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BOREL MEASURES WITH A DENSITY ON A COMPACT

SEMI-ALGEBRAIC SET

JEAN B. LASSERRE

Abstract. Let K ⊂ R
n be a compact basic semi-algebraic set. We provide a

necessary and sufficient condition (with no à priori bounding parameter) for
a real sequence y = (yα), α ∈ N

n, to have a finite representing Borel measure
absolutely continuous w.r.t. the Lebesgue measure on K, and with a density
in ∩∞

p=1
Lp(K). With an additional condition involving a bounding parameter,

the condition is necessary and sufficient for existence of a density in L∞(K).
Moreover, nonexistence of such a density can be detected by solving finitely
many of a hierarchy of semidefinite programs. In particular, if the semidefinite
program at step d of the hierarchy has no solution then the sequence cannot
have a representing measure on K with a density in Lp(K) for any p ≥ 2d.

1. Introduction

The famous Markov moment problem (also called the L-problem of moments) is
concerned with characterizing real sequences (sn), n ∈ N, which are moment of a
Borel probability measure µ on [0, 1] with a bounded density with respect to (w.r.t.)
the Lebesgue measure. It was posed by Markov and later solved by Hausdorff with
the following necessary and sufficient condition:

(1.1) 1 = s0 and 0 ≤ snj ≤ c/(n+ 1), ∀n, j ∈ N,

for some c > 0, where snj := (−1)n−j
(
n
j

)
∆n−jsj, and ∆ is the forward operator

sn 7→ ∆sn = sn+1 − sn. Similarly, with p > 1, if in (1.1) one replaces the condition
“snj ≤ c/(n+ 1) for all n, j ∈ N”, with the condition

(1.2) sup
n




1

n+ 1

n∑

j=0

((n+ 1) snj)
p





1/p

< c,

then one obtains a characterization of real sequences having a representing Borel
measure with a density in Lp([0, 1]) with p-norm bounded by c. For an illumi-
nating discussion with historical remarks the reader is referred to Diaconis and
Freedman [3] where the authors also make a connection with De Finetti’s theorem
on exchangeable 0-1 valued random variables. In addition, Putinar [9, 10] has pro-
vided a characterization of extremal solutions of the two-dimensional L-problem of
moments.

An alternative if and only if characterization is via Linear Matrix Inequalities
(LMIs) involving the moment and localizing matrices associated with the real se-
quence and the Lebesgue measure λ on [0, 1], respectively. It states that the moment
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and localizing matrices of the sequence must be dominated by that of λ (scaled with
some factor c > 0). This latter characterization carries over arbitrary compact ba-
sic semi-algebraic sets of Rn and a similar characterization also holds for measures
on non-compact sets, satisfying an additional Carleman type condition; see e.g.
Lasserre [5, p. 67–69].

A common feature of the above characterizations is the à priori unknown scalar
c > 0 which is precisely the required bound on the density. So for instance, if
the conditions (1.1) fail one does not know whether it is because the sequence has
no representing measure µ with a density in L∞([0, 1]) or because c is not large
enough. So it is more appropriate to state that (1.1) are necessary and sufficient
conditions for µ to have a density f ∈ L∞([0, 1]) with ‖f‖∞ ≤ c. And similarly for
(1.2) for f ∈ Lp([0, 1]) with ‖f‖p ≤ c.

Contribution: Consider a compact basic semi-algebraic set K ⊂ R
n of the form

(1.3) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m},

for some polynomials gj ∈ R[x], j = 1, . . . ,m. For every, p ∈ N, denote by Lp(K)
the Lebesgue space of functions such that

∫

K
|f |pλ(dx) < ∞. We then provide a

set of conditions (S) with no à priori bound c, and such that:

- A real sequence y = (yα), α ∈ N
n, has a finite representing Borel measure

with a density in ∩∞
p=1Lp(K), if and only if (S) is satisfied. In particular, if (S)

is violated we obtain a condition (with no à priori bounding parameter c) for non
existence of a density in ∩pLp(K) (hence no density in L∞(K) either).

