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Abstract. Terrestrial Laser Scanner has been used to detect rock falls which have occurred in a
limestone cliff during some years, in the difficult configuration of the Subalpine Chains. In a rock
wall of width 750 m and height 200 m, 130 rock falls larger than 0.1 m* have been detected for a
period of 1180 days.

The distribution of the rock fall volumes is well fitted by a power law, with an exponent which is
compatible with the exponent found for the 120 km long cliffs of the Grenoble area. But the spatial-
temporal frequencies given by the two analyses are very different. The number of rock falls larger
than 1 m3, which occur per century and per hm?, is about 150 times larger for the bedded limestone
of Sequanian stage than for the massive limestones of Tithonian and Barremian stages.

Keywords: rock fall, frequency, hazard, risk, LIDAR, terrestrial laser scanner.

1 Introduction

Estimating rock fall frequency is needed to characterize a diffuse rock fall hazard
(Picarelli et al., 2005; Fell et al., 2005; Hantz, 2011). Up to now this frequency is
determined from historical inventories. The minimal volume detected in these inventories
can be relatively small when the rock blocks fall on a road or railway from a cut slope, but
it is larger when they fall from a high rock cliff (Dussauge et al., 2002). In the last years,
terrestrial laser scanner (TLS) has been used to detect rock falls in coastal cliffs (Rosser et
al., 2005 ; Dewez et al., 2009) and in high mountain walls (Ravanel et al., 2011), where
the rock fall frequency is relatively high. We have used this method to detect rock falls in
a limestone cliff of the Subalpine Ranges, which threatens the Grenoble town.

2 Description of the cliff and measurements

The Mont Saint-Eynard (1308 m) is located 4 km to the North of the Grenoble centre and
towers above a residential area of the town (Figures 1 and 2). Its South-East face consists
of, from top to bottom: a 120 m high limestone cliff (Tithonian and upper Kimmeridgian
stages); a 100 m high forested slope of marl and marly limestone (Kimmeridgian stage); a
240 m high limestone cliff (Sequanian stage); a 300 m high forested talus slope, covering
marl and marly limestone of the Orfordian stage. This paper describes the results obtained
for the Sequanian cliff.

The measurement place was located at the foot of the talus slope, on a protection
embankment at an elevation of 580 m. The inclined distance to the cliffs ranges between
625 m and 900 m. Note that no place was found closer to the cliffs. Photographs and laser
measurements were carried out in August 2009 and November 2012.



The laser scanner technology also called LiDAR (Light Detection And Ranging), is
based on the acquisition of a point cloud using a time-of-flight distance measurement of
an infrared laser pulse which reflects on the topography. The raw data consist of the x, y, z
coordinates of each reflection point and the intensity of the reflected pulse. The y axis
corresponds to the outward axis of the LIiDAR camera and x and z axes are parallel to the
sides of the LiDAR scene (x is roughly horizontal).
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Figure 1. Localisation of the Mont Saint-Eynard.

We have used two Optech systems: ILRIS-3D in 2009 and ILRIS-LR in 2012. The
main characteristics of these systems are given in Table 1. It can be seen that ILRIS-LR
has a higher repetition rate, allowing a greater number of points to be measured for a
given period of time.

Parameter ILRIS-3D ILRIS-LR
Range 80% reflectivity 1200 m 3000 m
Range 10% reflectivity 400 m 1330 m

Minimum range 3m 3m
Laser repetition rate 2500 to 3500 Hz 10 000 Hz
Efficiency 100 % 100 %
Raw range accuracy 7mm @ 100 m 7mm @ 100 m
Raw angular accuracy 8mm @ 100 m 8 mm @ 100 m
Field of view 40° x 40° 40° x 40°
Minimum step size 0,001146° (20 prad) 0,001146° (20 prad)
Maximum density 2cm @ 1000 m 2cm @ 1000 m
Rotational speed 0,001 to 20°/sec 0,001 to 20°/sec
Beam diameter 22mm @ 100 m 27 mm @ 100 m
Beam divergence 0,009740° (170 prad) 0,014324° (250 prad)
Laser wavelength 1535 nm 1064 nm
Integrated camera 3,1 MP 3,1 MP

Table 1. Main characteristics of the LIDAR used.



The point spacing was about 20-30 cm in 2009 and about 10-13 cm in 2012. According to
the distances given above and the accuracy given in Table 1, the expected accuracy of our
measurements ranges from about 5 cm for the closest points to 7,5 cm for the farthest
ones. Two scans were taken to cover a cliff width of about 750 m.

3 Data analysis

The softwares 3DReshaper Application and Cloud Compare has been used to process the point
clouds.

3.1. Cleaning the raw point cloud

Vegetation has a lower reflectance than the rock making up the cliff. Thus, a reflectance
threshold has been chosen to remove most of the points corresponding to vegetation. After
cleaning, the two point clouds consisted of 1.5 Mpt (left scene) and 1.2 Mpt (right scene)
in 2009 and 7.1 (left) and 5.8 Mpt (right) in 2012. They are shown in Figure 2. The
average distance between the points was 21-29 cm in 2009 and 10-13 cm in 2012,

Figure 2. Point clouds measured in 2009 (high) and 2012 (low).

