached. The 
implementation is both locally and globally efficient 
when *P

�
 is ultimately reached. Local efficiency is 

another way of foreseeing the trajectory from IP
�

 to 
*P
�

, which obeys a different decisive factor from that 
included in the worth index method. Each one 
corresponds to clearly distinct attitudes with respect 
to the potential risk for failure. 

4.3 Semantic comparison 

From a semantic perspective, this second alternative 
approximates control theory modeling, whereas the 
first alternative tends to be oriented in favor of games 
theory with a statistical semantic. Both can be easily 
legitimated: the first ensures that improved criteria 
correspond to the maximum expected overall gain at 
any point in time. On the other hand, the second 
relies on a decisional criterion based upon local and 
global efficiency. Both have their advantages - they 
are justifiable at any time - yet also feature a number 
of drawbacks. The worth index rationale will indeed 
provide the most statistically profitable criteria, 
although nothing can be determined regarding the 
expected resultant gain. For example, the maximum 
worth index can be associated with a criterion whose 
margin of improvement is highly reduced (the 
company's partial performance with respect to this 
criterion is already excellent and even if perfection is 
reached (i.e. a value of 1), the overall performance 
will not be significantly improved). Furthermore, at 
each kP

�
, the worth index relies on statistical 

considerations; hence, the performance evaluation at 
time 1k +  can in practice be discouraging! On the 

other hand, a (P1)-based logic guarantees efficiency 
at each kP

�
 if and only if kP

�
 is precisely reached. 

Moreover, this condition requires that managers 
define the series of real values kP . 

5. Case study 

The case study concerns an SME producing kitchens 
and has been discussed in detail in (Clivillé et al., 
2007). The overall objective of the company is to 
continuously increase productivity. Let's start by 
supposing that a partial breakdown of the strategic 
objective, relative to productivity rate, into four basic 
criteria is to be processed: Inventories, Equipment 
availability, Operator skill, and Quality. Overall 
performance is defined as the aggregation of these 
four associated indicators with a Choquet integral 

Cµ . All numerical information presented hereafter 

has been obtained by interviewing management staff, 
in accordance with the Macbeth methodology 
(Clivillé et al., 2007). Table 1 provides the current 

performances 1( , , )I I I
nP PP =

�
� , the relative 

importance of each criterion to the SME activity, and 
the estimated icu  costs for improving performance. 

In this example, we have used a 2-additive Cµ  (only 

the interactions between two criteria are considered 
in this model). In the present case, we obtain:  

( ) ( ) ( )( ) ( )( )

1 1

2 2
i i i j i jj i j i

I Iµ ν
> <

∆ = + −� � , where ( )iν  are 

the Shapley indices and 
( )( )i jI  the interaction 

coefficients between criteria i and j (Table 2). 

Table 1: Weights, costs and initial performances 

 Indicator νi cui IP
�

 

C1 Inventories 0.30 1,000 k€ 0.80 

C2 Equipment availability 0.25 3,000 k€ 0.25 

C3 Quality 0.30 2,000 k€ 0.75 

C4 Operator skill 0.15 3,000 k€ 0.50 

Table 2: Interaction coefficients 

Interactions between: Value 

Inventories - Equipment availability 0.30 

Inventories - Quality 0.25 

Operator skill - Quality 0.30 

Current aggregate performance equals 
( )( ) 0.8,0.25,0.75,0.5 0.483IC P Cµ µ= =

�
. The expected 

overall performance stands at * 0.9P = . Solving (P1) 

with 
I

P
�

 as the initial point and * 0.9P =  yields 
*

(1,1,1,0.636)P =
�

, which corresponds to a global 

improvement cost * 3358 €kC = . This reflects the 
static perspective of efficient improvement. * 0.9P =  



now appears as an ambitious set-point, such that the 
manager decides to reach it within three years. The 
procedure adopted to achieve this goal must then be 
defined, and the manager opts to set intermediate 
targets each year. The two strategies described in this 
paper have been envisaged (see algorithms A1 and 
A2, respectively). 

- Local efficiency rationale: The manager chooses 
more pragmatic and short-term overall performance 
levels for each end-of-year, i.e. 1P  and 2P . The 

optimization problem (P1) is first solved with 
I

P
�

 as 
the initial profile and 1P  as the expected overall 

performance, which yields 1P
�

 at the end of the first 

year. Next, (P1) is solved with 1P
�

 and 2P : the result 

at the end of the second year is 2P
�

. Lastly, the 

improvement from 2P
�

 to 
*

P
�

 over the last year 
remains. The manager justifies his strategy as an 
efficient step-by-step improvement implementation. 
The computations have been summarized in Table 3 
(left-hand part). 

