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Introduction and preliminaries

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme over R of dimension 1. A closed point P of X will be called a real point if the residue field at P is R, and a non-real point if the residue field at P is C. The set of real points X(R) of X decomposes into finitely many connected components, whose number will be denoted by s. By Harnack's Theorem ([BCR, Th. 11.6.2 p. 245]) we know that s ≤ g +1, where g is the genus of X. A curve with g +1-k real connected components is called an (Mk)-curve. Another topological invariant associated to X is a(X), the number of connected components of X(C) \ X(R) counted modulo 2. The pair (s, a(X)) is called the topological type of X. If a(X) = 0 then s = g + 1 mod 2 (see [K]) and X is called a separating curve.

We will denote by X C the base extension of X to C. The group Div(X C ) of divisors on X C is the free abelian group on the closed points of X C . The Galois group Gal(C/R) acts on the complex variety X C and also on Div(X C ). We will always indicate this action by a bar. Identifying Div(X) and Div(X C ) Gal(C/R) , if P is a nonreal point of X then P = Q + Q with Q a closed point of X C . The group Div(X) of divisors on X is then the free abelian group generated by the closed points of X. If D is a divisor on X, we will denote by O(D) its associated invertible sheaf. The dimension of the space of global sections of this sheaf will be denoted by h 0 (D). Since a principal divisor has an even degree on each connected component of X(R) (e.g. [START_REF] Gross | Real algebraic curves[END_REF] Lem. 4.1), the number δ(D) (resp. β(D)) of connected components C of X(R) such that the degree of the restriction of D to C is odd (resp even) is an invariant of the linear system |D| associated to D. If h 0 (D) > 0, the dimension of the linear system |D| is dim |D| = h 0 (D) -1. Let K be the canonical divisor. If h 0 (K -D) = dim H 1 (X, O(D)) > 0, D is said to be special. If not, D is said to be non-special. By Riemann-Roch, if deg(D) > 2g -2 then D is non-special. Assume D is effective of degree d. If D is non-special then the dimension of the linear system |D| is given by Riemann-Roch. If D is special, then the dimension of the linear system

|D| satisfies dim |D| ≤ 1 2 d.
1 This is the well known Clifford inequality for complex curves that works also for real curves. The reader is referred to [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] and [START_REF] Hartshorne | Algebraic geometry[END_REF] for more details on special divisors. Concerning real curves, the reader may consult [START_REF] Gross | Real algebraic curves[END_REF].

Huisman [START_REF] Huisman | Clifford's inequality for real algebraic curves[END_REF]Th. 3.2]) has shown that:

Theorem 1.1 Assume X is an M -curve (i.e. s = g + 1) or an (M -1)-curve (i.e. s = g). Let D ∈ Div(X) be an effective and special divisor of degree d. Then

dim |D| ≤ 1 2 (d -δ(D)).
Huisman inequality is not valid for all real curves and we have the following theorem.

Theorem 1.2 [Mo1, Th. A] Let D be an effective and special divisor of degree d.

Then either dim |D| ≤ 1 2 (d -δ(D)) (Clif1) or dim |D| ≤ 1 2 (d -β(D)) (Clif2)
Moreover, D satisfies the first inequality if either s ≤ 1 or s ≥ g.

In this note we are interested in special divisors that do not satisfy the inequality (Clif1) given by Huisman.

Definition 1.3 Let D be an effective and special divisor of degree d. We say that D is a very special divisor (or |D| is a very special linear system) if D does not satisfy the inequality (Clif

1) i.e. dim |D| > 1 2 (d -δ(D)). If D is very special then there exists k ∈ N such that dim |D| = 1 2 (d -δ(D)) + k + 1
and k is called the index of D denoted by ind(D).

We can reformulate Theorem 1.2 with the concept of very special divisors.

Theorem 1.4 [Mo1, Th. B] Let D be an effective and very special divisor of degree

d. Then dim |D| ≤ 1 2 (d - 1 2 (s -2)) ( * ).
In the previous cited paper, a result is obtained in this direction.

Theorem 1.5 [Mo1, Th. 2.18] Let D be a very special and effective divisor of degree d on a real curve X such that (*) is an equality i.e.

r = dim |D| = 1 2 (d - 1 2 (s -2))
then X is an hyperelliptic curve with δ(g 1 2 ) = 2 and |D| = rg 1 2 with r odd. Let D ∈ Div(X) be a divisor with the property that O(D) has at least one nonzero global section. The linear system |D| is called base point free if h 0 (D -P ) = h 0 (D) for all closed points P of X. As usual, a g r d is an r-dimensional complete linear system of degree d on X. Let |D| be a base point free g r d on X. The linear system |D| defines a morphism ϕ |D| : X → P r R onto a non-degenerate (but maybe singular) curve in P r R i.e. ϕ |D| (X) is not contained in any hyperplane of P r R . If ϕ |D| is birational (resp. an isomorphism) onto ϕ |D| (X), the g r d (or D) is called simple (resp. very ample). Let X ′ be the normalization of ϕ |D| (X), and assume D is not simple i.e. |D -P | has a base point for any closed point P of X. Thus, the induced morphism ϕ |D| : X → X ′ is a non-trivial covering map of degree t ≥ 2. In particular, there exists

D ′ ∈ Div(X ′ ) such that |D ′ | is a g r d t
and such that D = ϕ * |D| (D ′ ), i.e. |D| is induced by X ′ . If g ′ denote the genus of X ′ , |D| is classically called compounded of an involution of order t and genus g ′ . In the case g ′ > 0, we speak of an irrational involution on X.

Concerning non-simple very special divisors, a complete description is given in [Mo2]: Theorem 1.6 [Mo2, Thm. 2.5, Thm. 4.1] Let D be a very special divisor of degree d such that the base point free part of |D| is non-simple. Then

(i) D is base point free, (ii) δ(D) = s, (iii) the index of D is null. If moreover dim |D| = r > 1 then the morphism ϕ |D| : X → X ′ is a non-trivial covering map of degree 2 and D = ϕ * |D| (D ′ ) with D ′ ∈ Div(X ′ ) such that |D ′ | = g r d 2
.

Let g ′ denote the genus of X ′ and let s ′ be the number of connected components of X ′ (R), we have the following additional properties:

(iv) D ′ is a base point free non-special divisor and X ′ is an M -curve.

(v) s is even, s ′ = s 2 , r is odd and δ(D ′ ) = s ′ . (vi) a(X) = 0 and g is odd and there is a very special pencil on X.

In this note, we give conditions under which a real curve with few real connected components can have a very special system. Theorem 1.7 Let X be real curve with s ≤ 4. If X has a very special linear system then X C and X are s-gonal, s ≥ 2, X has a very special pencil and X is a separating curve i.e. a(X) = 0.

If s ≥ g -4, we prove that the existence of a very special linear system implies also the existence of a very special pencil.

By the previous theorem, the existence of a very special linear system on a real curve, with s ≤ 4, forces the gonality of the curve to be s. The following theorem concerns very special linear series on a real curve with a small gonality. Theorem 1.8 Let X be real curve such that X and X C are both n-gonal with 2 ≤ n ≤ 4. If X has a very special linear system then X has a very special pencil and X is a separating curve i.e. a(X) = 0. Moreover, if |D| is a very special linear system then ind(D) = 0, δ(D) = s, |D| and |K -D| are base point free.

