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Let K ⊂ R n be a compact basic semi-algebraic set. We provide a necessary and sufficient condition (with no à priori bounding parameter) for a real sequence y = (yα), α ∈ N n , to have a finite representing Borel measure absolutely continuous w.r.t. the Lebesgue measure on K, and with a density in ∩ p≥1 Lp(K). With an additional condition involving a bounding parameter, the condition is necessary and sufficient for existence of a density in L∞(K). Moreover, nonexistence of such a density can be detected by solving finitely many of a hierarchy of semidefinite programs. In particular, if the semidefinite program at step d of the hierarchy has no solution then the sequence cannot have a representing measure on K with a density in Lp(K) for any p ≥ 2d.

Introduction

The famous Markov moment problem (also called the L-problem of moments) is concerned with characterizing real sequences (s n ), n ∈ N, which are moment of a Borel probability measure µ on [0, 1] with a bounded density with respect to (w.r.t.) the Lebesgue measure. It was posed by Markov and later solved by Hausdorff with the following necessary and sufficient condition:

(1.1) 1 = s 0 and 0 ≤ s nj ≤ c/(n + 1), ∀ n, j ∈ N, for some c > 0, where s nj := (-1) n-j n j ∆ n-j s j , and ∆ is the forward operator s n → ∆s n = s n+1 -s n . Similarly, with p > 1, if in (1.1) one replaces the condition "s nj ≤ c/(n + 1) for all n, j ∈ N", with the condition (1.2) sup

n   1 n + 1 n j=0 ((n + 1) s nj ) p   1/p < c,
then one obtains a characterization of real sequences having a representing Borel measure with a density in L p ([0, 1]) with p-norm bounded by c. For an illuminating discussion with historical remarks the reader is referred to Diaconis and Freedman [START_REF] Diaconis | The Markov moment problem and de Finetti's Theorem: Part I[END_REF] where the authors also make a connection with De Finetti's theorem on exchangeable 0-1 valued random variables. In addition, Putinar [START_REF] Putinar | Extremal solutions of the two-dimensional L-problem of moments, I[END_REF][START_REF] Putinar | Extremal solutions of the two-dimensional L-problems of moments, II[END_REF] has provided a characterization of extremal solutions of the two-dimensional L-problem of moments.

Observe that the above condition (1.1) is stated in terms of linear inequalities on the s j 's. An alternative if and only if characterization is via positive definiteness of some sequence t n (c) related to the sequence (s n ), as described in Ahiezer and Krein [START_REF] Ahiezer | Some Questions in the Theory of Moments[END_REF] for full (as well as truncated) classical and trigonometric (univariate) moment problems. For instance, a sequence (s n ), n ∈ N, has a representing measure on the real line (-∞, +∞) with density f (w.r.t. the Lebesgue measure) bounded by c if and only if a certain sequence t n (c), n ∈ N, where each t n (c) is a polynomial of degree n in the variables ( 1 c , s 0 , . . . , s n ), is positive definite. See e.g. [1, Theorem 6, p. 72] and [START_REF] Ahiezer | Some Questions in the Theory of Moments[END_REF]Theorem 7,p. 77] for the truncated and full L-moment problems, respectively. In other words, each (Hankel) moment matrix of size n (filled up with finitely many of the t n (c)'s) is positive semidefinite.

In modern language those conditions are Linear Matrix Inequalities (LMIs) on the moment matrix associated with the sequence (t n (c)) (but not (s n )). More recently, another type of LMI conditions still in the spirit of those provided in Ahiezer and Krein [START_REF] Ahiezer | Some Questions in the Theory of Moments[END_REF] (but now directly on the sequence (s n )) was provided in Lasserre [6, p. 67-69] for the full L-moment problem on arbitrary compact basic semi-algebraic sets K ⊂ R n . It involves the moment and localizing matrices associated with (s n ) and the Lebesgue measure λ on K, respectively. It states that the moment and localizing matrices associated with the sequence (s n ) and K must be dominated by that of λ (scaled with some factor c > 0). A similar characterization also holds for measures on non-compact sets, satisfying an additional Carleman type condition. Hence such conditions are LMIs on the s j 's directly with no need to build up a related sequence (t n (c)) which is nonlinear in the s j 's, as in [START_REF] Ahiezer | Some Questions in the Theory of Moments[END_REF].

