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This paper begins by discussing the implementation of monitoring and control strategies to improve industrial performance. Industrial performance is presently defined in terms of multiple and multi-level criteria, which need to be synthesized for overall improvement purposes. The Multi-Attribute Utility Theory (MAUT) provides tools relevant to decisionmaking within this specific context. According to our approach, overall company performance is expressed as the aggregate value of each elementary performance relative to each criterion, with the aggregation operator being a Choquet integral. The paper then recalls previous studies regarding the design of efficient improvements within this same MAUT framework, before focusing on an analysis of overall performance gain in terms of elementary performance improvements. The contribution of an aggregate performance gain criterion plays a key role in this study. Two improvement strategies will moreover be examined and compared in light of this concept development. A case study has also been included to illustrate the proposals set forth in the paper.

Problem statement

As a means of coping with the complexity of the current industrial context, new control strategies designed to introduce continuous improvements must include not only aspects of multi-criteria performance expression, but also pertinent relational modeling [START_REF] Bititci | Modelling of performance measurement systems in manufacturing enterprises[END_REF][START_REF] Berrah | Global vision and performance indicators for an industrial improvement approach[END_REF][START_REF] Berrah | A cyclic enterprise reengineering method[END_REF]. Control strategies are in fact required to define, compare and select improvement actions with respect to the relationships existing between performance expressions [START_REF] Bititci | Modelling of performance measurement systems in manufacturing enterprises[END_REF]. Performance Measurement Systems (PMS), which are instruments that support decision-making [START_REF] Bititci | Modelling of performance measurement systems in manufacturing enterprises[END_REF][START_REF] Neely | The performance measurement revolution: why now and what next[END_REF][START_REF] Kueng | Building a process performance measurement system: Some early experiences[END_REF], fulfill such a purpose. From a global perspective, a PMS is a multi-criteria instrument for informing decision-makers on a variety of matters, e.g. performance level, criteria necessitating improvement. A PMS is composed of a set of performance expressions that need to be consistently organized with respect to company objectives [START_REF] Berrah | A cyclic enterprise reengineering method[END_REF]. In support of the decision, the set of performances must be processed in order to compare the various situations. By their very nature, PMS require the use of multi-criteria methods [START_REF] Santos | Adding value to performance measurement by using system dynamics and multi-criteria analysis[END_REF]. The primary quantitative frameworks found in the literature on PMS are intended to reduce dimensionality and hence a product of the MAUT (Multi-Attribute Utility Theory) aggregation model school [START_REF] Diakoulaki | A multicriteria approach for evaluating the performance of industrial firms[END_REF]Lee et al., 1995;[START_REF] Rangone | An analytical hierarchy process framework for comparing the overall performance of manufacturing departments[END_REF][START_REF] Kim | Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement[END_REF][START_REF] Suwignjo | Quantitative models for performance measurement system[END_REF], although a few studies have been based on outranking models [START_REF] Mareschal | Bankadviser: an industrial evaluation system[END_REF][START_REF] Babic | Ranking of enterprises based on multi-criteria analysis[END_REF]. MAUT models allow defining the overall performance of a company with respect to its various elementary objectives [START_REF] Berrah | Information aggregation in industrial performance measurement: rationales, issues and definitions[END_REF]. Moreover, they serve to highlight priorities in the decision-maker's strategy [START_REF] Clivillé | Quantitative expression and aggregation of performance measurements based on the Macbeth multi-criteria method[END_REF]. The aggregate performance model is thus able to incorporate a portion of the company's policy. According to our approach, the aggregation model is applied with a Choquet integral, which enables handling both the relative weighting of criteria and their interactions (Berrah et al., 2008a). This paper is based on previous work presented in Berrah et al. (2008a) and Sahraoui et al. (2007aSahraoui et al. ( ,2007b)), which has proposed decision-support tools able to assist managers improve design performance as regards company strategy, so as to reach a goal while minimizing costs. Multi-criteria optimization techniques are suggested to attain this goal and, in so doing, characterize an efficient improvement [START_REF] Berrah | Efficacy and efficiency indexes for a multicriteria industrial performance synthesized by Choquet integral aggregation[END_REF]. The paper will focus here on a related issue: what exactly is the contribution of an elementary performance to overall performance gain? This concept of contribution plays a vital role in understanding the way improvements operate. The recommendations forwarded on elementary performance targeted for improvement still rely on this concept. Two different improvement
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policies are semantically analyzed and justified through this point of view. The first is based on statistical considerations relative to the most likely profitable criteria contributions towards overall performance gain. The main idea herein is to determine those criteria on which the company should statistically improve, first in order to raise its overall performance as much as possible. The theoretical work behind this proposal was initially proposed in [START_REF] Labreuche | Determination of the criteria to be improved first in order to improve as much as possible the overall evaluation[END_REF]. The second improvement policy is related to the concept of efficient improvement (Sahraoui, 2007a(Sahraoui, ,2007b)), which states the principle of defining a step-by-step, locally-efficient improvement within a multi-criteria context until an anticipated comprehensive goal has been achieved. The corresponding iterative procedures are provided and then formalized into algorithms A 1 and A 2 . In both cases, the contribution of an individual criterion to overall performance improvement plays a key role. Consequently, a monitoring function of criteria contributions over time is provided for a quantitative and theoretical comparison of both types of improvement rationale. This paper has been organized as follows. Section II briefly recalls the basic MAUT principles and discusses the characteristics of industrial performance expressions. The Choquet integral will be proposed as a solution for handling the interactive multi-criteria aspects of industrial performance. The aggregation framework motivates us to redefine concepts such as efficiency; performance improvement problems will be modeled as optimization problems. Section III then defines the contribution of elementary performance to overall performance gain. The algorithm used to compute this contribution will be provided. Section IV will introduce two different control policies derived from criteria contributions, in the aim of performing an efficient improvement. These policies will first be semantically compared before providing a more quantitative comparison, based on the previous theoretical analysis of elementary contributions to overall performance gain, by means of a case study (Section V).

