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Abstract

Given a real curve, we study special linear systems called “very special” for

which the dimension does not satisfy a Clifford type inequality. We classify all

these very special linear systems when the gonality of the curve is small.

1 Introduction and preliminaries

In this note, a real algebraic curveX is a smooth proper geometrically integral scheme
over R of dimension 1. A closed point P of X will be called a real point if the residue
field at P is R, and a non-real point if the residue field at P is C. The set of real points
X(R) of X decomposes into finitely many connected components, whose number will
be denoted by s. By Harnack’s Theorem ([BCR, Th. 11.6.2 p. 245]) we know that
s ≤ g+1, where g is the genus of X . A curve with g+1−k real connected components
is called an (M − k)-curve. Another topological invariant associated to X is a(X),
the number of connected components of X(C) \ X(R) counted modulo 2. The pair
(s, a(X)) is called the topological type of X . If a(X) = 0 then s = g + 1 mod 2 (see
[K]) and X is called a separating curve.

We will denote by XC the base extension of X to C. The group Div(XC) of
divisors on XC is the free abelian group on the closed points of XC. The Galois group
Gal(C/R) acts on the complex variety XC and also on Div(XC). We will always
indicate this action by a bar. Identifying Div(X) and Div(XC)

Gal(C/R), if P is a non-
real point of X then P = Q + Q̄ with Q a closed point of XC. The group Div(X)
of divisors on X is then the free abelian group generated by the closed points of
X . If D is a divisor on X , we will denote by O(D) its associated invertible sheaf.
The dimension of the space of global sections of this sheaf will be denoted by h0(D).
Since a principal divisor has an even degree on each connected component of X(R)
(e.g. [10] Lem. 4.1), the number δ(D) (resp. β(D)) of connected components C
of X(R) such that the degree of the restriction of D to C is odd (resp even) is an
invariant of the linear system |D| associated to D. If h0(D) > 0, the dimension of
the linear system |D| is dim |D| = h0(D) − 1. Let K be the canonical divisor. If
h0(K −D) = dimH1(X,O(D)) > 0, D is said to be special. If not, D is said to be
non-special. By Riemann-Roch, if deg(D) > 2g− 2 then D is non-special. Assume D
is effective of degree d. If D is non-special then the dimension of the linear system |D|
is given by Riemann-Roch. If D is special, then the dimension of the linear system
|D| satisfies

dim |D| ≤
1

2
d.
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This is the well known Clifford inequality for complex curves that works also for real
curves. The reader is referred to [1] and [11] for more details on special divisors.
Concerning real curves, the reader may consult [10].

Huisman ([12, Th. 3.2]) has shown that:

Theorem 1.1 Assume X is an M -curve (i.e. s = g + 1) or an (M − 1)-curve (i.e.
s = g). Let D ∈ Div(X) be an effective and special divisor of degree d. Then

dim |D| ≤
1

2
(d− δ(D)).

Huisman inequality is not valid for all real curves and we have the following
theorem.

Theorem 1.2 [Mo1, Th. A] Let D be an effective and special divisor of degree d.
Then either

dim |D| ≤
1

2
(d− δ(D)) (Clif1)

or

dim |D| ≤
1

2
(d− β(D)) (Clif2)

Moreover, D satisfies the first inequality if either s ≤ 1 or s ≥ g.

In this note we are interested in special divisors that do not satisfy the inequality
(Clif1) given by Huisman.

Definition 1.3 Let D be an effective and special divisor of degree d. We say that D
is a very special divisor (or |D| is a very special linear system) if D does not satisfy
the inequality (Clif 1) i.e. dim |D| > 1

2 (d − δ(D)). If D is very special then there
exists k ∈ N such that

dim |D| =
1

2
(d− δ(D)) + k + 1

and k is called the index of D denoted by ind(D).

We can reformulate Theorem 1.2 with the concept of very special divisors.

Theorem 1.4 [Mo1, Th. B] Let D be an effective and very special divisor of degree
d. Then

dim |D| ≤
1

2
(d−

1

2
(s− 2)) (∗).

In the previous cited paper, a result is obtained in this direction.

Theorem 1.5 [Mo1, Th. 2.18] Let D be a very special and effective divisor of degree
d on a real curve X such that (*) is an equality i.e.

r = dim |D| =
1

2
(d−

1

2
(s− 2))

then X is an hyperelliptic curve with δ(g12) = 2 and |D| = rg12 with r odd.

Let D ∈ Div(X) be a divisor with the property that O(D) has at least one nonzero
global section. The linear system |D| is called base point free if h0(D − P ) 6= h0(D)
for all closed points P of X . If not, we may write |D| = E + |D′| with E a non zero
effective divisor called the base divisor of |D|, and with |D′| base point free. A closed
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point P of X is called a base point of |D| if P belongs to the support of the base
divisor of |D|. We note that

dim |D| = dim |D′|.

As usual, a grd is an r-dimensional complete linear system of degree d onX . Let |D|
be a base point free grd onX . The linear system |D| defines a morphism ϕ|D| : X → Pr

R

onto a non-degenerate (but maybe singular) curve in Pr
R
i.e. ϕ|D|(X) is not contained

in any hyperplane of Pr
R
. If ϕ|D| is birational (resp. an isomorphism) onto ϕ|D|(X),

the grd (or D) is called simple (resp. very ample). Let X ′ be the normalization of
ϕ|D|(X), and assume D is not simple i.e. |D − P | has a base point for any closed
point P of X . Thus, the induced morphism ϕ|D| : X → X ′ is a non-trivial covering
map of degree t ≥ 2. In particular, there exists D′ ∈ Div(X ′) such that |D′| is a grd

t

and such that D = ϕ∗
|D|(D

′), i.e. |D| is induced by X ′. If g′ denote the genus of X ′,

|D| is classically called compounded of an involution of order t and genus g′. In the
case g′ > 0, we speak of an irrational involution on X .

Concerning non-simple very special divisors, a complete description is given in
[Mo2]:

Theorem 1.6 [Mo2, Thm. 2.5, Thm. 4.1] Let D be a very special divisor of degree
d such that the base point free part of |D| is non-simple. Then

(i) D is base point free,

(ii) δ(D) = s,

(iii) the index of D is null.

If moreover dim |D| = r > 1 then the morphism ϕ|D| : X → X ′ is a non-trivial
covering map of degree 2 and D = ϕ∗

|D|(D
′) with D′ ∈ Div(X ′) such that |D′| = grd

2

.

Let g′ denote the genus of X ′ and let s′ be the number of connected components of
X ′(R), we have the following additional properties:

(iv) D′ is a base point free non-special divisor and X ′ is an M -curve.

(v) s is even, s′ = s
2 , r is odd and δ(D′) = s′.

(vi) a(X) = 0 and g is odd and there is a very special pencil on X.

In this note, we give conditions under which a real curve with few real connected
components can have a very special system.

Theorem 1.7 Let X be real curve with s ≤ 4. If X has a very special linear system
then XC and X are s-gonal, s ≥ 2, X has a very special pencil and X is a separating
curve i.e. a(X) = 0.

If s ≥ g − 4, we prove that the existence of a very special linear system implies
also the existence of a very special pencil.

By the previous theorem, the existence of a very special linear system on a real
curve, with s ≤ 4, forces the gonality of the curve to be s. The following theorem
concerns very special linear series on a real curve with a small gonality.

Theorem 1.8 Let X be real curve such that X and XC are both n-gonal with
2 ≤ n ≤ 4. If X has a very special linear system then X has a very special pencil
and X is a separating curve i.e. a(X) = 0. Moreover, if |D| is a very special linear
system then ind(D) = 0, δ(D) = s, |D| and |K −D| are base point free.
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In the last section of this note, we improve the result of Theorem 1.4.

Theorem 1.9 Let |D| be a very special linear system of degree d on a real curve X.

(i) We have

dim|D| ≤
1

2
(d−

s− 2

2
),

with equality if and only if X is hyperelliptic, the g12 is very special and s = 2.

(ii) Assume X is not hyperelliptic. We have

dim|D| ≤
1

2
(d−

s− 1

2
),

with equality if and only if X is trigonal, a g13 is very special and s = 3.

(iii) Assume X is not hyperelliptic and not trigonal. We have

dim|D| ≤
1

2
(d−

s

2
),

with equality if and only if X is 4-gonal, a g14 is very special and s = 4.

(iv) Assume X has gonality ≥ 5. We have

dim|D| ≤
1

2
(d−

s+ 1

2
).

2 Properties of very special divisors

In this section, we recall and establish some results on very special linear systems.
Let D be a special and effective divisor. The linear system |D| is called primitive

if |D| and |K − D| are base point free. If |D| is base point free and F is the base
divisor of |K −D| then |D+F | is primitive (it is called the primitive hull of |D|) and
satisfies dim|D + F | = dim|D|+ deg(F ).

We recall that if D ∈ Div(X) then δ(D) = δ(K − D). By the previous remark
and Riemann-Roch, we get:

Lemma 2.1 [Mo2, Lem. 2.4] Let D be a very special divisor then K−D is also very
special and ind(D) = ind(K −D).

