The Hopf algebra of Fliess operators and its dual pre-Lie algebra

Loïc Foissy

To cite this version:

Loïc Foissy. The Hopf algebra of Fliess operators and its dual pre-Lie algebra. 2013. hal-00808513v2

HAL Id: hal-00808513 https://hal.science/hal-00808513v2

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Hopf algebra of Fliess operators and its dual pre-Lie algebra

Loïc Foissy
Laboratoire de Mathématiques, Université de Reims Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail : loic.foissy@univ-reims.fr

Abstract

We study the Hopf algebra H of Fliess operators coming from Control Theory in the one-dimensional case. We prove that it admits a graded, finte-dimensional, connected gradation. Dually, the vector space $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ is both a pre-Lie algebra for the pre-Lie product dual of the coproduct of H, and an associative, commutative algebra for the shuffle product. These two structures admit a compatibility which makes $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ a Com-pre-Lie algebra. We give a presentation of this object as a Com-pre-Lie algebra and as a pre-Lie algebra.

KEYWORDS. Fliess operators; pre-Lie algebras; Hopf algebras.
AMS CLASSIFICATION. 16W30, 17B60, 93B25, 05C05.

Contents

1 Construction of the Hopf algebra 3
1.1 Definition of the composition 3
1.2 Dual Hopf algebra 4
1.3 gradation 5
2 Pre-Lie structure on $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ 7
2.1 pre-Lie coproduct on V 7
2.2 Dual pre-Lie algebra 9
3 Presentation of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ as a Com-pre-Lie algebra 12
3.1 Free Com-pre-Lie algebras 12
3.2 Presentation of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ as a Com-pre-Lie algebra 15
4 Presentation of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ as a pre-Lie algebra 20
4.1 A surjective morphism 20
4.2 Pre-Lie product in the basis of admissible words 23
4.3 An associative product on $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$ 25
5 Appendix 27
5.1 Enumeration of partitioned trees 27
5.2 Study of the dendriform structure on admissible words 28
5.3 Freeness of the pre-Lie algebra $\mathfrak{g}_{\mathcal{P T}(\mathcal{D})}$ 28

Introduction

Right pre-Lie algebras, or shortly pre-Lie algebras [4, 1], are vector spaces with a bilinear product

- satisfying the following axiom:

$$
(x \bullet y) \bullet z-x \bullet(y \bullet z)=(x \bullet z) \bullet y-x \bullet(z \bullet y)
$$

Consequently, the antisymmetrization of \bullet is a Lie bracket. These objects are also called rightsymmetric algebras or Vinberg algebra [11, 16]. If A is a pre-Lie algebra, then the symmetric algebra $S(A)$ inherits a product \star making it a Hopf algebra, isomorphic to the enveloping algebra of the Lie algebra $A[12,13]$. Whenever it is possible, we can consider the dual Hopf algebra $S(A)^{*}$ and its group of characters G, which is the exponentiation, in a certain sense, of the Lie algebra A.

We here consider the inverse construction, departing from a group used in Control Theory, namely the group fof Fliess operators $[3,5,6]$; this group is used to study the feedback product. We limit ourselves here to the one-dimensional case. This group is the set $\mathbb{R}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ of noncommutative formal series in two indeterminates, with a certain product generalizing the composition of formal series (definition 1). The Hopf algebra H of coordinates of this group is described in [5], where it is also proved that it is graded by the length of words; note that this gradation is not connected and not finite-dimensional. We first give a way to describe the composition in the group $\mathbb{R}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ and the coproduct of H by induction on the length of words (lemma 2 and proposition 3). We prove that H admits a second gradation, which is connected; the dimensions of this gradation are given by the Fibonacci sequence (proposition 8). As the product of $\mathbb{R}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ is left-linear, H is a commutative, right-sided combinatorial Hopf algebra [9], so, dually, $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ inherits a pre-Lie product \bullet, which is inductively defined in proposition 11. We prove that the words $x_{1}^{n}, n \geq 0$, form a minimal subset of generators of this pre-Lie algebra (theorem 12).

The pre-Lie algebra $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ has also an associative, commutative product, namely the shuffle product Ш [14]. We prove that the following axiom is satisfied (proposition 14):

$$
(x Ш y) \bullet z=(x \bullet z) Ш y+x 山(y \bullet z) .
$$

So $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ is a Com-pre-Lie algebra $[10]$ (definition 15). We give a presentation of this Com-preLie algebra in theorem 27. We use for this a description of free Com-pre-Lie algebras in terms of partitioned trees (definition 17), which generalizes the construction of pre-Lie algebras in terms of rooted trees in [1]. We then deduce a presentation of $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ as a pre-Lie algebra in theorem 30. This presentation induces a new basis of $\mathbb{R}\left\langle x_{0}, x_{1}\right\rangle$ in terms of words with letters in \mathbb{N}^{*}, see corollary 31. The pre-Lie product of two elements of this basis uses a dendriform structure $[2,8]$ on the algebra of words with letters in \mathbb{N}^{*} (theorem 34). The study of this dendriform structure is postponed to the appendix, as well as the enumeration of partitioned trees; we also prove that free Com-pre-Lie algebras are free as pre-Lie algebras, using the rigidity theorem of [7].

Aknowledgment. The research leading these results was partially supported by the French National Research Agency under the reference ANR-12-BS01-0017.

Notation. We denote by \mathbb{K} a commutative field of characteristic zero. All the objects (algebra, coalgebras, pre-Lie algebras...) in this text will be taken over \mathbb{K}.

1 Construction of the Hopf algebra

1.1 Definition of the composition

Let us consider an alphabet of two letters, denoted by x_{0} and x_{1}. We denote by $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ the completion of the free algebra generated by this alphabet. Note that $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ is an algebra
for the concatenation product and for the shuffle product, which we denote by $\boldsymbol{\omega}$.

Exemples. If $a, b, c, d \in\left\{x_{0}, x_{1}\right\}:$

$$
\begin{aligned}
a b c Ш d & =a b c d+a b d c+a d b c+d a b c \\
a b Ш c d & =a b c d+a c b d+c a b d+a c d b+c a d b+c d a b, \\
a Ш b c d & =a b c d+b a c d+b c a d+b c d a .
\end{aligned}
$$

The unit for both these products is the empty word, which we denote by \emptyset. The algebra $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ is given its usual ultrametric topology.

Definition 1 [5].

1. For any $d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$, we define a continuous algebra map φ_{d} from $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ to $\operatorname{End}\left(\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle\right)$ in the following way: for all $X \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$,

$$
\varphi_{d}\left(x_{0}\right)(X)=x_{0} X, \varphi_{d}\left(x_{1}\right)(X)=x_{1} X+x_{0}(d Ш X) .
$$

2. We define a composition \circ on $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ in the following way: for all $c, d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$, $c \circ d=\varphi_{d}(c)(\emptyset)+d$.

It is proved in [5] that this composition is associative.

Notation. For all $c, d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$, we put $c \tilde{o} d=c \circ d-d=\varphi_{d}(c)(\emptyset)$.
Remark. If $c_{1}, c_{2}, d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle, \lambda \in \mathbb{K}$:
$\left(c_{1}+\lambda c_{2}\right) \tilde{o} d=\varphi_{d}\left(c_{1}+\lambda c_{2}\right)(\emptyset)=\left(\varphi_{d}\left(c_{1}\right)+\lambda \varphi_{d}\left(c_{2}\right)\right)(\emptyset)=\varphi_{d}\left(c_{1}\right)(\emptyset)+\lambda \varphi_{d}\left(c_{2}\right)(\emptyset)=c_{1} \tilde{\circ} d+\lambda c_{2} \tilde{\circ} d$.
So the composition \tilde{o} is linear on the left. As φ_{d} is continuous, the map $c \longrightarrow c \tilde{o} d$ is continuous for any $d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$. Hence, it is enough to know how to compute $c \tilde{0} d$ for any word c, which is made possible by the next lemma, using an induction on the length:

Lemma 2 For any word c, for any $d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$:

1. $\emptyset o \tilde{o} d=\emptyset$.
2. $\left(x_{0} c\right) \tilde{o} d=x_{0}(c \tilde{o} d)$.
3. $\left(x_{1} c\right) \tilde{o} d=x_{1}(c \tilde{o} d)+x_{0}(d Ш(c \tilde{o} d))$.

Proof. 1. $\emptyset o ̃ d=\varphi_{d}(\emptyset)(\emptyset)=\operatorname{Id}(\emptyset)=\emptyset$.
2. $\left(x_{0} c\right) \tilde{\circ} d=\varphi_{d}\left(x_{0} c\right)(\emptyset)=\varphi_{d}\left(x_{0}\right) \circ \varphi_{d}(c)(\emptyset)=\varphi_{d}\left(x_{0}\right)(c \tilde{\circ} d)=x_{0}(c \tilde{o} d)$.
3. $\left(x_{1} c\right) \tilde{o} d=\varphi_{d}\left(x_{1} c\right)(\emptyset)=\varphi_{d}\left(x_{1}\right) \circ \varphi_{d}(c)(\emptyset)=\varphi_{d}\left(x_{1}\right)(c \tilde{o} d)=x_{1}(c \tilde{o} d)+x_{0}(d \boldsymbol{\omega}(c \tilde{o} d))$.

1.2 Dual Hopf algebra

We here give an inductive description of the Hopf algebra of the coordinates of the group $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ of [5].

For any word c, let us consider the map $X_{c} \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle^{*}$, such that for any $d \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$, $X_{c}(d)$ is the coefficient of c in d. We denote by V the subspace of A^{*} generated by these maps. Let $H=S(V)$, or equivalently the free commutative algebra generated by the X_{c} 's. The elements of
H are seen as polynomial functions on $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$; the elements of $H \otimes H$ are seen as polynomial functions on $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle \times \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$. Then H is given a multiplicative coproduct defined in the following way: for any word c, for any $f, g \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$,

$$
\Delta\left(X_{c}\right)(f, g)=X_{c}(f \circ g)
$$

As \circ is associative, Δ is coassociative, so H is a bialgebra.

Notations.

1. The space of words is a commutative algebra for the shuffle product \amalg. Dually, the space V inherits a coassociative, cocommutative coproduct, denoted by $\Delta_{\boldsymbol{w}}$. For example, if $a, b, c \in\left\{x_{0}, x_{1}\right\}:$

$$
\begin{aligned}
\Delta_{\boldsymbol{ш}}\left(X_{\emptyset}\right)= & X_{\emptyset} \otimes X_{\emptyset} \\
\Delta_{\boldsymbol{๒}}\left(X_{a}\right)= & X_{a} \otimes X_{\emptyset}+X_{\emptyset} \otimes X_{a}, \\
\Delta_{\boldsymbol{ш}}\left(X_{a b}\right)= & X_{a b} \otimes X_{\emptyset}+X_{a} \otimes X_{b}+X_{b} \otimes X_{a}+X_{\emptyset} \otimes X_{a b}, \\
\Delta_{\boldsymbol{ш}}\left(X_{a b c}\right)= & X_{a b c} \otimes X_{\emptyset}+X_{a} \otimes X_{b c}+X_{b} \otimes X_{a c}+X_{c} \otimes X_{a b} \\
& +X_{a b} \otimes X_{c}+X_{a c} \otimes X_{b}+X_{b c} \otimes X_{a}+X_{\emptyset} \otimes X_{a b c} .
\end{aligned}
$$

2. We define two linear endomorphisms θ_{0}, θ_{1} of V by $\theta_{i}\left(X_{c}\right)=X_{x_{i} c}$ for any word c.

The following proposition allows to compute $\Delta\left(X_{c}\right)$ for any word c by induction on the length of c.

Proposition 3 For all $x \in V$, we put $\tilde{\Delta}(x)=\Delta(x)-1 \otimes x$.

1. $\tilde{\Delta}\left(X_{\emptyset}\right)=X_{\emptyset} \otimes 1$.
2. $\tilde{\Delta} \circ \theta_{0}=\left(\theta_{0} \otimes I d\right) \circ \tilde{\Delta}+\left(\theta_{1} \otimes m\right) \circ(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{ш}}$.
3. $\tilde{\Delta} \circ \theta_{1}=\left(\theta_{1} \otimes I d\right) \circ \tilde{\Delta}$.

Proof. For any word c, for any $f, g \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$:

$$
\tilde{\Delta}\left(X_{c}\right)(f, g)=\Delta\left(X_{c}\right)(f, g)-\left(1 \otimes X_{c}\right)(f, g)=X_{c}(f \circ g)-X_{c}(g)=X_{c}(f \otimes g-g)=X_{c}(f \tilde{\circ} g)
$$

As \tilde{o} is linear on the left, $\tilde{\Delta}\left(X_{c}\right) \in V \otimes H$, so formulas in 2. and 3. make sense.

Let $f \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$. It can be uniquely written as $f=x_{0} f_{0}+x_{1} f_{1}+\lambda \emptyset$, with $f_{0}, f_{1} \in$ $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle, \lambda \in K$. For all $g \in \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$:

$$
\begin{aligned}
f \tilde{\circ} g & =\left(x_{0} f_{0}\right) \tilde{\circ} g+\left(x_{1} f_{1}\right) \tilde{\circ} g+\lambda \emptyset \tilde{\circ} g \\
& =x_{0}\left(f_{0} \tilde{\circ} g+g Ш\left(f_{1} \tilde{\circ} g\right)\right)+x_{1}\left(f_{1} \tilde{\circ} g\right)+\lambda \emptyset .
\end{aligned}
$$

1. We obtain:

$$
\tilde{\Delta}\left(X_{\emptyset}\right)(f, g)=X_{\emptyset}\left(x_{0}\left(f_{0} \tilde{\circ} g+g Ш\left(f_{1} \tilde{\circ} g\right)\right)+x_{1}\left(f_{1} \tilde{\circ} g\right)+\lambda \emptyset\right)=0+0+\lambda=\left(X_{\emptyset} \otimes 1\right)(f, g) .
$$

So $\Delta\left(X_{\emptyset}\right)=X_{\emptyset} \otimes 1$.
2. Let c be a word.

$$
\begin{aligned}
\tilde{\Delta} \circ \theta_{0}\left(X_{c}\right)(f, g) & =\tilde{\Delta}\left(X_{x_{0} c}\right)(f, g) \\
& =X_{x_{0} c}\left(x_{0}\left(f_{0} \tilde{\circ} g+g 山\left(f_{1} \tilde{\circ} g\right)\right)+x_{1}\left(f_{1} \tilde{\circ} g\right)+\lambda \emptyset\right) \\
& =X_{c}\left(f_{0} \tilde{\circ} g+g Ш\left(f_{1} \tilde{\circ} g\right)\right)+0+0 \\
& =X_{c}\left(f_{0} \tilde{\circ} g+\left(f_{1} \tilde{\circ} g\right) Ш g\right)+0+0 \\
& =\tilde{\Delta}\left(X_{c}\right)\left(f_{0}, g\right)+(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{\amalg}}\left(X_{c}\right)\left(f_{1}, g, g\right) \\
& =\tilde{\Delta}\left(X_{c}\right)\left(f_{0}, g\right)+(I d \otimes m) \circ(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{\amalg}}\left(X_{c}\right)\left(f_{1}, g\right) \\
& =\left(\theta_{0} \otimes I d\right) \circ \tilde{\Delta}\left(X_{c}\right)(f, g)+\left(\theta_{1} \otimes I d\right) \circ(I d \otimes m) \circ(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{\amalg}}\left(X_{c}\right)(f, g)
\end{aligned}
$$

so $\tilde{\Delta} \circ \theta_{0}\left(X_{c}\right)=\left(\theta_{0} \otimes I d\right) \circ \tilde{\Delta}\left(X_{c}\right)+\left(\theta_{1} \otimes I d\right) \circ(I d \otimes m) \circ(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{\omega}}\left(X_{c}\right)$.
3. Let c be a word.

$$
\begin{aligned}
\tilde{\Delta} \circ \theta_{1}\left(X_{c}\right)(f, g) & =\tilde{\Delta}\left(X_{x_{0} c}\right)(f, g) \\
& =X_{x_{1} c}\left(x_{0}\left(f_{0} \tilde{\circ} g+g Ш\left(f_{1} \tilde{\circ} g\right)\right)+x_{1}\left(f_{1} \tilde{\circ} g\right)+\lambda \emptyset\right) \\
& =0+X_{c}\left(f_{1} \tilde{\circ} g\right)+0 \\
& =\tilde{\Delta}\left(X_{c}\right)\left(f_{1}, g\right) \\
& =\left(\theta_{1} \otimes I d\right) \circ \tilde{\Delta}\left(X_{c}\right)(f, g),
\end{aligned}
$$

so $\tilde{\Delta} \circ \theta_{1}\left(X_{c}\right)=\left(\theta_{1} \otimes I d\right) \circ \tilde{\Delta}\left(X_{c}\right)$.