In the last section of this note, we improve the result of Theorem 1.4. Theorem 1.9 Let |D| be a very special linear system of degree d on a real curve X.

(i) We have dim|D| ≤ 1 2 (d - s -2 2 ),
with equality if and only if X is hyperelliptic, the g 1 2 is very special and s = 2.

(ii) Assume X is not hyperelliptic. We have

dim|D| ≤ 1 2 (d - s -1 2 ),
with equality if and only if X is trigonal, a g 1 3 is very special and s = 3.

(iii) Assume X is not hyperelliptic and not trigonal. We have

dim|D| ≤ 1 2 (d - s 2 ),
with equality if and only if X is 4-gonal, a g 1 4 is very special and s = 4.

(iv) Assume X has gonality ≥ 5. We have

dim|D| ≤ 1 2 (d - s + 1 2 ).

Properties of very special divisors

In this section, we recall and establish some results on very special linear systems.

Let D be a special and effective divisor. Suppose that there exists a non-real point

Q + Q such that Q + Q ≤ F . Then dim|D| = dim|D -Q -Q| = 1 2 (d -δ(D)) + k + 1 = 1 2 ((d -2) -δ(D)) + (k + 1) + 1 and ind(D -Q -Q) = ind(D) + 1.
Suupose there are two real points P, P ′ belonging to the same real connected component, such that P + P ′ ≤ F , then as before, ind(D -P -P ′ ) = ind(D) + 1.

Suppose that there exists a real point P belonging to a connected component on which the degree of the restriction of D is even, such that

P ≤ F . Then dim|D| = dim|D -P | = 1 2 (d -δ(D)) + k + 1 = 1 2 ((d -1) -(δ(D) + 1)) + (k + 1) + 1 = 1 2 (deg(D -P ) -(δ(D -P )) + (k + 1) + 1 and ind(D -P ) = ind(D) + 1.
Suppose that there exists a real point P belonging to a connected component on which the degree of the restriction of D is odd, is contained in the base divisor of |D|. Suppose that Q + Q is a non-real base point of |K -D|. Then for a general choice of a real point P , we get dim|D 

Then dim|D| = dim|D -P | = 1 2 (d -δ(D)) + k + 1 = 1 2 ((d -1) -(δ(D) -1)) + k + 1 =
D ′ = D + E = K -(K -D -E) is very special of index ≥ ind(D). Assume ind(D ′ ) = ind(D) then ind(K -D) = ind(K -D -E)
+ Q + Q -P | = 2 = 1 2 ((s + 1) -(s -1)) + 1 = 1 2 (deg(D + Q + Q -P ) -(δ(D + Q + Q -P )) + 1 and D + Q + Q -P is
(P i , R i ) ∈ C i × C i .
Take a real point Q j in each real connected component on which the degree of the restriction of D is even. Then

D ′ = D - k i=1 (P i + R i ) - β(D) j=1 Q j is very special. Moreover, dim|D ′ | = 1 2 (d + δ(D)) -k -s + 1 and ind(D ′ ) = 0 if the points P i , R i , Q j are sufficiently general. Proof : Assume dim|D| = r = 1 2 (d -δ(D)) + k + 1. We have r ≥ k + 1 since D can be chosen effective. We have k ≤ δ(D) Let D 1 = D - k i=1 P i . Then δ(D 1 ) = δ(D) -k and dim|D 1 | ≥ r -k = 1 2 (d -δ(D)) + 1 -k = 1 2 (deg(D 1 ) -δ(D 1 )) + 1 ≥ 1.
We see that D 1 is very special and ind(D 1 ) = 0 if the points P i are general.

If β(D 1 ) = 0, the proof is done since D 1 is very special. Assume β(D 1 ) > 0. Let P be a real point such that P belongs to a connected component on which the degree of the restriction of D 1 is even. Then dim|D Proof : By Proposition 2.6, the divisor Proof : Choosing the points P i , R i , Q j sufficiently general in Proposition 2.6, the linear system |D ′ | is very special and dim|D

1 -P | ≥ dim|D 1 |-1 ≥ 1 2 (deg(D 1 )-δ(D 1 )) =
D ′ = D -k i=1 (P i + R i ) -β(D) j=1 Q j is very special and therefore dim|D ′ | ≥ 1. Choosing the points P i , R i , Q j sufficiently general, we have dim|D| = 2k + β(D) + dim|D ′ | ≥ 2k + s -δ(D) + 1. We obtain 1 2 (d -δ(D)) + k + 1 ≥ 2k + s -δ(D) + 1 i.e. d + δ(D) ≥ 2s + 2k.
′ | = 1 2 (d+δ(D))-k -s+1. Note that |D ′ | is not primitive if δ(D) < s or k > 0. By Lemma 2.9, we have d + δ(D) ≥ 2s + 2k + 2. If d + δ(D) = 2s + 2k + 2 then dim|D ′ | = 2, impossible by Theorem 2.4. Therefore dim|D ′ | ≥ 3 and we have dim|D| = 2k + β(D) + dim|D ′ | ≥ 2k + s -δ(D) + 3. We obtain 1 2 (d -δ(D)) + k + 1 ≥ 2k + s -δ(D) + 3 i.e. d + δ(D) ≥ 2s + 2k + 4. ⊓ ⊔
Proposition 2.10 Let X be an (M -2)-curve or an (M -4)-curve. If X has a very special linear system then it is a very special pencil g 1 s or its residual Kg 1 s . If s = g -1 then the residual of a very special pencil is also a very special pencil.

Proof : Let D be a very special divisor of degree d and index k on X. By Lemma 2.1, we may assume d ≤ g -1 and then

d + δ(D) ≤ 2g -2 (resp. ≤ 2g -4) if s = g -1 (resp. s = g -3). If |D| is not a pencil then d + δ(D) ≥ 2g -2 + 2k + 4 (resp. ≥ 2g -6 + 2k + 4) if s = g -1 (resp. s = g -3), impossible.
Hence |D| is a very special pencil and by Riemann-Roch, K -D is also a very special pencil in the case s = g -1.

⊓ ⊔

Remark 2.11 The very special pencils give separating morphisms X → P 1 in the sense of Coppens [Co].

Proposition 2.12 Let X be an (M -3)-curve or an (M -5)-curve. Then X has no very special linear systems.

Proof : Let D be a very special divisor of degree d and index k on X. By Lemma 2.1, we may assume d ≤ g -1 and then

d + δ(D) ≤ 2g -3 (resp. ≤ 2g -5) if s = g -2 (resp. s = g -4). If |D| is not a pencil then d + δ(D) ≥ 2g -4 + 2k + 4 (resp. ≥ 2g -8 + 2k + 4) if s = g -2 (resp. s = g -4), impossible.
Hence |D| is a very special pencil and then a(X) = 0, impossible.

⊓ ⊔

From the above results we get:

Theorem 2.13 Let X be a real curve such that s ≥ g -4. If X has a very special linear system then X has a very special pencil.

3 Very special webs The following proposition is important in the sequel. We give new examples of very special simple linear systems. This proposition was inspired by M. Coppens. Proposition 3.2 Let |D| be a very special simple linear system of degree d such that dim|D| = 3 and

X ′ = ϕ |D| (X) ⊂ P 3 is contained in an irreducible real quadric surface Q. Then (i) The rank of Q is 4 and Q ≃ P 1 R × P 1 R .
(ii) X ′ is a curve of bi-degree (s, 4) on Q.