Lemma 2.2 Let D be an effective divisor. Let F be the base divisor of |D|. If D
is very special then the base point free part |D − F | of |D| is also very special and
ind(D−F ) ≥ ind(D). Moreover ind(D−F ) = ind(D) if and only if F = P1+ . . .+Pf

with the Pi some real points among the δ(D) real connected components on which the
degree of the restriction of D is odd, such that no two of them belong to the same real
connected component.

Proof : Set d = deg(D) and k = ind(D).
Suppose that there exists a non-real point Q + Q̄ such that Q + Q̄ ≤ F . Then

dim|D| = dim|D −Q − Q̄| = 1
2 (d− δ(D)) + k + 1 = 1

2 ((d− 2)− δ(D)) + (k + 1) + 1
and ind(D −Q− Q̄) = ind(D) + 1.

Suupose there are two real points P, P ′ belonging to the same real connected
component, such that P + P ′ ≤ F , then as before, ind(D − P − P ′) = ind(D) + 1.
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Suppose that there exists a real point P belonging to a connected component
on which the degree of the restriction of D is even, such that P ≤ F . Then
dim|D| = dim|D−P | = 1

2 (d− δ(D))+ k+1 = 1
2 ((d− 1)− (δ(D)+ 1))+ (k+1)+1 =

1
2 (deg(D − P )− (δ(D − P )) + (k + 1) + 1 and ind(D − P ) = ind(D) + 1.

Suppose that there exists a real point P belonging to a connected component on
which the degree of the restriction of D is odd, is contained in the base divisor of |D|.
Then dim|D| = dim|D−P | = 1

2 (d− δ(D))+k+1 = 1
2 ((d− 1)− (δ(D)− 1))+k+1 =

1
2 (deg(D − P )− (δ(D − P )) + k + 1 and ind(D − P ) = ind(D). ⊓⊔

Corollary 2.3 Let D be very special and assume |D| is base point free then the
primitive hull |D′| of |D| is very special and ind(D′) ≥ ind(D). Let E ∈ |D′ − D|,
then ind(D′) = ind(D) if and only if E = P1 + . . .+ Pe with the Pi some real points
among the δ(D) real connected components on which the degree of the restriction of
D is odd, such that no two of them belong to the same real connected component.

Proof : Let E denote the base divisor of K − D. Then K − D is very special of
index ind(D) (Lemma 2.1) and K −D −E is also very special of index ≥ ind(D) by
Lemma 2.2. By Lemma 2.1, D′ = D+E = K − (K −D−E) is very special of index
≥ ind(D).

Assume ind(D′) = ind(D) then ind(K −D) = ind(K−D−E) and by Lemma 2.2
we are done. ⊓⊔

Theorem 2.4 [Mo2, Thm. 3.6] If D is a very special divisor then dim|D| 6= 2.

Proposition 2.5 Let D be a very special divisor of degree d such that dim |D| = 1.
Then D = P1+· · ·+Ps with P1, . . . , Ps some real points of X such that no two of them
belong to the same connected component of X(R) i.e. d = δ(D) = s and ind(D) = 0.
Moreover D is primitive.

Proof : By [Mo2, Prop. 2.1], we only have to prove K −D is base point free.
Suppose that P is a real base point of |K − D|. Then dim|D + P | = 2 =

1
2 ((s + 1) − (s − 1)) + 1 = 1

2 (deg(D + P ) − (δ(D + P )) + 1 and D + P is very
special, impossible by Theorem 2.4.

Suppose that Q+ Q̄ is a non-real base point of |K−D|. Then for a general choice
of a real point P , we get dim|D + Q + Q̄ − P | = 2 = 1

2 ((s + 1) − (s − 1)) + 1 =
1
2 (deg(D+Q+ Q̄−P )− (δ(D+Q+ Q̄−P )) + 1 and D+Q+ Q̄−P is very special,
impossible by Theorem 2.4. ⊓⊔

Proposition 2.6 Let D be a very special divisor of degree d. Let k = ind(D). Choose
k distinct real connected components C1, . . . , Ck on which the degree of the restriction
of D is odd. For i = 1, . . . , k, take (Pi, Ri) ∈ Ci × Ci. Take a real point Qj in each
real connected component on which the degree of the restriction of D is even. Then

D′ = D −
k∑

i=1

(Pi +Ri)−

β(D)∑

j=1

Qj

is very special. Moreover, dim|D′| = 1
2 (d+ δ(D)) − k − s+ 1 and ind(D′) = 0 if the

points Pi, Ri, Qj are sufficiently general.

Proof : Assume dim|D| = r = 1
2 (d− δ(D)) + k + 1. We have r ≥ k + 1 since D can

be chosen effective.
We have k ≤ δ(D)

2 by Clifford Theorem.
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Let D1 = D −
∑k

i=1 Pi. Then δ(D1) = δ(D) − k and dim|D1| ≥ r − k =
1
2 (d − δ(D)) + 1 − k = 1

2 (deg(D1) − δ(D1)) + 1 ≥ 1. We see that D1 is very special
and ind(D1) = 0 if the points Pi are general.

If β(D1) = 0, the proof is done since D1 is very special. Assume β(D1) > 0. Let P
be a real point such that P belongs to a connected component on which the degree of
the restriction ofD1 is even. Then dim|D1−P | ≥ dim|D1|−1 ≥ 1

2 (deg(D1)−δ(D1)) =
1
2 (deg(D1 − P ) − δ(D1 − P )) + 1. Since h0(D1 − P ) ≥ dim|D1| > 0 then D1 − P
is linearly equivalent to an effective divisor and therefore deg(D1 − P ) ≥ δ(D1 − P )
and dim|D1 − P | ≥ 1 and D1 − P is very special. In the case P is general, we get
ind(D1 − P ) = ind(D1). By repeating the same reasoning for D1 − P , we prove the
proposition. ⊓⊔

The following lemma was proved differently in [Mo2, Lem. 3.3].

Lemma 2.7 Let D be a very special divisor of degree d and index k. Then

d+ δ(D) ≥ 2s+ 2k.

Proof : By Proposition 2.6, the divisor D′ = D−
∑k

i=1(Pi +Ri)−
∑β(D)

j=1 Qj is very
special and therefore dim|D′| ≥ 1. Choosing the points Pi, Ri, Qj sufficiently general,
we have dim|D| = 2k + β(D) + dim|D′| ≥ 2k + s− δ(D) + 1. We obtain

1

2
(d− δ(D)) + k + 1 ≥ 2k + s− δ(D) + 1

i.e.
d+ δ(D) ≥ 2s+ 2k.

⊓⊔

Corollary 2.8 Let D be a very special divisor of degree d and index k. We have
d+ δ(D) = 2s+ 2k if and only if |D| is a pencil.

Proof : Assume d + δ(D) = 2s+ 2k. The linear system |D′| of Proposition 2.6 is a
very special pencil. Hence |D′| is primitive (Proposition 2.5) and therefore D′ = D.

The converse follows easily from Proposition 2.5. ⊓⊔

We improve the result of Lemma 2.7.

Proposition 2.9 Let D be a very special divisor of degree d and index k such that
|D| is not a pencil. Then

d+ δ(D) ≥ 2s+ 2k + 4.

The very special divisor D′ constructed from D in Proposition 2.6 satisfies

dim|D′| ≥ 3.

Moreover d+ δ(D) = 2s+ 2k + 4 if and only if dim|D′| = 3.

Proof : Choosing the points Pi, Ri, Qj sufficiently general in Proposition 2.6, the
linear system |D′| is very special and dim|D′| = 1

2 (d+δ(D))−k−s+1. Note that |D′|
is not primitive if δ(D) < s or k > 0. By Lemma 2.9, we have d+ δ(D) ≥ 2s+2k+2.
If d + δ(D) = 2s + 2k + 2 then dim|D′| = 2, impossible by Theorem 2.4. Therefore
dim|D′| ≥ 3 and we have dim|D| = 2k + β(D) + dim|D′| ≥ 2k + s − δ(D) + 3. We
obtain

1

2
(d− δ(D)) + k + 1 ≥ 2k + s− δ(D) + 3
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i.e.
d+ δ(D) ≥ 2s+ 2k + 4.

⊓⊔

Proposition 2.10 Let X be an (M − 2)-curve or an (M − 4)-curve. If X has a
very special linear system then it is a very special pencil g1s or its residual K − g1s . If
s = g − 1 then the residual of a very special pencil is also a very special pencil.

Proof : Let D be a very special divisor of degree d and index k on X . By Lemma
2.1, we may assume d ≤ g − 1 and then d + δ(D) ≤ 2g − 2 (resp. ≤ 2g − 4) if
s = g−1 (resp. s = g−3). If |D| is not a pencil then d+δ(D) ≥ 2g−2+2k+4 (resp.
≥ 2g−6+2k+4) if s = g−1 (resp. s = g−3), impossible. Hence |D| is a very special
pencil and by Riemann-Roch, K−D is also a very special pencil in the case s = g−1.

⊓⊔

Remark 2.11 The very special pencils give separating morphisms X → P1 in the
sense of Coppens [Co].

Proposition 2.12 Let X be an (M − 3)-curve or an (M − 5)-curve. Then X has no
very special linear systems.