The aggregative model of overall performance

MAUT: A model of preferences

Defining an improvement within the multi-criteria performance context poses a number of problems. First of all, it must be possible to compare any two of the situations described by their elementary performance expressions.

Decision support can thus consist of reducing dimensionality in order to facilitate analysis. It is generally recognized that humans lose their ability to make rational decisions once more than 3 to 5 criteria are involved. MAUT (Multi-Attribute Utility Theory) [START_REF] Fishburn | Utility Theory for Decision-Making[END_REF][START_REF] Fishburn | The foundations of expected utility[END_REF][START_REF] Keeney | Decisions with Multiple Objectives -Preferences and Value Tradeoffs[END_REF] provides the necessary set of tools to resolve this problem.

Preference representation is a central topic in decision-making and measurement theory [START_REF] Modave | Preference representation by a Choquet integral: Commensurability hypothesis[END_REF] and usually entails finding a real-valued utility function U , such that for any pair of alternatives ,

x y in a set X of alternatives of interest, x y 1

(i.e. x is preferred to y) iff ( ) ( ) U x U y ≥ . When alternatives are n-dimensional, i.e. 1 n i i X X = = ∏
, one widespread model is the decomposable model developed by [START_REF] Krantz | Additive and Polynomial Representations[END_REF], where

U assumes the form 1 1 1 ( ,.., ) ( ( ),.., ( )) n n n U x x g u x u x =
and where (.) i u are real-valued functions. Assuming that 1 is a weak order on X , it is known that a representation with g being strictly increasing can be derived iff 1 satisfies independence and X is separable [START_REF] Krantz | Additive and Polynomial Representations[END_REF].

MAUT is based on utility theory, which offers a systematic approach to quantifying individual preferences. Utility theory consists of interpreting any measurement as a degree of satisfaction on [0,1] , with 0 related to the worst alternative and 1 to the best. Measurements are thus made to be commensurable and interpretable. In this manner, a utility function ( )

i i u x is associated with each measurement i
x , and MAUT is then intended to provide the synthesis utility U that yields a solution to the comparison problem of two situations described by their elementary utilities. Many MAUT studies have examined both the required properties of decision-maker preferences to be included in the analytical form g and the way in which g can be identified.