Examples.

$$
\begin{aligned}
\Delta\left(X_{x_{0}}\right) & =X_{x_{0}} \otimes 1+1 \otimes X_{x_{0}}+X_{x_{1}} \otimes X_{\emptyset} \\
\Delta\left(X_{x_{0}^{2}}\right) & =X_{x_{0}^{2}} \otimes 1+1 \otimes X_{x_{0}^{2}}+X_{x_{0} x_{1}} \otimes X_{\emptyset}+X_{x_{1} x_{0}} \otimes X_{\emptyset}+X_{x_{1} x_{1}} \otimes X_{\emptyset}^{2}+X_{x_{1}} \otimes X_{x_{0}}, \\
\Delta\left(X_{x_{0} x_{1}}\right) & =X_{x_{0} x_{1}} \otimes 1+1 \otimes X_{x_{0} x_{1}}+X_{x_{1} x_{1}} \otimes X_{\emptyset}+X_{x_{1}} \otimes X_{x_{1}} \\
\Delta\left(X_{x_{1} x_{0}}\right) & =X_{x_{1} x_{0}} \otimes 1+1 \otimes X_{x_{1} x_{0}}+X_{x_{1} x_{1}} \otimes X_{\emptyset}
\end{aligned}
$$

Corollary 4 For all $n \geq 1, \tilde{\Delta}\left(X_{x_{1}^{n}}\right)=X_{x_{1}^{n}} \otimes 1$ and $\Delta\left(X_{x_{1}^{n}}\right)=X_{x_{1}^{n}} \otimes 1+1 \otimes X_{x_{1}^{n}}$.
Proof. Easy induction on n.

1.3 gradation

It is proved in [5] that the Hopf algebra H is graded by the length of words, but this gradation is not connected, that is to say that the homogeneous component of degree 0 is not (0), as it contains X_{\emptyset}. We here define another gradation, which is connected.

Definition 5 Let $c=c_{1} \ldots c_{k}$ be a word. We put:

$$
\operatorname{deg}(c)=\lg (c)+1+\sharp\left\{i \in\{1, \ldots, k\} \mid c_{i}=x_{0}\right\}
$$

For all $k \geq 1$, we put:

$$
V_{k}=V e c t\left(X_{c} \mid \operatorname{deg}(x)=k\right)
$$

This define a connected gradation of V, that is to say:

$$
V=\bigoplus_{k \geq 1} V_{k}
$$

This gradation induces a connected gradation of the algebra H :

$$
H=\bigoplus_{k \geq 0} H_{k}, \text { and } H_{0}=\mathbb{K}
$$

Proposition 6 If c is a word of degree n, then:

$$
\tilde{\Delta}\left(X_{c}\right) \in \bigoplus_{i+j=n} V_{i} \otimes H_{j} .
$$

So the gradation $\left(V_{k}\right)_{k \geq 1}$ is a gradation of the Hopf algebra H.
Proof. Let us start by the following observations:

1. Let c be a word of degree k. Then $x_{0} c$ is a word of degree $k+2$. Hence, θ_{0} is homogeneous of degree 2 on V.
2. Let c be a word of degree k. Then $x_{1} c$ is a word of degree $k+1$. Hence, θ_{1} is homogeneous of degree 1 on V.
3. Let c and d be two words of respective degrees k and l. Then any word obtained by shuffling c and d is of degree $k+l-1$: its length is the sum of the length of c and d, and the number of x_{0} in it is the sum of the numbers of x_{0} in c and d. Hence, the coproduct Δ_{w} is homogeneous of degree 1 from V to $V \otimes V$.

Let us prove the result by induction on the length k of c. If $k=0$, then $c=\emptyset$ so $n=1$, and $\tilde{\Delta}\left(X_{c}\right)=X_{c} \otimes 1 \in V_{1} \otimes H_{0}$. Let us assume the result for all words of length $<k-1$. Two cases can occur.

1. If $c=x_{0} d$, then $\operatorname{deg}(d)=n-2$. we put $\Delta_{\boldsymbol{\Perp}}\left(X_{d}\right)=\sum x_{i}^{\prime} \otimes x_{i}^{\prime \prime}$. By the preceding third observation, we can assume that for all $i, x_{i}^{\prime}, x_{i}^{\prime \prime}$ are homogeneous elements of V, with $\operatorname{deg}\left(x_{i}^{\prime}\right)+\operatorname{deg}\left(x_{i}^{\prime}\right)=n-2+1=n-1$. Then:

$$
\tilde{\Delta}\left(X_{c}\right)=\left(\theta_{0} \otimes I d\right) \circ \tilde{\Delta}\left(X_{d}\right)+\sum_{i}\left(\theta_{1} \otimes m\right) \circ\left(\tilde{\Delta}\left(x_{i}^{\prime}\right) \otimes x_{i}^{\prime \prime}\right) .
$$

By the induction hypothesis, $\tilde{\Delta}\left(X_{d}\right) \in(V \otimes H)_{n-1}$. By the second observation, $\left(\theta_{0} \otimes I d\right) \circ$ $\tilde{\Delta}\left(X_{d}\right) \in(V \otimes H)_{n}$. By the induction hypothesis applied to x_{i}^{\prime}, for all $i,\left(\tilde{\Delta}\left(x_{i}^{\prime}\right) \otimes x_{i}^{\prime \prime}\right) \in(V \otimes$ $H \otimes V)_{n-1}$, so by the first observation, $\left(\theta_{1} \otimes m\right) \circ\left(\tilde{\Delta}\left(x_{i}^{\prime}\right) \otimes x_{i}^{\prime \prime}\right) \in(V \otimes H)_{n-1+1} \subseteq(V \otimes H)_{n}$. So $\Delta\left(X_{c}\right) \in(V \otimes H)_{n}$.
2. $c=x_{1} d$, then $\operatorname{deg}(d)=n-1$. Moreover, $\tilde{\Delta}\left(X_{c}\right)=\left(\theta_{1} \otimes I d\right) \circ \tilde{\Delta}\left(X_{d}\right)$. By the induction hypothesis, $\tilde{\Delta}\left(X_{d}\right) \in(V \otimes H)_{n-1}$. By the second observation, $\tilde{\Delta}\left(X_{c}\right) \in(V \otimes H)_{n}$.

So the result holds for any word c.
Corollary 7 For all $n \geq 0$:

$$
\Delta\left(H_{n}\right) \subseteq \bigoplus_{i+j=n} H_{i} \otimes H_{j}
$$

Proof. Comes from the multiplicativity of Δ.
Let us now study the formal series of V and H.
Proposition 8 1. For all k, let us put $p_{k}=\operatorname{dim}\left(V_{k}\right)$ and $F_{V}=\sum_{k=1}^{\infty} p_{k} X^{k}$. Then:

$$
F_{V}=\frac{X}{1-X-X^{2}}
$$

and for all $k \geq 1$:

$$
p_{k}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right) .
$$

This is the Fibonacci sequence (A000045 in [15]).
2. We put $F_{H}=\sum_{k=0}^{\infty} \operatorname{dim}\left(H_{k}\right) X^{k}$. Then:

$$
F_{H}=\prod_{k=1}^{\infty} \frac{1}{\left(1-X^{k}\right)^{p_{k}}} .
$$

Proof. Let us consider the formal series:

$$
F\left(X_{0}, X_{1}\right)=\sum_{i, j \geq 0} \sharp\left\{\text { words in } x_{0}, x_{1} \text { with } i x_{0} \text { and } j x_{1}\right\} X_{0}^{i} X_{0}^{j} .
$$

Then $F\left(X_{0}, X_{1}\right)=\frac{1}{1-X_{0}-X_{1}}$. Moreover, by definition of the degree of a word:

$$
F_{V}=X F\left(X^{2}, X\right)=\frac{X}{1-X-X^{2}}
$$

As H is the symmetric algebra generated by V, its formal series is given by the second point.
Examples. We obtain:

k	0	1	2	3	4	5	6	7	8	9	10
$\operatorname{dim}\left(V_{k}\right)$	0	1	1	2	3	5	8	13	21	34	55
$\operatorname{dim}\left(H_{k}\right)$	1	1	2	4	8	15	30	56	108	203	384

The third row is sequence A166861 of [15].
Remark. Consequently, the space V inherits a bigradation:

$$
V_{k, n}=\operatorname{Vect}\left(X_{c} \mid \operatorname{deg}(c)=k \text { and } \lg (c)=n\right) .
$$

If c is a word of length n and of degree k, denoting by a the number of its letters equal to x_{0} and by b the number of its letters equal to x_{1}, then:

$$
\left\{\begin{aligned}
a+b & =n \\
2 a+b+1 & =k
\end{aligned}\right.
$$

so $a=k-n-1$. Hence:

$$
\operatorname{dim}\left(V_{k, n}\right)=\binom{n}{k-n-1}
$$

and the formal series of this bigradation is:

$$
\sum_{k, n \geq 0} \operatorname{dim}\left(V_{k, n}\right) X^{k} Y^{n}=\frac{X}{1-X Y-X^{2} Y}
$$

2 Pre-Lie structure on $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$

2.1 pre-Lie coproduct on V

As the composition \circ is linear on the left, the dual coproduct satisfies $\tilde{\Delta}(V) \subseteq V \otimes H$, so H is a commutative right-sided Hopf algebra in the sense of [9], and V inherits a right pre-Lie coproduct: if π is the canonical projection from $H=S(V)$ onto V,

$$
\delta=(\pi \otimes \pi) \circ \Delta=(I d \otimes \pi) \circ \tilde{\Delta} .
$$

It satisfies the right pre-Lie coalgebra axiom:

$$
(23) \cdot((\delta \otimes I d) \circ \delta-(I d \otimes \delta) \circ \delta)=0
$$

The following proposition allows to compute $\delta\left(X_{c}\right)$ by induction on the length of c.
2. $\delta \circ \theta_{0}=\left(\theta_{0} \otimes I d\right) \circ \delta+\left(\theta_{1} \otimes I d\right) \circ \Delta_{\boldsymbol{\omega}}$.
3. $\delta \circ \theta_{1}=\left(\theta_{1} \otimes I d\right) \circ \delta$.

Proof. The first point comes from $\Delta\left(X_{\emptyset}\right)=X_{\emptyset} \otimes 1+1 \otimes X_{\emptyset}$. Let $x \in V$. We put $\Delta_{\boldsymbol{\omega}}(x)=x^{\prime} \otimes x^{\prime \prime} \in V \otimes V$. For any $y \in V$, we put $\tilde{\Delta}(y)-y \otimes 1=y^{(1)} \otimes y^{(2)} \in V \otimes H_{+}$. Then:

$$
\begin{aligned}
\left(\theta_{1} \otimes m\right) \circ(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{ш}}(x) & =\left(\theta_{1} \otimes m\right)\left(x^{\prime} \otimes 1 \otimes x^{\prime \prime}+x^{\prime(1)} \otimes x^{(2)} \otimes x^{\prime \prime}\right) \\
& =\theta_{1}\left(x^{\prime}\right) \otimes \underbrace{x^{\prime \prime}}_{\in V}+x^{(1)} \otimes \underbrace{x^{(2)} x^{\prime \prime}}_{\in \operatorname{Ker}(\pi)}
\end{aligned}
$$

Applying $I d \otimes \pi$, it remains:

$$
(I d \otimes \pi) \circ\left(\theta_{1} \otimes m\right) \circ(\tilde{\Delta} \otimes I d) \circ \Delta_{\boldsymbol{\omega}}(x)=\left(\theta_{1} \otimes I d\right) \circ \Delta_{\boldsymbol{\omega}}(x)
$$

Let $i=0$ or 1 . Then:

$$
(I d \otimes \pi) \circ\left(\theta_{i} \otimes I d\right) \circ \tilde{\Delta}=\left(\theta_{i} \otimes I d\right) \circ(I d \otimes \pi) \circ \tilde{\Delta}=\left(\theta_{i} \otimes I d\right) \circ \delta
$$

The result is induced by these remarks, combined with proposition 3.

Examples.

$$
\begin{aligned}
\delta\left(X_{x_{0}}\right) & =X_{x_{1}} \otimes X_{\emptyset} \\
\delta\left(X_{x_{0}^{2}}\right) & =X_{x_{0} x_{1}} \otimes X_{\emptyset}+X_{x_{1} x_{0}} \otimes X_{\emptyset}+X_{x_{1}} \otimes X_{x_{0}} \\
\delta\left(X_{x_{0} x_{1}}\right) & =X_{x_{1} x_{1}} \otimes X_{\emptyset}+X_{x_{1}} \otimes X_{x_{1}} \\
\delta\left(X_{x_{1} x_{0}}\right) & =X_{x_{1} x_{1}} \otimes X_{\emptyset}
\end{aligned}
$$

Proposition $10 \operatorname{Ker}(\delta)=\operatorname{Vect}\left(X_{x_{1}^{n}}, n \geq 0\right)$.
Proof. The inclusion \supseteq is trivial by corollary 4 . Let us prove the other inclusion.

First step. Let us prove the following property: if $x \in V_{k}$ is such that

$$
\delta(x)=\lambda \sum_{i+j=k-2} \frac{(k-2)!}{i!j!} X_{x_{1}^{i}} \otimes X_{x_{1}^{j}}
$$

then there exists $\mu \in \mathbb{K}$ such that $x=\mu x_{1}^{k-1}$. It is obvious if $k=1$, as then $x=\mu \emptyset$. Let us assume the result at all ranks $<k$. We put $x=x_{1}^{\alpha}\left(x_{0} f_{0}+x_{1} f_{1}\right)$, where $\alpha \geq 0, f_{0}$ is homogeneous of degree $k-2-\alpha$ and f_{1} is homogeneous of degree $k-1-\alpha$.

$$
\delta(x)=\left(\theta_{1}^{\alpha} \otimes I d\right)\left(\left(\theta_{0} \otimes I d\right) \circ \delta\left(f_{0}\right)+\left(\theta_{1} \otimes I d\right) \circ \delta\left(f_{1}\right)+\left(\theta_{1} \otimes I d\right) \circ \Delta_{\boldsymbol{\omega}}\left(f_{0}\right)\right)
$$

Let us consider the terms in this expression of the form $X_{\emptyset} \otimes X_{c}$, with c a word. This gives:

$$
\lambda X_{\emptyset} \otimes X_{x_{1}^{k-2}}=0
$$

so $\lambda=0$ and $\delta(x)=0$. Let us now consider the terms of the form $X_{x_{1}^{\alpha} x_{0} c} \otimes X_{d}$, with c, d words. We obtain:

$$
0=\left(\theta_{1}^{\alpha} \circ \theta_{0} \otimes I d\right) \circ \delta\left(f_{0}\right)
$$

As both θ_{0} and θ_{1} are injective, we obtain $\delta\left(f_{0}\right)=0$. By the induction hypothesis, $f_{0}=\nu X_{1} x_{1}^{l}$, with $l=k-2-\alpha<k$. Hence:

$$
\Delta_{\boldsymbol{Ш}}\left(f_{0}\right)=\nu \sum_{i+j=l} \frac{l!}{i!j!} X_{x_{1}^{i}} \otimes X_{x_{1}^{j}}
$$

and:

$$
\left(\theta_{1}^{\alpha+1} \otimes I d\right)\left(\delta\left(f_{1}\right)+\nu \sum_{i+j=l} \frac{l!}{i!j!} X_{x_{1}^{i}} \otimes X_{x_{1}^{j}}\right)=0 .
$$

As θ_{1} is injective, we obtain with the induction hypothesis that $f_{1}=\mu X_{x_{1}^{k-2-\alpha}}$, so:

$$
x=\mu X_{x_{1}^{k-1}}+\nu X_{x_{1}^{\alpha} x_{0} x_{1}^{k-\alpha-2}}
$$

This gives:

$$
\begin{aligned}
\delta(x) & =\nu\left(\theta_{1}^{\alpha+1} \otimes I d\right)\left(\sum_{i+j=k-\alpha-2} \frac{(k-\alpha-2)!}{i!j!} X_{x_{1}^{i}} \otimes X_{x_{1}^{j}}\right) \\
& =\nu \sum_{i+j=k-\alpha-2} \frac{(k-\alpha-2)!}{i!j!} X_{x_{1}^{i+\alpha}} \otimes X_{x_{1}^{j}} \\
& =0,
\end{aligned}
$$

so necessarily $\nu=0$ and $x=\mu X_{x_{1}^{k-1}}$.
Second step. Let $x \in \operatorname{Ker}(\delta)$. As δ is homogeneous of degree 0 , the homogeneous components of x are in $\operatorname{Ker}(\delta)$. By the first step, with $\lambda=0$, these homogeneous components, hence x, belong to $\operatorname{Vect}\left(X_{x_{1}^{k}}, k \geq 0\right)$.

2.2 Dual pre-Lie algebra

As V is a graded pre-Lie coalgebra, its graded dual is a pre-Lie algebra. We identify this graded dual with $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle \subseteq \mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$; for any words $c, d, X_{c}(d)=\delta_{c, d}$. The pre-Lie product of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is denoted by \bullet. Dualizing proposition 9 , we obtain:

Proposition 11 1. For all word $c, \emptyset \bullet c=0$.
2. For all words $c, d,\left(x_{0} c\right) \bullet d=x_{0}(c \bullet d)$.
3. For all words $c, d,\left(x_{1} c\right) \bullet d=x_{1}(c \bullet d)+x_{0}(c Ш d)$.