Proof : Let D be a very special divisor of degree d and index k on X . By Lemma
2.1, we may assume d ≤ g−1 and then d+ δ(D) ≤ 2g−3 (resp. ≤ 2g−5) if s = g−2
(resp. s = g − 4). If |D| is not a pencil then d + δ(D) ≥ 2g − 4 + 2k + 4 (resp.
≥ 2g − 8 + 2k + 4) if s = g − 2 (resp. s = g − 4), impossible. Hence |D| is a very
special pencil and then a(X) = 0, impossible. ⊓⊔

From the above results we get:

Theorem 2.13 Let X be a real curve such that s ≥ g − 4. If X has a very special
linear system then X has a very special pencil.

3 Very special webs

Proposition 3.1 Let D be a very special divisor of degree d and index k such that
dim|D| = 3. Then |D| is base point free, d = s+ 4, k = 0 and δ(D) = s.

Proof : We have D′ = D in Proposition 2.6 and thus d+ δ(D) = 2s+ 2k + 4. Since
D = D′ then we have k = 0 and δ(D) = s. Therefore, we obtain d = s + 4. By
Proposition 2.2, the base point free part of |D| is also very special of dimension 3,
hence its degree is s+ 4 and thus D is base point free. ⊓⊔

The following proposition is important in the sequel. We give new examples of
very special simple linear systems. This proposition was inspired by M. Coppens.

Proposition 3.2 Let |D| be a very special simple linear system of degree d such that
dim|D| = 3 and X ′ = ϕ|D|(X) ⊂ P3 is contained in an irreducible real quadric surface
Q. Then

(i) The rank of Q is 4 and Q ≃ P1
R
× P1

R
.

(ii) X ′ is a curve of bi-degree (s, 4) on Q.
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(iii) |D| = g1s + g14, g
1
s and g14 are the pull-backs of the linear pencils on X ′ cut out

by the rulings of Q.

(iv) g1s is a very special pencil and δ(g14) = 0.

(v) s ≥ 3 and in the case s = 3 then X ′ is smooth and |D| = K − g13.

(vi) If s = 4 and d ≤ g − 1 then X ′ is smooth.

Proof : By Proposition 3.1, the degree d of D is s+ 4, δ(D) = s and ind(D) = 0.
If the rank of Q is 3, then |D| = |2F | where |F | is the pencil induced by the ruling

of Q. This case is not possible since δ(D) 6= 0 by Clifford Theorem.
Thus Q is smooth. Assume Q(R) ≃ S2. The rulings of Q induce complex and

conjugated pencils |F | and |F̄ | on X such that |D| = |F + F̄ |; this is again impossible
since δ(D) 6= 0.

We have Q ≃ P1
R
× P1

R
and |D| = g1a + g1b where g1a and g1b are induced by the real

rulings of Q. The hyperplane section H giving the embedding Q →֒ P3 is of bi-degree
(1, 1) on Q and then X ′ = ϕ|D|(X) ⊂ P3 is a curve of bi-degree (a, b) on Q. Moreover,
X and X ′ are birational since |D| is simple. We get

a+ b = s+ 4.

We have H1(Q(R),Z/2) = Z/2 × Z/2 and the possible types of the image of the
connected components of X(R) are (0, 0), (1, 0), (0, 1) and (1, 1). Let a′, b′ and c′ be
respectively the number of connected components of type (1, 0), (0, 1) and (1, 1). We
have a′ + b′ = δ(D) = s, a′ + c′ = δ(g1a) and b′ + c′ = δ(g1b ).

Suppose a′ ≤ a − 2 and b′ ≤ b − 2. Since a′ + b′ = s and a + b = s + 4, we get
a′ = a − 2 and b′ = b − 2. Since a connected component of type (1, 0) intersect a
connected component of type (0, 1), if g denote the genus of X , we get

g ≤ ab− a− b+ 1− (a− 2)(b− 2)

i.e.
g ≤ a+ b− 3 = s+ 1,

which is impossible by Theorem 1.1 and Proposition 2.10.
So we can assume a′ = a i.e. g1a is a very special pencil. We have a = s and it

follows that b = 4 and b′ = c′ = 0. If s ≤ 2 then g ≤ 3 by the genus formula and this
is again impossible by the propositions 2.10 and 2.12.

Assume s = 3. Let µ denote the multiplicity of the singular locus of X ′. We have
g = 6−µ by the genus formula. Since D is special, we have dim|D| = 3 > d−g = 1+µ
i.e. µ ≤ 1. If µ = 1, then s and g have the same parity, impossible since a(X) = 0
(X has a very special pencil). Thus X ′ is smooth and X is an (M − 4)-curve. By
Proposition 2.10, |D| is residual to a very special g13 . Since X has a simple very special
linear system, X cannot be hyperelliptic and X is trigonal with a unique g13 (g > 4)
such that |D| = g13 + g14.

Assume now s = 4 and d = s+4 = 8 ≤ g− 1. Let µ denote the multiplicity of the
singular locus ofX ′. We have g = 9−µ by the genus formula and it follows that µ = 0.

⊓⊔

We study the converse of the previous proposition.

Proposition 3.3 Let X be a smooth curve of bidegree (s, 4) on a hyperbolöıd Q ⊂ P3
R

with s ≥ 3 denoting the number of connected components of X(R) and such that all
the connected components of X(R) are of type (1, 0). Then the embedding X →֒ P3 is
given by a simple very special linear system |D| = g1s + g14.
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Proof : The embedding X →֒ P3 is clearly given by a simple linear system |D| =
g1s +g14 with δ(g1s) = s and δ(g14) = 0. It remains to show that D is special. Since X is
smooth, we have g = 3s−3 and thus D is special if dim|D| = 3 > d−g = s+4−3s+3
i.e. s > 2. ⊓⊔

Remark 3.4 The existence of curves of bidegree (s, 4) with prescribed types of
Proposition 3.3 for the real connected components is proved by Zvonilov [Zv] for s = 3
and s = 4.

4 Curves with a small number of real connected

components

We study the existence of very special linear systems on real curves with s ≤ 4.
The following theorem summarizes all the results proved in this section.

Theorem 4.1 Let X be real curve with s ≤ 4. If X has a very special linear system
then XC is s-gonal and X has a very special pencil.

By Theorem 2.13, the same conclusion can be drawn if s ≥ g − 4.
An open question is to know if the statement of Theorem 4.1 is correct without

any hypothesis on s. If the answer to this question is the affirmative then very special
linear series will only exist on separating real curves.

By Theorem 1.2, we only have to consider curves with 2 ≤ s ≤ 4.
We will use several times the following proposition:

Proposition 4.2 Let |D| be a base point free, simple, and very special linear system
of degree d and index k such that d ≥ g. Then

dim|K −D| ≤ δ(D)− 2k − 2.

Proof : Set r = dim|D|, we have r = 1
2 (d− δ(D)) + k + 1 i.e.

d = 2r + δ(D)− 2k − 2.

Since d ≥ g, 2D is non-special and therefore dim|2D| = 2d−g = 4r+2δ(D)−4k−4−g.
Since |D| is simple and base point free, by [1, Ex. B.6, Chap. 3] (a consequence of
the uniform position lemma) (note that there is a misprint in the exercise, the correct
formula should be r(D+ E) ≥ r(D)+ 2r(E)− r(E −D)− 1), we get dim|2D| ≥ 3r− 1.
Therefore

4r + 2δ(D)− 4k − 4− g ≥ 3r − 1

r =
1

2
(d− δ(D)) + k + 1 ≥ 4k − 2δ(D) + g + 3

d− δ(D) + 2k + 2 ≥ 8k − 4δ(D) + 2g + 6

d ≥ 6k − 3δ(D) + 2g + 4.

Hence deg(K −D) = 2g − 2− d ≤ 3δ(D)− 6k − 6. By Lemma 2.1, we obtain finally

dim|K −D| =
1

2
(deg(K −D)− δ(D)) + k + 1 ≤ δ(D)− 2k − 2.

⊓⊔
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Proposition 4.3 Let X be a real curve such that s = 2. If X has a very special
linear system then X is hyperelliptic and the g12 is very special i.e. δ(g12) = 2.

Proof : Assume D is a very special divisor of degree d and index k. Then
dim|D| = r = 1

2 (d − δ(D)) + k + 1 ≥ 1
2d + k since δ(D) ≤ 2. By Clifford Theorem

we get k = 0. Since the null divisor and K are not very special and since we have an
equality in Clifford Theorem, it follows that X is hyperelliptic. By [Mo1, Prop. 2.10],
we get δ(g12) = 2. ⊓⊔

Proposition 4.4 Let X be a real curve such that s = 3. If X has a very special
linear system then XC is a trigonal curve and there exists a real g13 very special i.e.
δ(g13) = 3.

Proof : Assume D is a very special divisor of degree d and index k. Then
dim|D| = r = 1

2 (d − δ(D)) + k + 1 ≥ 1
2d + k − 1

2 . By Clifford Theorem we get
k = 0 i.e.

r =
1

2
(d− δ(D)) + 1.