However, all the above characterizations have a common feature. They all involve the à priori unknown scalar c > 0 which is precisely the required bound on the density. So for instance, if the conditions (1.1) fail one does not know whether it is because the sequence has no representing measure µ with a density in L ∞ ([0, 1]) or because c is not large enough. So it is more appropriate to state that (1.1) are necessary and sufficient conditions for µ to have a density f ∈ L ∞ ([0, 1]) with f ∞ ≤ c. And similarly for (1.2) for f ∈ L p ([0, 1]) with f p ≤ c.

Contribution: Consider a compact basic semi-algebraic set K ⊂ R n of the form

(1.3) K := {x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m},
for some polynomials g j ∈ R[x], j = 1, . . . , m. For every, p ∈ N, denote by L p (K) the Lebesgue space of functions such that K |f | p λ(dx) < ∞. We then provide a set of conditions (S) with no à priori bound c, and such that:

-A real sequence y = (y α ), α ∈ N n , has a finite representing Borel measure with a density in ∩ p≥1 L p (K), if and only if (S) is satisfied. In particular, if (S) is violated we obtain a condition (with no à priori bounding parameter c) for non existence of a density in ∩ p≥1 L p (K) (hence no density in L ∞ (K) either).

-A real sequence y = (y α ), α ∈ N n , has a finite representing Borel measure with a density in L ∞ (K) if and only if (S) and an additional condition (involving an à priori bound c > 0), are satisfied.

In addition, the conditions (S) consist of a hierarchy of Linear Matrix Inequalities (LMIs) (again in the spirit of [START_REF] Ahiezer | Some Questions in the Theory of Moments[END_REF][START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]) and so can be tested numerically via available semidefinite programming softwares. In particular, if a finite Borel measure µ does not have a density in ∩ p≥1 L p (K) (and so no density in L ∞ (K) either), it can be detected by solving finitely many semidefinite programs in the hierarchy until one has no feasible solution. That is, it can be detected from finitely many of its moments. This is illustrated on a simple example.

Conversely, if the semidefinite program at step d of the hierarchy has no solution, then one may conclude that the real sequence y cannot have a representing measure on K with a density in L p (K), for any p ≥ 2d.

So a distinguishing feature of our result is the absence of an à priori bound c in the set of condition (S) to test whether y has a density in ∩ ∞ p=1 L p (K). Crucial for our result is a representation of polynomials that are positive on K × R, by Powers [START_REF] Powers | Positive polynomials and the moment problem for cylinders with compact crosssection[END_REF]; see also Marshall [START_REF] Marshall | Cylinders with compact cross-section and the strip conjecture, Seminaire de Structures Algébriques Ordonnées[END_REF][START_REF] Marshall | Polynomials non-negative on a strip[END_REF].

Main result

Notation, definitions and preliminary results

. Let R[x, t] (resp. R[x, t] d )
denote the ring of real polynomials in the variables x = (x 1 , . . . , x n , t) (resp. polynomials of degree at most d), whereas Σ[x, t] (resp. Σ[x, t] d ) denotes its subset of sums of squares (s.o.s.) polynomials (resp. of s.o.s. of degree at most 2d). For every α ∈ N n the notation x α stands for the monomial

x α1 1 • • • x αn n and for every d ∈ N, let N n+1 d := {β ∈ N n+1 : j β j ≤ d} whose cardinal is s(d) = n+d+1 d . A polynomial f ∈ R[x, t] is written (x, t) → f (x, t) = (α,k)∈N n ×N f αk x α t k ,
and f can be identified with its vector of coefficients f

= (f αk ) in the canonical basis (x α , t k ), (α, k) ∈ N n × N, of R[x, t]. But we can also write f as (2.1) (x, t) → f (x, t) = k∈N f k (x) t k ,
for finitely many polynomials

f k ∈ R[x].
A real sequence z = (z αk ), (α, k) ∈ N n × N, has a representing measure if there exists some finite Borel measure ν on R n × R such that

z αk = R n+1 x α t k dν(x, t), ∀ (α, k) ∈ N n × N.
Given a real sequence z = (z αk ) define the linear functional L y : R[x, t] → R by:

f (= α,k f αk x α t k ) → L z (f ) = α,k f αk y αk , f ∈ R[x, t].
Moment matrix. The moment matrix associated with a sequence z = (z αk ), (α, k) ∈ N n ×N, is the real symmetric matrix M d (z) with rows and columns indexed by N n+1 d , and whose entry (α,