(iii) |D| = g 1 s + g 1 4 , g 1 s and g 1 4 are the pull-backs of the linear pencils on X ′ cut out by the rulings of Q.

(iv) g 1 s is a very special pencil and δ(g 1 4 ) = 0. (v) s ≥ 3 and in the case s = 3 then X ′ is smooth and |D| = K - We have

Q ≃ P 1 R × P 1 R and |D| = g 1 a + g 1 b
where g 1 a and g 1 b are induced by the real rulings of Q. The hyperplane section H giving the embedding Q ֒→ P 3 is of bi-degree (1, 1) on Q and then X ′ = ϕ |D| (X) ⊂ P 3 is a curve of bi-degree (a, b) on Q. Moreover, X and X ′ are birational since |D| is simple. We get

a + b = s + 4.
We have H 1 (Q(R), Z/2) = Z/2 × Z/2 and the possible types of the image of the connected components of X(R) are (0, 0), (1, 0), (0, 1) and (1, 1). Let a ′ , b ′ and c ′ be respectively the number of connected components of type (1, 0), (0, 1) and (1, 1). We have

a ′ + b ′ = δ(D) = s, a ′ + c ′ = δ(g 1 a ) and b ′ + c ′ = δ(g 1 b ). Suppose a ′ ≤ a -2 and b ′ ≤ b -2. Since a ′ + b ′ = s and a + b = s + 4, we get a ′ = a -2 and b ′ = b -2. Since a connected component of type (1, 0) intersect a connected component of type (0, 1), if g denote the genus of X, we get g ≤ ab -a -b + 1 -(a -2)(b -2) i.e. g ≤ a + b -3 = s + 1,
which is impossible by Theorem 1.1 and Proposition 2.10. So we can assume a ′ = a i.e. g 1 a is a very special pencil. We have a = s and it follows that b = 4 and b ′ = c ′ = 0. If s ≤ 2 then g ≤ 3 by the genus formula and this is again impossible by the propositions 2.10 and 2.12.

Assume s = 3. Let µ denote the multiplicity of the singular locus of X ′ . We have g = 6-µ by the genus formula. Since D is special, we have dim|D| = 3 > d-g = 1+µ i.e. µ ≤ 1. If µ = 1, then s and g have the same parity, impossible since a(X) = 0 (X has a very special pencil). Thus X ′ is smooth and X is an (M -4)-curve. By Proposition 2.10, |D| is residual to a very special g 1 3 . Since X has a simple very special linear system, X cannot be hyperelliptic and X is trigonal with a unique g 1 3 (g > 4) such that |D| = g 1 3 + g 1 4 . Assume now s = 4 and d = s + 4 = 8 ≤ g -1. Let µ denote the multiplicity of the singular locus of X ′ . We have g = 9-µ by the genus formula and it follows that µ = 0.

⊓ ⊔

We study the converse of the previous proposition.

Proposition 3.3 Let X be a smooth curve of bidegree (s, 4) on a hyperboloïd Q ⊂ P 3 R with s ≥ 3 denoting the number of connected components of X(R) and such that all the connected components of X(R) are of type (1, 0). Then the embedding X ֒→ P 3 is given by a simple very special linear system |D| = g 1 s + g 1 4 .

Proof : The embedding X ֒→ P 3 is clearly given by a simple linear system |D| = g 1 s + g 1 4 with δ(g 1 s ) = s and δ(g 1 4 ) = 0. It remains to show that D is special. Since X is smooth, we have g = 3s-3 and thus D is special if dim|D| = 3 > d-g = s+ 4 -3s+ 3 i.e. s > 2.

⊓ ⊔ Remark 3.4 The existence of curves of bidegree (s, 4) with prescribed types of Proposition 3.3 for the real connected components is proved by Zvonilov [Zv] for s = 3 and s = 4.

4 Curves with a small number of real connected components

We study the existence of very special linear systems on real curves with s ≤ 4.

The following theorem summarizes all the results proved in this section.

Theorem 4.1 Let X be real curve with s ≤ 4. If X has a very special linear system then X C is s-gonal and X has a very special pencil.

By Theorem 2.13, the same conclusion can be drawn if s ≥ g -4.

An open question is to know if the statement of Theorem 4.1 is correct without any hypothesis on s. If the answer to this question is the affirmative then very special linear series will only exist on separating real curves.

By Theorem 1.2, we only have to consider curves with 2 ≤ s ≤ 4. We will use several times the following proposition:

Proposition 4.2 Let |D| be a base point free, simple, and very special linear system of degree d and index k such that d ≥ g. Then

dim|K -D| ≤ δ(D) -2k -2. Proof : Set r = dim|D|, we have r = 1 2 (d -δ(D)) + k + 1 i.e. d = 2r + δ(D) -2k -2.
Since d ≥ g, 2D is non-special and therefore dim|2D| = 2d-g = 4r+2δ(D)-4k-4-g. Since |D| is simple and base point free, by [1, Ex. B.6, Chap. 3] (a consequence of the uniform position lemma) (note that there is a misprint in the exercise, the correct formula should be r(D

+ E) ≥ r(D) + 2r(E) -r(E -D) -1), we get dim|2D| ≥ 3r -1. Therefore 4r + 2δ(D) -4k -4 -g ≥ 3r -1 r = 1 2 (d -δ(D)) + k + 1 ≥ 4k -2δ(D) + g + 3 d -δ(D) + 2k + 2 ≥ 8k -4δ(D) + 2g + 6 d ≥ 6k -3δ(D) + 2g + 4. Hence deg(K -D) = 2g -2 -d ≤ 3δ(D) -6k -6. By Lemma 2.1, we obtain finally dim|K -D| = 1 2 (deg(K -D) -δ(D)) + k + 1 ≤ δ(D) -2k -2.
⊓ ⊔ Proposition 4.3 Let X be a real curve such that s = 2. If X has a very special linear system then X is hyperelliptic and the g 1 2 is very special i.e. δ(g 1 2 ) = 2.

Proof :

Assume D is a very special divisor of degree d and index k.

Then dim|D| = r = 1 2 (d -δ(D)) + k + 1 ≥ 1 2 d + k since δ(D) ≤ 2.
By Clifford Theorem we get k = 0. Since the null divisor and K are not very special and since we have an equality in Clifford Theorem, it follows that X is hyperelliptic. By [Mo1, Prop. 2.10], we get δ(g 1 2 ) = 2. ⊓ ⊔ Proposition 4.4 Let X be a real curve such that s = 3. If X has a very special linear system then X C is a trigonal curve and there exists a real g 1 3 very special i.e. δ(g 1 3 ) = 3.

Proof :

Assume D is a very special divisor of degree d and index k.