Proof. Let u, v, w be words. Then $X_{w}(u \bullet v)=\delta\left(X_{w}\right)(u \otimes v)$. Hence, if d is a word:

$$
\begin{aligned}
X_{\emptyset}(u \bullet v) & =0 \\
X_{x_{0} d}(u \bullet v) & =\left(\theta_{0} \otimes I d\right) \circ \delta\left(X_{d}\right)(u \otimes v)+\left(\theta_{1} \otimes I d\right) \circ \Delta_{\boldsymbol{\omega}}\left(X_{d}\right)(u \otimes v) \\
& =X_{d}\left(\theta_{0}^{*}(u) \bullet v+\theta_{1}^{*}(u) Ш v\right), \\
X_{x_{1} d}(u \bullet v) & =\left(\theta_{1} \otimes I d\right) \otimes \delta\left(X_{d}\right)(u \otimes v) \\
& =X_{d}\left(\theta_{1}^{*}(u) \bullet v\right) .
\end{aligned}
$$

Moreover, for all word c :

$$
\begin{array}{llll}
\theta_{0}^{*}(\emptyset) & =0, & \theta_{0}^{*}\left(x_{0} c\right) & =c,
\end{array} \quad \theta_{0}^{*}\left(x_{1} c\right)=0 .
$$

Hence, for any words c, d :

$$
\begin{aligned}
X_{x_{0} d}\left(x_{0} c \bullet v\right) & =X_{d}(c \bullet v) \\
& =X_{x_{0} d}\left(x_{0}(x \bullet v)\right), \\
X_{x_{1} d}\left(x_{0} c \bullet v\right) & =0 \\
& =X_{x_{1} d}\left(x_{0}(x \bullet v)\right) ; \\
& \\
X_{x_{0} d}\left(x_{1} c \bullet v\right) & =X_{d}(c Ш v) \\
& =X_{x_{0} d}\left(x_{1}(c \bullet v)+x_{0}(c Ш v)\right), \\
X_{x_{1} d}\left(x_{1} c \bullet v\right) & =X_{d}(c \bullet v) \\
& =X_{x_{1} d}\left(x_{1}(c \bullet v)+x_{0}(c Ш v)\right) .
\end{aligned}
$$

Hence, for any $w, X_{w}\left(x_{0} c \bullet v\right)=X_{w}\left(x_{0}(x \bullet v)\right)$ and $X_{w}\left(x_{1} c \bullet v\right)=X_{w}\left(\left(x_{1}(c \bullet v)+x_{0}(c Ш v)\right)\right.$.
Examples.

$$
\begin{aligned}
& x_{0} \bullet x_{0}=0 \\
& x_{0} \bullet x_{1}=0 \\
& x_{1} \bullet x_{0}=x_{0} x_{0} \\
& x_{1} \bullet x_{1}=x_{0} \bullet x_{0} x_{0} \\
& x_{0} \bullet x_{0} x_{1}=0 \\
& x_{0} \bullet x_{1} x_{0}=0 \\
& x_{0} \bullet x_{1} x_{1}=0 \\
& x_{1} \bullet x_{0} x_{0}=x_{0} x_{0} x_{0} \\
& x_{1} \bullet x_{0} x_{1}= x_{1} \bullet x_{1} x_{0}=x_{0} x_{1} \\
& x_{1} x_{1} x_{0} \\
& x_{0} x_{0} \bullet x_{0} x_{1}==x_{0} x_{1} x_{1} \\
& x_{0} x_{1} \bullet x_{0}=0 \\
& x_{1} x_{0} \bullet x_{0}=x_{0} x_{0} x_{0} x_{0} x_{0} \bullet x_{1}=0 \\
& x_{1} x_{1} \bullet x_{0}=2 x_{0} x_{0} x_{0} x_{0} x_{1} \bullet x_{1}=x_{0} x_{0} x_{1} \\
& x_{1} x_{0} \bullet x_{1}=x_{0} x_{0} x_{1}+x_{0} x_{1} x_{0} \\
& x_{1} x_{1} \bullet x_{1}=x_{1} x_{0} x_{1}+2 x_{0} x_{1} x_{1}
\end{aligned}
$$

Dualizing proposition 10 :
Theorem $12 \mathbb{K}\left\langle x_{0}, x_{1}\right\rangle=\operatorname{Vect}\left(x_{1}^{n}, n \geq 0\right) \oplus\left(\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle \bullet \mathbb{K}\left\langle x_{0}, x_{1}\right\rangle\right)$. Hence, $\left(x_{1}^{n}\right)_{n \geq 0}$ is a minimal system of generators of the pre-Lie algebra $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$.

Proof. As • $=\delta^{*}, \operatorname{Im}(\bullet)=\operatorname{Ker}(\delta)^{\perp}=\operatorname{Vect}\left(X_{x_{1}^{n}}, n \geq 0\right)^{\perp}$. The first assertion is then immediate. As $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ is a graded, connected pre-Lie coalgebra, $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is a graded, connected pre-Lie algebra. The result then comes from the next lemma.

Lemma 13 Let A be a graded, connected pre-Lie algebra, and V be a graded subspace of A.

1. V generates A if, and only if, $A=V+A \bullet A$.
2. V is a minimal subspace of generators of A if, and only if, $A=V \oplus A \bullet A$.

Proof. 1. \Longrightarrow. Let $x \in A$. Then it can be written as an element of the pre-Lie subalgebra generated by v, so as the sum of an element of V and of iterated pre-Lie products of elements of V. Hence, $x \in V+A \bullet A$. Note that we did not use the gradation of A to prove this.

1. \Longleftarrow. Let B be the pre-Lie subalgebra generated by V. Let $x \in A_{n}$, let us prove that $x \in B$ by induction on n. As $A_{0}=(0)$, it is obvious if $n=0$. Let us assume the result at all ranks $<n$. We obtain, by the gradation:

$$
A_{n}=V_{n} \oplus \sum_{i=1}^{n-1} A_{i} \bullet A_{n-i}
$$

So we can write $x=\lambda x_{1}^{n-1}+\sum x_{i} \bullet y_{i}$, where x_{i}, y_{i} are homogeneous of degree $<n$. By the induction hypothesis, these elements belong to B, so $x \in B$.
2. \Longrightarrow. By 1. $\Longrightarrow, A=V+A \bullet A$. If $V \cap A \bullet A \neq(0)$, we can choose a graded subspace $W \subsetneq V$, such that $A=W \oplus A \bullet A$. By $1 . \Longleftarrow, W$ generates A, so V is not a minimal system of generators of A : contradiction. So $A=V \oplus A \bullet A$.
2. \Longleftarrow. By $1 . \Longleftarrow, V$ is a space of generators of A. If $W \subsetneq V$, then $W \oplus A \bullet A \subsetneq A$. By 1 . \Longrightarrow, W does not generate V. So V is a minimal subspace of generators.

Proposition 14 For all $x, y, z \in \mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$,

$$
(x Ш y) \bullet z=(x \bullet z) Ш y+x Ш(y \bullet z) .
$$

Proof. We prove it if x, y, z are words. If $x=\emptyset$, then:

$$
(\emptyset Ш y) \bullet z=y \bullet z=(\emptyset \bullet z) Ш y+\emptyset Ш(u \bullet z) .
$$

If $y=\emptyset$, the result is also true, using the commutativity of $ш$. We can now consider that x, y are nonempty words.

Let us proceed by induction on $k=l g(x)+l g(y)$. If $k=0$ or 1 , there is nothing to prove. Let us assume the result at all rank $<k$. Four cases can occur.

First case. $x=x_{0} a$ and $y=x_{0} b$. Then:

$$
\begin{aligned}
(x Ш y) \bullet z & =\left(x_{0}\left(a Ш x_{0} b\right) \bullet z+\left(x_{0}\left(x_{0} a Ш b\right)\right) \bullet z\right. \\
& =x_{0}\left(\left(a Ш x_{0} b\right) \bullet z\right)+x_{0}\left(\left(x_{0} a Ш b\right) \bullet z\right) \\
& =x_{0}\left((a \bullet z) Ш x_{0} b\right)+x_{0}\left(a Ш\left(\left(x_{0} b\right) \bullet z\right)\right)+x_{0}\left(\left(\left(x_{0} a\right) \bullet z\right) Ш b\right)+x_{0}\left(x_{0} a Ш(b \bullet z)\right) \\
& =x_{0}\left((a \bullet z) Ш x_{0} b\right)+x_{0}\left(a Ш\left(x_{0}(b \bullet z)\right)+x_{0}\left(\left(x_{0}(a \bullet z)\right) Ш b\right)+x_{0}\left(x_{0} a Ш(b \bullet z)\right)\right. \\
& =x_{0}(a \bullet z) Ш x_{0} b+x_{0} a Ш x_{0}(b \bullet z) \\
& =(x \bullet z) Ш y+x Ш(y \bullet z) .
\end{aligned}
$$

Second case. $x=x_{1} a$ and $y=x_{0} b$. This gives:

$$
\begin{aligned}
(x Ш y) \bullet z= & \left(x_{1}\left(a Ш x_{0} b\right)\right) \bullet z+\left(x_{0}\left(x_{1} a Ш b\right)\right) \bullet z \\
= & x_{1}\left((a \bullet z) Ш x_{0} b\right)+x_{1}\left(a Ш x_{0}(b \bullet z)\right) \\
& +x_{0}\left(a Ш x_{0} b Ш z\right)+x_{0}\left(\left(\left(x_{1} a\right) \bullet z\right) Ш b\right)+x_{0}\left(x_{1} a Ш(b \bullet z)\right) \\
= & x_{1}\left((a \bullet z) Ш x_{0} b\right)+x_{1}\left(a Ш x_{0}(b \bullet z)\right) \\
& +x_{0}\left(a Ш x_{0} b Ш z\right)+x_{0}\left(\left(x_{1}(a \bullet z)\right) Ш b\right)+x_{0}\left(\left(x_{0}(a Ш z)\right) Ш b\right)+x_{0}\left(x_{1} a Ш(b \bullet z)\right),
\end{aligned}
$$

$$
\begin{aligned}
(x \bullet z) Ш y= & \left(x_{1}(a \bullet z)\right) Ш x_{0} b+\left(x_{0}(a Ш z)\right) Ш\left(x_{0} b\right) \\
= & x_{1}\left((a \bullet z) Ш\left(x_{0} b\right)\right)+x_{0}\left(x_{1}(a \bullet z) Ш b\right) \\
& +x_{0}\left(a Ш z Ш x_{0} b\right)+x_{0}\left(\left(x_{0}(a Ш z)\right) Ш b\right),
\end{aligned}
$$

```
xШ(y\bulletz) = x x }a山\mp@subsup{x}{0}{}(b\bulletz
    = x
```

These computations imply the required equality.

Third case. $x=x_{0} a$ and $y=x_{1} b$. This is a consequence of the second case, using the commutativity of \amalg.

Last case．$x=x_{1} a$ and $y=x_{1} b$ ．Similar computations give：

$$
\begin{aligned}
(x Ш y) \bullet z= & x_{1}\left((a \bullet z) Ш x_{1} b\right)+x_{1}\left(a Ш x_{1}(b \bullet w)\right)+x_{1}\left(a Ш x_{0}(b Ш z)\right)+x_{0}\left(a Ш x_{1} b Ш z\right) \\
& +x_{1}\left(x_{1} a Ш(b \bullet z)\right)+x_{1}\left(\left(x_{1}(a \bullet z)\right) Ш b\right)+x_{1}\left(\left(x_{0}(a Ш z)\right) Ш b\right)+x_{0}\left(a Ш x_{1} b Ш z\right), \\
(x \bullet z) Ш y= & x_{1}\left((a \bullet z) Ш x_{1} b\right)+x_{1}\left(\left(x_{1}(a \bullet z)\right) Ш b\right)+x_{0}\left(a Ш x_{1} b Ш z\right)+x_{1}\left(\left(x_{0}(a Ш z)\right) Ш b\right), \\
x Ш(y \bullet z)= & x_{1}\left(a Ш x_{1}(b \bullet w)\right)+x_{1}\left(a Ш x_{0}(b Ш z)\right)+x_{1}\left(x_{1} a Ш(b \bullet z)\right)+x_{0}\left(a Ш x_{1} b Ш z\right) .
\end{aligned}
$$

So the result holds in all cases．

3 Presentation of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ as a Com－pre－Lie algebra

Proposition 14 motivates the following definition：
Definition 15 ［10］A Com－pre－Lie algebra is a triple (V, \bullet, \amalg) ，such that：
1．(V, \bullet) is a pre－Lie algebra．
2．(V, \amalg) is a commutative，associative algebra（non necessarily unitary）．
3．For all $a, b, c \in V,(a \amalg b) \bullet c=(a \bullet c) Ш b+a 山(b \bullet c)$ ．
For example， $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is a Com－pre－Lie algebra．See［10］for an example of Com－pre－Lie algebra based on rooted trees．

3．1 Free Com－pre－Lie algebras

Definition 16 1．A partitioned forest is a pair (F, I) such that：
（a）F is a rooted forest（the edges of F being oriented from the leaves to the roots）．
（b）I is a partition of the vertices of F with the following condition：if x, y are two vertices of F which are in the same part of I ，then either they are both roots，or they have the same direct descendant．

2．We shall say that a partitioned forest is a partitioned tree if all the roots are in the same part of the partition．

3．Let \mathcal{D} be a set．A partitioned tree decorated by \mathcal{D} is a pair (t, d) ，where t is a partitioned tree and d is a map from the set of vertices of t into \mathcal{D} ．For any vertex x of $t, d(x)$ is called the decoration of x ．

4．The set of isoclasses of partitioned trees will be denoted by $\mathcal{P} \mathcal{T}$ ．For any set \mathcal{D} ，the set of isoclasses of partitioned trees decorated by \mathcal{D} will be denoted by $\mathcal{P} \mathcal{T}(\mathcal{D})$ ．

Examples．We represent partitioned trees by the Hasse graph of the underlying rooted forest，the partition being represented by horizontal edges．Here are partitioned trees with ≤ 4 vertices：

$$
\begin{aligned}
& \cdot ; \mathfrak{\imath}, \boldsymbol{V}, \nabla,!, 亡=\lrcorner, \ldots ; \nabla, \nabla=\nabla, \nabla, \dot{V}=\boldsymbol{\vee}, \nabla=\nabla, Y, \nabla!, \\
& \mathcal{L}=\boldsymbol{V}, L=\downarrow, \nabla=\nabla, \amalg, L=\perp=\ldots, \ldots .
\end{aligned}
$$

Definition 17 Let $t=(t, I)$ and $t^{\prime}=\left(t^{\prime}, J\right) \in \mathcal{P} \mathcal{T}$ ．

1. Let s be a vertex of t^{\prime}. The partitioned tree $t \bullet_{s} t^{\prime}$ is defined as follows:
(a) As a rooted forest, $t \bullet_{s} t^{\prime}$ is obtained by grafting all the roots of t^{\prime} on the vertex s of t.
(b) We put $I=\left\{I_{1}, \ldots, I_{k}\right\}$ and $J=\left\{J_{1}, \ldots, J_{l}\right\}$. The partition of the vertices of this rooted forest is $I \sqcup J=\left\{I_{1}, \ldots, I_{k}, J_{1}, \ldots, J_{l}\right\}$.
2. The partitioned tree $t Ш t^{\prime}$ is defined as follows:
(a) As a rooted forest, $t Ш t^{\prime}$ is $t t^{\prime}$.
(b) We put $I=\left\{I_{1}, \ldots, I_{k}\right\}$ and $J=\left\{J_{1}, \ldots, J_{l}\right\}$ and we assume that the set of roots of t is I_{1} and the set of roots of t^{\prime} is J_{1}. The partition of the vertices of $t Ш t^{\prime}\left\{I_{1} \sqcup\right.$ $\left.J_{1}, I_{2}, \ldots, I_{k}, J_{1}, \ldots, J_{l}\right\}$.

Examples.

1. Here are the three possible graftings $\nabla \bullet_{s} \bullet \nabla, \nabla$ and ∇.
2. Here are the two possible graftings $\mathfrak{\bullet} \bullet_{s}-\boldsymbol{\nabla}$ and ∇.

These operations can also be defined for decorated partitioned trees.
Proposition 18 Let \mathcal{D} be a set. We denote by $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ the vector space generated by $\mathcal{P} \mathcal{T}(\mathcal{D})$. We extend \amalg by bilinearity on $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ and we define a second product \bullet on $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ in the following way: if $t, t^{\prime} \in \mathcal{P} \mathcal{T}(\mathcal{D})$,

$$
t \bullet t^{\prime}=\sum_{s \in V(t)} t \bullet{ }_{s} t^{\prime}
$$

Then $\left(\mathfrak{g}_{\mathcal{P T}(\mathcal{D})}, \bullet\right.$, Ш) is a Com-pre-Lie algebra.
Proof. Let $t, t^{\prime}, t^{\prime \prime}$ be three partitioned trees.
If $s^{\prime}, s^{\prime \prime}$ are two vertices of t, we define by $t \bullet_{s, s^{\prime}}\left(t^{\prime}, t^{\prime \prime}\right)$ the partitioned trees obtained by grafting the roots of t^{\prime} on s^{\prime}, the roots of $t^{\prime \prime}$ on $s^{\prime \prime}$, the partition of the vertices of the obtained rootes forest being the union of the partitions of t, t^{\prime} and $t^{\prime \prime}$. Then:

$$
\begin{aligned}
\left(t \bullet t^{\prime}\right) \bullet t^{\prime \prime} & =\sum_{s^{\prime} \in V(t)}\left(t \bullet \bullet_{s^{\prime}} t^{\prime}\right) \bullet t^{\prime \prime} \\
& =\sum_{s^{\prime}, s^{\prime \prime} \in V(t)}\left(t \bullet_{s^{\prime}} t^{\prime}\right) \bullet s_{s^{\prime \prime}} t^{\prime \prime}+\sum_{s^{\prime} \in V(t), s^{\prime \prime} \in V\left(t^{\prime}\right)}\left(t \bullet_{s^{\prime}} t^{\prime}\right) \bullet s_{s^{\prime \prime}} t^{\prime \prime} \\
& =\sum_{s^{\prime}, s^{\prime \prime} \in V(t)} t \bullet_{s^{\prime} s^{\prime \prime}}\left(t^{\prime}, t^{\prime \prime}\right)+\sum_{s^{\prime} \in V(t), s^{\prime \prime} \in V\left(t^{\prime}\right)} t \bullet_{s^{\prime}}\left(t^{\prime} \bullet \bullet_{s^{\prime \prime}} t^{\prime \prime}\right) \\
& =\sum_{s^{\prime}, s^{\prime \prime} \in V(t)} t \bullet_{s^{\prime} s^{\prime \prime}}\left(t^{\prime}, t^{\prime \prime}\right)+t \bullet\left(t^{\prime} \bullet t^{\prime \prime}\right)
\end{aligned}
$$

So $\left(t \bullet t^{\prime}\right) \bullet t^{\prime \prime}-t \bullet\left(t^{\prime} \bullet t^{\prime \prime}\right)$ is clearly symmetric in t and t^{\prime}, and \bullet is pre-Lie.