β) is just z α+β , for every α, β ∈ N n+1 d . Alternatively, let v d ((x, t)) ∈ R s(d) be the vector ((x, t) α ), α ∈ N n+1 d
, and define the matrices

(B α ) ⊂ S s(d) by (2.2) v d ((x, t)) v d ((x, t)) T = α∈N n+1 2d B α (x, t) α , ∀(x, t) ∈ R n+1 . Then M d (z) = α∈N n+1 2d z α B α . If z has a representing measure ν then M d (z) 0 because f , M d (z)f = f 2 dν ≥ 0, ∀ f ∈ R s(d) .
Localizing matrix. With z as above and g ∈ R[x, t] (with g(x, t) = γ g γ (x, t) γ ), the localizing matrix associated with z and g is the real symmetric matrix M d (g z) with rows and columns indexed by N n+1 d , and whose entry (α, β) is just γ g γ z α+β+γ , for every α, β ∈ N n+1 d . Alternatively, let C α ∈ S s(d) be defined by:

(2.3) g(x, t) v d (x, t) v d (x, t) T = α∈N n+1 2d+deg g C α (x, t) α , ∀(x, t) ∈ R n+1 . Then M d (g z) = α∈N n+1 2d+degg z α C α .
If z has a representing measure ν whose support is contained in the set {(x, t) :

g(x, t) ≥ 0} then M d (g z) 0 because f , M d (g y)f = f 2 g dν ≥ 0, ∀ f ∈ R s(d) .
With K as in (1.3), and for every j = 0, 1, . . . , m, let v j := ⌈(deg g j )/2⌉.

Definition 2.1. With K as in (1.3) let P (g) ⊂ R[x, t] be the convex cone:

(2.4)

P (g) =    β∈{0,1} m ψ β (x, t) g 1 (x) β1 • • • g m (x) βm : ψ β ∈ Σ[x, t]    .
The convex cone P (g) is called a preordering associated with the g j 's.

Proposition 2.2. Let K be as in (1.3). A polynomial f ∈ R[x, t] is nonnegative on K × R only if f can be written as (2.5) (x, t) → f (x, t) = 2d k=0 f k (x) t k ,
for some d ∈ N and where f 2d ≥ 0 on K.

Proof. Suppose that the highest degree in t is 2d+1 for some d ∈ N. Then f 2d+1 = 0 and so by fixing an arbitrary x 0 ∈ K, the univariate polynomial t → f (x 0 , t) can be made negative, in contradiction with f ≥ 0 on K × R. Hence the highest degree in t is even, say 2d. But then of course, for obvious reasons f 2d ≥ 0 on K.

We have the following important preliminary result.

Theorem 2.3 ([7, 9]). Let K as in (1.3) be compact and let f ∈ R[x, t] be of the form f (x, t) = 2d k=0 f k (x)t k for some polynomials (f k ) ⊂ R[x],
and with

f 2d > 0 on K. Then f ∈ P (g) if f > 0 on K × R.
And so we can derive a version of the K × R-moment problem where for each β ∈ N m , the notation g β stands for the polynomial

g β1 1 • • • g βm m .
Corollary 2.4. Let K as in (1.3) be compact. A real sequence z = (z αk ), (α, k) ∈ N n × N, has a representing measure on K × R if and only if

(2.6) M d (z) 0; M d (g β z) 0, β ∈ {0, 1} m ,
for every d ∈ N.