If δ(D) ≤ 2 we get a contradiction since in this caseX would be hyperelliptic (equality
in Clifford inequality) and then s = 2 (Proposition 4.3). Therefore

δ(D) = 3,

d is odd and

r =
1

2
(d− 1).

By Lemma 2.2, since the index of any special divisor is null and since the δ of any
very special divisor is equal to 3, we can conclude that any very special linear system
is base point free i.e. any very special linear system is primitive.

Assume D is simple and d ≤ g− 1. Castelnuovo’s bound gives r ≤ 1
3 (d+1) [Beau]

i.e.
1

2
(d− 1) ≤

1

3
(d+ 1)

d ≤ 5.

Then r ≤ 2 and it is impossible by Theorem 2.4.
Assume D is simple and d ≥ g. By Proposition 4.2 we get dim|K −D| ≤ 1 and it

follows that |K −D| is a very special pencil i.e. a g13 with δ(g13) = 3.
Assume D is non simple. If |D| is a pencil there is nothing to do. If dim|D| > 1,

the existence of a very special g13 is given by Theorem 1.6.
If XC is not trigonal then XC must be hyperelliptic since the complex gonality

is less than the real gonality and since X has a special divisor. Since the g12 of an
hyperelliptic curve is unique, X must be hyperelliptic. By [Mo1, Prop. 3.10], s = 2,
contradiction. ⊓⊔

Lemma 4.5 Let X be a real curve such that s = 4. If D is a very special divisor on
X then ind(D) = 0 and one of the following statements holds:

(i) δ(D) = 3 and |D| is primitive.

(ii) δ(D) = 4 and the base part of |D| is empty or a real point.
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Proof : Assume D is a very special divisor of degree d and index k. Then
dim|D| = r = 1

2 (d − δ(D)) + k + 1 ≥ 1
2d + k − 1. We get k = 0 since X can not be

hyperelliptic [Mo1, Prop. 3.10] (if k = 1 we have equality in Clifford inequality, if
k > 1 we contradict Clifford inequality). Therefore

r =
1

2
(d− δ(D)) + 1.

We have δ(D) = 3 or δ(D) = 4 since X is not hyperelliptic (if δ(D) = 2 we have
equality in Clifford inequality, if δ(D) ≤ 1 we contradict Clifford inequality).

Assume δ(D) = 3. By Lemma 2.2, since the index of any very special divisor is
null and since the δ of any very special divisor is equal to 3 or 4, we can conclude
that |D| is base point free. Since δ(K −D) = 3, |K −D| is also base point free i.e.
|D| is primitive.

Assume δ(D) = 4. By Lemma 2.2, since the index of any very special divisor is
null and since the δ of any very special divisor is equal to 3 or 4, we conclude that
the base part of |D| is empty or a real point. ⊓⊔

Theorem 4.6 Let X be a real curve such that s = 4. If X has a very special linear
system then XC is a 4-gonal curve and there exists a very special g14 i.e. δ(g14) = 4.
Moreover, if |D| is a very special linear system on X then |D| is primitive, ind(D) = 0
and δ(D) = 4.

Proof : Assume D is a very special divisor of degree d. By Lemma 4.5 we know that
ind(D) = 0 and that δ(D) ≥ 3.

Suppose first that δ(D) = 3. We know that |D| is primitive (Lemma 4.5) and that
|D| and |K −D| are simple (Theorem 1.6). Changing D by K −D if necessary, we
may assume that d ≤ g − 1. We have

dim|D| = r =
1

2
(d− 3) + 1.

By Castelnuovo’s bound

r ≤
1

3
(d+ 1)

and we get d ≤ 5 and thus r ≤ 2. Since |D| is simple, it follows from Theorem 2.4
that this case is not possible.

Suppose now that δ(D) = 4. If |D| is not base point free then the base divisor is
a real point P by Lemma 4.5, but then D − P is a very special divisor (Lemma 2.2)
with δ(D − P ) = 3, we have shown previously that it is impossible. Thus |D| and
|K −D| are base point free i.e they are primitive.

We have

dim|D| = r =
1

2
(d− 4) + 1 =

1

2
d− 1.

Assume |D| is simple and d ≤ g − 1. By Castelnuovo’s bound

r ≤
1

3
(d+ 1)

and we get d ≤ 8 and r ≤ 3. By Theorem 2.4 and since |D| is simple we get r = 3
and d = 8. By [Beau, Lem. 5.1, Rem. 5.2], X is an extremal curve in the sense of
Castelnuovo i.e. |D| is very ample and X ≃ ϕ|D|(X) ⊂ P3 is a space curve of maximal
genus. By [1, p. 118], ϕ|D|(X) lie on a unique quadric surface Q. By Proposition 3.2,
X has a very special g14 .
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Assume |D| is simple and d ≥ g. By Proposition 4.2, Lemma 2.1 and Theorem
2.4, |K −D| is a very special g14 .

Assume |D| is non simple. If dim|D| = 1 there is nothing to do. If dim|D| ≥ 2
the existence of a very special g14 follows from Theorem 1.6.

If the gonality of XC is ≤ 3 then we contradict [Mo1, Prop. 3.10] and Theorem 5.1.
⊓⊔

5 Real trigonal curves

We study the existence of very special linear series on non hyperelliptic curves with
a complex g13 .

Theorem 5.1 Let X be a real curve such that XC is trigonal. Any very special linear
system on X is a very special g13 or the residual of a very special g13. In this situation,
s = 3 and a(X) = 0.

Proof : Remark that since X is not hyperelliptic then s ≥ 3 (Proposition 4.3).
Assume g ≤ 4. By Theorem 1.1, Propositions 2.10 and 4.4, if X has a very special

system |D| then g = 4, s = 3 and |D| = g13 or |D| = K − g13 .
Assume g > 4. Then XC has a unique g13 and this g13 must be real. Suppose D

is very special of degree d ≤ g − 1, index k and suppose moreover |D| is primitive.
Set r = dim|D|. Using the fact that the Maroni’s invariant m of X (it is the first
scrollar invariant of the g13) is well understood, we have g−4

3 ≤ m ≤ g−2
3 , it is proved

in [CKM, Example 1.2.7] that |D| = r.g13 . Since δ(g
1
3) = 1 or 3, we consider these two

cases separatly.
• δ(g13) = 1: If r is odd then we get

r =
1

2
(3r − 1) + k + 1

i.e. r < 0, impossible. If r is even then we get

r =
1

2
(3r) + k + 1

i.e. r < 0, impossible.
• δ(g13) = 3: If r is odd then we get

r =
1

2
(3r − 3) + k + 1

and therefore r = 1 i.e. |D| = g13 . It is easy to see that the case r is even is not possible.

We have proved that any primitive very special linear system on X is the very
special g13 or its residual. Since the index of any primitive very special linear system
on X is null, it follows from Lemma 2.2 and Corollary 2.3 that the index of any very
special linear system on X is null. Suppose now |D| is very special but not primitive,
let |D′| denote the primitive hull of the base point free part of |D|. By Lemma 2.2
and Corollary 2.3, we must have δ(D′) < δ(D), impossible since δ(D′) = s = 3.

⊓⊔
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6 Four-gonal real curves

In this section, we study the existence of very special linear series on four-gonal real
curves. We suppose X is a real curve such that XC is 4-gonal and such that there
exist a base point free g14 on X . We do not assume this g14 is unique. In summary, we
assume that XC and X are both 4-gonal.

In this section we will use several times the following Lemma due to Eisenbud
[CM, Lem. 1.8]. Note that this lemma concerns linear systems over C but the proof
works also over R.

Lemma 6.1 Let gtn, g
r
m (t, r ≥ 1) be real complete linear systems on a real curve X.

If gtn + grm has the minimum possible dimension t + r then there exists a real base
point free pencil g1e such that gtn = t.g1e and grm = r.g1e .

Definition 6.2 A linear system |D| is called “non-trivial” if it is base point free and
if |D| and |K −D| have both dimension ≥ 1.

Remark 6.3 A base point free very special linear system is always non-trivial.

Definition 6.4 We say that a non-trivial linear system |D| of degree d and dimension
r is
• of type 1 (for the g14) if it is composed of the g14 i.e. |D| = r.g14.
• of type 2 (for the g14) if the residual of |D| is composed of the g14 i.e. |K − D| =
r′.g14 + F with F the base divisor of |K −D| and r′ = dim|K −D| = g − d+ r − 1.

Proposition 6.5 (Very special linear systems of type 1)
Let |D| be a base point free very special linear system of type 1 for the g14. Then
|D| = g14 and thus the g14 must be very special. In this situation, s = 4 and a(X) = 0.

Proof : Let d be the degree of D and let k be the index of D. We have

dim|D| = r =
1

2
(d− δ(D)) + k + 1.

Since |D| is of type 1, we also have |D| = r.g14 .
If r is even, then δ(D) = 0, impossible since it will contradict Clifford Theorem.
Assume r is odd, we have d = 4r and δ(D) = δ(g14) = 0 or 2 or 4.