- A real sequence y = (yα), α ∈ N
n, has a finite representing Borel measure with

a density in L∞(K) if and only if (S) and an additional condition (involving an à
priori bound c > 0), are satisfied.

In addition, the conditions (S) consist of a hierarchy of Linear Matrix Inequalities
(LMIs) and so can be tested numerically via available semidefinite programming
softwares. In particular, if a finite Borel measure µ does not have a density in
∩pLp(K) (and so no density in L∞(K) either), it can be detected by solving finitely
many semidefinite programs in the hierarchy until one has no feasible solution. That
is, it can be detected from finitely many of its moments. This is illustrated on a
simple example.

Conversely, if the semidefinite program at step d of the hierarchy has no solution,
then one may conclude that the real sequence y cannot have a representing measure
on K with a density in Lp(K), for any p ≥ 2d.

So a distinguishing feature of our result is the absence of an à priori bound c in
the set of condition (S) to test whether y has a density in ∩∞

p=1Lp(K). Crucial for
our result is a representation of polynomials that are positive on K×R, by Powers
[8]; see also Marshall [6, 7].

2. Main result

2.1. Notation, definitions and preliminary results. Let R[x, t] (resp. R[x, t]d)
denote the ring of real polynomials in the variables x = (x1, . . . , xn, t) (resp. poly-
nomials of degree at most d), whereas Σ[x, t] (resp. Σ[x, t]d) denotes its subset of
sums of squares (s.o.s.) polynomials (resp. of s.o.s. of degree at most 2d). For
every α ∈ N

n the notation xα stands for the monomial xα1

1 · · ·xαn
n and for every
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d ∈ N, let N
n+1
d := {β ∈ N

n+1 :
∑

j βj ≤ d} whose cardinal is s(d) =
(
n+d+1

d

)
. A

polynomial f ∈ R[x, t] is written

(x, t) 7→ f(x, t) =
∑

(α,k)∈Nn×N

fαk x
α tk,

and f can be identified with its vector of coefficients f = (fαk) in the canonical
basis (xα, tk), (α, k) ∈ N

n × N, of R[x, t]. But we can also write f as

(2.1) (x, t) 7→ f(x, t) =
∑

k∈N

fk(x) t
k,

for finitely many polynomials fk ∈ R[x].

A real sequence z = (zαk), (α, k) ∈ N
n × N, has a representing measure if there

exists some finite Borel measure ν on R
n × R such that

zαk =

∫

Rn+1

xα tk dν(x, t), ∀ (α, k) ∈ N
n × N.

Given a real sequence z = (zαk) define the linear functional Ly : R[x, t] → R by:

f (=
∑

α,k

fαk x
α tk) 7→ Lz(f) =

∑

α,k

fαk yαk, f ∈ R[x, t].

Moment matrix. The moment matrix associated with a sequence z = (zαk),
(α, k) ∈ N

n×N, is the real symmetric matrixMd(z) with rows and columns indexed
by N

n+1
d , and whose entry (α, β) is just zα+β, for every α, β ∈ N

n+1
d . Alternatively,

let vd((x, t)) ∈ R
s(d) be the vector ((x, t)α), α ∈ N

n+1
d , and define the matrices

(Bα) ⊂ Ss(d) by

(2.2) vd((x, t))vd((x, t))
T =

∑

α∈N
n+1

2d

Bα (x, t)α, ∀(x, t) ∈ R
n+1.

Then Md(z) =
∑

α∈N
n+1

2d
zαBα.

If z has a representing measure ν then Md(z) � 0 because

〈f ,Md(z)f〉 =

∫

f2 dν ≥ 0, ∀ f ∈ R
s(d).