Proof. The only if part is straightforward from the definition of the moment and localizing matrix M d (z) and M d (g β z), respectively. The if part. Suppose that (2.6) holds true, and let f ∈ R[x, t] be nonnegative on the closed set K × R. Hence by Proposition 2.2, f has the decomposition (2.5) for some integer d = 0. For every ǫ > 0, the polynomial (x, t) → f ǫ (x, t) := f (x, t) + ǫ(1 + t 2d ) has the decomposition

f ǫ (x, t) = 2d k=0 f ǫk (x) t k , with f ǫ0 = f 0 + ǫ and f ǫ2d (x) = f 2d (x) + ǫ. Therefore, f ǫ is strictly positive on K × R, and f ǫ2d > 0 on K. By Theorem 2.3, f ǫ ∈ Q(g), i.e., f ǫ (x, t) = β∈{0,1} m ψ β (x, t) g(x) β , for some SOS polynomials (ψ β ) ⊂ Σ[x, t]. Next, let z satisfy (2.6). Then L z (f ) + ǫ L y (1 + t 2d ) = L (f ǫ ) = β∈{0,1} m L z (ψ β g β ) ≥ 0
where the last inequality follows from

M d (g β z) 0 ⇔ L z (h 2 g β ) ≥ 0, ∀h ∈ R[x, t] d ,
for every β ∈ {0, 1} m . But since L z (1 + t 2d ) ≥ 0 and ǫ > 0 was arbitrary, one may conclude that L z (f ) ≥ 0 for every f ∈ R[x, t] which is nonnegative on K × R. Hence by the Riesz-Haviland theorem (see e.g. [6, Theorem 3.1, p. 53]), z has a representing measure on K × R.

Main result.

Let L ∞ (K) be the Lebesgue space of integrable functions on K (with respect to the Lebesgue measure λ on K, scaled to a probability measure) and essentially bounded on K. And with 1 ≤ p < ∞, let L p (K) be the Lebesgue space of integrable functions f on K such that K |f | p λ(dx) < ∞. A Borel measure µ absolutely continuous w.r.t. λ is denoted µ ≪ λ. Theorem 2.5. Let K ⊂ R n be a nonempty compact basic semi-algebraic set of the form

K := { x ∈ R n : g j (x) ≥ 0, j = 1, . . . , m }
for some polynomials (g j ) ⊂ R[x], and recall the notation

g β ∈ R[x], with x → g β (x) := g 1 (x) β1 • • • g m (x) βm , x ∈ R n , β ∈ {0, 1} m .
Let y = (y α ), α ∈ N n , be a real sequence with y 0 = 1. Then the following two propositions (i) and (ii) are equivalent: (i) y has a representing Borel probability measure µ ≪ λ on K, with a density in ∩ p≥1 L p (K).

(ii) M d (y) 0 and M d (g β y) 0 for all β ∈ {0, 1} m and all d ∈ N. In addition, there exists a sequence z = (z αk ), (α, k) ∈ N n × N, such that (2.6) holds, and

(2.7) z α0 = K x α λ(dx) ; z α1 = y α , ∀α ∈ N n .
Moreover, if in (2.7) one includes the additional condition sup k z 0k < ∞, then (ii) is necessary and sufficient for y to have a representing Borel probability measure µ ≪ λ on K, with a density in L ∞ (K).

Proof. The (i) ⇒ (ii) implication. As y has a representing Borel probability measure µ on K with a density f ∈ L p (K) for every p = 1, 2, . . ., one may write

µ(A) = A f (x) λ(dx), ∀A ∈ B(R n ).
Define the stochastic kernel ϕ(B|x), B ∈ B(R), x ∈ K, where for almost all x ∈ K, ϕ(• | x) is the Dirac measure at the point f (x). Next, let ν be the finite Borel measure on K × R defined by

(2.8) ν(A × B) := A ϕ(B|x) λ(dx), ∀A ∈ B(R n ), B ∈ B(R).
Let z = (y αk ), (α, k) ∈ N n × N, be the sequence of moments of ν.

z αk = R x α t k dν(x, t) = K x α R t k ϕ(dt | x) λ(dx), = K x α f (x) k λ(dx) (well defined as f ∈ L p (K) for all p). (2.9)
In particular, for every α ∈ N n ,

z α0 = K x α λ(dx) ; z α1 = K x α f (x) λ(dx) = K x α dµ = y α .
Moreover, as ν is supported on K × R then M d (y) 0 and M d (g β y) 0 for all d and all β ∈ {0, 1} m . Hence (2.6)-(2.7) hold.