Overall performance in the MAUT framework

In practice, elementary performance is provided by so-called performance indicators; this assessment stems from the straightforward comparison of objectives (as obtained by breaking down the overall objective considered) with recorded measurements. The performance expressions can thus be formalized by means of the following mapping [START_REF] Berrah | Global vision and performance indicators for an industrial improvement approach[END_REF]: P :

( , ) P( , ) (1)

O M E o m o m P × → → = O , M
In light of MAUT, overall performance is thus viewed as a synthesized utility function.

The Choquet integral model

In this study, the aggregative model g is a Choquet integral, which enables accommodating both the relative importance of each criterion and the interactions taking place among them. This choice will not be discussed herein (see Berrah et al. (2008a) for further justification). Let's simply note at this point that the interactions considered in our preference model are not the physical ones (material constraints) dealt with in [START_REF] Felix | Relationships between goals in multiple attribute decision making Source[END_REF], where action plans may exert a combined impact on several performance indicators. In our preference model, an interaction occurs between any two criteria once they need to be satisfied simultaneously (i.e. positive synergy) or when their simultaneous satisfaction is seen as a redundancy (negative synergy) (see [START_REF] Montmain | The translation of will into act: achieving a consensus between managerial decisions and operational abilities[END_REF] 
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: this corresponds to the ranking (.), where the Choquet integral assumes a linear expression. Such a remark proves critical to solving optimization problems that involve a Choquet integral, in terms of linear programming within simplex regions. The three following propositions are equivalent:

Overall performance improvement

(1) (2) ( ) ( )

F I C P C P µ µ ≥ 2 2
, where C µ models company development policy;

(3) Substantial improvement has been achieved between the two observed states I P 2 and F P 2 .

Efficient improvement in the MAUT framework

The following step has been introduced to assist decision-makers in their analysis by considering how performance could be improved. Decision-makers generally know which actions need to be carried out in order to increase an elementary performance. Their problem then is to design an improvement that leads to the required overall performance with a minimal increase allocated to each elementary performance, i.e. a minimum additional cost relative to each individual elementary performance. This notion of optimal improvement is directly correlated with the concept of efficient improvement. The notion of efficiency actually implies both the target objective and the resource allocation (costs, efforts, means, risks, etc.) associated with the improvement: an improvement is thus efficient if any restrictive modification to its allocated resources necessarily entails a decrease in overall performance.

A performance improvement from I P 2 to F P 2 that induces a cost C and leads to an evolution, such that ( ) ( )

F I F I P P C P C P µ µ ⇔ ≥ 1
, can be characterized by its overall performance gain ( ) ( )

F I C P C P µ µ
relative to its cost C. The higher the overall performance gain and the lower the cost, the more efficient the improvement becomes.

Let 1 2 ( , ,..., )

I I I I n P P P P = 2
be the initial performance profile and ( )

I I P g P = 2
the associated aggregate performance. The problem to be solved then calls for identifying the most "efficient" way to improve overall performance, i.e. the least costly improvement in elementary performance that achieves an expected overall performance model along with a predefined set of cost functions related to each PMS criterion.

Let's also denote ( , ) i i i c P δ as the cost related to a partial improvement from i P to i i P δ + . For the sake of simplicity, ( , )

I i i i
c P δ is assumed to be a linear function with respect to i δ , i.e.: ( , )

.