Then dim|D| = r = 1 2 (d -δ(D)) + k + 1 ≥ 1 2 d + k -1 2 . By Clifford Theorem we get k = 0 i.e. r = 1 2 (d -δ(D)) + 1.
If δ(D) ≤ 2 we get a contradiction since in this case X would be hyperelliptic (equality in Clifford inequality) and then s = 2 (Proposition 4.3). Therefore

δ(D) = 3, d is odd and r = 1 2 (d -1).
By Lemma 2.2, since the index of any special divisor is null and since the δ of any very special divisor is equal to 3, we can conclude that any very special linear system is base point free i.e. any very special linear system is primitive. Assume D is simple and d ≤ g -1. Castelnuovo's bound gives r ≤ 

d ≤ 5.
Then r ≤ 2 and it is impossible by Theorem 2.4. Assume D is simple and d ≥ g. By Proposition 4.2 we get dim|K -D| ≤ 1 and it follows that |K -D| is a very special pencil i.e. a g 1 3 with δ(g 1 3 ) = 3. Assume D is non simple. If |D| is a pencil there is nothing to do. If dim|D| > 1, the existence of a very special g 1 3 is given by Theorem 1.6. If X C is not trigonal then X C must be hyperelliptic since the complex gonality is less than the real gonality and since X has a special divisor. Since the g 1 2 of an hyperelliptic curve is unique, X must be hyperelliptic. By [Mo1, Prop. 3.10], s = 2, contradiction.

⊓ ⊔ Lemma 4.5 Let X be a real curve such that s = 4. If D is a very special divisor on X then ind(D) = 0 and one of the following statements holds:

(i) δ(D) = 3 and |D| is primitive.

(ii) δ(D) = 4 and the base part of |D| is empty or a real point.

Proof :

Assume D is a very special divisor of degree d and index k.

Then dim|D| = r = 1 2 (d -δ(D)) + k + 1 ≥ 1 2 d + k -1.
We get k = 0 since X can not be hyperelliptic [START_REF] Monnier | Clifford Theorem for real algebraic curves[END_REF]Prop. 3.10] (if k = 1 we have equality in Clifford inequality, if k > 1 we contradict Clifford inequality). Therefore

r = 1 2 (d -δ(D)) + 1.
We have δ(D) = 3 or δ(D) = 4 since X is not hyperelliptic (if δ(D) = 2 we have equality in Clifford inequality, if δ(D) ≤ 1 we contradict Clifford inequality). Assume δ(D) = 3. By Lemma 2.2, since the index of any very special divisor is null and since the δ of any very special divisor is equal to 3 or 4, we can conclude that |D| is base point free. Since δ(K -D) = 3, |K -D| is also base point free i.e. |D| is primitive.

Assume δ(D) = 4. By Lemma 2.2, since the index of any very special divisor is null and since the δ of any very special divisor is equal to 3 or 4, we conclude that the base part of |D| is empty or a real point.

⊓ ⊔ Theorem 4.6 Let X be a real curve such that s = 4. If X has a very special linear system then X C is a 4-gonal curve and there exists a very special g 1 4 i.e. δ(g 1 4 ) = 4. Moreover, if |D| is a very special linear system on X then |D| is primitive, ind(D) = 0 and δ(D) = 4.

Proof : Assume D is a very special divisor of degree d. By Lemma 4.5 we know that ind(D) = 0 and that δ(D) ≥ 3.

Suppose first that δ(D) = 3. We know that |D| is primitive (Lemma 4.5) and that |D| and |K -D| are simple (Theorem 1.6). Changing D by K -D if necessary, we may assume that d ≤ g -1. We have

dim|D| = r = 1 2 (d -3) + 1. By Castelnuovo's bound r ≤ 1 3 (d + 1)
and we get d ≤ 5 and thus r ≤ 2. Since |D| is simple, it follows from Theorem 2.4 that this case is not possible. Suppose now that δ(D) = 4. If |D| is not base point free then the base divisor is a real point P by Lemma 4.5, but then D -P is a very special divisor (Lemma 2.2) with δ(D -P ) = 3, we have shown previously that it is impossible. Thus |D| and |K -D| are base point free i.e they are primitive.

We have

dim|D| = r = 1 2 (d -4) + 1 = 1 2 d -1.
Assume Arguing as in the proof of Proposition 3.2, if a ′ , b ′ , c ′ denote respectively the number of connected components of type (1, 0), (0, 1) and (1, 1) then we have a

′ + b ′ = δ(D) = s -2, a ′ + c ′ = δ(g 1 s ) = s and b ′ + c ′ = δ(g 1 4 ) = 2. Therefore a ′ + b ′ = a ′ -b ′ and thus b ′ = 0, a ′ = s -2, c ′ = 2.
Since the s -2 connected components of type (1, 0) intersect each connected component of type (1, 1), the genus formula gives

g ≤ 4s -4 -s + 1 -2(s -2) = s + 1.
By Theorem 1.2, we get s = g -1 and the rest of the proof in this case follows from Proposition 2. [START_REF] Gross | Real algebraic curves[END_REF].

Suppose now that |D| is not simple. Let d = s+4 denote the degree of D. It means that ϕ |D| has some degree ≥ 2 i.e. ϕ = ϕ |D| : X → X ′ is a non-trivial covering map of degree t ≥ 2 on a real curve X ′ of genus g ′ . Moreover, there exists D We have t = 2 and thus d ′ = s 2 + 2. Let C 1 , . . . , C s-2 (resp. C s-1 , C s ) denote the connected components of X(R) on which the degree of the restriction of D is odd (resp. even). The image of a connected component of X(R) is either a connected component of X ′ (R) or a closed and bounded interval of a connected component of X ′ (R). Since D is a union of fibers of ϕ |D| we get:

′ ∈ Div(X ′ ) of degree d ′ = d t such that |D ′ | = g 3 d ′ and such that D = ϕ * (D ′ ). Assume t ≥ 3. Let Q ′ + Q′ be a non-real point of X ′ (R). Let D 1 = D -ϕ * (Q ′ + Q′ ) and denote by d 1 = d-2t. We may clearly assume D ′ -Q ′ -Q′ effective and dim|D 1 | = 1. Since Q ′ + Q′ is non-real, ϕ * (Q ′ + Q′ ) is
• for i = 1, . . . , s -2, ϕ(C i ) is a connected component of X ′ (R).

• for i = 1, . . . , s -2 and for j = s -1, s, ϕ(C i ) ∩ ϕ(C j ) = ∅.

• for i = 1, . . . , s -2, ϕ -1 (ϕ(C i )) is either C i or C i ∪ C i ′ for i ′ ∈ {1, . . . , s -2} distinct from i. Let s ′ denote the number of connected components of X ′ (R). From above remarks, we get

s ′ ≥ s -2 2 + 1 = s 2 and δ(D ′ ) ≥ s -2 2 .
Assume D ′ is special. We have

dim|D ′ | = 3 = dim|D| = 1 2 (d -δ(D)) = d ′ - s -2 2 ≥ d ′ -δ(D ′ ) ≥ 1 2 (d ′ -δ(D ′ )).
Since dim|D ′ | is odd, it follows from the above inequalities that D ′ is very special. By Proposition 3.1, d ′ = s ′ + 4 and δ(D ′ ) = s ′ and thus dim|D

′ | = 3 = d ′ -s-2 2 ≥ d ′ -δ(D ′ ) ≥ 4, a contradiction. Since D is non-special, Riemann-Roch gives dim|D ′ | = 3 = d ′ -g ′ = s 2 + 2 -g ′ i.e. g ′ = s 2 -1.
Since s ′ ≥ s 2 , we get s ′ = g ′ + 1 = s 2 by Harnack inequality i.e. X ′ is an M-curve. Moreover, from above remarks, it follows that there exist g ′ connected components of X ′ (R) such that the inverse image by ϕ of each of these components is a union of two connected components of X(R) among C 1 , . . . , C s-2 ; the connected component of X ′ (R) that remains contains the image of C s-1 and C s .