The (ii) ⇒ (i) implication. Let z = (z αk ) be such that (2.6)-(2.7) hold. By Corollary (2.4), z has a representing Borel probability measure ν on K × R. One may disintegrate ν in the form

ν(A × B) = A∩K ϕ(B | x) ψ(dx), B ∈ B(R), A ∈ B(R n ),
for some stochastic kernel ϕ(• | x), and where ψ is the marginal (probability measure) of ν on K. From (2.7) we deduce that

K x α ψ(dx) = z α0 = K x α λ(dx), ∀α ∈ N n ,
which, as K is compact, implies that ψ = λ. In addition, still from (2.7),

z α1 = K x α t dν(x, t) = K x α R t ϕ(dt|x) f (x) λ(dx) ∀α ∈ N n = K x α f (x) λ(dx) dθ(x) ∀α ∈ N n , (2.10) 
where f : K → R is the measurable function x → R t ϕ(dt|x), and θ is the signed Borel measure θ(B) :

= K∩B f (x) λ(dx), for all B ∈ B(R n ).
But as K is compact, by Schmüdgen's Positivstellensatz [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF], the conditions

M d (y) 0, M d (g β y) 0, β ∈ {0, 1} m , ∀d ∈ N,
imply that y has a finite representing Borel probability measure µ on K. And so as z α1 = y α for all α ∈ N n , and measures on compact sets are moment determinate, one may conclude that dµ = dθ = f dλ, that is, µ ≪ λ on K (and f ≥ 0 almost everywhere on K). Next, observe that for every even p ∈ N, using Jensen's inequality,

z 0p = K t p dν(x, t) = K R t p ϕ(dt|x) ≥f (x) p λ(dx) ∀α ∈ N n ≥ K f (x) p λ(dx) ∀α ∈ N n ,
and so f ∈ L p (K) for all even p ≥ 1 (hence all p ∈ N).

Finally consider (2.7) with the additional condition sup p z 0p < ∞. Then in the above proof of (i) ⇒ (ii) and since now y has a finite representing Borel measure with a density f ∈ L ∞ (K), one has lim p→∞ f p = f ∞ because K is compact; see e.g. Ash [3, problem 9, p. 91]. And therefore since z 0p = K f (x) p λ(dx), we obtain sup p z 0p < ∞.

Similarly, in the above proof of (ii)

⇒ (i), sup p z 0p < ∞ implies sup p K f (x) p λ(dx) = sup p f p < ∞. But this implies that f ∈ L ∞ (K) since K is compact.
Computational procedure. Let γ = (γ α ), α ∈ N n , the moment of the Lebesgue measure on K, scaled to make it a probability measure. In fact, the (scaled) Lebesgue measure on any box that contains K is fine.

Let y = (y α ), α ∈ N n , be a real given sequence, and with K as in (1.3) let v j := ⌈(deg g j )/2⌉, j = 1, . . . , m. To check the conditions in Theorem 2.5(ii), one solves the hierarchy of optimization problems, parametrized by d ∈ N.

(2.11)

ρ d = min z trace(M d (z)) s.t. M d (z) 0 M d-vj (g β z) 0, β ∈ {0, 1} m z α0 = γ α , α ∈ N n 2d z α1 = y α , (α, 1) ∈ N n+1 2d .
Each problem (2.11) is a semidefinite program 1 . Moreover, if (2.11) has a feasible solution then it has an optimal solution. This is because as one minimizes the trace of M d (z), the feasible set is bounded and closed, hence compact. In (2.11) one may also include the additional constraints z 0k < c, k ≤ 2d, for some fixed c > 0. Then by Theorem 2.5, y has a representing Borel probability measure on K with a density in L ∞ (K) bounded by c, if and only if ρ d < ∞ for all d.

1 A semidefinite program is a convex optimization problem that can be solved efficiently, i.e., up to arbitrary fixed precision it can be solved in time polynomial in the input size of the problem; see e.g. [START_REF] Anjos | Handbook on Semidefinite, Conic and Polynomial Optimization[END_REF].