I i i i i i c P cu δ δ = ,
with i cu being a unit cost. The cost function for an overall improvement from ( )

I I P P C µ = 2 to ( ) P C µ δ + 2 2 , with 1 ( ) ,.., n P P P = 2 and 1 ( ) ,.., n δ δ δ = 2
, can be written as (with the cost separability assumption):

1 ( , ) ( , ) n i i i i c P c P δ δ = = 1 2 2 (4)
The search for an efficient improvement may then be formalized into the following optimization problem (P 1 ):

Objective function: min ( , ) A second associated optimization problem (P 2 ) can now be considered for the efficiency characterization: it consists of computing the maximum expectable improvement for a given additional investment B δ . (P 2 ) is defined as follows:

c P δ 2 2 Constraints: ( ) * P P C µ δ + = 2 2 -(behavioral constraint) , 1 i i i l r i i P δ δ δ ∀ ≤ ≤ ---(boundary constraints)
Objective function:

max ( ) P C δ µ δ + 2 2 2 Constraints: ( , ) c P B δ δ = 2 2 -(behavioral constraint) , 1 i i i g d i i P δ δ δ ∀ ≤ ≤ - --(boundary constraints)
The MAUT model thus enables incorporating managers' preferences into an analytical format that facilitates the introduction of concepts such as efficiency in the form of optimization problems.

The piecewise linearity of C µ enables solving (P 1 ) as a linear programming problem.

C µ indeed behaves like a WAM on each simplex [ ] { } (.) (1) ( ) 0,1 / 0 1 n n H P P P = ∈ ≤ ≤ ≤ ≤ 2 4
. This remark serves to break down the initial problem into ! n linear programming sub-problems. Nonetheless, this solution can only be considered for low n values (Berrah et al., 2008a).

Another idea calls for considering the problem as a whole and then introducing complementary linear programming considerations (Sahraoui et al., 2007a(Sahraoui et al., ,2007b)). To this end, let's start with the following statement: Guaranteeing that a potential solution belongs to a given ,
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A vertex x 2 is thus defined by n equations: ( 1) nfrom the preceding constraints taken to equality conjointly with
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Elementary performance contributions to overall performance gain

I P P C C µ µ - 2 2
is not a precise quantity. In the following discussion, a method will be proposed to compute the lower and upper endpoints of the interval containing all possible values for the contribution of any criterion i. The aim here is to provide both the minimum and maximum expected profitability. A criterion must necessarily contribute at least up to min

i i N C C = 8 8
, yet it is entirely possible for the contribution to reach max

i i C C Π = 8 8
. [ , ] i i N C C Π characterizes the level of inaccuracy in the a priori contribution of criterion i to the overall gain * ( ) ( )

I P P C C µ µ - 2 2
.

The principle used to compute [ , ] i i N C C Π will now be given; it involves a three-step procedure.

Step 1: The non-oriented, complete graph Γ is built first; it ties all of the • For each H σ , it is verified that at least one point Step 2: For each node H σ in Γ F , the range of allowed values for ( ) i P σ is computed for each criterion i:

[ ( ); ( )] Inf Sup i i B B
σ σ . This computation is given by the following expression:

1 1 * ( ) ( ) ( ) ( ) ( ) max ; ( ) min Inf Sup i i j j i j i I j B P B P σ σ σ σ σ σ - - ≥ ≤ = = (7) 
Step 3: Γ F defines a set of paths 

i i i i N N C k C k C k C k Π Π ⊇ +
+ . This implies that the level of inaccuracy related to the contribution of a criterion to overall improvement gain * ( ) ( )

I P P C C µ µ - 2 2
naturally decreases as where i w 7 is the expected average contribution of criterion i to overall performance gain * ( ) ( )

I P P C C µ µ - 2 2
. i N w and i w Π are the lower and upper bounds of the expected weight, respectively.

The improvement control problem

The problem to be solved now consists of determining a step-by-step evolution over time for the performance profile P , enables defining the guidelines that managers would like the company improvement strategy to follow. This represents a purely managerial perspective. The contribution of a criterion to the overall performance gain introduced in Section 3 is key to this control perspective.

A statistical perspective: The worth index

This first perspective has been inspired by the work of Labreuche in [START_REF] Labreuche | Determination of the criteria to be improved first in order to improve as much as possible the overall evaluation[END_REF]; in this paper, the author proposes an importance index for determining the criteria based on which a candidate first needs to improve in order to raise his overall score within a MAUT framework to the greatest extent possible. These results have been transposed here in the case of industrial performance improvement. Let's note that no quantitative objective * P is provided in Labreuche's paper, and the qualitative aim merely stipulates doing one's best. Let's start by briefly recalling the notion of worth index, as developed in [START_REF] Labreuche | Determination of the criteria to be improved first in order to improve as much as possible the overall evaluation[END_REF]. This work was initiated in [START_REF] Grabisch | How to improve acts: an alternative representation of the importance of criteria in MCDM[END_REF] 

P P ∈

within the upper hypercube (see Fig. 2).