(iii) Assume X is not hyperelliptic and not trigonal. We have Proof : The proof of the theorem follows from the results of the paper except maybe the part concerning equality in (ii). If X is trigonal with a very special g 1 3 then s = 3 and dimg 1 3 = 1 2 (deg(g 1 3 ) -s-1 2 ). Assume X is not hyperelliptic and suppose there is a very special linear system |D| of degree d such that dim|D| = 1 2 (d -s -1 2 ).

By Theorems 7.1 and 1.5, X is trigonal. By Theorem 5.1, a g 1 3 is very special. ⊓ ⊔

  If not, we may write |D| = E + |D ′ | with E a non zero effective divisor called the base divisor of |D|, and with |D ′ | base point free. A closed point P of X is called a base point of |D| if P belongs to the support of the base divisor of |D|. We note that dim |D| = dim |D ′ |.

  The linear system |D| is called primitive if |D| and |K -D| are base point free. If |D| is base point free and F is the base divisor of |K -D| then |D + F | is primitive (it is called the primitive hull of |D|) and satisfies dim|D + F | = dim|D| + deg(F ). We recall that if D ∈ Div(X) then δ(D) = δ(K -D). By the previous remark and Riemann-Roch, we get: Lemma 2.1 [Mo2, Lem. 2.4] Let D be a very special divisor then K -D is also very special and ind(D) = ind(K -D). Lemma 2.2 Let D be an effective divisor. Let F be the base divisor of |D|. If D is very special then the base point free part |D -F | of |D| is also very special and ind(D -F ) ≥ ind(D). Moreover ind(D -F ) = ind(D) if and only if F = P 1 + . . .+ P f with the P i some real points among the δ(D) real connected components on which the degree of the restriction of D is odd, such that no two of them belong to the same real connected component. Proof : Set d = deg(D) and k = ind(D).

1 2

 1 (deg(D -P ) -(δ(D -P )) + k + 1 and ind(D -P ) = ind(D). ⊓ ⊔ Corollary 2.3 Let D be very special and assume |D| is base point free then the primitive hull |D ′ | of |D| is very special and ind(D ′ ) ≥ ind(D). Let E ∈ |D ′ -D|, then ind(D ′ ) = ind(D) if and only if E = P 1 + . . . + P e with the P i some real points among the δ(D) real connected components on which the degree of the restriction of D is odd, such that no two of them belong to the same real connected component. Proof : Let E denote the base divisor of K -D. Then K -D is very special of index ind(D) (Lemma 2.1) and K -D -E is also very special of index ≥ ind(D) by Lemma 2.2. By Lemma 2.1,

1 2

 1 and by Lemma 2.2 we are done. ⊓ ⊔ Theorem 2.4 [Mo2, Thm. 3.6] If D is a very special divisor then dim|D| = 2. Proposition 2.5 Let D be a very special divisor of degree d such that dim |D| = 1. Then D = P 1 +• • •+P s with P 1 , . . . , P s some real points of X such that no two of them belong to the same connected component of X(R) i.e. d = δ(D) = s and ind(D) = 0. Moreover D is primitive. Proof : By [Mo2, Prop. 2.1], we only have to prove K -D is base point free. Suppose that P is a real base point of |K -D|. Then dim|D + P | = 2 = ((s + 1) -(s -1)) + 1 = 1 2 (deg(D + P ) -(δ(D + P )) + 1 and D + P is very special, impossible by Theorem 2.4.

1 2

 1 (deg(D 1 -P )δ(D 1 -P )) + 1. Since h 0 (D 1 -P ) ≥ dim|D 1 | > 0 then D 1 -P is linearly equivalent to an effective divisor and therefore deg(D 1 -P ) ≥ δ(D 1 -P ) and dim|D 1 -P | ≥ 1 and D 1 -P is very special. In the case P is general, we get ind(D 1 -P ) = ind(D 1 ). By repeating the same reasoning for D 1 -P , we prove the proposition.⊓ ⊔The following lemma was proved differently in [Mo2, Lem. 3.3]. Lemma 2.7 Let D be a very special divisor of degree d and index k. Then d + δ(D) ≥ 2s + 2k.
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 8 Let D be a very special divisor of degree d and index k. We have d + δ(D) = 2s + 2k if and only if |D| is a pencil. Proof : Assume d + δ(D) = 2s + 2k. The linear system |D ′ | of Proposition 2.6 is a very special pencil. Hence |D ′ | is primitive (Proposition 2.5) and therefore D ′ = D. The converse follows easily from Proposition 2.5. ⊓ ⊔ We improve the result of Lemma 2.7. Proposition 2.9 Let D be a very special divisor of degree d and index k such that |D| is not a pencil. Then d + δ(D) ≥ 2s + 2k + 4. The very special divisor D ′ constructed from D in Proposition 2.6 satisfies dim|D ′ | ≥ 3. Moreover d + δ(D) = 2s + 2k + 4 if and only if dim|D ′ | = 3.

Proposition 3. 1

 1 Let D be a very special divisor of degree d and index k such that dim|D| = 3. Then |D| is base point free, d = s + 4, k = 0 and δ(D) = s. Proof : We have D ′ = D in Proposition 2.6 and thus d + δ(D) = 2s + 2k + 4. Since D = D ′ then we have k = 0 and δ(D) = s. Therefore, we obtain d = s + 4. By Proposition 2.2, the base point free part of |D| is also very special of dimension 3, hence its degree is s + 4 and thus D is base point free. ⊓ ⊔

g 1 3 .

 3 (vi) If s = 4 and d ≤ g -1 then X ′ is smooth. Proof : By Proposition 3.1, the degree d of D is s + 4, δ(D) = s and ind(D) = 0. If the rank of Q is 3, then |D| = |2F | where |F | is the pencil induced by the ruling of Q. This case is not possible since δ(D) = 0 by Clifford Theorem. Thus Q is smooth. Assume Q(R) ≃ S 2 . The rulings of Q induce complex and conjugated pencils |F | and | F | on X such that |D| = |F + F |; this is again impossible since δ(D) = 0.

  non-real. We have δ(D 1 ) = δ(D) = s-2 and D 1 is clearly a special divisor. We get dim|D1 | = 1 = 1 2 (d-δ(D))-2 > 1 2 (d 1 -δ(D 1 )), hence |D 1 | is a very special pencil, impossible since δ(D 1 ) = s.

  equality i.e. coind(D) = ind(D) + 1 if and only if X is 4-gonal, a g 1 4 is very special and s = 4. (iv) Assume X has gonality ≥ 5. We have

  |D| is simple and d ≤ g -1. By Castelnuovo's bound

	r ≤	1 3	(d + 1)
	and we get d ≤ 8 and r ≤ 3. By Theorem 2.4 and since |D| is simple we get r = 3
	and d = 8. By [Beau, Lem. 5.1, Rem. 5.2], X is an extremal curve in the sense of
	Castelnuovo i.e. |D| is very ample and X ≃ ϕ |D| (X) ⊂ P 3 is a space curve of maximal
	genus. By [1, p. 118], ϕ |D| (X) lie on a unique quadric surface Q. By Proposition 3.2, X has a very special g 1 4 .

by Clifford Theorem.