Moreover, $\left(t Ш t^{\prime}\right) Ш t^{\prime \prime}=t Ш\left(t^{\prime} Ш t^{\prime \prime}\right)$ is the rooted forest $t t^{\prime} t^{\prime \prime}$, the partition being $\left\{I_{1} \cup J_{1} \cup\right.$ $\left.K_{1}, I_{2}, \ldots, I_{k}, J_{2}, \ldots, J_{l}, K_{2}, \ldots, K_{m}\right\}$, with immediate notations; $t 山 t^{\prime}=t^{\prime} 山 t$ is the rooted forest $t t^{\prime}$, the partition being $\left\{I_{1} \cup J_{1}, I_{2}, \ldots, I_{k}, J_{2}, \ldots, J_{l}\right\}$. So \amalg is an associative, commutative product.

Finally:

$$
\begin{aligned}
\left(t Ш t^{\prime}\right) \bullet t^{\prime \prime} & =\sum_{s \in V(t)}\left(t Ш t^{\prime}\right) \bullet s t^{\prime \prime}+\sum_{s^{\prime} \in V\left(t^{\prime}\right)}\left(t Ш t^{\prime}\right) \bullet s^{\prime} t^{\prime \prime} \\
& =\sum_{s \in V(t)}\left(t \bullet s t^{\prime \prime}\right) Ш t^{\prime}+\sum_{s^{\prime} \in V\left(t^{\prime}\right)} t Ш\left(t^{\prime} \bullet s^{\prime} t^{\prime \prime}\right) \\
& =\left(t \bullet t^{\prime}\right) Ш t^{\prime \prime}+t Ш\left(t^{\prime} \bullet t^{\prime \prime}\right) .
\end{aligned}
$$

So $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ is Com-pre-Lie.
In particular, $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ is pre-Lie. Let us use the extension of the pre-Lie product \bullet to $S\left(\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}\right)$ defined by Oudom and Guin [12, 13]:

1. If $t_{1}, \ldots, t_{k} \in \mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}, t_{1} \ldots t_{k} \bullet 1=t_{1} \ldots t_{k}$.
2. If $t, t_{1}, \ldots, t_{k} \in \mathfrak{g}_{\mathcal{P T}(\mathcal{D})}, t \bullet t_{1} \ldots t_{k}=\left(t \bullet t_{1} \ldots t_{k-1}\right) \bullet t_{k}-t \bullet\left(t_{1} \ldots t_{k-1} \bullet t_{k}\right)$.
3. If $a, b, c \in S\left(\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}\right), a b \bullet c=\left(a \bullet c^{(1)}\right)\left(b \bullet c^{(2)}\right)$, where $\Delta(c)=c^{(1)} \otimes c^{(2)}$ is the usual coproduct of $S\left(\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}\right)$. In particular, if $t_{1}, \ldots, t_{k}, t \in \mathcal{P} \mathcal{T}(\mathcal{D})$:

$$
t_{1} \ldots t_{k} \bullet t=\sum_{i=1}^{k} t_{1} \ldots\left(t_{i} \bullet t\right) \ldots t_{k}
$$

Lemma 19 Let $t=(t, I), t_{1}=\left(t_{1}, I^{(1)}\right), \ldots, t_{k}=\left(t_{k}, I^{(k)}\right)$ be partitioned trees $(k \geq 1)$. Let $s_{1}, \ldots, s_{k} \in V(t)$. The partitioned tree $t \bullet_{s_{1}, \ldots, s_{k}}\left(t_{1}, \ldots, t_{k}\right)$ is obtained by grafting the roots of t_{i} on s_{i} for all i, the partition being $I \sqcup I^{(1)} \sqcup \ldots \sqcup I^{(k)}$. Then:

$$
t \bullet t_{1} \ldots t_{k}=\sum_{s_{1}, \ldots, s_{k} \in V(t)} t \bullet_{s_{1}, \ldots, s_{k}}\left(t_{1}, \ldots, t_{k}\right)
$$

Proof. By induction on k. This is obvious if $k=1$. Let us assume the result at rank k.

$$
\begin{aligned}
t \bullet t_{1} \ldots t_{k+1}= & \left(t \bullet t_{1} \ldots t_{k}\right) \bullet t_{k+1}-\sum_{i=1}^{k} t \bullet\left(t_{1} \ldots\left(t_{i} \bullet t_{k+1}\right) \ldots t_{k}\right) \\
= & \sum_{s_{1}, \ldots, s_{k} \in V(t)}\left(t \bullet_{s_{1}, \ldots, s_{k}}\left(t_{1}, \ldots, t_{k}\right)\right) \bullet t_{k+1}-\sum_{i=1}^{k} \sum_{s \in V\left(t_{i}\right)} t \bullet\left(t_{1} \ldots\left(t_{i} \bullet_{s} t_{k+1}\right) \ldots t_{i}\right) \\
= & \sum_{s_{1}, \ldots, s_{k+1} \in V(t)}\left(t \bullet_{s_{1}, \ldots, s_{k}}\left(t_{1}, \ldots, t_{k}\right)\right) \bullet_{s_{k+1}} t_{k+1} \\
& +\sum_{i=1}^{k} \sum_{s \in V\left(t_{i}\right)}\left(t \bullet_{s_{1}, \ldots, s_{k}}\left(t_{1}, \ldots, t_{k}\right)\right) \bullet_{s} t_{k+1} \\
& -\sum_{i=1}^{k} \sum_{s_{1}, \ldots, s_{k} \in V(t)} \sum_{s \in V\left(t_{i}\right)} t \bullet_{s_{1}, \ldots, s_{k}}\left(t_{1}, \ldots, t_{i} \bullet_{s} t_{k+1}, \ldots, t_{i}\right) \\
= & \sum_{s_{1}, \ldots, s_{k+1} \in V(t)} t \bullet_{s_{1}, \ldots, s_{k+1}}\left(t_{1}, \ldots, t_{k+1}\right) .
\end{aligned}
$$

Hence, the result holds for all k.
Theorem 20 Let \mathcal{D} be a set, let A be a Com-pre-Lie algebra, and let $a_{d} \in A$ for all $d \in \mathcal{D}$. There exists a unique morphism of Com-pre-Lie algebra $\phi: \mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})} \longrightarrow A$, such that $\phi\left(\cdot{ }_{d}\right)=a_{d}$ for all $d \in \mathcal{D}$. In other words, $\mathfrak{g}_{\mathcal{P}(\mathcal{D})}$ is the free Com-pre-Lie algebra generated by \mathcal{D}.

Proof. Unicity. Let $t \in \mathcal{T}^{d}$. We denote by r_{1}, \ldots, r_{n} its roots. For all $1 \leq i \leq n$, let $t_{i, 1}, \ldots, t_{i, k_{i}}$ be the partitioned trees born from r_{i} and let d_{i} be the decoration of r_{i}. Then:

$$
t=\left(\bullet d_{1} \bullet t_{1,1} \ldots t_{1, k_{1}}\right) Ш \ldots Ш\left(\bullet d_{n} \bullet t_{n, 1} \ldots t_{n, k_{n}}\right) .
$$

So ϕ is inductively defined by:

$$
\begin{equation*}
\phi(t)=\left(a_{d_{1}} \bullet \phi\left(t_{1,1}\right) \ldots \phi\left(t_{1, k_{1}}\right)\right) Ш \ldots Ш\left(a_{d_{n}} \bullet \phi\left(t_{n, 1}\right) \ldots \phi\left(t_{n, k_{n}}\right)\right) . \tag{1}
\end{equation*}
$$

Existence. As the product $Ш$ of A is commutative and associative, (1) defines inductively a morphism ϕ from $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ to A. By definition, it is compatible with the product \amalg. Let us prove the compatibility with the product •. Let t, t^{\prime} be two partitioned trees, let us prove that $\phi\left(t \bullet t^{\prime}\right)=\phi(t) \bullet \phi\left(t^{\prime}\right)$ by induction on the number N of vertices of t. If $N=1$, then $t=\bullet d$ and:

$$
\phi\left(t \bullet t^{\prime}\right)=a_{d} \bullet \phi\left(t^{\prime}\right)=\phi(t) \bullet \phi\left(t^{\prime}\right)
$$

by definition of t^{\prime}. If $N>1$, two cases are possible.
First case. If t has only one roots, then $t={ }_{\bullet d} \bullet t_{1} \ldots t_{k}$, and:

$$
t \bullet t^{\prime}=\cdot{ }_{d} \bullet t_{1} \ldots t_{k} t^{\prime}+\sum_{i=1}^{k} \bullet d \bullet t_{1} \ldots t_{i} \circ t^{\prime} \bullet t_{k}
$$

Using the induction hypothesis on t_{1}, \ldots, t_{k} :

$$
\begin{aligned}
\phi\left(t \bullet t^{\prime}\right) & =a_{d} \bullet \phi\left(t_{1}\right) \ldots \phi\left(t_{k}\right) \phi\left(t^{\prime}\right)+\sum_{i=1}^{k} a_{d} \bullet \phi\left(t_{1}\right) \ldots \phi\left(t_{1} \circ t^{\prime}\right) \ldots \phi\left(t_{k}\right) \\
& =a_{d} \bullet \phi\left(t_{1}\right) \ldots \phi\left(t_{k}\right) \phi\left(t^{\prime}\right)+\sum_{i=1}^{k} a_{d} \bullet\left(\phi\left(t_{1}\right) \ldots \phi\left(t_{1}\right) \circ \phi\left(t^{\prime}\right) \ldots \phi\left(t_{k}\right)\right) \\
& =\left(a_{d} \bullet \phi\left(t_{1}\right) \ldots \phi\left(t_{k}\right)\right) \bullet \phi\left(t^{\prime}\right) \\
& =\phi(t) \bullet \phi\left(t^{\prime}\right) .
\end{aligned}
$$

Second case. If t has $k>1$ roots, we put $t=t_{1} Ш \ldots 山 t_{k}$. The induction hypothesis holds for t_{1}, \ldots, t_{k}, so:

$$
\begin{aligned}
\phi\left(t \circ t^{\prime}\right) & =\sum_{i=1}^{k} \phi\left(t_{1} Ш t_{i} \bullet t^{\prime} Ш \ldots \amalg t_{k}\right) \\
& =\sum_{i=1}^{k} \phi\left(t_{1}\right) Ш \phi\left(t_{i} \bullet t^{\prime}\right) Ш \ldots \amalg \phi\left(t_{k}\right) \\
& =\sum_{i=1}^{k} \phi\left(t_{1}\right) Ш \phi\left(t_{i}\right) \bullet \phi\left(t^{\prime}\right) Ш \ldots 山 \phi\left(t_{k}\right) \\
& =\left(\phi\left(t_{1}\right) Ш \ldots Ш \phi\left(t_{k}\right)\right) \bullet \phi\left(t^{\prime}\right) \\
& =\phi(t) \bullet \phi\left(t^{\prime}\right) .
\end{aligned}
$$

Hence, ϕ is a morphism of Com-pre-Lie algebras.

3.2 Presentation of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ as a Com-pre-Lie algebra

Proposition 21 As a Com-pre-Lie algebra, $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is generated by \emptyset and x_{1}.
Proof. Let A be the Com-pre-Lie subalgebra of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ generated by \emptyset and x_{1}. For all $n \geq 1$, it contains $x_{1}^{\omega n}=n!x_{1}^{n}$, so it contains x_{1}^{n} for all $n \geq 0$. As $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is generated by these elements as a pre-Lie algebra, $A=\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$.

We denote by $\phi_{C P L}: \mathfrak{g}_{\mathcal{P} \mathcal{T}(\{1,2\})} \longrightarrow \mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ the unique morphism of Com-pre-Lie algebras which sends \bullet_{1} to \emptyset and \bullet_{2} to \bullet_{2}. By proposition 21 , it is surjective.

Lemma 22 Let $t_{1}, \ldots, t_{k} \in \mathcal{P} \mathcal{T}(\{1,2\})$.

1. $\phi_{C P L}\left(\cdot 1 \bullet t_{1} \ldots t_{k}\right)=0$ if $k \geq 1$.
2. $\phi_{C P L}\left(\cdot 2 \bullet t_{1} \ldots t_{k}\right)=0$ if $k \geq 2$.
3. If $t \in \mathcal{P} \mathcal{T}(\{1,2\}), \phi_{C P L}\left(\cdot{ }_{2} \bullet t\right)=x_{0} \phi_{C P L}(t)$.

Proof. We prove 1.-3. by induction on k. If $k=1$:

$$
\begin{aligned}
\phi_{C P L}\left(\cdot{ }_{1} \bullet t\right) & =\emptyset \bullet \phi_{C P L}(t)
\end{aligned}=0, x_{0}=x_{C P L}(t) .
$$

Let us assume the results at rank $k-1 \geq 1$. Then:

$$
\begin{aligned}
\phi_{C P L}\left(\bullet \bullet t_{1} \ldots t_{k}\right)= & \emptyset \bullet \phi_{C P L}\left(t_{1}\right) \ldots \phi_{C P L}\left(t_{k}\right) \\
= & \left(\emptyset \bullet \phi_{C P L}\left(t_{1}\right) \ldots \phi_{C P L}\left(t_{k-1}\right)\right) \bullet \phi_{C P L}\left(t_{k}\right) \\
& -\sum_{i=1}^{k} \emptyset \bullet \phi_{C P L}\left(t_{1}\right) \ldots \phi_{C P L}\left(t_{i} \bullet t_{k}\right) \ldots \phi_{C P L}\left(t_{k-1}\right) \\
= & 0-0 \\
\phi_{C P L}\left(\bullet 2 \bullet t_{1} \ldots t_{k}\right)= & x_{1} \bullet \phi_{C P L}\left(t_{1}\right) \ldots \phi_{C P L}\left(t_{k}\right) \\
= & \left(x_{1} \bullet \phi_{C P L}\left(t_{1}\right) \ldots \phi_{C P L}\left(t_{k-1}\right)\right) \bullet \phi_{C P L}\left(t_{k}\right) \\
& -\sum_{i=1}^{k} x_{1} \bullet \phi_{C P L}\left(t_{1}\right) \ldots \phi_{C P L}\left(t_{i} \bullet t_{k}\right) \ldots \phi_{C P L}\left(t_{k-1}\right) .
\end{aligned}
$$

If $k \geq 3$, the induction hypothesis immediately allows to conclude that $\phi_{C P L}\left(\cdot{ }^{2} \bullet t_{1} \ldots t_{k}\right)=$ $0-0=0$. If $k=2$, this gives:

$$
\begin{aligned}
\phi_{C P L}\left(\bullet{ }_{2} \bullet t_{1} t_{2}\right) & =\left(x_{1} \bullet \phi_{C P L}\left(t_{1}\right)\right) \bullet \phi_{C P L}\left(t_{2}\right)-x_{1} \bullet \phi_{C P L}\left(t_{1} \bullet t_{2}\right) \\
& =\left(x_{0} \phi_{C P L}\left(t_{1}\right)\right) \bullet \phi_{C P L}\left(t_{2}\right)-x_{0} \phi_{C P L}\left(t_{1} \bullet t_{2}\right) \\
& =x_{0}\left(\phi_{C P L}\left(t_{1}\right) \bullet \phi_{C P L}\left(t_{2}\right)\right)-x_{0} \phi_{C P L}\left(t_{1} \bullet t_{2}\right) \\
& =0 .
\end{aligned}
$$

Hence, the result holds for all $k \geq 1$.
Lemma 23 For all $t \in \mathcal{P} \mathcal{T}(\{1,2\}), \phi_{C P L}(t)$ is a linear span of words of length the number of vertices of t decorated by 2 .

Proof. By induction on the number of vertices N of t. If $N=1$, then $t={ }_{\cdot 1}$ or $\cdot{ }_{2}$ and the result is obvious. Let us assume the result at all rank $<N$.

First case. If t has only one root, we put $t=\bullet_{i} \bullet t_{1} \ldots t_{k}$. By the preceding lemma, we can assume that $i=2$ and $k=1$. Then $\phi_{C P L}(t)=x_{0} \phi_{C P L}\left(t_{1}\right)$ and the result is obvious.

Second case. If t has $k>1$ roots, we put $t=t_{1} Ш \ldots 山 t_{k}$. Then $\phi_{C P L}\left(t_{1}\right)$ is equal to $\phi_{C P L}\left(t_{1}\right) Ш \ldots 山 \phi_{C P L}\left(t_{k}\right)$ and the result is immediate.

Lemma 24 We define inductively a family F of elements of $\mathcal{P} \mathcal{T}(\{1,2\})$ by:

1. $F(1)=\{\cdot 1, \cdot 2\}$.
2. $F(n+1)=\left(\cdot{ }_{2} \bullet F(n)\right) \cup \bigcup_{i=1}^{n}(F(i) Ш F(n+1-i))$.
3. $F=\bigcup_{n \geq 1} F(n)$.