• If δ(g14) = 0 then we contradict Clifford Theorem.
• If δ(g14) = 2 then r = 1

2 (4r − 2) + k + 1. It follows that k = 0 and we have an
equality in Clifford inequality, impossible since XC is 4-gonal.
• If δ(g14) = 4 then s = 4 and the g14 is very special. We have r = 1

2 (4r − 4) + k + 1
i.e. r = 1− k and the proof is done. ⊓⊔

Proposition 6.6 (Very special linear systems of type 2)
Let |D| be a base point free very special linear system of type 2 for the g14. Then
|D| = |K − g14 | and the g14 must be very special. In this situation s = 4 and a(X) = 0.

Proof : By Lemma 2.1, K −D is very special. By Lemma 2.2, the moving part of
|K −D| is very special of type 1. From Proposition 6.5, this moving part is the g14
which is very special. Therefore |K − D| is a very special pencil but then it must
be base point free by Theorem 1.6. Thus |K − D| = g14 and the proof is done.

⊓⊔
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Proposition 6.7 Let |D| be a base point free very special linear system such that |D|
is not a pencil (particularly, |D| is not of type 1) and |D| is not of type 2. Then

dim|D − g14 | = dim|D| − 2

and |D − g14 | is base point free.

Proof : Set r = dim|D| and d = deg(D). We have

r − 4 ≤ dim|D − g14 | < r

since |D| is base point free. Remark that r ≥ 3.
Assume dim|D− g14 | = r− 1. Then dim|D− g14 + g14 | = r = dim|D− g14 |+dimg14 .

Let |E| denote the moving part of |D− g14| and let F be the base divisor of |D− g14 |.
We have

dim|E|+ dimg14 ≤ dim|E + g14 | ≤ dim|D − g14 + g14 | = dim|E|+ dimg14

hence
dim|E|+ dimg14 = dim|E + g14 |.

By Lemma 6.1 we get |E| = (r − 1).g14 . Hence |D| = |r.g14 + F | and F = 0 since
|D| is base point free. Therefore, |D| is a very special linear system of type 1 and by
Proposition 6.5, we get r = 1, a contradiction.

Assume dim|D − g14 | = r − 4. By Riemann-Roch we get dim|K − (D − g14)| =
dim|K−D+g14| = dim|D−g14 |−(d−4)+g−1 = r−4−d+4+g−1 = r−d+g−1 =
dim|K −D|. It is impossible since dim|K −D + g14 | ≥ dim|K −D|+ 1.

Assume dim|D−g14 | = r−3. By Riemann-Roch dim|K− (D−g14)| = r−d+g i.e.
dim|K−D+g14| = dim|K−D|+dimg14. Let |E| denote the moving part of |K−D| and
let F be the base divisor of |K−D|. Set r′ = dim|K−D| = r−d+ g− 1. By Lemma
2.1 and Lemma 2.2, E is very special. We have dim|E + g14 | ≤ dim|K − D + g14 | =
dim|K −D|+ 1 = dim|E|+ 1. We also have dim|E + g14 | ≥ dim|E| + 1. By Lemma
6.1, |E| = r′.g14 and then |K −D| = r′.g14 + F (F is the fix part). Therefore, |D| is a
very special linear system of type 2, a contradiction with the hypotheses.

We prove now that |D− g14 | is base point free. Let |E| denote the moving part of
|D − g14 | and let F be the base divisor of |D − g14 |. Let e (resp. f) denote the degree
of E (resp. F ). We have dim|E| = r − 2 and dim|E + g14 | ≥ r − 1.
Assume dim|E + g14 | = r − 1. By Lemma 6.1, E = (r − 2).g14 and thus |D| =
|(r − 1).g14 + F |. We get

r =
1

2
(4r − 4 + f − δ(D)) + k + 1

i.e.
2r = 2− f + δ(D)− 2k.

If r is odd then δ(D) = δ(F ) and we get

2r = 2− f + δ(F )− 2k

i.e. r ≤ 1 since f ≥ δ(F ), contradicting the hypotheses. If r is even then r ≥ 4 by
Theorem 2.4. Since δ(D) ≤ δ(F ) + 4 then

2r ≤ 6− f + δ(F )− 2k

i.e. r ≤ 3, contradiction.
We have proved that dim|E + g14 | ≥ r and, since dim|E + g14 | ≤ dim|D| = r, we get
dim|E + g14 | = r. Therefore F is contained in the base divisor of |D| i.e. F = 0.

⊓⊔
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Proposition 6.8 Let |D| be a primitive very special linear system such that |K −D|
is not a pencil and |D| is different from the g14. Then

dim|D + g14 | = dim|D|+ 2

and |D + g14 | is also primitive.

Proof : The linear system |K − D| is base point free, very special and it is not a
pencil. If |K−D| is of type 2 then |D| is of type 1 and we get |D| = g14 by Proposition
6.5, a contradiction with the hypotheses. We may apply Proposition 6.7 for |K −D|
and we get

dim|K −D − g14 | = dim|K −D| − 2

and |K − (D + g14)| is base point free. By Riemann-Roch, we get dim|D + g14 | =
dim|D|+ 2. To finish the proof, we remark that |D + g14 | is base point free since |D|
and g14 are both base point free. ⊓⊔

Theorem 6.9 (Very special linear systems on a 4-gonal curve with δ(g14) = 0)
Let X be a real curve with a fixed g14 with δ(g14) = 0 and such that XC is 4-gonal. Let
|D| be a very special linear system of dimension r on X then
• D is primitive.
• r is odd, ind(D) = 0 and δ(D) = s.
• |D| = | r−1

2 .g14 + g1s | with g1s a very special pencil.

Proof : We note that a very special linear system on X can not be of type 1 and can
not be of type 2. Let |D| be a base point free very special linear system which is not
a pencil. Then dim|D− g14 | = dim|D|− 2 by Proposition 6.7 and it is easy to see that
|D− g14 | is a base point free very special linear system of index ind(D). If |D− g14 | is
not a pencil, we continue the same process, and so on, and by Theorem 2.4 it follows
that D− r−1

2 g14 is a very special pencil g1s . We also obtain that ind(D) = ind(g1s) = 0
and δ(D) = δ(g1s) = s. Since the index of any base point free very special linear
system is null, it follows from Lemma 2.2 that the index of any very special linear
system is also null. Since the index is always null and the δ invariant of any base
point free very special linear system is equal to s, it follows from Lemma 2.2 that the
base divisor of any very special linear system is also null. ⊓⊔

Definition 6.10 We say that a non-trivial linear system |D| such that dim|D| = r
is of type 3 (for the g14) if

|D| = |(r − 1).g14 + F |

with F effective. Note then that dim|F | ≤ 1, and for F 6= 0 we have dim(r − 1).g14 =
r − 1.

Proposition 6.11 Let |D| be a base point free very special linear system of type 3.
Then |D| is a very special pencil i.e. a g1s with δ(g1s) = s.

Proof : Let d be the degree of D and let k be the index of D. We have

dim|D| = r =
1

2
(d− δ(D)) + k + 1.

Assume first that F = 0. Since d = 4r − 4 we get

2r = 2 + δ(D) − 2k.
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If r is odd then δ(D) = 0 and we get r = 1− k, impossible. If r is even then r ≥ 4 by
Theorem 2.4. Since δ(D) ≤ 4 we get r ≤ 3− k, again impossible.

Assume now that F 6= 0 and let f denote its degree. Since d = 4r − 4 + f we get

2r = 2− f + δ(D)− 2k.

If r is odd then δ(D) = δ(F ) and we have 2r = 2− f + δ(F )− 2k. Since f ≥ δ(F ) it
follows that r = 1, δ(F ) = f and |D| = |F | is a very special pencil. If r is even then
r ≥ 4 by Theorem 2.4. Since δ(D) ≤ δ(F ) + 4 we get 2r ≤ 6 + δ(F ) − f − 2k i.e.
r ≤ 3, impossible. ⊓⊔

Proposition 6.12 Let X be a real curve with a fixed g14 with δ(g14) = 2 and such that
XC is 4-gonal. If |D| is a base point free non-simple very special linear system on X
then |D| is a pencil.

Proof : Let |D| be a base point free non-simple very special linear system on X such
that dim|D| > 1. By Theorem 1.6, ϕ|D| : X → X ′ has degree two and X ′ is an
M-curve of genus g′ = s

2 − 1 and the inverse image of any connected component of
X ′(R) is a disjoint union of two connected components of X(R). By Propositions 4.3
and 4.4, we have s ≥ 4. By Theorem 1.1 we get 4 ≤ s ≤ g − 1. Assume the g14 is not
induced byX ′ i.e. g14 is not of the form ϕ∗

|D|(g
1
2) for a g12 on X ′. By [CKM, Cor. 2.2.2],

we must have 4 ≥ g− 2g′ +1 and g′ ≥ 1. Since s = 2g′ +2 and g ≤ 2g′ +3 we obtain
s ≥ g− 1. By Theorem 1.1 and Proposition 2.10, we get s = g− 1 and |D| is a pencil,
impossible. Hence g14 = ϕ∗

|D|(g
1
2) for a g12 on X ′. Thus δ(g14) 6= 2, a contradiction.

⊓⊔

Lemma 6.13 Let X be a real curve with a fixed g14 with δ(g14) = 2 and such that XC

is 4-gonal. If |D| is a very special linear system on X then

dim|D| 6= 3.