Assume |D| is simple and d ≥ g. By Proposition 4.2, Lemma 2.1 and Theorem 2.4, |K -D| is a very special g 1 4 . Assume |D| is non simple. If dim|D| = 1 there is nothing to do. If dim|D| ≥ 2 the existence of a very special g 1 4 follows from Theorem 1.6. If the gonality of X C is ≤ 3 then we contradict [Mo1, Prop. 3.10] and Theorem 5.1.

⊓ ⊔

Real trigonal curves

We study the existence of very special linear series on non hyperelliptic curves with a complex g 1 3 .

Theorem 5.1 Let X be a real curve such that X C is trigonal. Any very special linear system on X is a very special g 1 3 or the residual of a very special g 1 3 . In this situation, s = 3 and a(X) = 0.

Proof : Remark that since X is not hyperelliptic then s ≥ 3 (Proposition 4.3).

Assume g ≤ 4. By Theorem 1.1, Propositions 2.10 and 4.4, if X has a very special system |D| then g = 4, s = 3 and |D| = g 1 3 or |D| = Kg 1 3 . Assume g > 4. Then X C has a unique g 1 3 and this g 1 3 must be real. Suppose D is very special of degree d ≤ g -1, index k and suppose moreover |D| is primitive. Set r = dim|D|. Using the fact that the Maroni's invariant m of X (it is the first scrollar invariant of the g 1 3 ) is well understood, we have g-4 3 ≤ m ≤ g-2 3 , it is proved in [START_REF] Coppens | Primitive linear series on curves[END_REF]Example 1.2.7] that |D| = r.g 1 3 . Since δ(g 1 3 ) = 1 or 3, we consider these two cases separatly.

• δ(g 1 3 ) = 1: If r is odd then we get r = 1 2 (3r -1) + k + 1

i.e. r < 0, impossible. If r is even then we get r = 1 2 (3r) + k + 1

i.e. r < 0, impossible.

• δ(g 1 3 ) = 3: If r is odd then we get r = 1 2 (3r -3) + k + 1 and therefore r = 1 i.e. |D| = g 1 3 . It is easy to see that the case r is even is not possible.

We have proved that any primitive very special linear system on X is the very special g 1 3 or its residual. Since the index of any primitive very special linear system on X is null, it follows from Lemma 2.2 and Corollary 2.3 that the index of any very special linear system on X is null. Suppose now |D| is very special but not primitive, let |D ′ | denote the primitive hull of the base point free part of |D|. By Lemma 2.2 and Corollary 2.3, we must have δ(D ′ ) < δ(D), impossible since δ(D ′ ) = s = 3.

⊓ ⊔

6 Four-gonal real curves

In this section, we study the existence of very special linear series on four-gonal real curves. We suppose X is a real curve such that X C is 4-gonal and such that there exist a base point free g 1 4 on X. We do not assume this g 1 4 is unique. In summary, we assume that X C and X are both 4-gonal.

In this section we will use several times the following Lemma due to Eisenbud [START_REF] Coppens | Linear series on 4-gonal curves[END_REF]Lem. 1.8]. Note that this lemma concerns linear systems over C but the proof works also over R. Lemma 6.1 Let g t n , g r m (t, r ≥ 1) be real complete linear systems on a real curve X. If g t n + g r m has the minimum possible dimension t + r then there exists a real base point free pencil g 1 e such that g t n = t.g 1 e and g r m = r.g 

Proposition 6.5 (Very special linear systems of type 1) Let |D| be a base point free very special linear system of type 1 for the g 1 4 . Then |D| = g 1 4 and thus the g 1 4 must be very special. In this situation, s = 4 and a(X) = 0.

Proof : Let d be the degree of D and let k be the index of D. We have

Since |D| is of type 1, we also have |D| = r.g 1 4 . If r is even, then δ(D) = 0, impossible since it will contradict Clifford Theorem. Assume r is odd, we have d = 4r and δ(D) = δ(g 1 4 ) = 0 or 2 or 4.

It follows that k = 0 and we have an equality in Clifford inequality, impossible since X C is 4-gonal.

• If δ(g 1 4 ) = 4 then s = 4 and the g 1 4 is very special. We have r = 1 2 (4r -4) + k + 1 i.e. r = 1k and the proof is done.

⊓ ⊔ Proposition 6.6 (Very special linear systems of type 2) Let |D| be a base point free very special linear system of type 2 for the g 1 4 . Then |D| = |Kg 1 4 | and the g 1 4 must be very special. In this situation s = 4 and a(X) = 0.

Proof : By Lemma 2. 

. By Lemma 6.1 we get |E| = (r -1).g 1 4 . Hence |D| = |r.g 1 4 + F | and F = 0 since |D| is base point free. Therefore, |D| is a very special linear system of type 1 and by Proposition 6.5, we get r = 1, a contradiction.

Assume dim|D -

4 and then |K -D| = r ′ .g 1 4 + F (F is the fix part). Therefore, |D| is a very special linear system of type 2, a contradiction with the hypotheses.

We prove now that |Dg 1 4 | is base point free. Let |E| denote the moving part of |Dg 1 4 | and let F be the base divisor of |Dg 1 4 |. Let e (resp. f ) denote the degree of E (resp. F ). We have dim|E| = r -2 and dim|E + g 1 4 | ≥ r -1. Assume dim|E + g 1 4 | = r -1. By Lemma 6.1, E = (r -2).g 1 4 and thus |D| = |(r -1).g 1 4 + F |. We get

If r is odd then δ(D) = δ(F ) and we get Proof : The linear system |K -D| is base point free, very special and it is not a pencil. If |K -D| is of type 2 then |D| is of type 1 and we get |D| = g 1 4 by Proposition 6.5, a contradiction with the hypotheses. We may apply Proposition 6.7 for |K -D| and we get dim|K

| is base point free. By Riemann-Roch, we get dim|D + g 1 4 | = dim|D| + 2. To finish the proof, we remark that |D + g 1 4 | is base point free since |D| and g 1 4 are both base point free. ⊓ ⊔ Theorem 6.9 (Very special linear systems on a 4-gonal curve with δ(g 1 4 ) = 0) Let X be a real curve with a fixed g 1 4 with δ(g 1 4 ) = 0 and such that X C is 4-gonal. Let |D| be a very special linear system of dimension r on X then

Proof : We note that a very special linear system on X can not be of type 1 and can not be of type 2. Let |D| be a base point free very special linear system which is not a pencil. Then dim|Dg 1 4 | = dim|D| -2 by Proposition 6.7 and it is easy to see that |Dg 1 4 | is a base point free very special linear system of index ind(D). If |Dg 1 4 | is not a pencil, we continue the same process, and so on, and by Theorem 2.4 it follows that D -r-1 2 g 1 4 is a very special pencil g 1 s . We also obtain that ind(D) = ind(g 1 s ) = 0 and δ(D) = δ(g 1 s ) = s. Since the index of any base point free very special linear system is null, it follows from Lemma 2.2 that the index of any very special linear system is also null. Since the index is always null and the δ invariant of any base point free very special linear system is equal to s, it follows from Lemma 2.2 that the base divisor of any very special linear system is also null.