3.2. Georeferencing

Georeferencing the LiDAR point clouds was made by registering these with a DEM (1 m
x 1 m) using Lambert 2 extended (x,y) coordinates and NGF IGN 69 leveling. The DEM
is shown in Figure 3. Then the coordinate system has been changed in order to easily
determine the width and the thickness of the fallen compartments. The width is defined
horizontally, parallel to the cliff (x direction), the thickness is defined horizontally,
perpendicular to the cliff direction (y direction) and the height is parallel to the z axis. The
positive direction is inside the cliff for the y axis and towards the East side for the x axis.



Figure 3. Digital Elevation Model used for georeferencing.

3.3. Meshing the 2012 point clouds

The more recent point clouds (2012) have been transformed in two meshes (polyhedrons),
made up of 1.6 million (left scene) and 1.1 million (right scene) of triangles (Figures 4).
The average distances between the vertex of the polyhedrons are respectively 26 cm and
36 c¢cm, and the vertex numbers 800 000 and 570 000. Note that these numbers are about
ten times less than the initial numbers of points of the clouds. This reduction is associated
to the noise reduction process we used in 3DReshaper and is also necessary for numerical
reasons. Registration of the 2012 point cloud with the corresponding mesh allows
estimating the roughness of the rock surface at the scale of the triangles making up the
mesh. It appears that about 50 % of the points are closer than 1 cm from the mesh, 90 %
are closer than 3 cm and 99 % are closer than 7 cm. Note that, in the later case, most of
the deviations larger than 7 cm are located on vegetation areas.

Figure 4a. Mesh for the left scene 2012 and rock fall detected.



Figure 4b. Mesh for the right scene 2012 and rock fall detected.

3.4. Registration of the point clouds

As georeferencing with the DEM was not precise enough, the 2012 meshes and the point
clouds acquired in 2009 have been registered (fitted) together in order to put them in the
same coordinate system. ldeally, the deviations between these objects should be due only
to rock falls occurred between 2009 and 2012. But in reality, there are other causes of
deviations: (a) measurement accuracy; (b) the 2009 measurement points do not
correspond to the 2012 ones and are not exactly on the triangles defined by the 2012
vertex (due to the curvature and the roughness of the rock surface); (c) the later cause is
accentuated in areas where the triangles are large (this situation occurs particularly near
the limits of the mesh); (d) vegetation element which has not been removed; (e) earth slide
due to the impact of an overlying rock fall.

3.5. Detection of the rock falls

A rock fall is considered certain when a positive deviation is observed and the comparison
of the 2009 and 2012 photos shows that a rock fall has occurred between these dates. Such
a comparison is shown in Figure 5. When a positive deviation is observed and the
comparison of the 2009 and 2012 photos shows that no rock fall has occurred, the
deviation is considered to be a false rock fall. False rock falls are due to the conditions (c)
or (d) expressed in the later paragraph. When a positive deviation is observed and the
photo comparison can't conclude if a rock fall has occurred or not, the deviation is
considered to be an improbable rock fall if the conditions (c) or (d) occur or a probable
rock fall if these conditions don't occur. This situation occurs more and more when the
extent of the deviation zone decreases. The reason is that small rock falls are difficult to
observe on photographs. Figure 6 shows the proportions of certain, probable, improbable
and false rock falls as a function of the rock fall volume.



Figure 5. Rock fall proven by comparison of 2009 and 2012 photographs (81 m*).
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Figure 6. Proportions of certain, probable, improbable and false rock falls as a function of the rock
fall volume.
3.6. Size-frequency relation

Figure 7 shows the cumulative distribution of the rock fall volumes larger than 0.1 m®. It
appears that the distribution is well fitted by a power law:

b
N =aV 1)

with V, rock fall volume, N, number of rock falls larger than V, b = 0,65 and a = 36. The
constant a represents the number of rock falls larger than 1 m?, observed between August
27, 2009, and November 19, 2012.

4. Discussion

Hantz et al. (2003) analyzed the cumulative distribution of rock fall volumes between 10°
and 10’ m® occurred in the 120 km long limestone cliffs of the Grenoble area, which
include the Mont Saint-Eynard cliff. They found that a power law well describes the



distribution, with an exponent absolute value of 0.55 + 0.11. The values obtained for the
Grenoble area and for the Mont Saint-Eynard appear to be compatible with a value of 0.6
+ 0.11. Concerning the spatial-temporal rock fall frequency, the number of rock falls
larger than 1 m®, which occur per century and per hm?, is about 75 for the Mont Saint-
Eynard and 0,5 for the Grenoble area. These frequencies correspond to different rock
masses. The cliffs of the Grenoble area consist mainly of massive limestone of Tithonian
and Barremian stages, whereas the studied cliff consists of bedded limestone of Sequanian
stage. Although the latter is included in the Grenoble area cliffs, it represents a tiny part of
it.
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Figure 7. Cumulative distribution of the rock fall volumes.
5. Conclusion

Terrestrial Laser Scanner can be used to detect rock falls which have occurred in high
rock walls during some years, in the difficult configuration of Subalpine Chains. In a rock
wall of width 750 m and height 200 m, 130 rock falls larger than 0.1 m® have been
detected for a period of 1180 days. The distribution of the rock fall volumes is well fitted
by a power law, with an exponent (b = 0.65) which is compatible with the exponent found
for the 120 km long cliffs of the Grenoble area (b = 0.55 + 0.11). But the spatial-temporal
frequencies given by the two analyses are very different. The number of rock falls larger
than 1 m®, which occur per century and per hm?, is about 150 times larger for the bedded
limestone of Sequanian stage than for the massive limestone of Tithonian and Barremian
stages.
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