Localizing matrix. With z as above and g ∈ R[x, t] (with g(x, t) =
∑

γ gγ(x, t)
γ),

the localizing matrix associated with z and g is the real symmetric matrix Md(g z)
with rows and columns indexed by Nn+1

d , and whose entry (α, β) is just
∑

γ gγzα+β+γ ,

for every α, β ∈ N
n+1
d . Alternatively, let Cα ∈ Ss(d) be defined by:

(2.3) g(x, t)vd(x, t)vd(x, t)
T =

∑

α∈N
n+1

2d+deg g

Cα (x, t)α, ∀(x, t) ∈ R
n+1.

Then Md(g z) =
∑

α∈N
n+1

2d+degg
zα Cα.

If z has a representing measure ν whose support is contained in the set {(x, t) :
g(x, t) ≥ 0} then Md(g z) � 0 because

〈f ,Md(g y)f〉 =

∫

f2 g dν ≥ 0, ∀ f ∈ R
s(d).

With K as in (1.3), and for every j = 0, 1, . . . ,m, let vj := ⌈(deg gj)/2⌉.



4 JEAN B. LASSERRE

Definition 2.1. With K as in (1.3) let P (g) ⊂ R[x, t] be the convex cone:

(2.4) P (g) =







∑

β∈{0,1}m

ψβ(x, t) g1(x)
β1 · · · gm(x)βm : ψβ ∈ Σ[x, t]






.

The convex cone P (g) is called a preordering associated with the gj ’s.

Proposition 2.2. Let K be as in (1.3). A polynomial f ∈ R[x, t] is nonnegative
on K× R only if f can be written as

(2.5) (x, t) 7→ f(x, t) =
2d∑

k=0

fk(x) t
k,

for some d ∈ N and where f2d ≥ 0 on K.

Proof. Suppose that the highest degree in t is 2d+1 for some d ∈ N. Then f2d+1 6= 0
and so by fixing an arbitrary x0 ∈ K, the univariate polynomial t 7→ f(x0, t) can
be made negative, in contradiction with f ≥ 0 on K×R. Hence the highest degree
in t is even, say 2d. But then of course, for obvious reasons f2d ≥ 0 on K. �

We have the following important preliminary result.

Theorem 2.3 ([6, 8]). Let K as in (1.3) be compact and let f ∈ R[x, t] be of the

form f(x, t) =
∑2d

k=0 fk(x)t
k for some polynomials (fk) ⊂ R[x], and with f2d > 0

on K. Then f ∈ P (g) if f > 0 on K× R.

And so we can derive a version of the K × R-moment problem where for each

β ∈ N
m, the notation gβ stands for the polynomial gβ1

1 · · · gβm
m .

Corollary 2.4. Let K as in (1.3) be compact. A real sequence z = (zαk), (α, k) ∈
N

n × N, has a representing measure on K× R if and only if

(2.6) Md(z) � 0; Md(g
β z) � 0, β ∈ {0, 1}m,

for every d ∈ N.

Proof. The only if part is straightforward from the definition of the moment and
localizing matrix Md(z) and Md(g

β z), respectively.
The if part. Suppose that (2.6) holds true, and let f ∈ R[x, t] be nonnegative

on the closed set K× R. Hence by Proposition 2.2, f has the decomposition (2.5)
for some integer d 6= 0. For every ǫ > 0, the polynomial (x, t) 7→ fǫ(x, t) :=
f(x, t) + ǫ(1 + t2d) has the decomposition

fǫ(x, t) =

2d∑

k=0

fǫk(x) t
k,

with fǫ0 = f0 + ǫ and fǫ2d(x) = f2d(x) + ǫ. Therefore, fǫ is strictly positive on
K× R, and fǫ2d > 0 on K. By Theorem 2.3, fǫ ∈ Q(g), i.e.,

fǫ(x, t) =
∑

β∈{0,1}m

ψβ(x, t) g(x)
β ,
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for some SOS polynomials (ψβ) ⊂ Σ[x, t]. Next, let z satisfy (2.6). Then

Lz(f) + ǫ Ly(1 + t2d) = Lz(fǫ)