⊓ ⊔ Definition 6.10 We say that a non-trivial linear system |D| such that dim|D| = r is of type 3 (for the g 1 4 ) if |D| = |(r -1).g 1 4 + F | with F effective. Note then that dim|F | ≤ 1, and for F = 0 we have dim(r -1).g 1 4 = r -1. Proposition 6.11 Let |D| be a base point free very special linear system of type 3. Then |D| is a very special pencil i.e. a g 1 s with δ(g 1 s ) = s.

Proof : Let d be the degree of D and let k be the index of D. We have ⊓ ⊔ Proposition 6.12 Let X be a real curve with a fixed g 1 4 with δ(g 1 4 ) = 2 and such that X C is 4-gonal. If |D| is a base point free non-simple very special linear system on X then |D| is a pencil.

Proof : Let |D| be a base point free non-simple very special linear system on X such that dim|D| > 1. By Theorem 1.6, ϕ |D| : X → X ′ has degree two and X ′ is an M-curve of genus g ′ = s

2 -1 and the inverse image of any connected component of X ′ (R) is a disjoint union of two connected components of X(R). By Propositions 4.3 and 4.4, we have s ≥ 4. By Theorem 1.1 we get 4 ≤ s ≤ g -1. Assume the g 1 4 is not induced by X ′ i.e. g 1 4 is not of the form ϕ * |D| (g 1 2 ) for a g 1 2 on X ′ . By [CKM, Cor. 2.2.2], we must have 4 ≥ g -2g ′ + 1 and g ′ ≥ 1. Since s = 2g ′ + 2 and g ≤ 2g ′ + 3 we obtain s ≥ g -1. By Theorem 1.1 and Proposition 2.10, we get s = g -1 and |D| is a pencil, impossible. Hence [START_REF] Klein | Ueber Realitätsverhältnisse bei der einem beliebigen Geschlechte zugehörigen Normalcurve der ϕ[END_REF] Let X be a real curve with a fixed g 1 4 with δ(g 1 4 ) = 2 and such that X C is 4-gonal. If |D| is a very special linear system on X then dim|D| = 3.

Proof :

Assume |D| is base point free and very special with deg(D) = d and dim|D| = 3. From Proposition 3.1, it follows that |D| is base point free and that δ(D) = s. By Proposition 6.12, |D| is simple. By Proposition 6.7,

is contained in a quadric surface of P 3 (see [K, Lem. 1.5] for example). By Proposition 3.2, |D| cannot be very special, a contradiction.

⊓ ⊔ Proposition 6.14 Let X be a real curve with a fixed g 1 4 with δ(g 1 4 ) = 2 and such that X C is 4-gonal. If X has a very special pencil g 1 s then s = g -1 and any very special linear system on X is a pencil.

Proof : Let g 1 s be a very special pencil on X. If dim|Kg 1 s | = 1 then we get s = g -1 by Riemann-Roch. For the rest of the proof, we assume dim|Kg 1 s | > 1. We denote by |D| the base point free linear system |g 1 s + g 1 4 |. By Lemma 6.8, dim|g

Suppose first that |D| is simple. The curve X ′ = ϕ |D| (X) is birational to X and X ′ is contained in a quadric surface of P 3 . Thus X ′ = ϕ |D| (X) ⊂ P 3 is a curve of bi-degree (a, b) on Q and we have

We know that 4 ≤ s ≤ g -1 by Theorem 1.2. If the g 1 4 is not induced by ϕ then 4 ≥ g -2g ′ + 1 ([CKM, Cor. 2.2.2]) and we find again s = g -1. Now assume g 1 4 = ϕ * (h 1 2 ) for a h 1 2 on X ′ . We must consider two cases. • g ′ = 1: We have s ′ = 2 and s = 4. The very special pencil g 1 s is clearly not induced by ϕ since δ(g 1 s ) = 4). By [CKM, Cor. 2.2.2], we obtain s = g -1.

• g ′ > 1: It follows in that case that X ′ is an hyperelliptic M-curve. Therefore there exists P ′ ∈ X ′ (R) such that h 1 2 = |2P ′ | but then δ(g 1 4 ) = 0, a contradiction. ⊓ ⊔ Theorem 6.15 (Very special linear systems on a 4-gonal curve with δ(g 1 4 ) = 2) Let X be a real curve with a fixed g 1 4 with δ(g 1 4 ) = 2 and such that X C is 4-gonal. Let |D| be a very special linear system on X then |D| is a pencil and s = g -1.

Proof : According to Proposition 6.14, it is sufficient to show that X must have a very special pencil in the case X has a very special linear system.

We note that a very special linear system on X cannot be of type 1 and cannot be of type 2.

Let |D| be a base point free very special linear system of degree d such that ind(D) = k ≥ 1. We have

By Lemma 6.13, r ≥ 4. From Proposition 6.7, it follows that dim|D -

and it follows that |Dg 1 4 | is also base point free and very special. Since r ≥ 4, |Dg 1 4 | is not a pencil and, according to Proposition 6.7, we obtain

4 | ≥ 4 then repeating the same process we obtain finally a base point free very special linear system of dimension ≤ 3 and index k ≥ 1, impossible by the Theorems 1.6, 2.4 and Proposition 3.1. Since the index of the base point free part is greater or equal than the index of a very special linear system (Lemma 2.2), it follows that the index of any very special linear system is null.

Let |D| be a base point free very special linear system of degree d such that |D| is not a pencil. We have

By Lemma 6.13, r ≥ 4 and it follows from Proposition 6.7 that dim|Dg 1 4 | = r -2 and |Dg 1 4 | is base point free. We can compare δ(D) and δ(Dg 1 4 ), we have 3 possibilities.

and |Dg 1 4 | is very special of index 1, impossible by an above conclusion.

and then |Dg 1 4 | is a base point free very special linear system. Remark that

is not a pencil the we may repeat the same process since δ(D -2g 1 4 ) = δ(D) = δ(Dg 1 4 ), and we finally get a very special pencil (we use Theorem 2.4 and Lemma 6.13 to exclude the case the linear system we obtain has dimension 2 or 3) with δ invariant < s, impossible by Theorem 1.6.

We have proved that δ(Dg 1 4 ) = δ(D) -2 and we recall that |Dg 1 4 | is base point free by Proposition 6.7. We also remark that dim|D -

By Lemma 6.13, we get dim|D -2g 1 4 | > 0. Let |E| (resp. F ) denote the base point free part (resp. the base part) of |D -

|D| is a very special linear system of type 3; Proposition 6.11 gives a contradiction since r ≥ 4. 

According to above, we have We have proved the existence of a very special pencil on X, the rest of the proof follows now from Proposition 6.14.

⊓ ⊔

In the following we describe all the very special linear sytems on a real curve with four real connected components (see Theorem 4.1). Theorem 6.16 (Very special linear systems on a 4-gonal curve with δ(g 1 4 ) = 4) Let X be a real curve with a fixed g 1 4 with δ(g 1 4 ) = 4 and such that X C is 4-gonal. Let |D| be a very special linear system of degree d and dimension r on X. Then |D| is primitive, r is odd, ind(D) = 0, δ(D) = s = 4. Moreover, we are in one of the following cases:

• |D| is simple and d ≤ g -1: then r = 3, |D| = |g 1 4 + h 1 4 | with h 1 4 another pencil such that δ(h 1 4 ) = 0, ϕ |D| (X) is a smooth curve of bidegree (4, 4) on a quadric surface Q of P 3 .