Each semidefinite program of the hierarchy (2.11), d ∈ N, has a dual which is also a semidefinite program and which reads: (2.12)

ρ * d = max p,q,σj K p(x)λ(dx) + L y (q) s.t. (α,k)∈N n+1 d (x α t k ) 2 -(p(x) + tq(x)) = σ 0 (x, t) + m j=1 σ j (x, t)g j (x) deg p ≤ 2d; deg q ≤ 2d -1; σ j ∈ Σ[x, t] t-vj , j = 0, . . . , m,
where v 0 = 0. In particular, if y is the sequence of a Borel measure on K then in (2.12) one may replace L y (q) with K q(x)dµ(x). Proof. Suppose that y has a representing measure on K with a density f ∈ L 2d (K), and hence in L k (K) for all k ≤ 2d. Proceeding as in the proof of Theorem 2.5, let ν be the Borel measure on K × R defined in (2.8). Then from (2.9) one obtains

z αk = K x α f (x) k λ(dx), (α, k) ∈ N n+1 2d ,
which is well-defined since K is compact (so that x α is bounded) and k ≤ 2d. And so the sequence z = (z αk ), (α, k) ∈ N n+1 2d , is a feasible solution of (2.11) with d. Notice that again, the detection of absence of a density in L p (K) is possible with no à priori bounding parameter c. But of course, the condition is only sufficient.

Example 1. Let K := [0, 1] and s ∈ [0, 1]. Let λ be the Lebesgue measure on [0, 1] and let δ s be the Dirac measure at s. One wants to detect that the Borel probability measure µ a := aλ + (1 -a)δ s , with a ∈ (0, 1) has no density in L ∞ (K). Then (2.7) reads

z k0 = 1 k + 1
, k = 0, 1, . . . ; z k1 = a k + 1 + (1 -a)s k , k = 0, 1, . . .

The set K is defined by {x : g(x) ≥ 0} with x → g(x) := x(1 -x). We have tested the conditions M d (z) 0 and M d (g z) 0 along with (2.7) where k ≤ 2d (for z 0k ) and k ≤ 2d -1 (for z k1 ).

We have considered a Dirac at the points s = k/10, k = 1, . . . , 10, and with weights a = 1 -k/10, k = 1, . . . , 10. To solve (2.11) we have used the GloptiPoly software of Henrion et al. [START_REF] Henrion | Gloptipoly 3: moments, optimization and semidefinite programming[END_REF] dedicated to solving there generalized problem of moments. Results are displayed in Table 1 which should be read as follows:

• A column is parametrized by the number of moments involved in the conditions (2.7). For instance, Column "10" refers to (2.7) with d = 10/2, that is, the moment matrix M d (z) involves moments z ij with i + j ≤ 10, i.e., moments up to order 10.

  2.3. On membership in L p (K). An interesting feature of the hierarchy of semidefinite programs (2.11), d ∈ N, is that it can be used to detect if a given sequence y = (y α ), α ∈ N n , cannot have a representing Borel measure on K with a density in L

p (K), p > 1.

Corollary 2.6. Let K ⊂ R n be as in

(1.3) 

and let y = (y α ), α ∈ N n , be a real sequence with y 0 = 1. If the semidefinite program (2.11) with d ∈ N, has no solution then y cannot have a representing finite Borel measure on K with a density in L p (K), for any p ≥ 2d.

s \ moments 8 10 12 14 

Moments required for detection of failure; two Dirac

• Each row is indexed by the location of the Dirac δ s , s ∈ [0, 1] (with µ a = aλ + (1 -a)δ s ). The statement "1 -a ≥ 0.5" in row "s = 0.3" and column "10" means that (2.7) is violated whenever 1 -a ≥ 0.5, i.e., when the weight associated to the Dirac δ s is larger than 0.5.

One may see that no matter where the point s is located in the interval [0, 1], if its weight 1 -a is above 0.5 then detection of impossibility of a density in L ∞ ([0, 1]) occurs with moments up to order 10. If its weight 1 -a is only above 0.1 then detection of impossibility occurs with moments up to order 12. So even with a small weight on the Dirac δ s , detection of impossibility does not require moments of order larger than 12.

Example 2. Still with K = [0, 1], consider now the case where µ a = aλ+(1-a)(δ s + δ s+0.1 )/2, that is, µ a is a (a, 1 -a) convex combination of the uniform probability distribution on [0, 1] with two Dirac measures at the points s and s + 0.1 of [0, 1], with equal weights. The results displayed in Table 2 are qualitatively very similar to the results in Table 1 for the case of one Dirac.