=
∑

β∈{0,1}m

Lz(ψβ g
β) ≥ 0

where the last inequality follows from

Md(g
β z) � 0 ⇔ Lz(h

2 gβ) ≥ 0, ∀h ∈ R[x, t]d,

for every β ∈ {0, 1}m. But since Lz(1 + t2d) ≥ 0 and ǫ > 0 was arbitrary, one
may conclude that Lz(f) ≥ 0 for every f ∈ R[x, t] which is nonnegative on K×R.
Hence by the Riesz-Haviland theorem (see e.g. [5, Theorem 3.1, p. 53]), z has a
representing measure on K× R. �

2.2. Main result. Let L∞(K) be the Lebesgue space of integrable functions on
K (with respect to the Lebesgue measure λ on K, scaled to a probability measure)
and essentially bounded on K. And with 1 ≤ p < ∞, let Lp(K) be the Lebesgue
space of integrable functions f on K such that

∫

K |f |pλ(dx) <∞. A Borel measure
µ absolutely continuous w.r.t. λ is denoted µ≪ λ.

Theorem 2.5. Let K ⊂ R
n be as in (1.3) and let y = (yα), α ∈ N

n, be a
real sequence with y0 = 1. Then the following two propositions (i) and (ii) are
equivalent:

(i) y has a representing Borel probability measure µ ≪ λ on K, with a density
in ∩∞

p=1Lp(K).

(ii) Md(y) � 0 and Md(g
β y) � 0 for all β ∈ {0, 1}m and all d ∈ N. In addition,

there exists a sequence z = (zαk), (α, k) ∈ N
n × N, such that (2.6) holds, and

(2.7) zα0 =

∫

K

xα λ(dx) ; zα1 = yα, ∀α ∈ N
n.

Moreover, if in (2.7) one includes the additional condition supk z0k <∞, then (ii)
is necessary and sufficient for y to have a representing Borel probability measure
µ≪ λ on K, with a density in L∞(K).

Proof. The (i) ⇒ (ii) implication. As y has a representing Borel probability mea-
sure µ on K with a density f ∈ Lp(K) for every p = 1, 2, . . ., one may write

µ(A) =

∫

A

f(x)λ(dx), ∀A ∈ B(Rn).

Define the stochastic kernel ϕ(B|x), B ∈ B(R), x ∈ K, where for almost all x ∈ K,
ϕ(· |x) is the Dirac measure at the point f(x). Next, let ν be the finite Borel
measure on K× R defined by

(2.8) ν(A×B) :=

∫

A

ϕ(B|x)λ(dx), ∀A ∈ B(Rn), B ∈ B(R).

Let z = (yαk), (α, k) ∈ N
n × N, be the sequence of moments of ν.

zαk =

∫

R

xα tk dν(x, t) =

∫

K

xα

(∫

R

tkϕ(dt |x)

)

λ(dx),

=

∫

K

xα f(x)k λ(dx) (well defined as f ∈ Lp(K) for all p).(2.9)



6 JEAN B. LASSERRE

In particular, for every α ∈ N
n,

zα0 =

∫

K

xα λ(dx) ; zα1 =

∫

K

xα f(x)λ(dx) =

∫

K

xα dµ = yα.

Moreover, as ν is supported on K×R then Md(y) � 0 and Md(g
β y) � 0 for all d

and all β ∈ {0, 1}m. Hence (2.6)-(2.7) hold.

The (ii) ⇒ (i) implication. Let z = (zαk) be such that (2.6)-(2.7) hold. By
Corollary (2.4), z has a representing Borel probability measure ν on K × R. One
may disintegrate ν in the form

ν(A ×B) =

∫

A∩K

ϕ(B |x)ψ(dx), B ∈ B(R), A ∈ B(Rn),

for some stochastic kernel ϕ(· |x), and where ψ is the marginal (probability mea-
sure) of ν on K. From (2.7) we deduce that

∫

K

xα ψ(dx) = zα0 =

∫

K

xα λ(dx), ∀α ∈ N
n,

which, as K is compact, implies that ψ = λ. In addition, still from (2.7),

zα1 =

∫

K

xα t dν(x, t) =

∫

K

xα

(∫

R

t ϕ(dt|x)

)

︸ ︷︷ ︸

f(x)

λ(dx) ∀α ∈ N
n

=

∫

K

xα f(x)λ(dx)
︸ ︷︷ ︸

dθ(x)

∀α ∈ N
n,(2.10)

where f : K → R is the measurable function x 7→
∫

R
t ϕ(dt|x), and θ is the signed

Borel measure θ(B) :=
∫

K∩B
f(x)λ(dx), for all B ∈ B(Rn).