• |D| is simple and d ≥ g: then |D| = |Kh 1 4 | with h 1 4 a very special pencil. • |D| is a very special pencil h 1 4 . • |D| is non simple and is not a pencil: then X is a bi-elliptic curve and

with h 1 4 a pencil such that δ(h 1 4 ) = 4 (i.e. very special) if r = 1 mod 4 and δ(h 1 4 ) = 0 if r = 3 mod 4.

Proof : Let |D| be a very special linear system of degree d and dimension r. By Theorem 4.6, |D| is primitive, ind(D) = 0 and δ(D) = s = 4. We have

Assume |D| is simple and d ≤ g -1. By Castelnuovo's bound

and we get d ≤ 8 and r ≤ 3. By Theorem 2.4 and since |D| is simple we get r = 3 and d = 8. By Proposition 6.7, |Dg 1 4 | is a base point free pencil h 1 4 with δ(h 1 4 ) = 0. It follows that ϕ |D| (X) is a curve of bidegree (4, 4) on a quadric surface Q of P 3 . By Proposition 3.2, ϕ |D| (X) is smooth i.e. |D| is very ample. By [1, p. 118], the quadric containing ϕ |D| (X) is unique.

Assume |D| is simple and d ≥ g. By Proposition 4.2, Lemma 2.1 and Theorem 2.4, |K -D| is a very special pencil h 1 4 i.e. |D| is of type 2 for that h 1 4 . Assume |D| is non simple and is not a pencil. By Theorem 1.6 r is odd, ϕ |D| : X → X ′ has degree two and X ′ is an elliptic curve with two real connected components and the inverse image of any connected component of X ′ (R) is a disjoint union of two connected components of X(R). From Theorem [Mo2, Thm. 4.1] and using Proposition 6.7 and [CM, Example 1.13], we see that

with h 1 4 a pencil such that δ(h 1 4 ) = 4 (i.e. very special) if r = 1 mod 4 and δ(h

From [Mo1, Prop. 2.10], Theorems 5.1, 6.9, 6.15 and 6.16, we get Theorem 1.8 stated in the introduction. Theorem 6.17 Let X be real curve such that X and X C are both n-gonal with 2 ≤ n ≤ 4. If X has a very special linear system then X has a very special pencil and X is a separating curve i.e. a(X) = 0. Moreover, if |D| is a very special linear system then ind(D) = 0, δ(D) = s and |D| is primitive.

Clifford type inequality for very special linear systems

Using the results of the previous sections, we will improve the inequalities of Theorem 1.2 and Theorem 1.4.

Theorem 7.1 Let X be a real curve such that X is not hyperelliptic and X is not trigonal, i.e. the real gonality of X is ≥ 4. Let D be a very special divisor of degree

Proof : Let |D| be a very special linear system of degree d, index k and dimension r. Before proving the inequality stated in the Theorem, we will prove the following inequality

Assume |D| is a pencil. By Proposition 2.5, we have δ(D) = s, d = s and k = 0. According to Propositions 4.3 and 4.4, we have s ≥ 4 and thus

In the following of the proof, we assume |D| is not a pencil. By Lemma [Mo1, Lem. 2.5] and Lemma 2.1, we may assume |D| is base point free and d ≤ g -1.

We have

and suppose

By Proposition 2.9, we get

From (2), (3) and since β(D) = sδ(D), we get

By ( 1) and (2), we obtain

Using ( 4) and ( 5), it follows that

If |D| is simple, there is a contradiction with Castelnuovo's bound 3r ≤ d + 1. Therefore |D| is non simple and we know that δ(D) = s and k = 0 in that case by Theorem 1.6. From By (1) and (2), we get We are interested by the case when we have an equality in the inequality given in the previous theorem.

We introduce a new invariant of very special linear systems. We reformulate Theorems 1.2 and 1.5 using the notion of coindex. If there is an equality in the previous inequality then X is hyperelliptic with a very special g 1 2 and |D| = r.g 1 2 with r = dim|D| odd. We give a consequence of the proof of Theorem 7.1.

Corollary 7.5 Let X be a real curve such that X is not hyperelliptic and X is not trigonal, i.e. the real gonality of X is ≥ 4. Let D be a very special divisor then coind(D) ≥ ind(D) + 1. Assume a non-real point

Assume two real points P, P ′ belonging to the same real connected component, are contained in the base divisor of |D|, then as before, coind(D -P -P ′ ) = coind(D)-1.

Assume a real point P belonging to a connected component on which the degree of the restriction of D is even, is a base point of |D|. Then dim|D| = dim|D -P | = 

The previous lemma applies in case D is semi-canonical i.e. 2D = K.

Lemma 7.8 ([Ac], [START_REF] Coppens | Secant space and Clifford's theorem[END_REF] p. 200 and [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] p. 122) Let X be an extremal curve (it means the genus of the curve is maximal i.e. the genus equals the Castelnuovo's bound) of degree d > 2r in P r R (r ≥ 3). Then one of the followings holds:

(i) X lies on a rational normal scroll Y in P r R (Y is real, see [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] p. 120). Write d = m(r -1) + 1 + ε where m = [ d-1 r-1 ] and ε ∈ {0, 1, 2, . . . , r -2}. The curve X C has only finitely many base point free pencils of degree m + 1 (in fact, only 1 for r > 3, and 1 or 2 if r = 3). These pencils are swept out by the rulings of Y C . Moreover X C has no g 1 m . (ii) X is the image of a smooth plane curve X ′ of degree d 2 under the Veronese map P 2 R → P 5 R . Proposition 7.9 Let X be a real curve such that X is not hyperelliptic and X is not trigonal, i.e. the real gonality of X is ≥ 4. Let D be a very special divisor of degree d and index

Then X C is 4-gonal and X has a very special pencil g 

We By Theorem 4.6, X has a very special g 1 4 and X C is 4-gonal. We use Theorem 6.16 to finish the proof in this case.

We assume now that |D| is simple. We have Case 1 r = 5 and X is a smooth plane curve: By Lemma 7.8, Y is the image of a smooth plane curve of degree 7 under the Veronese embedding P 2 ֒→ P 5 . The curve X has a unique very ample g 2 7 which calculate the Clifford index of X C . Since D is semi-canonical, by Lemma 7.7, the linear system |Dg 2 7 | of degree 7 has dimension ≥ 2. Since the Clifford index of X is 3, we have dim|Dg 2 7 | = 2. It follows that |D| = 2g 2 7 and δ(D) = 0, impossible.

Case 2 r ≥ 4 and X is not a smooth plane curve: By Lemma 7.8, X has a g 1 4 and X C is 4-gonal. From the Theorem 6.9, 6.15 and 6.16, it follows that k = 0 and δ(D) = s. By ( 10) and ( 7), d = s + 4 and r = 3, impossible.

Case 3 r = 3: By Proposition 3.1, d = s+4, k = 0 and δ(D) = s. Since in this case the rational scroll is a quadric surface, the existence of the very special g 1 4 follows from Proposition 3.2.

⊓ ⊔

We summarize the results of this section in the following theorem.

Theorem 7.10 Let |D| be a very special linear system of degree d on a real curve X. if and only if X is hyperelliptic, the g 1 2 is very special and s = 2. (ii) Assume X is not hyperelliptic. We have

with equality i.e.

coind(D) = ind(D) + 1 2 if and only if X is trigonal, a g 1 3 is very special and s = 3.