Let $t \in \mathcal{P} \mathcal{T}(\{1,2\})$. Then $\phi_{C P L}(t) \neq 0$ if, and only if, $t \in F$.
Proof. \Longrightarrow. We proceed by induction on the number N of vertices of t. This is obvious if $N=1$. Let us assume the result at all rank $<N$.

First case. If N has only one root, we put $N=\boldsymbol{\bullet}_{i} \bullet t_{1} \ldots t_{k}$. By lemma $22, i=2$ and $k=1$. Then $\phi_{C P L}(t)=x_{0} \phi_{C P L}\left(t_{1}\right)$. By the induction hypothesis, $t_{1} \in F$, so $t \in F$.

Second case. If N has $k>N$ roots, we put $t=t_{1} \amalg \ldots \omega t_{k}$. Then:

$$
\phi_{C P L}(t)=\phi_{C P L}\left(t_{1}\right) Ш \phi_{C P L}\left(t_{2} Ш \ldots 山 t_{k}\right) \neq 0,
$$

so by the induction hypothesis, t_{1} and $t_{2} \boldsymbol{\omega} \ldots \boldsymbol{\omega} t_{k} \in F$, and $t \in F$.
\Longleftarrow. Let $t \in T(n)$. We proceed by induction on n. It $n=1$, this is obvious. If $n>1$ then $t=\cdot{ }_{2} \bullet t^{\prime}$, with $t^{\prime} \in F(n-1)$, or $t=t^{\prime} Ш t^{\prime \prime}$, with $t^{\prime} \in F(i), t^{\prime \prime} \in F(n-i)$. In the first case, by the induction hypothesis, $\phi_{C P L}\left(t^{\prime}\right) \neq 0$ and $\phi_{C P L}(t)=x_{0} \phi_{C P L}\left(t^{\prime}\right) \neq 0$. In the second case, $\phi_{C P L}\left(t^{\prime}\right), \phi_{C P L}\left(t^{\prime \prime}\right) \neq 0$ by the induction hypothesis, so $\phi_{C P L}(t)=\phi_{C P L}\left(t^{\prime}\right) 山 \phi_{C P L}\left(t^{\prime \prime}\right) \neq 0$.

We define a second family of elements of $\mathcal{P} \mathcal{T}(\{1,2\})$ in the following way:

1. $F^{\prime}(1)=\left\{\cdot{ }_{1}, \cdot 2\right\}$.
2. $F^{\prime}(2)=\left\{\cdot \bullet^{2} \boldsymbol{\bullet} \cdot 2, \mathfrak{l}_{2}^{2}, \mathfrak{l}_{2}^{1}\right\}$.
3. $F^{\prime}(n+1)=\left(\cdot{ }_{2} \bullet F^{\prime}(n)\right) \cup \bigcup_{i=2}^{n-1}\left(F^{\prime}(i) Ш F^{\prime}(n+1-i)\right) \cup\left(\cdot 2 Ш F^{\prime}(n)\right)$ if $n \geq 2$.
4. $F^{\prime}=\bigcup_{n \geq 1} F^{\prime}(n)$.

We define a map π from F to $\mathcal{P} \mathcal{T}(\{1,2\})$ in the following way:

1. $\pi\left(\cdot{ }_{i}\right)={ }_{\cdot i}$ if $i=1,2$.
2. $\pi\left({ }_{\bullet 1} Ш \ldots\right.$ Ш. $\left.\boldsymbol{\bullet}_{1}\right)=\bullet_{1}$.

3. If $t=.{ }_{2} \bullet t_{1} \ldots t_{k}$, then $\pi(t)=. .2 \bullet \pi\left(t_{1}\right) \ldots \pi\left(t_{k}\right)$.

Lemma 25π is a projection on F^{\prime} and $\phi_{C P L} \circ \pi=\phi_{C P L \mid F}$.
Proof. Let $t \in F$. Let us prove by induction on the number N of vertices of t that:

1. $\pi(t) \in F^{\prime}$.
2. If $t \in F^{\prime}, \pi(t)=t$.
3. $\phi_{C P L} \circ \pi(t)=\phi_{C P L}(t)$.
4. If $\pi(t)=\boldsymbol{\bullet}_{1}$, then $t=.{ }_{1}{ }^{\omega n}$ for a particular n.

All these points are immediate if $N=1$. Let us assume the result at all rank $<N, N \geq 2$. We

First case．If $k \geq 2$ ，then $\pi(t)=\pi\left(t_{1}\right) Ш \ldots 山 \pi\left(t_{k}\right)$ ．By the induction hypothesis，$\pi\left(t_{1}\right), \ldots, \pi\left(t_{k}\right) \in$ F^{\prime} and are not equal to ${ }^{1}$ ，so $\pi(t) \in F^{\prime}$ ．By the induction hypothesis，$\pi\left(t_{1}\right) \neq{ }^{1}$ ，so $\pi(t) \neq \cdot{ }_{1}$ ． Moreover：

$$
\begin{aligned}
\phi_{C P L}(t) & =\phi_{C P L}\left(\bullet_{1}\right) Ш \ldots Ш \phi_{C P L}\left(\bullet_{1}\right) Ш \phi_{C P L}\left(t_{1}\right) Ш \ldots Ш \phi_{C P L}\left(t_{k}\right) \\
& =\emptyset Ш \ldots Ш \phi_{C P L} \circ \pi\left(t_{1}\right) Ш \ldots Ш \phi_{C P L} \circ \pi\left(t_{k}\right) \\
& =\phi_{C P L}\left(\pi\left(t_{1}\right) Ш \ldots Ш \pi\left(t_{k}\right)\right) \\
& =\phi_{C P L} \circ \pi(t) .
\end{aligned}
$$

If $t \in F^{\prime}$ ，necessarily $t=t_{1} Ш \ldots 山 t_{k}$ ，and $t_{1}, \ldots, t_{k} \in F^{\prime}$ ．By the induction hypothesis， $\pi\left(t_{1}\right)=t_{1}, \ldots, \pi\left(t_{k}\right)=t_{k}$ ，so $\pi(t)=t$ ．

Second case．If $k=1$ ，as $t_{1} \in F$ ，we put $t_{1}={ }_{\cdot 2} \bullet s$ ．Then $\pi(t)=.{ }_{\bullet 2} \bullet \pi(s)$ ．By the induction hypothesis，$\pi(s) \in F^{\prime}$ ，so $\pi(t)=F^{\prime}$ ．Moreover：

$$
\begin{aligned}
\phi_{C P L}(t) & =\phi_{C P L}\left(\cdot{ }_{1}\right) Ш \ldots Ш \phi_{C P L}\left(\cdot{ }_{1}\right) Ш\left(\phi_{C P L}\left(\cdot{ }_{2}\right) \bullet \phi_{C P L}(s)\right) \\
& =\emptyset Ш \ldots Ш \emptyset\left(\phi_{C P L}(\cdot 2) \bullet \phi_{C P L}(s)\right) \\
& =\phi_{C P L} \circ \pi\left(\cdot{ }^{2}\right) \bullet \phi_{C P L} \circ \pi(s) \\
& =\phi_{C P L} \circ \pi(t) .
\end{aligned}
$$

If $t^{\prime} \in F^{\prime}$ ，then $s \in F^{\prime}$ ，and $t={ }_{\cdot 2} \bullet s$ ．Then $\pi(t)={ }_{\cdot 2} \bullet \pi(s)={ }_{\cdot 2} \bullet s=t$ ．
Last case．If $k=0$ ，all the results are obvious．
Lemma 26 Let $t, t^{\prime} \in \mathcal{P} \mathcal{T}(\{1,2\})$ ．Then：

$$
\phi_{C P L}\left(\left(\bullet_{2} \bullet t\right) Ш\left(\cdot{ }_{2} \bullet t^{\prime}\right)\right)=\phi_{C P L}\left(\bullet_{2} \bullet\left(\left(\bullet_{2} \bullet t\right) Ш t^{\prime}+t Ш\left({ }_{2} \bullet t^{\prime}\right)\right)\right) .
$$

Proof．Indeed，putting $w=\phi_{C P L}(t)$ and $w^{\prime}=\phi_{C P L}\left(t^{\prime}\right)$ ：

$$
\begin{aligned}
\phi_{C P L}\left((\cdot 2 \bullet t) Ш\left(\cdot 2 \bullet t^{\prime}\right)\right) & =x_{0} w Ш x_{0} w^{\prime} \\
& =x_{0}\left(w Ш x_{0} w^{\prime}\right)+x_{0}\left(x_{0} w Ш w^{\prime}\right) \\
& =\phi_{C P L}\left(\cdot{ }_{2} \bullet\left(\left(\cdot{ }_{2} \bullet t\right) Ш t^{\prime}+t Ш\left(\cdot{ }_{2} \bullet t^{\prime}\right)\right)\right) .
\end{aligned}
$$

We used lemma 22 for the first and third equalities．
Theorem 27 The kernel of $\phi_{C P L}$ is the Com－pre－Lie ideal generated by the elements：
1．• ${ }_{1} \bullet t_{1} \ldots t_{k}$ ，where $k \geq 1, t_{1}, \ldots, t_{k} \in \mathcal{P} \mathcal{T}(\{1,2\})$ ．
2．$\cdot 2 \bullet t_{1} \ldots t_{k}$ ，where $k \geq 2, t_{1}, \ldots, t_{k} \in \mathcal{P} \mathcal{T}(\{1,2\})$ ．
3．． 1 Ш $t-t$ ，where $t \in \mathcal{P} \mathcal{T}(\{1,2\})$ ．
4．$\left(.{ }_{2} \bullet t\right) Ш\left(\cdot 2 \bullet t^{\prime}\right)-.{ }_{2} \bullet\left(\left({ }_{2} \bullet t\right) 山 t^{\prime}-t Ш\left(\cdot{ }_{2} \bullet t^{\prime}\right)\right)$ ，where $t, t^{\prime} \in \mathcal{P} \mathcal{T}(\{1,2\})$ ．
Proof．Let I be the ideal generated by these elements．Lemmas 22 and 26 prove that the elements 1．，2．and 4．belong to $\operatorname{Ker}\left(\phi_{C P L}\right)$ ．Moreover，for all $t \in \mathcal{P} \mathcal{T}(\{1,2\}), \pi\left(\cdot{ }_{1} 山 t\right)=\pi(t)$ ． For all $t \in \mathcal{P} \mathcal{T}(\{1,2\})$ ：

$$
\phi_{C P L}\left(\cdot{ }_{1} Ш t\right)=\emptyset Ш \phi_{C P L}(t)=\phi_{C P L}(t),
$$

so elements 3 ．also belong to $\operatorname{Ker}\left(\phi_{C P L}\right)$ ．Hence，$I \subseteq \operatorname{Ker}\left(\phi_{C P L}\right)$ ．
Let $h=\mathfrak{g}_{\mathcal{P} \mathcal{T}(\{1,2\})} / I$ ．As the elements 1 ．and 2 ．belong to I, h is linearly spanned by the elements $\bar{t}, t \in F$ ．As the elements 3 ．belong to I ，for all $t \in F, \overline{\pi(t)}=\bar{t}$ ．As π is a projection on F^{\prime}, h is linearly spanned by the elements $\bar{t}, t \in F^{\prime}$ ．

We now define inductively two families of partitionned trees in the following way：

1. $T^{\prime \prime}(1)=\{\cdot 2\}$ and $F^{\prime \prime}(1)=\{\cdot 1, \cdot 2\}$.
2. $\mathcal{T}^{\prime \prime}(n+1)=.{ }_{2} \bullet F^{\prime \prime}(n)$.
3. $F^{\prime \prime}(n+1)=\bigcup_{i=1}^{n+1} T^{\prime \prime}(i) Ш \cdot 2^{w(n+1-i)}$.
4. $F^{\prime \prime}=\bigcup_{n \geq 1} F^{\prime \prime}(n)$.

Let us prove that for all $t \in F^{\prime}$, there exists $t^{\prime} \in V e c t\left(F^{\prime \prime}\right)$ such that $\bar{t}=\overline{t^{\prime}}$. We proceed by induction on the number N of vertices of t. If $N=1$, then $t=.{ }_{1}$ or $\cdot{ }_{2}$ and we take $t^{\prime}=t$. Let us assume the result at all rank $<N$. We put $t=t_{1} Ш \ldots Ш t_{k} Ш_{\cdot 2} Ш \ldots \omega_{\cdot 2}$, with $t_{i}={ }_{\cdot 2} \bullet s_{i}$, $s_{i} \neq 1$, for all $1 \leq i \leq k$. We proceed by induction on k. If $k=0$, we take $t^{\prime}=t={ }_{\cdot 2} Ш \ldots Ш \cdot{ }_{\bullet}$. If $k=1$, then, by the induction hypothesis on N applied to s_{1} :

$$
\bar{t}=\left(\overline{\bullet_{2}} \bullet \overline{s_{1}}\right) Ш \overline{\bullet_{2}} Ш \ldots Ш \overline{\bullet_{2}}=\left(\overline{\bullet_{2}} \bullet \overline{s_{1}^{\prime}}\right) Ш \overline{\bullet_{2}} Ш \ldots Ш \overline{\bullet_{2}}=\overline{\left(\cdot{ }_{2} \bullet s_{1}^{\prime}\right) Ш \bullet_{2} Ш \ldots Ш \bullet_{2}} .
$$

We take $t^{\prime}=\left(.2 \bullet s_{1}^{\prime}\right) Ш \cdot 2 Ш \ldots Ш \cdot 2$, which clearly belongs to $\operatorname{Vect}\left(F^{\prime \prime}\right)$, as $s_{1}^{\prime} \in \operatorname{Vect}\left(F^{\prime \prime}\right)$. Let us assume the result at all rank $<k$. Then, as the elements 4 . belong to I :

$$
\overline{t_{1} Ш t_{2}}=\underbrace{\overline{{ }_{2} \bullet\left(t_{1} Ш s_{2}\right)}}_{t_{1}^{\prime}}+\underbrace{\overline{{ }_{2} \bullet\left(s_{1} \bullet t_{2}\right)}}_{t_{1}^{\prime \prime}},
$$

so:

$$
\bar{t}=\overline{t_{1}^{\prime} Ш t_{3} Ш \ldots Ш t_{k} Ш \bullet_{2} Ш \ldots Ш \bullet_{2}}+\overline{t_{1}^{\prime \prime} Ш t_{3} Ш \ldots Ш t_{k} Ш \bullet_{2} Ш \ldots Ш \bullet_{2}} .
$$

By the induction hypothesis on k applied to these two partitionned trees, there exists x_{1}^{\prime} and $x_{1}^{\prime \prime} \in \operatorname{Vect}\left(F^{\prime \prime}\right)$, such that $\bar{t}=\overline{x_{1}^{\prime}}+\overline{x_{1}^{\prime \prime}}$. We take $t^{\prime}=x_{1}^{\prime}+x_{1}^{\prime \prime}$. Consequently, the elements \bar{t}, $t \in F^{\prime \prime}$, linearly span h.

Let $t \in F^{\prime \prime}(n)$. Then it has n vertices, and at most one of them is decorated by 1 . We denote by $F_{1}^{\prime \prime}(n)$ the set of elements of $F^{\prime \prime}(n)$ with one vertex decorated by 1 , and we put $F_{2}^{\prime \prime}(n)=F^{\prime \prime}(n) \backslash F_{1}^{\prime \prime}(n)$. Let us prove that for all $n \geq 1,\left|F_{1}^{\prime \prime}(n+1)\right| \leq 2^{n-1}$ and $\left|F_{2}^{\prime \prime}(n)\right| \leq 2^{n-1}$. For $n=0$, as $F F_{1}^{\prime}(2)=\left\{\mathfrak{l}_{2}^{1}\right\}$ and $F_{2}^{\prime \prime}(1)=\{\cdot 2\}$, this is immediate. Let us assume the result at all rank $\leq n$. Then:

$$
\begin{aligned}
F_{2}^{\prime \prime}(n+1) & =\bigcup_{i=1}^{n+1} \cdot 2^{ш(n+1-i)} 山 T^{\prime \prime}(i) \cap F_{2}^{\prime \prime}(i) \\
& =\left\{\cdot 2^{\omega(n+1)}\right\} \cup \bigcup_{i=1}^{n} \cdot 2^{ш(n+1-i)} Ш \cdot 2 \bullet F_{2}^{\prime \prime}(i) .
\end{aligned}
$$

Hence, $\left|F_{2}^{\prime \prime}(n+1)\right| \leq 1+1+2+\ldots+2^{n-1}=2^{n}$.

$$
\begin{aligned}
F_{1}^{\prime \prime}(n+2) & =\bigcup_{i=1}^{n+2} \cdot 2^{(n+2-i)} Ш T^{\prime \prime}(i) \cap F_{1}^{\prime \prime}(i) \\
& =\bigcup_{i=2}^{n+2} \cdot 2^{(n+2-i)} Ш \cdot 2 \bullet F_{1}^{\prime \prime}(i-1)
\end{aligned}
$$

Hence, $\left|F_{1}^{\prime \prime}(n+2)\right| \leq+1+1+\ldots+2^{n-1}=2^{n}$.