Proof : Assume |D| is base point free and very special with deg(D) = d and
dim|D| = 3. From Proposition 3.1, it follows that |D| is base point free and that
δ(D) = s. By Proposition 6.12, |D| is simple. By Proposition 6.7, |D| = |g14+g1s | with
δ(g1s) = s− 2. But then ϕ|D|(X) is contained in a quadric surface of P3 (see [K, Lem.
1.5] for example). By Proposition 3.2, |D| cannot be very special, a contradiction.

⊓⊔

Proposition 6.14 Let X be a real curve with a fixed g14 with δ(g14) = 2 and such that
XC is 4-gonal. If X has a very special pencil g1s then s = g − 1 and any very special
linear system on X is a pencil.

Proof : Let g1s be a very special pencil on X .
If dim|K − g1s | = 1 then we get s = g − 1 by Riemann-Roch.
For the rest of the proof, we assume dim|K − g1s | > 1. We denote by |D| the base

point free linear system |g1s +g14 |. By Lemma 6.8, dim|g1s +g14 | = 3 and |D| = |g1s +g14 |
is base point free.

Suppose first that |D| is simple. The curve X ′ = ϕ|D|(X) is birational to X and
X ′ is contained in a quadric surface of P3. Thus X ′ = ϕ|D|(X) ⊂ P3 is a curve of
bi-degree (a, b) on Q and we have

a+ b = s+ 4.
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Arguing as in the proof of Proposition 3.2, if a′, b′, c′ denote respectively the number
of connected components of type (1, 0), (0, 1) and (1, 1) then we have a′+b′ = δ(D) =
s − 2, a′ + c′ = δ(g1s) = s and b′ + c′ = δ(g14) = 2. Therefore a′ + b′ = a′ − b′ and
thus b′ = 0, a′ = s − 2, c′ = 2. Since the s − 2 connected components of type (1, 0)
intersect each connected component of type (1, 1), the genus formula gives

g ≤ 4s− 4− s+ 1− 2(s− 2) = s+ 1.

By Theorem 1.2, we get s = g − 1 and the rest of the proof in this case follows from
Proposition 2.10.

Suppose now that |D| is not simple. Let d = s+4 denote the degree of D. It means
that ϕ|D| has some degree ≥ 2 i.e. ϕ = ϕ|D| : X → X ′ is a non-trivial covering map
of degree t ≥ 2 on a real curve X ′ of genus g′. Moreover, there exists D′ ∈ Div(X ′)
of degree d′ = d

t such that |D′| = g3d′ and such that D = ϕ∗(D′).
Assume t ≥ 3. Let Q′+Q̄′ be a non-real point of X ′(R). Let D1 = D−ϕ∗(Q′+Q̄′)

and denote by d1 = d−2t. We may clearly assumeD′−Q′−Q̄′ effective and dim|D1| =
1. Since Q′+Q̄′ is non-real, ϕ∗(Q′+Q̄′) is non-real. We have δ(D1) = δ(D) = s−2 and
D1 is clearly a special divisor. We get dim|D1| = 1 = 1

2 (d−δ(D))−2 > 1
2 (d1−δ(D1)),

hence |D1| is a very special pencil, impossible since δ(D1) 6= s.
We have t = 2 and thus d′ = s

2 + 2. Let C1, . . . , Cs−2 (resp. Cs−1, Cs) denote
the connected components of X(R) on which the degree of the restriction of D is odd
(resp. even). The image of a connected component of X(R) is either a connected
component of X ′(R) or a closed and bounded interval of a connected component of
X ′(R). Since D is a union of fibers of ϕ|D| we get:
• for i = 1, . . . , s− 2, ϕ(Ci) is a connected component of X ′(R).
• for i = 1, . . . , s− 2 and for j = s− 1, s, ϕ(Ci) ∩ ϕ(Cj) = ∅.
• for i = 1, . . . , s−2, ϕ−1(ϕ(Ci)) is either Ci or Ci∪Ci′ for i

′ ∈ {1, . . . , s−2} distinct
from i.
Let s′ denote the number of connected components of X ′(R). From above remarks,
we get

s′ ≥
s− 2

2
+ 1 =

s

2

and

δ(D′) ≥
s− 2

2
.

Assume D′ is special. We have

dim|D′| = 3 = dim|D| =
1

2
(d− δ(D)) = d′ −

s− 2

2
≥ d′ − δ(D′) ≥

1

2
(d′ − δ(D′)).

Since dim|D′| is odd, it follows from the above inequalities that D′ is very special.
By Proposition 3.1, d′ = s′ + 4 and δ(D′) = s′ and thus dim|D′| = 3 = d′ − s−2

2 ≥
d′ − δ(D′) ≥ 4, a contradiction.
Since D is non-special, Riemann-Roch gives dim|D′| = 3 = d′ − g′ = s

2 + 2− g′ i.e.

g′ =
s

2
− 1.

Since s′ ≥ s
2 , we get s′ = g′ + 1 = s

2 by Harnack inequality i.e. X ′ is an M-curve.
Moreover, from above remarks, it follows that there exist g′ connected components
of X ′(R) such that the inverse image by ϕ of each of these components is a union of
two connected components of X(R) among C1, . . . , Cs−2; the connected component
of X ′(R) that remains contains the image of Cs−1 and Cs.
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We know that 4 ≤ s ≤ g − 1 by Theorem 1.2. If the g14 is not induced by ϕ
then 4 ≥ g − 2g′ + 1 ([CKM, Cor. 2.2.2]) and we find again s = g − 1. Now assume
g14 = ϕ∗(h1

2) for a h1
2 on X ′. We must consider two cases.

• g′ = 1: We have s′ = 2 and s = 4. The very special pencil g1s is clearly not induced
by ϕ since δ(g1s) = 4). By [CKM, Cor. 2.2.2], we obtain s = g − 1.
• g′ > 1: It follows in that case that X ′ is an hyperelliptic M-curve. Therefore
there exists P ′ ∈ X ′(R) such that h1

2 = |2P ′| but then δ(g14) = 0, a contradiction.
⊓⊔

Theorem 6.15 (Very special linear systems on a 4-gonal curve with δ(g14) = 2)
Let X be a real curve with a fixed g14 with δ(g14) = 2 and such that XC is 4-gonal. Let
|D| be a very special linear system on X then |D| is a pencil and s = g − 1.

Proof : According to Proposition 6.14, it is sufficient to show that X must have a
very special pencil in the case X has a very special linear system.

We note that a very special linear system on X cannot be of type 1 and cannot
be of type 2.

Let |D| be a base point free very special linear system of degree d such that
ind(D) = k ≥ 1. We have

dim|D| = r =
1

2
(d− δ(D)) + k + 1.

By Lemma 6.13, r ≥ 4. From Proposition 6.7, it follows that

dim|D − g14| = r − 2

and |D − g14 | is base point free. Since δ(D − g14)− 2 ≤ δ(D) ≤ δ(D − g14) + 2, we get

dim|D− g14 | =
1

2
((d− 4)− δ(D)) + k+ 1 ≥

1

2
(deg(D− g14)− δ(D− g14)) + (k− 1)+ 1

and it follows that |D − g14 | is also base point free and very special. Since r ≥ 4,
|D − g14 | is not a pencil and, according to Proposition 6.7, we obtain

dim|D − 2g14| = dim|D| − 4

and |D − 2g14 | is base point free. It is easy to see that |D − 2g14 | is very special of
index k = ind(D). If dim|D − 2g14| ≥ 4 then repeating the same process we obtain
finally a base point free very special linear system of dimension ≤ 3 and index k ≥ 1,
impossible by the Theorems 1.6, 2.4 and Proposition 3.1. Since the index of the
base point free part is greater or equal than the index of a very special linear system
(Lemma 2.2), it follows that the index of any very special linear system is null.

Let |D| be a base point free very special linear system of degree d such that |D|
is not a pencil. We have

dim|D| = r =
1

2
(d− δ(D)) + 1.

By Lemma 6.13, r ≥ 4 and it follows from Proposition 6.7 that

dim|D − g14| = r − 2

and |D − g14 | is base point free. We can compare δ(D) and δ(D − g14), we have 3
possibilities.
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• Case δ(D − g14) = δ(D) + 2: We have

dim|D − g14| =
1

2
(deg(D − g14)− δ(D − g14)) + 2

and |D − g14 | is very special of index 1, impossible by an above conclusion.

• Case δ(D − g14) = δ(D): We have

dim|D − g14| =
1

2
(deg(D − g14)− δ(D − g14)) + 1

and then |D − g14 | is a base point free very special linear system. Remark that
δ(D) = δ(D − g14) < s since δ(g14) = 2. If |D − g14 | is not a pencil the we may repeat
the same process since δ(D − 2g14) = δ(D) = δ(D − g14), and we finally get a very
special pencil (we use Theorem 2.4 and Lemma 6.13 to exclude the case the linear sys-
tem we obtain has dimension 2 or 3) with δ invariant < s, impossible by Theorem 1.6.