But as K is compact, by Schmüdgen’s Positivstellensatz [11], the conditions

Md(y) � 0, Md(g
β y) � 0, β ∈ {0, 1}m, ∀d ∈ N,

imply that y has a finite representing Borel measure µ on K. And so as zα1 = yα
for all α ∈ N

n, and measures on compact sets are moment determinate, one may
conclude that dµ = dθ = f dλ, that is, µ ≪ λ on K. Next, observe that for every
p ∈ N,

z0p =

∫

K

tpdν(x, t) =

∫

K

(∫

R

tp ϕ(dt|x)

)

︸ ︷︷ ︸

f(x)p

λ(dx) ∀α ∈ N
n

=

∫

K

f(x)p λ(dx) ∀α ∈ N
n,

and so f ∈ Lp(K) for all p ≥ 1.
Finally consider (2.7) with the additional condition supp z0p < ∞. Then in the

above proof of (i) ⇒ (ii) and since now y has a finite representing Borel measure
with a density f ∈ L∞(K), one has limp→∞ ‖f‖p = ‖f‖∞ because K is compact;
see e.g. Ash [2, problem 9, p. 91]. And therefore since z0p =

∫

K
f(x)pλ(dx), we

obtain supp z0p <∞.

Similarly, in the above proof of (ii)⇒ (i), supp z0p <∞ implies supp
∫

K
f(x)pλ(dx) =

supp ‖f‖p <∞. But this implies that f ∈ L∞(K) since K is compact. �
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Computational procedure. Let γ = (γα), α ∈ N
n, the moment of the Lebesgue

measure on K, scaled to make it a probability measure. In fact, the (scaled)
Lebesgue measure on any box that contains K is fine.

Let y = (yα), α ∈ N
n, be a real given sequence, and with K as in (1.3) let

vj := ⌈(deg gj)/2⌉, j = 1, . . . ,m. To check the conditions in Theorem 2.5(ii), one
solves the hierarchy of optimization problems, parametrized by d ∈ N.

(2.11)

ρd = min
z

trace(Md(z))

s.t. Md(z) � 0
Md−vj(g

β z) � 0, β ∈ {0, 1}m

zα0 = γα, α ∈ N
n
2d

zα1 = yα, (α, 1) ∈ N
n+1
2d .

Each problem (2.11) is a semidefinite program1. Moreover, if (2.11) has a feasible
solution then it has an optimal solution. This is because as one minimizes the trace
of Md(z), the feasible set is bounded and closed, hence compact.

In (2.11) one may also include the additional constraints z0k < c, k ≤ 2d, for
some fixed c > 0. Then by Theorem 2.5, y has a representing Borel probability
measure on K with a density in L∞(K) bounded by c, if and only if ρd <∞ for all
d.

Each semidefinite program of the hierarchy (2.11), d ∈ N, has a dual which is
also a semidefinite program and which reads:
(2.12)

ρ∗d = max
p,q,σj

∫

K

p(x)λ(dx) + Ly(q)

s.t.
∑

(α,k)∈N
n+1

d

(xαtk)2 − (p(x) + tq(x)) = σ0(x, t) +

m∑

j=1

σj(x, t)gj(x)

deg p ≤ 2d; deg q ≤ 2d− 1; σj ∈ Σ[x, t]t−vj , j = 0, . . . ,m,

where v0 = 0. In particular, if y is the sequence of a Borel measure on K then in

(2.12) one may replace Ly(q) with

∫

K

q(x)dµ(x).