Let $\bar{\phi}_{A P L}$ be the linear map induced by $\phi_{C P L}$ on h. If $t \in F_{\underline{1}}^{\prime \prime}(n)$, by lemma $23, \bar{\phi}_{A P L}(\bar{t})$ is a linear span of word of length $n-1$. If $t \in F_{2}^{\prime \prime}(n)$, by lemma $23, \bar{\phi}_{A P L}(\bar{t})$ is a linear span of word of length n. Hence, for all $n \geq 0$:

$$
\bar{\phi}_{A P L}\left(V e c t\left(F_{2}^{\prime \prime}(n)\right)+V e c t\left(F_{1}^{\prime \prime}(n+1)\right)\right) \subseteq V e c t(\text { words of length } n)
$$

As $\phi_{C P L}$ is surjective, we obtain:

$$
\bar{\phi}_{A P L}\left(V e c t\left(F_{2}^{\prime \prime}(n)\right)+V e c t\left(F_{1}^{\prime \prime}(n+1)\right)\right)=V e c t(\operatorname{words} \text { of length } n)
$$

Moreover, as $\operatorname{dim}(V \operatorname{ect}($ words of length $n))=2^{n}$ and $\operatorname{dim}\left(V \operatorname{ect}\left(F_{2}^{\prime \prime}(n)\right)+V \operatorname{ect}\left(F_{1}^{\prime \prime}(n+1)\right)\right) \leq$ $\left|F_{2}^{\prime \prime}(n)\right|+\left|F_{1}^{\prime \prime}(n)\right| \leq 2^{n-1}+2^{n-1}=2^{n}$, the restriction of $\bar{\phi}_{A P L}$ to $\operatorname{Vect}\left(F_{2}^{\prime \prime}(n)\right)+V \operatorname{ect}\left(F_{1}^{\prime \prime}(n+1)\right)$ is injective. Finally, $\bar{\phi}_{A P L}$ is injective, so $\operatorname{Ker}\left(\phi_{C P L}\right)=I$.

4 Presentation of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ as a pre-Lie algebra

4.1 A surjective morphism

Let $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$ be the free pre-Lie algebra generated by \mathbb{N}^{*}, as described in [1]. It can be seen as the subspace of $\mathfrak{g}_{\mathcal{P} \mathcal{T}\left(\mathbb{N}^{*}\right)}$ generated by rooted trees (which are seen as partitioned trees such that any part of the partition is a singleton), with the restriction of the pre-Lie product \bullet defined by graftings. For example, in $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$, if $a, b, c, d>0$:

$$
\mathfrak{l}_{a}^{b} \bullet \mathfrak{l}_{c}^{d}={ }^{b} \dot{\bigvee}_{a}^{d}{ }^{d}+\mathfrak{l}_{c}^{d},{ }_{a}^{b} .
$$

This pre-Lie algebra is graded, the degree of a tree being the sum of its decorations.

By theorem 12, there exists a unique surjective map of pre-Lie algebras $\Phi_{P L}: \mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)} \longrightarrow$ $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$, sending $\cdot{ }_{n}$ to x_{1}^{n-1} for all $n \geq 1$. As x_{1}^{i-1} is homogeneous of degree i for all i, this morphism is homogeneous of degree 0 .

Notation. If $t_{1} \ldots t_{k} \in \mathcal{T}\left(\mathbb{N}^{*}\right)$ and $n \in \mathbb{N}^{*}$, we put:

$$
B_{n}\left(t_{1} \ldots t_{k}\right)=\cdot{ }_{n} \bullet t_{1} \ldots t_{k}
$$

This is the tree obtained by grafting t_{1}, \ldots, t_{k} on a common root decorated by n.
Proposition 28 Let $t=B_{n}\left(t_{1} \ldots t_{k}\right) \in \mathcal{T}\left(\mathbb{N}^{*}\right)$. We put $\phi_{P L}\left(t_{i}\right)=w_{i}$ for all $1 \leq i \leq k$. Then:

$$
\phi_{P L}(t)=\left\{\begin{array}{l}
x_{0} w_{1} Ш \ldots \amalg x_{0} w_{k} Ш x_{1}^{n-1-k} \text { if } k<n, \\
0 \text { otherwise } .
\end{array}\right.
$$

Proof. As $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\{1,2\})}$ is pre-Lie, there exists a unique morphism of pre-Lie algebras:

$$
\psi:\left\{\begin{array}{rl}
\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)} & \longrightarrow \mathfrak{g}_{\mathcal{P} \mathcal{T}(\{1,2\})} \\
\bullet{ }_{n} & \longrightarrow \\
(n-1)!\cdot 2 \\
\amalg
\end{array}(n-1) .\right.
$$

Then $\phi_{A P L} \circ \psi$ is a pre-Lie algebra morphism sending $\cdot{ }_{n}$ to $\frac{1}{(n-1)!} x_{1}^{\boldsymbol{\omega}(n-1)}=x_{1}^{n-1}$ for all $n \geq 1$, so $\phi_{A P L} \circ \psi=\phi_{P L}$. We obtain, by lemma 19:

$$
\begin{aligned}
\psi\left(\bullet{ }_{n} \bullet t_{1} \ldots t_{k}\right) & =\frac{1}{(n-1)!} \bullet{ }^{\omega(n-1)} \bullet\left(\psi\left(t_{1}\right) \ldots \psi\left(t_{k}\right)\right) \\
& =\frac{1}{(n-1)!} \sum_{I_{1} \sqcup \ldots \sqcup I_{n}=\{1, \ldots, k\}} \bullet 2 \bullet\left(\prod_{i \in I_{1}} t_{i}\right) Ш \ldots 山 \cdot 2 \bullet\left(\prod_{i \in I_{k}} t_{i}\right)
\end{aligned}
$$

Let us apply $\phi_{A P L}$ to this expression. If $\left|I_{j}\right| \geq 2$, by theorem 27 :

$$
\phi_{A P L}\left(\cdot{ }_{2} \bullet\left(\prod_{i \in I_{j}} t_{i}\right)=0\right.
$$

Consequently, if $k \geq n$, at least one of the I_{j} contains two elements, so $\phi_{A P L} \circ \psi(t)=\phi_{P L}(t)=0$. Let us assume that $k<n$. Hence, using the commutativity of \amalg :

$$
\begin{aligned}
\phi_{P L}\left(\bullet{ }_{n} \bullet t_{1} \ldots t_{k}\right) & =\frac{1}{(n-1)!} \sum_{I_{1} \sqcup \ldots \sqcup I_{n}=\{1, \ldots, k\},\left|I_{j}\right| \leq 1} x_{1} \bullet\left(\prod_{i \in I_{1}} w_{i}\right) Ш \ldots Ш x_{1} \bullet\left(\prod_{i \in I_{k}} w_{i}\right) \\
& =\frac{1}{(n-1)!} \sum_{\iota:\{1, \ldots, k\} \longrightarrow\{1, \ldots, n-1\}, \text { injective }} x_{1} \bullet w_{1} Ш \ldots x_{1} \bullet w_{k} Ш x_{1}^{巴(n-1-k)} \\
& =\frac{1}{(n-1)!} \sum_{\iota:\{1, \ldots, k\} \longrightarrow\{1, \ldots, n-1\}, \text { injective }} x_{0} w_{1} Ш \ldots x_{0} w_{k} Ш x_{1}^{\omega(n-1-k)} \\
& =\frac{(n-1) \ldots(n-k)}{(n-1)!} x_{0} w_{1} Ш \ldots x_{0} w_{k} Ш x_{1}^{\omega(n-1-k)} \\
& =\frac{(n-1) \ldots(n-k)(n-1-k)!}{(n-1)!} x_{0} w_{1} Ш \ldots x_{0} w_{k} Ш x_{1}^{n-1-k} \\
& =x_{0} w_{1} Ш \ldots x_{0} w_{k} Ш x_{1}^{n-1-k},
\end{aligned}
$$

which is the announced result.

Corollary 29 Let $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{l} \in \mathcal{T}\left(\left\{N^{*}\right), k, l \geq 0\right.$. For all $i, j, n \geq 1$:

$$
\begin{aligned}
& \phi_{P L}\left(B_{n+1}\left(\left(B_{i}\left(s_{1} \ldots s_{k}\right) B_{j}\left(t_{1} \ldots t_{l}\right)\right)\right)\right. \\
= & \phi_{P L}\left(B_{n}\left(B_{i+1}\left(s_{1} \ldots s_{k} B_{j}\left(t_{1} \ldots t_{l}\right)\right)\right)+\phi_{P L}\left(B_{n}\left(B_{j+1}\left(B_{i}\left(s_{1} \ldots s_{k}\right) t_{1} \ldots t_{l}\right)\right) .\right.\right.
\end{aligned}
$$

Proof. We note:

$$
\begin{aligned}
& T_{1}=B_{n+1}\left(\left(B_{i}\left(s_{1} \ldots s_{k}\right) B_{j}\left(t_{1} \ldots t_{l}\right)\right)={ }^{{ }_{n+1} \bullet} \bullet\left(\left(\bullet{ }^{\bullet} \bullet s_{1} \ldots s_{k}\right)\left(\bullet{ }_{j} \bullet t_{1} \ldots t_{l}\right)\right)\right. \\
& T_{2}=B_{n}\left(B_{i+1}\left(s_{1} \ldots s_{k} B_{j}\left(t_{1} \ldots t_{l}\right)\right)={ }^{n} \bullet\left(\bullet\left({ }^{i+1} \bullet\left(s_{1} \ldots s_{k}\left(\bullet \bullet t_{1} \ldots t_{l}\right)\right)\right)\right.\right. \\
& T_{3}=B_{n}\left(B_{j+1}\left(B_{i}\left(s_{1} \ldots s_{k}\right) t_{1} \ldots t_{l}\right)={ }_{n} \bullet\left(\bullet{ }_{j+1} \bullet\left(\left(\bullet{ }^{i} \bullet s_{1} \ldots s_{k}\right) t_{1} \ldots t_{l}\right)\right)\right.
\end{aligned}
$$

If $k \geq i$, or $l \geq j$, or $n=1$, all these elements are sent to zero by $\phi_{P L}$ by proposition 28 . Let us assume now that $k<i, l<j, n<1$. We put $v_{i}=\phi_{P L}\left(s_{i}\right)$ and $w_{i}=\phi_{P L}\left(t_{i}\right)$. Then:

$$
\begin{aligned}
\phi_{P L}\left(T_{1}\right) & =x_{0}(\underbrace{x_{0} v_{1} Ш \ldots Ш x_{0} v_{k} Ш x_{1}^{i-1-k}}_{X}) Ш x_{0}(\underbrace{\left.x_{0} w_{1} Ш \ldots Ш x_{0} w_{l} Ш x_{1}^{j-1}\right)}_{Y} Ш x_{1}^{n-2} \\
& =x_{0} X Ш x_{0} Y Ш x_{1}^{n-2}, \\
\phi_{P L}\left(T_{2}\right) & =x_{0}\left(x_{0} v_{1} Ш \ldots Ш x_{0}\left(x_{0} w_{1} Ш \ldots Ш x_{0} w_{l} Ш x_{1}^{j-1-l}\right) Ш x_{1}^{i-1-k}\right) Ш x_{1}^{n-2} \\
& =x_{0}\left(X Ш x_{0} Y\right) Ш x_{1}^{n-2}, \\
\phi_{P L}\left(T_{3}\right) & =x_{0}\left(x_{0}\left(x_{0} v_{1} Ш \ldots Ш x_{0} v_{k} Ш x_{1}^{i-1-k}\right) Ш x_{0} w_{1} Ш x_{0} w_{l} Ш x_{1}^{j-1-l}\right) Ш x_{1}^{n-2} \\
& =x_{0}\left(x_{0} X Ш Y\right) Ш x_{1}^{n-2} .
\end{aligned}
$$

As $x_{0} X Ш x_{0} Y=x_{0}\left(X Ш x_{0} Y\right)+x_{0}\left(x_{0} X Ш Y\right)$, we obtain the result.
Theorem 30 The kernel of $\phi_{P L}$ is the pre-Lie ideal generated by:

1. $B_{1}\left(t_{1} \ldots t_{k}\right)$, where $k \geq 1, t_{1}, \ldots, t_{k} \in \mathcal{T}\left(\mathbb{N}^{*}\right)$.
2. $B_{n+1}\left(B_{i}\left(s_{1} \ldots s_{k}\right) B_{j}\left(t_{1} \ldots t_{l}\right)\right)-B_{n}\left(B_{i+1}\left(s_{1} \ldots s_{k} B_{j}\left(t_{1} \ldots t_{l}\right)\right)-B_{j+1}\left(B_{i}\left(s_{1} \ldots s_{k}\right) t_{1} \ldots t_{l}\right)\right)$, where $k, l \geq 0, s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{l} \in \mathcal{T}\left(\mathbb{N}^{*}\right)$.

Proof. Let I be the ideal generated by these elements. By proposition 28 and corollary 29, $I \subseteq \operatorname{Ker}\left(\phi_{P L}\right)$. We put $h=\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)} / I$. Applying repeatedly the relation given by elements of the second form, it is not difficult to prove that for any $t \in \mathcal{T}\left(\mathbb{N}^{*}\right)$, there exists a linear span of ladders t^{\prime} such that $\bar{t}=\overline{t^{\prime}}$ in h. Moreover, by the relation given by elements 1 ., if one of the vertices of a ladder t which is not the leaf is decorated by 1 , then $\bar{t}=0$. Let us denote by $L(n)$ the set of ladders decorated by \mathbb{N}^{*}, of weight n, such that all the vertices which are not the leaf are decorated by integer >1. It turns out that h is generated by the elements $\bar{t}, t \in L=\bigcup L(n)$.

Let $\overline{\phi_{P L}}$ be the morphism form h to $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ induced by $\phi_{P L}$. By homogeneity, as $\phi_{P L}$ is surjective, for all $n \geq 1$:

$$
\bar{\phi}_{P L}(V e c t(L(n)))=V e c t(\text { words of degree } n) .
$$

In order to prove that $I=\underline{\operatorname{Ker}}\left(\phi_{P L}\right)$, it is enough to prove that $\bar{\phi}_{P L}$ is injective. By homogeneity, it is enough to prove that $\bar{\phi}_{\mid V e c t(L(n))}$ is injective for all $n \geq 1$. Hence, it is enough to prove that for all $n \geq 1$,

$$
|L(n)|=\operatorname{dim}(\operatorname{Vect}(\text { words of degree } n))=p_{n},
$$

where the p_{n} are the integers defined in proposition 8 . Let $l_{n}=|L(n)|$ and q_{n} be the number of $t \in L(n)$ with no vertex decorated by 1 . Then for all $n \geq 2, l_{n}=q_{n}+q_{n-1}$, and $l_{1}=1$. We put:

$$
L=\sum_{n=1}^{\infty} l_{n} X^{n}, Q=\sum_{n=1}^{\infty} q_{n} X^{n} .
$$

We obtain $P=X+Q+X Q$. Moreover:

$$
Q=\frac{1}{1-\sum_{i \geq 2} X^{i}}-1=\frac{1}{1-\frac{X^{2}}{1-X}}-1=\frac{X^{2}}{1-X-X^{2}},
$$

Finally:

$$
L=\frac{X}{1-X-X^{2}}=F .
$$

So, for all $n \geq 1,|L(n)|=p_{n}$.
As an immediate corollary, a basis of h is given by the classes of the elements of L. Turning to $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$, we obtain:

Corollary 31 Let $w=a_{1} \ldots a_{k}$ be a word with letters in \mathbb{N}^{*}.

1. We put:

$$
m_{w}=x_{1}^{a_{1}-1} \bullet\left(x_{1}^{a_{1}-1} \bullet\left(\ldots\left(x_{1}^{a_{k-1}-1} \bullet x_{1}^{a_{k}}\right) \ldots\right) .\right.
$$

2. We shall say that w is admissible if $a_{1}, \ldots, a_{k-1}>1$. The set of admissible words is denoted by $\mathcal{A} d m$.

Then $\left(m_{w}\right)_{w \in \mathcal{A} d m}$ is a basis of $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$.
Remark. If w is not admissible, that is to say if there exists $1 \leq i<k$, such that $a_{i}=1$, then $m_{w}=0$ by proposition 28 .

We extend the map $w \longrightarrow m_{w}$ by linearity.

4.2 Pre-Lie product in the basis of admissible words

Notations.

1. For all k, l, we denote by $S h(k, l)$ the set of (k, l) - shuffles, that is to say permutations $\zeta \in \mathfrak{S}_{k+l}$ such that $\zeta(1)<\ldots<\zeta(k), \zeta(k+1)<\ldots<\zeta(k+l)$.
2. For all k, l we denote by $S h_{\prec}(k, l)$ the set of (k, l)-shuffles ζ such that $\zeta^{-1}(k+l)=k$.
3. For all k, l we denote by $S h_{\succ}(k, l)$ the set of (k, l)-shuffles ζ such that $\zeta^{-1}(k+l)=k+l$.
4. The symmetric group \mathfrak{S}_{n} acts on the set of words with letters in \mathbb{N}^{*} of length n by permutation of the letters:

$$
\sigma .\left(a_{1} \ldots a_{n}\right)=a_{\sigma^{-1}(1)} \ldots a_{\sigma^{-1}(n)}
$$

Proposition 32 Let $\mathbb{K}\left\langle\mathbb{N}^{*}\right\rangle$ be the space generated by words with letters in \mathbb{N}^{*}. We define a dendriform structure on this space by:

$$
\begin{aligned}
& \left(a_{1} \ldots a_{k}\right) \prec\left(b_{1} \ldots b_{l}\right)=\sum_{\zeta \in S h_{\prec}(k, l)} \zeta . a_{1} \ldots a_{k} b_{1} \ldots b_{k-1}\left(b_{k}+1\right) \\
& \left(a_{1} \ldots a_{k}\right) \succ\left(b_{1} \ldots b_{l}\right)=\sum_{\zeta \in S h_{\succ}(k, l)} \zeta . a_{1} \ldots a_{k-1}\left(a_{k}+1\right) b_{1} \ldots b_{k} .
\end{aligned}
$$

The associative product $\prec+\succ$ is denoted $b y \star$.