We have proved that
δ(D − g14) = δ(D)− 2

and we recall that |D− g14| is base point free by Proposition 6.7. We also remark that
dim|D − g14 | ≥ 2. Since |D − g14 | is base point free we have

r − 6 ≤ dim|D − 2g14| ≤ r − 3.

Suppose dim|D − 2g14 | = dim|D| − 6 ≥ 0. Then

dim|K − (D − g14) + g14 | = dim|K − (D − 2g14) = dim|K − (D − g14)|

by Riemann-Roch, impossible since h0(K − (D − g14)) = h1(D − g14) > 0. Thus
dim|K − (D − g14) + g14 | ≥ dim|K − (D − g14)|+ 1.

Suppose dim|D − 2g14 | = dim|D| − 3 ≥ 0. Then

dim|(D − 2g14) + g14 | = dim|D − 2g14|+ dim|g14 |.

By Lemma 6.13, we get dim|D − 2g14| > 0. Let |E| (resp. F ) denote the base point
free part (resp. the base part) of |D − 2g14| then

dim|E|+dim|g14 | = dim|D−2g14|+dim|g14 | = dim|(D−2g14)+g14 | ≥ dim|E+g14 | ≥ dim|E|+dim|g14 |

i.e.
dim|E + g14 | = dim|E|+ dim|g14 |.

By Lemma 6.1, |E| = (r − 3).g14 . It follows that |D| = |(r − 1).g14 + F | i.e. |D| is a
very special linear system of type 3; Proposition 6.11 gives a contradiction since r ≥ 4.

Suppose dim|D − 2g14 | = dim|D| − 5 ≥ 0. By Riemann-Roch

dim|K − (D − g14) + g14 | = dim|K − (D − g14)|+ dim|g14 |.

Assume dim|K − (D− g14)| > 0 and denote by |E′| (resp. F ′) the base point free part
(resp. the base part) of |K − (D − g14)|. We have

dim|E′|+ dim|g14 | = dim|K − (D − g14)|+ dim|g14|
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= dim|K − (D − g14) + g14 | ≥ dim|E′ + g14 | ≥ dim|E′|+ dim|g14 |

i.e.
dim|E′ + g14 | = dim|E′|+ dim|g14 |.

By Riemann-Roch, dim|E′| = dim|K−(D−g14)| = r−2−(d−4)+g−1 = r−d+g+1.
By Lemma 6.1, |E′| = |(r − d + g + 1).g14|. Hence |K − (D − g14)| = |K −D + g14 | =
|(r − d + g + 1).g14 | + F ′ and then |K − D| = |(r − d + g).g14 + F ′|. It follows that
dim|K −D| ≥ r− d+ g, impossible by Riemann-Roch. Hence dim|K − (D− g14)| = 0
i.e. dim|K −D + g14 | = 0, again impossible since D is special.

According to above, we have

dim|D − 2g14 | = dim|D| − 4.

Since r ≥ 4 then h0(D − 2g14) > 0 and D − 2g14 is special. Since δ(D) = δ(D − 2g14)
it is easy to see that |D − 2g14| is very special. Let |D1| denote the base point free
part of |D − 2g14|. By Lemma 2.2 and an above remark, |D1| is very special of
index null. If dim|D − 2g14| ≤ 3 then |D1| must be a very special pencil g1s and
|D − 2g14| = |D1| since a very special pencil is primitive. If dim|D − 2g14| ≥ 4, we
do the same process with |D1| replacing |D|. We have proved the existence of a
very special pencil on X , the rest of the proof follows now from Proposition 6.14.

⊓⊔

In the following we describe all the very special linear sytems on a real curve with
four real connected components (see Theorem 4.1).

Theorem 6.16 (Very special linear systems on a 4-gonal curve with δ(g14) = 4)
Let X be a real curve with a fixed g14 with δ(g14) = 4 and such that XC is 4-gonal.
Let |D| be a very special linear system of degree d and dimension r on X. Then |D|
is primitive, r is odd, ind(D) = 0, δ(D) = s = 4. Moreover, we are in one of the
following cases:
• |D| is simple and d ≤ g− 1: then r = 3, |D| = |g14 +h1

4| with h1
4 another pencil such

that δ(h1
4) = 0, ϕ|D|(X) is a smooth curve of bidegree (4, 4) on a quadric surface Q

of P3.
• |D| is simple and d ≥ g: then |D| = |K − h1

4| with h1
4 a very special pencil.

• |D| is a very special pencil h1
4.

• |D| is non simple and is not a pencil: then X is a bi-elliptic curve and

|D| = |
r − 1

2
g14 + h1

4|

with h1
4 a pencil such that δ(h1

4) = 4 (i.e. very special) if r = 1 mod 4 and δ(h1
4) = 0

if r = 3 mod 4.

Proof : Let |D| be a very special linear system of degree d and dimension r. By
Theorem 4.6, |D| is primitive, ind(D) = 0 and δ(D) = s = 4. We have

dim|D| = r =
1

2
(d− 4) + 1 =

d

2
− 1.

Assume |D| is simple and d ≤ g − 1. By Castelnuovo’s bound

r ≤
1

3
(d+ 1)
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and we get d ≤ 8 and r ≤ 3. By Theorem 2.4 and since |D| is simple we get r = 3
and d = 8. By Proposition 6.7, |D− g14 | is a base point free pencil h1

4 with δ(h1
4) = 0.

It follows that ϕ|D|(X) is a curve of bidegree (4, 4) on a quadric surface Q of P3. By
Proposition 3.2, ϕ|D|(X) is smooth i.e. |D| is very ample. By [1, p. 118], the quadric
containing ϕ|D|(X) is unique.

Assume |D| is simple and d ≥ g. By Proposition 4.2, Lemma 2.1 and Theorem
2.4, |K −D| is a very special pencil h1

4 i.e. |D| is of type 2 for that h1
4.

Assume |D| is non simple and is not a pencil. By Theorem 1.6 r is odd,
ϕ|D| : X → X ′ has degree two and X ′ is an elliptic curve with two real connected
components and the inverse image of any connected component of X ′(R) is a disjoint
union of two connected components of X(R). From Theorem [Mo2, Thm. 4.1] and
using Proposition 6.7 and [CM, Example 1.13], we see that

|D| = |
r − 1

2
g14 + h1

4|

with h1
4 a pencil such that δ(h1

4) = 4 (i.e. very special) if r = 1 mod 4 and δ(h1
4) = 0

if r = 3 mod 4. ⊓⊔

From [Mo1, Prop. 2.10], Theorems 5.1, 6.9, 6.15 and 6.16, we get Theorem 1.8
stated in the introduction.

Theorem 6.17 Let X be real curve such that X and XC are both n-gonal with
2 ≤ n ≤ 4. If X has a very special linear system then X has a very special pencil
and X is a separating curve i.e. a(X) = 0. Moreover, if |D| is a very special linear
system then ind(D) = 0, δ(D) = s and |D| is primitive.

7 Clifford type inequality for very special linear

systems

Using the results of the previous sections, we will improve the inequalities of Theorem
1.2 and Theorem 1.4.

Theorem 7.1 Let X be a real curve such that X is not hyperelliptic and X is not
trigonal, i.e. the real gonality of X is ≥ 4. Let D be a very special divisor of degree
d and index k then

dim|D| ≤
d

2
−

s

4
.

Proof : Let |D| be a very special linear system of degree d, index k and dimension
r. Before proving the inequality stated in the Theorem, we will prove the following
inequality

dim|D| ≤
1

2
(d− β(D))− k − 1.

Assume |D| is a pencil. By Proposition 2.5, we have δ(D) = s, d = s and k = 0.
According to Propositions 4.3 and 4.4, we have s ≥ 4 and thus

dim|D| = 1 ≤
1

2
(d− β(D)) − k − 1 =

1

2
s− 1.

In the following of the proof, we assume |D| is not a pencil. By Lemma [Mo1, Lem.
2.5] and Lemma 2.1, we may assume |D| is base point free and d ≤ g − 1.
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We have

r =
1

2
(d− δ(D)) + k + 1 (1)

and suppose

r >
1

2
(d− β(D)) − k − 1 (2)

By Proposition 2.9, we get

d+ δ(D) ≥ 2s+ 2k + 4 (3)

From (2), (3) and since β(D) = s− δ(D), we get

r ≥
s

2
+

3

2
(4)

By (1) and (2), we obtain

2r ≥ d−
s

2
+

1

2
(5)

Using (4) and (5), it follows that

3r ≥ d+ 2 (6)

If |D| is simple, there is a contradiction with Castelnuovo’s bound 3r ≤ d+ 1.
Therefore |D| is non simple and we know that δ(D) = s and k = 0 in that case by

Theorem 1.6. From By (1) and (2), we get

1

2
(d− s) + 1 >

1

2
d− 1

i.e.
s ≤ 3.

The case s = 1 is not possible by Theorem 1.1. The case s = 2 (resp s = 3) is
impossible by Proposition 4.3 (resp. 4.4) and given the hypotheses.

Set A = 1
2 (d− β(D))− k − 1 and B = d

2 − s
4 . Then

r +A = 2B.

Therefore, since we have proved that r ≤ A then

r ≤ B ≤ A

and the proof is done. ⊓⊔

We are interested by the case when we have an equality in the inequality given in
the previous theorem.