- Worth index rationale: The worth index is 
computed at the beginning of each year; it provides 
the criteria that need to be improved first. At the end 
of the year, the performance vector can be observed. 
The worth index is then recalculated using this new 

vector until reaching 
*

P
�

. These results are 
summarized in the right-hand part of Table 3. Thus, 

*

2{ }A c=  for the first year (with the maximum 

worth index being derived for 
* *

{ }* 2
, ,( ) ( )) ) 0,01303( (C I C I

CA
C P P C P Pµ µω ω= =

� � � �
) and 

3

(0.8,0.65,0.75,0.5)P =
�

 is reached, then for the 

second year *

1 2 3{ , , }A c c c=  (with the maximum 

worth index obtained for 

1 3

* *
{ , , }* 2

( ) , ( ) ,) ) 0,01147( (C I C I
C C CA

C P P C P Pµ µω ω= =
� � � �

), and 
4

(1,0.9,0.8,0.5)P =
�

 is attained. For the last year, the 

improvement from 
4

P
�

 to 
*�

P  remains. The manager 
justifies this strategy as the most statistically 
profitable, step-by-step implementation. 

Table 3 - left part: Trajectory with local efficiency; 
right part: Trajectory with the worth index 

1st year  1st year   

 2nd year   2nd year   

 3rd year   3rd year 

P
�

 IP
�

 1P
�

 2P
�

 *P
�

 IP
�

 3P
�

 4P
�

 *P
�

 

1C  0.8 0.8 0.914 1 0.8 0.8 1 1 

2C  0.25 0.759 0.914 1 0.25 0.65 0.9 1 

3C  0.75 0.759 0.914 1 0.75 0.75 0.8 1 

4C  0.5 0.5 0.5 0.636 0.5 0.5 0.5 0.636 

( )PCµ
�  0.483 0.69 0.8 0.9 0.483 0.643 0.768 0.9 

Moreover, for a quantitative comparison of both 
control strategies, the interval 
[ ( ), ( )]

i i

NC k C kΠ ( 3k = years) providing the lower and 

upper bounds of the criterion i contribution is 

computed with 
� I
P  as the initial point. Results are 

reported in Table 4. The "Improvement" column 

provides the coordinates of vector *δ
�

 from 
� I
P  to 

*
P
�

. The "Costs" column lists the costs corresponding 
to each criterion for optimal improvement. Columns 

( )
i

NC t  and ( )
i

C tΠ  yield the minimum and maximum 

expected contributions for an efficient improvement 

from 
� I
P  to *

P
�

. Column 6 (resp. 7) indicates the 
corresponding minimum (resp. maximum) expected 
profitability (i.e. contribution/cost ratio) for each 
criterion. Columns 8 and 9 display the a posteriori 
contribution and profitability of each criterion 

towards *( ) ( )I
C P C Pµ µ−

� �
, respectively, when a 

locally-efficient strategy has been adopted. On the 
other hand, columns 10 and 11 offer the same data 
for the worth index rationale. Note that both of these 
strategies reveal opposite effects on the current 
example: the most profitable criterion for one is the 
least for the other. For the local efficiency control 
strategy, the most profitable criterion is indeed 
Inventories and the least profitable is Quality. In 
contrast, for the worth index control strategy, the 
most profitable criterion is Quality and the least is 
Inventories. 

Conclusion 

The MAUT provides an appropriate framework for 
analyzing industrial performance and designing 
relevant improvements. Multi-criteria optimization 
problems do in fact serve as basic useful tools in the 
design of an efficient improvement when overall 
company performance is being modeled as the 
aggregation of elementary performances. Yet, they 
merely introduce the expected performance profile to 
be reached in a case of efficiency. A deeper 
investigation would be required both to understand 
the role of each criterion in the improvement and to 
design the way performance should evolve over time 
in order to attain the expected profile. To resolve this 
issue, the concept of criterion contribution to overall 
performance gain has been applied, and it plays a key 
role in improvement analysis. Contribution criteria 
can actually be input to design monitoring 
functionalities that supervise the way in which an 
efficient improvement is performed; the computation 
of such functionalities allows grasping the role of any 
criterion in the improvement. They may also be used 
in control policies to establish the way performance 
should evolve from the initial performance profile to 
the expected end profile. This study has adopted a 
purely managerial perspective for the improvement 
process; it does not take into account the material and 
operational constraints inherent in any improvement 



project. MAUT models are preference models, 
meaning they only capture what managers are 
expecting for their company's development (see 
Montmain, 2009 for further details concerning the 
transition from motivation to action). 
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Table 4: Expected and observed contribution and profitability 

Criterion Improvt  

Cost 

(k€) ( )
i

N
C t  ( )

i
C t

Π   

Minimum 
Expected 

Profitability  
(%) 

Maximum 
Expected 

Profitability 
(%) 

Observed 
Contribution 

Strategy 1:  
Local efficiency 

Observed 
Profitability  

(%) 

Strategy 1 

Observed 
Contribution 

Strategy 2:  
Worth index 

Observed 
Profitability 

(%) 

Strategy 2 

C1 0.2 200 0.0099 0.11 4.95E -3 5.5E -2 0.11 5.5E -2 0.01 5E -3 

C2 0.75 2,250 0.24 0.3 1.067E-2 1.33E-2 0.24 1.067E-2 0.3 1.33E-2 

C3 0.25 500 0.02875 0.06875 5.75E-3 1.375E-2 0.02875 5.75E-3 0.06875 1.375E-2 

C4 0.136 408 0.0374 0.0374 9.17E-3 9.17E-3 0.0374 9.17E-3 0.0374 9.17E-3 

Total  3,358     0.41615  0.41615  

 

 

 

 
 