Proof. We denote by $S h(k, l, m)$ the set of $k+l+m$-permutations such that $\zeta(1)<\ldots<\zeta(k)$, $\zeta(k+1)<\ldots<\zeta(k+l), \zeta(k+l+1)<\ldots \zeta(k+l+m)$. Then:

$$
\begin{aligned}
& \left(a_{1} \ldots a_{k} \prec b_{1} \ldots b_{l}\right) \prec c_{1} \ldots c_{m}=a_{1} \ldots a_{k} \prec\left(b_{1} \ldots b_{l} \star c_{1} \ldots c_{m}\right) \\
& =\sum_{\zeta \in S h(k, l, m), \zeta^{-1}(k+l+m)=k} \zeta . a_{1} \ldots a_{k} b_{1} \ldots\left(b_{l}+1\right) c_{1} \ldots\left(c_{m}+1\right) ; \\
& \left(a_{1} \ldots a_{k} \succ b_{1} \ldots b_{l}\right) \prec c_{1} \ldots c_{m}=a_{1} \ldots a_{k} \succ\left(b_{1} \ldots b_{l} \prec c_{1} \ldots c_{m}\right) \\
& =\sum_{\zeta \in S h(k, l, m), \zeta^{-1}(k+l+m)=k+l} \zeta . a_{1} \ldots\left(a_{k}+1\right) b_{1} \ldots b_{l} c_{1} \ldots\left(c_{m}+1\right) ; \\
& \left(a_{1} \ldots a_{k} \star b_{1} \ldots b_{l}\right) \succ c_{1} \ldots c_{m}=a_{1} \ldots a_{k} \succ\left(b_{1} \ldots b_{l} \succ c_{1} \ldots c_{m}\right) \\
& =\sum_{\zeta \in S h(k, l, m), \zeta^{-1}(k+l+m)=k+l+m} \zeta . a_{1} \ldots\left(a_{k}+1\right) b_{1} \ldots\left(b_{l}+1\right) c_{1} \ldots c_{m} \text {. }
\end{aligned}
$$

So $\mathbb{K}\left\langle\left\langle\mathbb{N}^{*}\right\rangle\right\rangle$ is a dendriform algebra.
We postpone the study of this dendriform algebra to section 5.2.

Notations. For all $a_{1}, \ldots, a_{k} \in \mathbb{N}^{*}$, we denote by $l\left(a_{1} \ldots a_{k}\right)=B_{a_{1}} \circ \ldots \circ B_{a_{k}}(1)$ the ladder decorated from the root to the leaf by a_{1}, \ldots, a_{k}. Note that $m_{a_{1} \ldots a_{k}}=\phi_{P L}\left(l\left(a_{1} \ldots a_{k}\right)\right)$.

Lemma 33 Let $k, l \geq 1$ and let $a_{1}, \ldots, a_{l}, b_{1}, \ldots, b_{l} \in \mathbb{N}^{*}$. Then:

$$
\phi_{P L}\left(B_{a_{1}+1}\left(l\left(a_{2} \ldots a_{k}\right) l\left(b_{1} \ldots b_{l}\right)\right)+B_{b_{1}+1}\left(l\left(a_{1} \ldots a_{k}\right) l\left(b_{2} \ldots b_{l}\right)\right)=m_{a_{1} \ldots a_{k} \star b_{1} \ldots b_{l}}\right.
$$

Proof. By induction on $k+l$. If $k=l=1$, then:

$$
\phi_{P L}\left(\mathfrak{l}_{a_{1}+1}^{b_{1}}+\mathfrak{l}_{b_{1}+1}^{a_{1}}\right)=m_{\left(a_{1}+1\right) b_{1}+\left(b_{1}+1\right) a_{1}}=m_{a_{1} \star b_{1}} .
$$

Let us assume the result at all ranks $<k+l$. If $k=1$, then:

$$
\begin{aligned}
& =\phi_{P L}\left(B_{a_{1}+1}\left(l\left(b_{2} \ldots b_{l}\right)\right)+B_{b_{1}+1}\left(l\left(a_{1}\right) l\left(b_{2} \ldots b_{l}\right)\right)\right. \\
& =\phi_{P L}\left(\bullet a_{1}+1 \bullet l\left(b_{2} \ldots b_{l}\right)+\bullet_{b_{1}+1} \bullet\left(l\left(a_{1}\right) l\left(b_{2} \ldots b_{l}\right)\right)\right) \\
& =\phi_{P L}\left(l\left(\left(a_{1}+1\right) b_{2} \ldots b_{l}\right)\right)+\phi_{P L}\left(\bullet b _ { 1 } \bullet \left(l\left(\left(a_{1}+1\right) b_{2} \ldots b_{l}\right)+\bullet b_{2}+1\right.\right. \\
& =m_{\left(a_{1}+1\right) b_{2} \ldots b_{l}}+m_{b_{1}\left(a_{1} \star b_{2} \ldots b_{l}\right)} \\
& =m_{\left(a_{1}+1\right) b_{2} \ldots b_{l}}+\sum_{i=1}^{l-1} m_{b_{1} \ldots b_{i}\left(a_{1}+1\right) \ldots b_{l}}+m_{b_{1} \ldots\left(b_{l}+1\right) a_{1}} \\
& =m_{a_{1} \star b_{1} \ldots b_{l}} .
\end{aligned}
$$

If $l=1$, a similar computation, permuting the a_{i} 's and the b_{j} 's, proves the result. If $k, l>1$, then:

$$
\begin{aligned}
& \phi_{P L}\left(B_{a_{1}+1}\left(l\left(a_{2} \ldots a_{k}\right) l\left(b_{1} \ldots b_{l}\right)\right)+B_{b_{1}+1}\left(l\left(a_{1} \ldots a_{k}\right) l\left(b_{2} \ldots b_{l}\right)\right)\right. \\
= & \phi_{P L}\left(\bullet a_{1} \bullet\left(\bullet a_{2}+1 \bullet l\left(a_{3} \ldots a_{k}\right) l\left(b_{1} \ldots b_{l}\right)\right)+\bullet b_{1}+1\right. \\
& \left.\left.+l\left(a_{1} \ldots a_{k}\right) l\left(b_{2} \ldots b_{l}\right)\right)\right) \\
= & \left.\phi_{P L}\left(\bullet b_{1} \bullet\left(\bullet a_{1}+1 \bullet l\left(a_{2} \ldots a_{k}\right) l\left(b_{2} \ldots b_{l}\right)\right)+\bullet b_{2}+1 \bullet l\left(a_{1} \ldots a_{k}\right) l\left(b_{3} \ldots b_{l}\right)\right)\right) \\
= & m_{a_{1}\left(a_{2} \ldots a_{k} \star b_{1} \ldots b_{l}\right)+b_{1}\left(a_{1} \ldots a_{k} \star b_{2} \ldots b_{k} \star b_{1} \ldots b_{l} .\right.} .
\end{aligned}
$$

Hence, the result holds for all $k, l \geq 1$.

Theorem 34 For all $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l} \in \mathbb{N}^{*}$:

$$
m_{a_{1} \ldots a_{k}} \bullet m_{b_{1} \ldots b_{l}}=\sum_{i=1}^{k-1} m_{a_{1} \ldots a_{i-1}\left(a_{i}-1\right)\left(a_{i+1} \ldots a_{k} \star b_{1} \ldots b_{l}\right)}+m_{a_{1} \ldots a_{k} b_{1} \ldots b_{l}}
$$

Proof. By definition of $m_{a_{1} b_{1} \ldots b_{l}}$, if $k=1, m_{a_{1}} \bullet m_{b_{1} \ldots b_{l}}=m_{a_{1} b_{1} \ldots b_{l}}$. So the result holds if $k=1$. Let us assume that $k \geq 2$. In $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$, we have:

$$
l\left(a_{1} \ldots a_{k}\right) \bullet l\left(b_{1} \ldots b_{l}\right)=\bullet_{a_{1}} \bullet\left(l\left(a_{2} \ldots a_{k}\right) \bullet l\left(b_{1} \ldots b_{l}\right)\right)+\bullet_{a_{1}} \bullet l\left(a_{2} \ldots a_{k}\right) l\left(b_{1} \ldots b_{l}\right)
$$

Applying $\phi_{P L}$:

$$
\left.\left.\left.\begin{array}{rl}
m_{a_{1} \ldots a_{k}} \bullet m_{b_{1} \ldots b_{l}}= & m_{a_{1}\left(a_{2} \ldots a_{k}\right) \bullet\left(b_{1} \ldots b_{l}\right)} \\
& +\phi_{P L}\left(\bullet a_{1}-1 \bullet\left(\bullet a_{2}+1\right.\right. \\
= & \left.\left.m_{a_{1}\left(a_{2} \ldots a_{k}\right) \bullet\left(b_{1} \ldots b_{l}\right)}+m_{\left(a_{1}-1\right)\left(a_{2} \ldots a_{k} \star b_{1} \ldots b_{l}\right)}\right) l\left(b_{1} \ldots b_{l}\right)\right)+\bullet b_{1}+1
\end{array}\right) l\left(a_{1} \ldots a_{k}\right) l\left(b_{2} \ldots b_{l}\right)\right)\right)
$$

by the preceding lemma. The result follows from an easy induction.

Remark. In particular, $m_{1} \circ m_{b_{1} \ldots b_{l}}=0$.
Corollary 35 Let $a_{1} \ldots a_{k}, b_{1} \ldots b_{l}$ be two words with letters in \mathbb{N}^{*}. Then $m_{a_{1} \ldots a_{k}} \bullet m_{b_{1} \ldots b_{l}}$ is a span of m_{w}, where w is a word with $k+l$ letters and of weight $a_{1}+\ldots+a_{k}+b_{1}+\ldots+b_{l}$.

Hence, $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is a bigraded pre-Lie algebra, with:

$$
\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle_{n, k}=\operatorname{Vect}\left(m_{a_{1} \ldots a_{k}} \mid a_{1}+\ldots+a_{k}=n\right)
$$

We put:

$$
G=\sum_{k, n \geq 0} \operatorname{dim}\left(\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle_{n, k}\right) X^{n} Y^{k}
$$

Proposition $36 G=\frac{X Y}{1-X-X^{2} Y}=\sum_{k=1}^{\infty} \sum_{l=2 k-1}^{\infty}\binom{l-k}{k-1} X^{l} Y^{k}$.
Proof. Note that $\operatorname{dim}\left(\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle_{n, k}\right)$ is the number of words $a_{1} \ldots a_{k}$ of length k, such that $a_{1}, \ldots, a_{k-1} \geq 2$, and $a_{1}+\ldots+a_{k}=n$. Hence:

$$
G=\sum_{k=1}^{\infty}\left(\frac{X^{2} Y}{1-X}\right)^{k-1} \frac{X Y}{1-X}=\frac{X Y}{1-X} \frac{1}{1-\frac{X^{2} Y}{1-X}}=\frac{X Y}{1-X-X^{2} Y}
$$

An easy developement in formal series gives the second formula.

4.3 An associative product on $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$

We now define an associative product on $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$, in such a way that $\phi_{P L}$ becomes a morphism of Com-pre-Lie algebras.

Proposition 37 We define a product $\boldsymbol{\omega}$ on $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$ by:

$$
B_{p}\left(s_{1} \ldots s_{k}\right) 山 B_{q}\left(t_{1} \ldots t_{l}\right)=\binom{p+q-k-l-2}{p-k-1} B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l}\right) .
$$

Then $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$ is a Com-pre-Lie algebra and $\phi_{P L}$ is a morphism of Com-pre-Lie algebras.
Proof. As $\binom{p+q-k-l-2}{p-k-1}=\binom{p+q-k-l-2}{q-l-1}$, \boldsymbol{w} is commutative. Let $t=B_{p}\left(s_{1} \ldots s_{k}\right), t^{\prime}=$ $B_{q}\left(\bullet t_{1} \ldots t_{l}\right)$ and $t^{\prime \prime}=B_{r}\left(u_{1} \ldots u_{m}\right)$. Then:

$$
\begin{aligned}
t Ш\left(t^{\prime} Ш t^{\prime \prime}\right) & =\underbrace{\binom{q+r-l-m-2}{q-l-1}\binom{p+q+r-k-l-m-3}{q+r-l-m-2}}_{A} B_{p+q+r-2}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l} u_{1} \ldots u_{m}\right), \\
\left(t Ш t^{\prime}\right) Ш t^{\prime \prime} & =\underbrace{\binom{p+q-k-l-2}{p-k-1}\binom{p+q+r-k-l-m-3}{p+q-k-l-2}}_{B} B_{p+q+r-2}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l} u_{1} \ldots u_{m}\right) .
\end{aligned}
$$

If $p \leq k$ or $q \leq l$ or $r \leq m$, then $A=B=0$. If $p>k$ and $q>l$ and $r>m$, then:

$$
A=B=\frac{(p+q+r-k-l-m-3)!}{(p-k-1)!(q-l-1)!(r-m-1)!}
$$

So U is associative.
Let $t_{1}=B_{p}\left(s_{1} \ldots s_{k}\right), t_{2}=B_{q}\left(t_{1} \ldots t_{l}\right)$ and $t \in \mathcal{T}\left(\mathbb{N}^{*}\right)$. Then:

$$
\begin{aligned}
\left(t_{1} Ш t_{2}\right) \circ T= & \binom{p+q-k-l-2}{m-k-1} B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l} t\right) \\
& +\sum_{i=1}^{k}\binom{p+q-k-l-2}{p-k-1} B_{p+q-1}\left(s_{1} \ldots\left(s_{i} \bullet t\right) \ldots s_{k} t_{1} \ldots t_{l}\right) \\
& +\sum_{j=1}^{l}\binom{p+q-k-l-2}{p-k-1} B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots\left(t_{j} \bullet t\right) \ldots t_{l}\right),
\end{aligned}
$$

$$
\begin{aligned}
&\left(t_{1} \bullet t\right) Ш t_{2}=\left(\sum_{i=1}^{k} B_{p}\left(s_{1} \ldots\left(s_{i} \bullet t\right) \ldots s_{k}\right)+B_{p}\left(s_{1} \ldots s_{k} t\right)\right) 山 t_{2} \\
&= \sum_{i=1}^{k}\binom{p+q-k-l-2}{p-k-1} B_{p+q-1}\left(s_{1} \ldots\left(s_{i} \bullet t\right) \ldots s_{k} t_{1} \ldots t_{l}\right) \\
&+\binom{p+q-k-l-3}{p-k-2} B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l} t\right), \\
& t_{1} Ш\left(t_{2} \bullet t\right)= t_{1} Ш\left(\begin{array}{c}
l \\
\left.\sum_{j=1}^{l} B_{q}\left(t_{1} \ldots\left(t_{j} \bullet t\right) \ldots t_{l}\right)+B_{q}\left(t_{1} \ldots t_{j} t\right)\right) \\
=
\end{array}\right. \\
& \sum_{j=1}^{l}\binom{p+q-k-l-2}{p-k-1} B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots\left(t_{j} \bullet t\right) \ldots t_{l}\right) \\
&+\binom{p+q-k-l-3}{p-k-1} B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l} t\right) .
\end{aligned}
$$

As $\binom{p+q-k-l-3}{p-k-2}+\binom{p+q-k-l-3}{p-k-1}=\binom{p+q-k-l-2}{p-k-1},\left(t_{1} 山 t_{2}\right) \bullet t=\left(t_{1} \bullet t\right) Ш t_{2}+t_{1} Ш\left(t_{2} \bullet t\right)$ ．So $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$ is Com－pre－Lie．

Let $t_{1}=B_{p}\left(s_{1} \ldots s_{k}\right)$ and $t_{2}=B_{q}\left(t_{1} \ldots t_{l}\right)$ ．If $k \geq p$ ，then $\binom{p+q-k-l-2}{p-k-1}=0$ ，so $t_{1} 山 t_{2}=0$ ． By proposition $28, \phi_{P L}\left(t_{1}\right)=0$ ，so $\phi_{P L}\left(t_{1} 山 t_{2}\right)=\phi_{P L}\left(t_{1}\right) 山 \phi_{P L}\left(t_{2}\right)=0$ ．Similarly，if $l \geq q$ ， $\phi_{P L}\left(t_{1} \amalg t_{2}\right)=\phi_{P L}\left(t_{1}\right) Ш \phi_{P L}\left(t_{2}\right)=0$ ．If $k<p$ and $l<q$ ，we put $w_{i}=\phi_{P L}\left(s_{i}\right)$ and $w_{j}^{\prime}=\phi_{P L}\left(t_{j}\right)$ ． Then：

$$
\begin{aligned}
\phi_{P L}\left(t_{1}\right) Ш \phi_{P L}\left(t_{2}\right) & =x_{0} w_{1} Ш \ldots Ш x_{0} w_{k} Ш x_{1}^{p-1-k} Ш x_{0} w_{1}^{\prime} Ш \ldots Ш x_{0} w_{l}^{\prime} Ш x_{1}^{q-1-l} \\
& =\binom{p+q-k-l-2}{p-k-1} x_{0} w_{1} Ш \ldots x_{0} w_{l}^{\prime} Ш x_{1}^{p+q-k-l-2} \\
& =\binom{p+q-k-l-2}{p-k-1} \phi_{P L}\left(B_{p+q-1}\left(s_{1} \ldots s_{k} t_{1} \ldots t_{l}\right)\right) \\
& =\phi_{P L}\left(t_{1} Ш t_{2}\right) .
\end{aligned}
$$

So $\phi_{P L}$ is a Com－pre－Lie algebra morphism．
Remark．By the proof of proposition 28，we have a commutative diagram of prelie algebra morphisms：