We introduce a new invariant of very special linear systems.

Definition 7.2 Let D be a very special divisor. The rational number l ∈ Q with
2l ∈ Z such that

dim|D| =
1

2
(deg(D) − β(D))− l

is called the coindex of D (or |D|) and is denoted by coind(D).

Lemma 7.3 [Mo1, Lem. 3.6] Let D be a very special divisor then

coind(D) = coind(K −D).
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We reformulate Theorems 1.2 and 1.5 using the notion of coindex.

Theorem 7.4 [Mo1, Thm. 3.8, Thm. 3.18] Let D be a very special divisor then

coind(D) ≥ ind(D).

If there is an equality in the previous inequality then X is hyperelliptic with a very
special g12 and |D| = r.g12 with r = dim|D| odd.

We give a consequence of the proof of Theorem 7.1.

Corollary 7.5 Let X be a real curve such that X is not hyperelliptic and X is not
trigonal, i.e. the real gonality of X is ≥ 4. Let D be a very special divisor then

coind(D) ≥ ind(D) + 1.

Lemma 7.6 Let D be an effective divisor. Let F be the base divisor of |D|. If D is
very special then the base point free part |E| = |D−F | of |D| is also very special and

coind(E) ≤ coind(D).

Moreover coind(E) = coind(D− F ) = coind(D) if and only if F =
∑

i Pi with the Pi

some real points among the β(D) real connected components on which the degree of the
restriction of D is even, such that no two of them belong to the same real connected
component.

Proof : Set d = deg(D) and l = coind(D).
Assume a non-real point Q + Q̄ is contained in the base divisor of |D|. Then

dim|D| = dim|D − Q − Q̄| = 1
2 (d − β(D)) − l = 1

2 ((d − 2) − β(D)) − (l − 1) and
coind(D −Q− Q̄) = coind(D)− 1.

Assume two real points P, P ′ belonging to the same real connected component, are
contained in the base divisor of |D|, then as before, coind(D−P−P ′) = coind(D)−1.

Assume a real point P belonging to a connected component on which the degree
of the restriction of D is even, is a base point of |D|. Then dim|D| = dim|D − P | =
1
2 (d− β(D)) − l = 1

2 ((d− 1)− (β(D)− 1))− l = 1
2 (deg(D − P )− β(D − P ))− l and

coind(D − P ) = coind(D).
Assume a real point P belonging to a connected component on which the degree

of the restriction of D is odd, is a base point of |D|. Then dim|D| = dim|D − P | =
1
2 (d−β(D))− l = 1

2 ((d−1)− (β(D)+1))− l+1 = 1
2 (deg(D−P )−β(D−P ))− (l−1)

and coind(D − P ) = coind(D)− 1. ⊓⊔

Lemma 7.7 ([8, Lem. 3.1]) Let D and E be divisors of degree d and e on a curve
X of genus g and suppose that |E| is base point free. Then

h0(D)− h0(D − E) ≤
e

2

if 2D − E is special.

The previous lemma applies in case D is semi-canonical i.e. 2D = K.

Lemma 7.8 ([Ac], [7] p. 200 and [1] p. 122) Let X be an extremal curve (it means
the genus of the curve is maximal i.e. the genus equals the Castelnuovo’s bound) of
degree d > 2r in Pr

R
(r ≥ 3). Then one of the followings holds:
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(i) X lies on a rational normal scroll Y in Pr
R
(Y is real, see [1] p. 120). Write

d = m(r − 1) + 1 + ε where m = [d−1
r−1 ] and ε ∈ {0, 1, 2, . . . , r − 2}. The curve

XC has only finitely many base point free pencils of degree m+ 1 (in fact, only
1 for r > 3, and 1 or 2 if r = 3). These pencils are swept out by the rulings of
YC. Moreover XC has no g1m.

(ii) X is the image of a smooth plane curve X ′ of degree d
2 under the Veronese map

P2
R
→ P5

R
.

Proposition 7.9 Let X be a real curve such that X is not hyperelliptic and X is not
trigonal, i.e. the real gonality of X is ≥ 4. Let D be a very special divisor of degree
d and index k such that

dim|D| =
d

2
−

s

4

or equivalently such that

coind(D) = ind(D) + 1 = k + 1.

Then XC is 4-gonal and X has a very special pencil g14. Moreover s = 4, a(X) = 0,
δ(D) = s, k = 0 and |D| is one of the linear systems listed in Theorem 6.16.

Proof : Looking at the proof of Theorem 7.1, we see that the equality dim|D| = d
2−

s
4

is equivalent to the other equality coind(D) = ind(D) + 1.. Thus

dim|D| = r =
1

2
(d− δ(D)) + k + 1 =

1

2
(d− β(D))− k − 1.

We claim |D| is base point free. By the Lemmas 2.2, 7.6 and Corollary 7.5, if |E|
denote the base point free part of |D| then we must have ind(E) = ind(D) and
coind(E) = coind(D) since coind(E) ≥ ind(E) + 1. It follows now from the lemmas
2.2 and 7.6 that |E| = |D| since they have the same index and coindex. By Lemma
7.3, |D| is primitive. By the Lemmas 2.1 and 7.3, we may assume d ≤ g − 1.

We assume first that |D| is non-simple. By Theorem 1.6, k = 0 and δ(D) = s. We
get

1

2
(d− s) + 1 =

d

2
−

s

4
i.e.

s = 4.

By Theorem 4.6, X has a very special g14 and XC is 4-gonal. We use Theorem 6.16
to finish the proof in this case.

We assume now that |D| is simple. We have

r =
1

2
(d− δ(D)) + k + 1 (7)

r =
1

2
(d− β(D)) − k − 1 (8)

and

r =
d

2
−

s

4
(9)

By Proposition 2.9, we get d + δ(D) ≥ 2s + 2k + 4 and we claim that here it is an
equality:
If d+ δ(D) ≥ 2s+ 2k + 6 then using (8) we get

r ≥
s

2
+ 2.

24



Using now (9) we have s = 2d− 4r and replacing in the previous inequality we get

3r ≥ d+ 2

and this contradicts Castelnuovo’s bound. Therefore, we have

d+ δ(D) = 2s+ 2k + 4 (10)

From (9), (10) and (8), it follows that

r =
s

2
+ 1

and that
3r = d+ 1

i.e. ϕ|D|(X) is an extremal curve in the sense of Castelnuovo. By [Ac2, Lem. 2.9],
D is semi-canonical i.e. |2D| = |K|. We denote by Y the curve ϕ|D|(X). We have

m = [d−1
r−1 ] = [ 3r−2

r−1 ] = 3 since r ≥ 3. By Lemma 7.8, we have to consider the following
cases.

Case 1 r = 5 and X is a smooth plane curve:
By Lemma 7.8, Y is the image of a smooth plane curve of degree 7 under the Veronese
embedding P2 →֒ P5. The curve X has a unique very ample g27 which calculate the
Clifford index of XC. Since D is semi-canonical, by Lemma 7.7, the linear system
|D − g27 | of degree 7 has dimension ≥ 2. Since the Clifford index of X is 3, we have
dim|D − g27 | = 2. It follows that |D| = 2g27 and δ(D) = 0, impossible.

Case 2 r ≥ 4 and X is not a smooth plane curve:
By Lemma 7.8, X has a g14 and XC is 4-gonal. From the Theorem 6.9, 6.15 and 6.16,
it follows that k = 0 and δ(D) = s. By (10) and (7), d = s+4 and r = 3, impossible.

Case 3 r = 3:
By Proposition 3.1, d = s+4, k = 0 and δ(D) = s. Since in this case the rational scroll
is a quadric surface, the existence of the very special g14 follows from Proposition 3.2.

⊓⊔

We summarize the results of this section in the following theorem.

Theorem 7.10 Let |D| be a very special linear system of degree d on a real curve X.

(i) We have

dim|D| ≤
1

2
(d−

s− 2

2
),

with equality i.e.
coind(D) = ind(D)

if and only if X is hyperelliptic, the g12 is very special and s = 2.

(ii) Assume X is not hyperelliptic. We have

dim|D| ≤
1

2
(d−

s− 1

2
),

with equality i.e.

coind(D) = ind(D) +
1

2

if and only if X is trigonal, a g13 is very special and s = 3.
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(iii) Assume X is not hyperelliptic and not trigonal. We have

dim|D| ≤
1

2
(d−

s

2
),

with equality i.e.
coind(D) = ind(D) + 1

if and only if X is 4-gonal, a g14 is very special and s = 4.

(iv) Assume X has gonality ≥ 5. We have

dim|D| ≤
1

2
(d−

s+ 1

2
).

Proof : The proof of the theorem follows from the results of the paper except maybe
the part concerning equality in (ii).

If X is trigonal with a very special g13 then s = 3 and dimg13 = 1
2 (deg(g

1
3)−

s−1
2 ).

Assume X is not hyperelliptic and suppose there is a very special linear system
|D| of degree d such that

dim|D| =
1

2
(d−

s− 1

2
).

By Theorems 7.1 and 1.5, X is trigonal. By Theorem 5.1, a g13 is very special.
⊓⊔
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