Let's also note that the upper bound of the integral equals 1 A (i.e. no quantitative objective * P has been specified).

When cost functions with respect to partial improvements are introduced, a natural extension becomes:

' \ [ ,1 ] ' ' ' 1 ( )( ) (1 ) 
[ ( , ) ( )]. This statistics-based advice is expected for the theory games community, but proves to be somewhat disturbing for the field of industrial systems engineering. We will now see how Labreuche's model can be slightly modified and integrated into a step-by-step improvement procedure whenever a quantitative goal * P has been assigned to the improvement.

( , )

We are thus authorizing an upper bound Sup C P not necessarily equal to 1 C (as a consequence, the upper bounds in (10) and (11) will be Sup A P and not 1 A ). This has been denoted as follows: (for proof, consider that L 1 norm is used in (P 1 ) and no regression is authorized with respect to any criterion). (A 1 ) ensures that from any

k P 2 to 1 k P +

2

, the improved criteria correspond to those that maximize the chance of reaching a high level of performance at time 1 k + . This constitutes an optimum in the statistical sense: on average, the criteria of * A guarantee maximum expectancy for overall improvement at 1 k + , which does not necessarily mean that each intermediate corresponds to another perspective, which will now be explained.

The local efficiency perspective

Let's once again consider the control problem of P 2 from I P 2 to * P 2 . We are no longer interested here in maximizing the chances of reaching high performance at each step k, as suggested by the worth index method, and the decisive strategic factor is now to guarantee efficiency at any intermediate point

k P 2 .
The basic notion is to "locally" reuse (P 1 ) in order to define such a series of points k P 2

. Intermediate points k P 2 indeed prove necessary whenever * P appears as an ambitious set-point requiring extensive time before being reached. Managers must define short terms and gradual improvements, for which it is simpler to plan adequate implementation. These intermediate points can be anticipated as a locallyefficient improvement. The guidelines consist of providing short-term objectives to be reached . This is a passing suggestion, with the idea being merely to ensure short-term and gradual improvements). 0 0, : , which obeys a different decisive factor from that included in the worth index method. Each one corresponds to clearly distinct attitudes with respect to the potential risk for failure.

I k P P = = 2 2 .

Semantic comparison

From a semantic perspective, this second alternative approximates control theory modeling, whereas the first alternative tends to be oriented in favor of games theory with a statistical semantic. Both can be easily legitimated: the first ensures that improved criteria correspond to the maximum expected overall gain at any point in time. On the other hand, the second relies on a decisional criterion based upon and global efficiency. Both have their advantages -they are justifiable at any time -yet also feature a number of drawbacks. The worth index rationale will indeed provide the most statistically profitable criteria, although nothing can be determined regarding the expected resultant gain. For example, the maximum worth index can be associated with a criterion whose margin of improvement is highly reduced (the company's partial performance with respect to this criterion is already excellent and even if perfection is reached (i.e. a value of 1), the overall performance will not be significantly improved). Furthermore, at each 

Case study

The case study concerns an SME producing kitchens and has been discussed in detail in [START_REF] Clivillé | Quantitative expression and aggregation of performance measurements based on the Macbeth multi-criteria method[END_REF]. The overall objective of the company is to continuously increase productivity. Let's start by supposing that a partial breakdown of the strategic objective, relative to productivity rate, into four basic criteria is to be processed: Inventories, Equipment availability, Operator skill, and Quality. Overall performance is defined as the aggregation of these four associated indicators with a Choquet integral C µ . All numerical information presented hereafter has been obtained by interviewing management staff, in accordance with the Macbeth methodology [START_REF] Clivillé | Quantitative expression and aggregation of performance measurements based on the Macbeth multi-criteria method[END_REF]. Table 1 provides the current performances 1 ( , , )

I I I n P P P = 2 3
, the relative importance of each criterion to the SME activity, and the estimated i cu costs for improving performance.