Moreover，$\phi_{C P L}$ is a morphism of Com－pre－Lie algebra．With the commutative，associative product previously defined on $\mathfrak{g}_{\mathcal{T}\left(\mathbb{N}^{*}\right)}$ ，$\phi_{P L}$ is now a morphism of Com－pre－Lie algebra．However， ψ is not compatible with $\boldsymbol{\omega}$ ．Indeed，$\psi\left(\mathfrak{l}_{2}^{1}\right)=\psi\left(\cdot{ }_{2}\right) \bullet \psi\left(\cdot{ }_{1}\right)=\mathfrak{l}_{2}^{1}$ ，so：

$$
\psi\left(\mathfrak{l}_{2}^{1}\right) Ш \psi\left(\mathfrak{l}_{2}^{1}\right)=\mathfrak{l}_{2}^{1} Ш \mathfrak{t}_{2}^{1}=\frac{1}{2} \mathbf{L}_{2}^{1} .
$$

Moreover， $\mathfrak{l}_{2}^{1} \boldsymbol{\Psi} \mathfrak{l}_{2}^{1}={ }^{1} \boldsymbol{V}_{3}{ }^{1}$ ，so：

5 Appendix

5.1 Enumeration of partitioned trees

Let $d \geq 1$. For all $n \geq 1$, let f_{n} be the number of partitioned trees decorated by $\{1, \ldots, d\}$ with n vertices and let t_{n} be the number of partitioned trees decorated by $\{1, \ldots, d\}$ with n vertices and one root. By convention, $f_{0}=1$. We put:

$$
T=\sum_{n=1}^{\infty} t_{n} X^{n}, F=\sum_{n=0}^{\infty} f_{n} X^{n} .
$$

Let V_{T} be the vector space generated by the set of partitioned trees decorated by $\{1,, \ldots, d\}$ and V_{F} be the vector space generated by the set of partitioned trees decorated by $\{1, \ldots, d\}$ with only one root. There is a bijection:

$$
\left\{\begin{aligned}
S\left(V_{T}\right) & \longrightarrow V_{F} \\
t_{1} \ldots t_{k} & \longrightarrow t_{1} ш \ldots ш t_{k} .
\end{aligned}\right.
$$

Hence:

$$
\begin{equation*}
F=\prod_{i=1}^{\infty} \frac{1}{\left(1-X^{k}\right)^{t_{k}}} \tag{2}
\end{equation*}
$$

There is a bijection:

$$
\left\{\begin{aligned}
\bigoplus_{i=1}^{d} S\left(V_{F}\right) & \longrightarrow V_{T} \\
\left(F_{1,1} \ldots, F_{1, k_{1}}, \ldots, F_{d, 1} \ldots F_{d, k_{d}}\right) & \longrightarrow \sum_{i=1}^{d} \cdot{ }_{i} \bullet\left(F_{i, 1} \ldots F_{i, k_{i}}\right)
\end{aligned}\right.
$$

This gives:

$$
\begin{equation*}
T=d X \prod_{i=1}^{\infty} \frac{1}{\left(1-X^{k}\right)^{f_{k-1}}} \tag{3}
\end{equation*}
$$

Formulas (2) and (3) allow to compute inductively f_{k} and t_{k} for all $k \geq 1$. This gives for example:

$$
\left\{\begin{aligned}
f_{1} & =d \\
f_{2} & =\frac{d(3 d+1)}{2} \\
f_{3} & =\frac{d\left(19 d^{2}+9 d+2\right)}{6} \\
f_{4} & =\frac{d\left(63 d^{2}+34 d^{2}+13 d+2\right)}{8} \\
f_{5} & =\frac{d\left(644 d^{4}+400 d^{3}+175 d^{2}+35 d+6\right)}{30}
\end{aligned}\right.
$$

Here are examples of f_{n} for $d=1$ or 2 :

n	1	2	3	4	5	6	7	8	9	10
$d=1$	1	2	5	14	42	134	444	1518	5318	18989
$d=2$	2	7	32	167	952	5759	36340	236498	1576156	10702333

The row $d=1$ is sequence $A 035052$ of [15].

5.2 Study of the dendriform structure on admissible words

We here study the dendriform algebra $\mathbb{K}\left\langle\mathbb{N}^{*}\right\rangle$ of proposition 32 . It is clearly commutative, via the bijection from $S h_{\prec}(k, l)$ to $S h_{\succ}(l, k)$ given by the composition (on the left) by the permutation $(l+1 \ldots l+k 1 \ldots l)$.

Let V be a vector space. The shuffle dendriform algebra $S h(V)$ is $T_{+}(V)$, with the produts given by:

$$
\begin{aligned}
& \left(a_{1} \ldots a_{k}\right) \prec\left(b_{1} \ldots b_{l}\right)=\sum_{\zeta \in S h_{\prec}(k, l)} \zeta \cdot a_{1} \ldots a_{k} b_{1} \ldots b_{k-1} b_{k} \\
& \left(a_{1} \ldots a_{k}\right) \succ\left(b_{1} \ldots b_{l}\right)=\sum_{\zeta \in S h_{\succ}(k, l)} \zeta \cdot a_{1} \ldots a_{k-1} a_{k} b_{1} \ldots b_{k} .
\end{aligned}
$$

Moreover, this is the free commutative dendriform algebra generated by V, that is to say if A is a commutative dendriform algebra and $f: V \longrightarrow A$ is any linear map, there exists a morphism of dendriform algebras $\phi: S h(V) \longrightarrow A$ such that $\phi_{\mid} V=f$. As $a_{1} \ldots a_{k} \succ b=a_{1} \ldots a_{k} b$ in $\operatorname{Sh}(V)$ for all $a_{1}, \ldots, a_{k}, b \in V$, this morphism ϕ is defined by:

$$
\left.\phi\left(a_{1} \ldots a_{k}\right)=\left(\ldots\left(a_{1} \succ a_{2}\right) \succ a_{3}\right) \ldots\right) \succ a_{k} .
$$

Proposition 38 1. Let V be the space generated by the words $1^{k} i, k \in \mathbb{N}, i \geq 1$. Then $K\left\langle\mathbb{N}^{*}\right\rangle$ is isomorphic, as a dendriform algebra, to $\operatorname{Sh}(V)$.
2. Let A be the subspace of $K\left\langle\mathbb{N}^{*}\right\rangle$ generated by admissible words. Then it is a dendriform subalgebra of $K\left\langle\mathbb{N}^{*}\right\rangle$. Moreover, if W is the space generated by the letters $i, i \geq 1$, then A is isomorphic, as a dendriform algebra, to $\operatorname{Sh}(W)$.

Proof. Let $w=a_{1} \ldots a_{k}$ be a word with letters in \mathbb{N}^{*}. We denote by $o(w)$ the sequence of indices $j \in\{1, \ldots, k-1\}$ such that $a_{j} \neq 1$. This sequences are totally ordered in this way: $\left(j_{1}, \ldots, j_{k}\right)<\left(j_{1}^{\prime}, \ldots, j_{l}^{\prime}\right)$ if there exists a p such that $j_{k}=j_{l}^{\prime}, j_{k-1}=j_{l-1}^{\prime}, \ldots, j_{k-p+1}=j_{l-p+1}^{\prime}$, $j_{k-p}<j_{l-p}^{\prime}$, with the convention $j_{0}=j_{-1}=\ldots=j_{0}^{\prime}=j_{-1}^{\prime}=\ldots=0$.

Let $\phi: S h(V) \longrightarrow K\left\langle\mathbb{N}^{*}\right\rangle$ be the unique morphism of dendriform algebras which extends the identity of V. Then:

$$
\begin{aligned}
\phi\left(\left(1^{k_{1}-1} a_{1}\right) \ldots\left(1^{k_{n}-1} a_{n}\right)\right)= & =1^{k_{1}-1}\left(a_{1}+1\right) \ldots 1^{k_{n-1}-1}\left(a_{n-1}+1\right) 1^{k_{n}-1} a_{n} \\
& \text { +words } w^{\prime} \text { such that } o\left(w^{\prime}\right)>\left(k_{1}, \ldots, k_{n-1}\right) .
\end{aligned}
$$

By thriangularity, ϕ is an isomorphism. Moreover, for all $a_{1}, \ldots, a_{n} \geq 1$:

$$
\phi\left(a_{1} \ldots a_{n}\right)=\left(a_{1}+1\right) \ldots\left(a_{n-1}+1\right) a_{n} .
$$

Consequently, $\phi(S h(W))=A$, so A is a dendriform subalgebra of $K\left\langle\mathbb{N}^{*}\right\rangle$ and is isomorphic to Sh (W).

5.3 Freeness of the pre-Lie algebra $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$

Notations. Let $k \geq 1, d_{1}, \ldots, d_{k} \in \mathcal{D}$ and let F_{1}, \ldots, F_{k} be decorated partitioned forests. We put:

$$
B_{d_{1}, \ldots, d_{k}}\left(F_{1}, \ldots F_{k}\right)=\left(\bullet d_{1} \bullet F_{1}\right) Ш \ldots Ш\left(\bullet d_{k} \bullet F_{k}\right) .
$$

Note that any partitioned tree can be written under the form $B_{d_{1}, \ldots, d_{k}}\left(F_{1}, \ldots F_{k}\right)$. This writing is unique up to a permutation of the d_{i} 's and the F_{i} 's.

Proposition 39 We define a coproduct δ on $\mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$ in the following way: for any decorated partitioned tree $t=B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right)$,

$$
\delta(t)=\frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{i, 1} \ldots t_{i, j-1} t_{i, j+1} \ldots t_{i, n_{i}}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right) \otimes t_{i, j}
$$

1. For all $x \in \mathfrak{g}_{\mathcal{P T}(\mathcal{D})},(\delta \otimes I d) \circ \delta(x)=(23)(\delta \otimes I d) \circ \delta(x)$.
2. For all $x, y \in \mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}, \delta(x \bullet y)=x \otimes y+\delta(x) \bullet y$.

Proof. 1. Let $t=B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right)$. For all i, j, we put:

$$
t / t_{i, j}=B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{i, 1} \ldots t_{i, j-1} t_{i, j+1} \ldots t_{i, n_{i}}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right)
$$

Then:

$$
\delta(t)=\frac{1}{k} \sum_{i, j} t / t_{i, j} \otimes t_{i, j}
$$

Hence:

$$
(\delta \otimes I d) \circ \delta(t)=\sum_{(i, j) \neq\left(i^{\prime}, j^{\prime}\right)}\left(t / t_{i, j}\right) / t_{i^{\prime}, j^{\prime}} \otimes t_{i^{\prime}, j^{\prime}} \otimes t_{i, j}
$$

As $\left(t / t_{i, j}\right) / t_{i^{\prime}, j^{\prime}}$ and $\left(t / t_{i^{\prime}, j^{\prime}}\right) / t_{i, j}$ are both the partitioned tree obtained by cutting $t_{i, j}$ and $t_{i^{\prime}, j^{\prime}}$ in t, they are equal, so $(\delta \otimes I d) \circ \delta(t)$ is invariant under the action of (23).
2. Let t^{\prime} be a decorated partitioned tree.

$$
\begin{aligned}
\delta\left(t \bullet t^{\prime}\right)= & \sum_{i=1}^{k} \delta\left(B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{i, 1} \ldots t_{i, n_{i}} t^{\prime}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right)\right) \\
& +\sum_{i, j} \delta\left(B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{i, 1} \ldots t_{i, j} \bullet t^{\prime} \ldots t_{i, n_{i}}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right)\right) \\
= & \frac{1}{k} k t \otimes t^{\prime}+\frac{1}{k} \sum_{i} \sum_{i^{\prime}, j^{\prime}} B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{i, 1} \ldots t_{i, n_{i}} t^{\prime}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right) / t_{i^{\prime}, j^{\prime}} \otimes t_{i^{\prime}, j^{\prime}} \\
& +\frac{1}{k} \sum_{(i, j) \neq\left(i^{\prime}, j^{\prime}\right)} B_{d_{1}, \ldots, d_{k}}\left(t_{1,1} \ldots t_{1, n_{1}}, \ldots, t_{i, 1} \ldots t_{i, j} \bullet t^{\prime} \ldots t_{i, n_{i}}, \ldots, t_{k, 1} \ldots t_{k, n_{k}}\right) / t_{i^{\prime}, j^{\prime}} \otimes t_{i^{\prime}, j^{\prime}} \\
& +\frac{1}{k} \sum_{i, j} t / t_{i, k} \otimes t_{i, j} \bullet t^{\prime} \\
= & t \otimes t^{\prime}+\sum t^{(1)} \otimes t^{(2)} \bullet t^{\prime}+\sum t^{(1)} \otimes t^{(2)} \bullet t^{\prime} .
\end{aligned}
$$

So $\delta\left(t \bullet t^{\prime}\right)=t \otimes t^{\prime}+\delta(t) \bullet t^{\prime}$.
By Muriel Livernet's pre-Lie rigidity theorem [7]:
Corollary 40 The pre-Lie algebra $\mathfrak{g}_{\mathcal{T} \mathcal{T}(\mathcal{D})}$ is freely generated by $\operatorname{Ker}(\delta)$.

Remarks.

1. It is not difficult to prove that for any $x, y \in \mathfrak{g}_{\mathcal{P} \mathcal{T}(\mathcal{D})}$:

$$
\delta(x Ш y)=\sum x^{(1)} \otimes x^{(2)} Ш y+\sum y^{(1)} \otimes x Ш y^{(2)} .
$$

Hence, $\operatorname{Ker}(\delta)$ is an algebra for the product $Ш$.
2. Here are elements of $\operatorname{Ker}(\delta)$ in the non decorated case. Let $t_{1}, t_{2}, t_{3}, t_{4}$ be partitioned trees.

$$
\begin{aligned}
X= & B\left(t_{1} t_{2}, 1\right)-B\left(t_{1}, t_{2}\right) \\
Y= & B\left(t_{1} t_{2} t_{3}, 1,1\right)-B\left(t_{1} t_{2}, t_{3}, 1\right)-B\left(t_{1} t_{3}, t_{2}, 1\right)-B\left(t_{2} t_{3}, t_{1}, 1\right)+2 B\left(t_{1}, t_{2}, t_{3}\right) \\
Z= & B\left(t_{1} t_{2} t_{3} t_{4}, 1\right)-B\left(t_{1} t_{2} t_{3}, t_{4}\right)-B\left(t_{1} t_{2} t_{4}, t_{3}\right)-B\left(t_{1} t_{3} t_{4}, t_{2}\right)-B\left(t_{2} t_{3} t_{4}, t_{1}\right) \\
& +B\left(t_{1} t_{2}, t_{3} t_{4}\right)+B\left(t_{1} t_{3}, t_{2} t_{4}\right)+b\left(t_{1} t_{4}, t_{2} t_{3}\right) \\
T= & B\left(t_{1} t_{2}, t_{3} t_{4}, 1,1\right)+B\left(t_{1} t_{3}, t_{2} t_{4}, 1,1\right)+B\left(t_{1} t_{4}, t_{2} t_{3}, 1,1\right)-B\left(t_{1} t_{2}, t_{3}, t_{4}, 1\right) \\
& -B\left(t_{1} t_{3}, t_{2}, t_{4}, 1\right)-B\left(t_{1} t_{4}, t_{2}, t_{3}, 1\right)-B\left(t_{2} t_{3}, t_{1}, t_{4}, 1\right)-B\left(t_{2} t_{4}, t_{1}, t_{3}, 1\right) \\
& -B\left(t_{3} t_{4}, t_{1}, t_{2}, 1\right)+3 B\left(t_{1}, t_{2}, t_{3}, t_{4}\right)
\end{aligned}
$$

References

[1] Frédéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices (2001), no. 8, 395-408, arXiv:math/0002069.
[2] Samuel Eilenberg and Saunders MacLane, Cohomology theory of Abelian groups and homotopy theory. III, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 307-310.
[3] Abdelhak Ferfera, Combinatoire du monoïde libre et composition de certains systèmes non linéaires, Systems analysis (Conf., Bordeaux, 1978), Astérisque, vol. 75, Soc. Math. France, Paris, 1980, pp. 87-93.
[4] Murray Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288.
[5] W. Steven Gray and Luis A. Duffaut Espinosa, A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback, Systems Control Lett. 60 (2011), no. 7, 441-449.
[6] W. Steven Gray and Yaqin Li, Generating series for interconnected analytic nonlinear systems, SIAM J. Control Optim. 44 (2005), no. 2, 646-672.
[7] Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), no. 1, 1-18, arXiv:math/0504296.
[8] Jean-Louis Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 7-66.
[9] Jean-Louis Loday and María Ronco, Combinatorial Hopf algebras, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, arXiv:0810.0435, pp. 347-383.
[10] Anthony Mansuy, Preordered forests, packed words and contraction algebras, arXiv:1305.0343, 2013.
[11] Yozô Matsushima, Affine structures on complex manifolds, Osaka J. Math. 5 (1968), 215222.
[12] J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. K-Theory 2 (2008), no. 1, 147-167, arXiv:math/0404457.
[13] Jean-Michel Oudom and Daniel Guin, Sur l'algèbre enveloppante d'une algèbre pré-Lie, C. R. Math. Acad. Sci. Paris 340 (2005), no. 5, 331-336.
[14] Christophe Reutenauer, Free Lie algebras, Handbook of algebra, Vol. 3, North-Holland, Amsterdam, 2003, pp. 887-903.
[15] N. J. A Sloane, On-line encyclopedia of integer sequences, avalaible at http://oeis.org/.
[16] È. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303-358.