2.3. On membership in Lp(K). An interesting feature of the hierarchy of semi-
definite programs (2.11), d ∈ N, is that it can be used to detect if a given sequence
y = (yα), α ∈ N

n, cannot have a representing Borel measure on K with a density
in Lp(K), p > 1.

Corollary 2.6. Let K ⊂ R
n be as in (1.3) and let y = (yα), α ∈ N

n, be a
real sequence with y0 = 1. If the semidefinite program (2.11) with d ∈ N, has no
solution then y cannot have a representing finite Borel measure on K with a density
in Lp(K), for any p ≥ 2d.

Proof. Suppose that y has a representing measure on K with a density f ∈ L2d(K),
and hence in Lk(K) for all k ≤ 2d. Proceeding as in the proof of Theorem 2.5, let
ν be the Borel measure on K× R defined in (2.8). Then from (2.9) one obtains

zαk =

∫

K

xα f(x)k λ(dx), (α, k) ∈ N
n+1
2d ,

1A semidefinite program is a convex optimization problem that can be solved efficiently, i.e.,
up to arbitrary fixed precision it can be solved in time polynomial in the input size of the problem;
see e.g. [1].
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which is well-defined since K is compact (so that xα is bounded) and k ≤ 2d. And
so the sequence z = (zαk), (α, k) ∈ N

n+1
2d , is a feasible solution of (2.11) with d. �

Notice that again, the detection of absence of a density in Lp(K) is possible with
no à priori bounding parameter c. But of course, the condition is only sufficient.

Example 1. Let K := [0, 1] and s ∈ [0, 1]. Let λ be the Lebesgue measure on
[0, 1] and let δs be the Dirac measure at s. One wants to detect that the Borel
probability measure µa := aλ+(1− a)δs, with a ∈ (0, 1) has no density in L∞(K).
Then (2.7) reads

zk0 =
1

k + 1
, k = 0, 1, . . . ; zk1 =

a

k + 1
+ (1− a)sk, k = 0, 1, . . .

The set K is defined by {x : g(x) ≥ 0} with x 7→ g(x) := x(1− x). We have tested
the conditions Md(z) � 0 and Md(g z) � 0 along with (2.7) where k ≤ 2d (for z0k)
and k ≤ 2d− 1 (for zk1).

We have considered a Dirac at the points s = k/10, k = 1, . . . , 10, and with
weights a = 1 − k/10, k = 1, . . . , 10. To solve (2.11) we have used the GloptiPoly
software of Henrion et al. [4] dedicated to solving there generalized problem of
moments. Results are displayed in Table 1 which should be read as follows:

• A column is parametrized by the number of moments involved in the conditions
(2.7). For instance, Column “10” refers to (2.7) with d = 10/2, that is, the moment
matrix Md(z) involves moments zij with i+ j ≤ 10, i.e., moments up to order 10.

• Each row is indexed by the location of the Dirac δs, s ∈ [0, 1] (with µa =
aλ + (1 − a)δs). The statement “1 − a ≥ 0.5” in row “s = 0.3” and column “10”
means that (2.7) is violated whenever 1− a ≥ 0.5, i.e., when the weight associated
to the Dirac δs is larger than 0.5.

One may see that no matter where the point s is located in the interval [0, 1], if its
weight 1 − a is above 0.5 then detection of impossibility of a density in L∞([0, 1])
occurs with moments up to order 10. If its weight 1 − a is only above 0.1 then
detection of impossibility occurs with moments up to order 12. So even with a
small weight on the Dirac δs, detection of impossibility does not require moments
of order larger than 12.

Example 2. Still withK = [0, 1], consider now the case where µa = aλ+(1−a)(δs+
δs+0.1)/2, that is, µa is a (a, 1− a) convex combination of the uniform probability
distribution on [0, 1] with two Dirac measures at the points s and s+ 0.1 of [0, 1],
with equal weights. The results displayed in Table 2 are qualitatively very similar
to the results in Table 1 for the case of one Dirac.
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