In this example, we have used a 2-additive C µ (only the interactions between two criteria are considered in this model). In the present case, we obtain:

( ) ( ) ( )( ) ( )( ) 1 1 2 2 i i i j i j j i j i I I µ ν > < ∆ = + - 1 1 
, where ( ) i ν are the Shapley indices and ( )( ) i j I the interaction coefficients between criteria i and j (Table 2). . This reflects the static perspective of efficient improvement. * 0.9 P = now appears as an ambitious set-point, such that the manager decides to reach it within three years. The procedure adopted to achieve this goal must then be defined, and the manager opts to set intermediate targets each year. The two strategies described in this paper have been envisaged (see algorithms A 1 and A 2 , respectively).

-Local efficiency rationale: The manager chooses more pragmatic and short-term overall performance levels for each end-of-year, i.e. -Worth index rationale: The worth index is computed at the beginning of each year; it provides the criteria that need to be improved first. At the end of the year, the performance vector can be observed. The worth index is then recalculated using this new vector until reaching * P

2

. These results are summarized in the right-hand part of Table 3. Thus, ), and 4

(1, 0.9, 0.8, 0.5) . The "Costs" column lists the costs corresponding to each criterion for optimal improvement. Columns , respectively, when a locally-efficient strategy has been adopted. On the other hand, columns 10 and 11 offer the same data for the worth index rationale. Note that both of these strategies reveal opposite effects on the current example: the most profitable criterion for one is the least for the other. For the local efficiency control strategy, the most profitable criterion is indeed Inventories and the least profitable is Quality. In contrast, for the worth index control strategy, the most profitable criterion is Quality and the least is Inventories.

P = 2 

Conclusion

The MAUT provides an appropriate framework for analyzing industrial performance and designing relevant improvements. Multi-criteria optimization problems do in fact serve as basic useful tools in the design of an efficient improvement when overall company performance is being modeled as the aggregation of elementary performances. Yet, they merely introduce the expected performance profile to be reached in a case of efficiency. A deeper investigation would be required both to understand the role of each criterion in the improvement and to design the way performance should evolve over time in order to attain the expected profile. To resolve this issue, the concept of criterion contribution to overall performance gain has been applied, and it plays a key role in improvement analysis. Contribution criteria can actually be input to design monitoring functionalities that supervise the way in which an efficient improvement is performed; the computation of such functionalities allows grasping the role of any criterion in the improvement. They may also be used in control policies to establish the way performance should evolve from the initial performance profile to the expected end profile. This study has adopted a purely managerial perspective for the improvement process; it does not take into account the material and operational constraints inherent in any improvement project. MAUT models are preference models, meaning they only capture what managers are expecting for their company's development (see [START_REF] Montmain | The translation of will into act: achieving a consensus between managerial decisions and operational abilities[END_REF] for further details concerning the transition from motivation to action). 
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  In the MAUT framework, this condition provides the following definition of improvement:

  (e.g. improvement with respect to criterion i cannot exceed 30%).

  by noting that all realizable solutions related to a linear programming problem belong to a convex hull, the associated vertices x 2 exhibit a particular profile due to the three types of inequalities included in the problem model (

  Let's proceed by considering the following question: what is the contribution of criterion i to the overall performance gain from cannot be a priori computed with just the initial data of (P 1 ): 1. The total cost * C is provided by (P 1 ): it is identical for all paths 1 on the individual path.
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  thus be the source of Γ and F H σ the sink.

  If such a point does not exist, then H σ is to be deleted along with all arcs whose H σ is an endpoint; • Lastly, once each node H σ has been verified, a filtered graph Γ F is obtained.

FH

  σ the sink without the presence of any cycles. For each node H σ in to the linear coefficient of C µ for criterion i in simplex H σ . Let

  this point, there is obviously no remaining inaccuracy relative to the a posteriori contribution. The manager thus knows at any point in time the full range of expected values for the contribution of each criterion. These computations enable quantitatively comparing any two control policies from

  mean value of gain relative to the aggregate performance calculated over all expected values the improvement could assume '

  Fig. 2: The upper hypercube I A P -1 A lower bound I A P -upper bound 1 A

  for (P 1 ). The aim here is to plan an expected step-by-step evolution over time for k P

,

  the worth index relies on statistical considerations; hence, the performance evaluation at time 1 k + can in practice be discouraging! On the other hand, a (P 1 )-based logic guarantees efficiency at condition requires that managers define the series of real values k P .

  manager justifies this strategy as the most statistically profitable, step-by-step implementation.

.

  Column 6 (resp. 7) indicates the corresponding minimum (resp. maximum) expected profitability (i.e. contribution/cost ratio) for each criterion. Columns 8 and 9 display the a posteriori contribution and profitability of each criterion towards

  for a more precise comparison).

	k P is the aggregate performance of the elementary performance profile 1 ( ,..., ) k k n k P P P = 2
	k P	=	C µ	( ) k P 2	C µ 12	1 ( , ,..., ) 2 k k k n P P P	=	1 n = 1 ( i	( ) k i P P ( 1) k i --	( ) ). ( ) k i A µ	(2),
	where	µ	: ( ) [0,1] P C →		is a fuzzy measure; (.)
	indicates a permutation, such that the partial
	performances		(.) k P ∈	[0,1]	are	ranked
	0		( 1 ) k				( ) k n	1			

Table 1 :

 1 Weights, costs and initial performances

		Indicator	ν i	cu i	P 2	I
	C1	Inventories	0.30 1,000 k€ 0.80
	C2 Equipment availability 0.25 3,000 k€ 0.25
	C3	Quality	0.30 2,000 k€ 0.75
	C4	Operator skill	0.15 3,000 k€ 0.50

Table 2 :

 2 Interaction coefficients

		Interactions between:	Value
		Inventories -Equipment availability	0.30
		Inventories -Quality	0.25
		Operator skill -Quality	0.30
	Current	aggregate	performance	equals

Table 3

 3 as the initial point. Results are reported in Table4. The "Improvement" column provides the coordinates of vector

			-left part: Trajectory with local efficiency;
			right part: Trajectory with the worth index
			1 st year				1 st year			
					2 nd year					2 nd year	
						3 rd year					3 rd year
	P 2	P 2	I	1 P 2	P 2	2	* P 2	P 2	I	P 2	3	P 2	4	P * 2
	1 C	0.8	0.8	0.914	1	0.8	0.8	1	1
	2 C	0.25	0.759 0.914	1	0.25	0.65	0.9	1
	3 C	0.75	0.759 0.914	1	0.75	0.75	0.8	1
	4 C	0.5	0.5	0.5	0.636	0.5	0.5	0.5	0.636
	C µ	( ) P 2	0.483	0.69	0.8	0.9	0.483 0.643 0.768	0.9

P * δ * P 2

Table 4 :

 4 Expected and observed contribution and profitability

	Criterion Improv t	Cost (k€)	( ) C t i N	( ) C t i Π	Minimum Expected Profitability (%)	Maximum Expected Profitability (%)	Observed Contribution Strategy 1: Local efficiency	Observed Profitability (%) Strategy 1	Observed Contribution Strategy 2: Worth index	Observed Profitability (%) Strategy 2
	C1	0.2	200	0.0099	0.11	4.95 E -3	5.5 E -2	0.11	5.5 E -2	0.01	5 E -3
	C2	0.75	2,250	0.24	0.3	1.067 E -2	1.33 E -2	0.24	1.067 E -2	0.3	1.33 E -2
	C3	0.25	500	0.02875 0.06875	5.75 E -3	1.375 E -2	0.02875	5.75 E -3	0.06875	1.375 E -2
	C4	0.136	408	0.0374	0.0374	9.17 E -3	9.17 E -3	0.0374	9.17 E -3	0.0374	9.17 E -3
	Total		3,358					0.41615		0.41615	
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