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Abstract. Mediterranean catchments in southern France are
threatened by potentially devastating fast floods which are
difficult to anticipate. In order to improve the skill of rainfall-
runoff models in predicting such flash floods, hydrologists
use data assimilation techniques to provide real-time updates
of the model using observational data. This approach seeks
to reduce the uncertainties present in different components
of the hydrological model (forcing, parameters or state vari-
ables) in order to minimize the error in simulated discharges.
This article presents a data assimilation procedure, the best
linear unbiased estimator (BLUE), used with the goal of
improving the peak discharge predictions generated by an
event-based hydrological model Soil Conservation Service
lag and route (SCS-LR). For a given prediction date, selected
model inputs are corrected by assimilating discharge data ob-
served at the basin outlet. This study is conducted on the Lez
Mediterranean basin in southern France. The key objectives
of this article are (i) to select the parameter(s) which allow
for the most efficient and reliable correction of the simulated
discharges, (ii) to demonstrate the impact of the correction
of the initial condition upon simulated discharges, and (iii)
to identify and understand conditions in which this technique
fails to improve the forecast skill. The correction of the ini-
tial moisture deficit of the soil reservoir proves to be the most
efficient control parameter for adjusting the peak discharge.
Using data assimilation, this correction leads to an average
of 12 % improvement in the flood peak magnitude forecast
in 75 % of cases. The investigation of the other 25 % of cases
points out a number of precautions for the appropriate use of
this data assimilation procedure.

1 Introduction

Mediterranean catchments in southern France are exposed to
intense rain events that may result in devastating flash floods
such as the 2002 event in the Gard Department or that of
the Aude Department in 1999 (Gaume et al., 2009). In or-
der to better forecast these events, hydrologists may look to
rainfall-runoff models. These may be either physically based,
like MARINE (Borrell-Estupina et al., 2005) or CASC2D
(O’Donnel, 2002), conceptual, reservoir-based (Kobold and
Kay, 2004; Bailly-Comte et al., 2012; Tramblay et al., 2010;
Fleury et al., 2007) or “black box” type (Toukourou et al.,
2009; Piotrowski et al., 2006). All these models are subject
to a number of uncertainties tied either to their structure,
which implies a simplification of actual physical processes,
or to the dataset used for external forcing or the calibration
of parameters.

A data assimilation procedure can be applied in order take
into account such uncertainties. Within the framework of in-
verse problem theory (Tarantola, 2004), this approach is in-
tended to combine two types of information – one coming
from observations and the other from a numerical model – in
order to propose an improved estimation of the system state
(Bouttier and Courtier, 1999). First introduced in meteorol-
ogy (Daley, 1991) and oceanography (Ghil and Malanotte-
Rizzoli, 1991), data assimilation techniques have become
more widespread in the geosciences, following the increased
availability of remote sensing data (McLaughlin, 2002; Re-
ichle, 2008), as well as in hydrogeology (De Marsily et al.,
1999) or hydraulics (Malaterre et al., 2010; Nelly et al., 2010;
Ricci et al., 2011). In hydrology, assimilation techniques are



typically employed in flood forecasting and are referred to
as updating techniques. These techniques seek to correct the
components of a hydrological model (forcing, parameters,
state variables, or discharges) in order to improve the quality
of discharge predictions (Refsgaard, 1997) as observational
data become available. The most widely used techniques re-
main those relying on autoregressive (AR) models in order
to correct the simulated discharge output by the model (Yang
and Michel, 2000; Xiong and O’Connor, 2002). This type
of correction is based on the structure of the error between
observed and simulated discharges but does not take into
account the source of uncertainty. Certain techniques focus
on correcting input variables (such as precipitations) (Khal
and Nachtnebel, 2008), which often constitute the primary
source of uncertainty in operational forecasting. However,
this approach has only been infrequently used (Moore et al.,
2005). Other techniques emphasize correcting the hydrologi-
cal model’s state variables either “empirically” (Weisse et al.,
2003) or more formally via a best linear unbiased estimator
(BLUE) (Thirel et al., 2010) or a Kalman filter algorithm (Da
Ros and Borga, 1997; Aubert et al., 2003). In Moradhkani et
al. (2005) and Maradhkani and Hsu (2005) it was shown that
a dual state–parameter estimation using either an ensemble
Kalman filter or a particle filter properly accounted for uncer-
tainties in model inputs, outputs and parameters. Variational
techniques have also been used to correct hydrological model
parameters (Yang and Michel, 2000; Bessière et al., 2007).

The study presented here is aimed at improving, through
use of data assimilation, the discharge forecast produced by
an event-based hydrological model. Starting with the model
state for a given date, the procedure will seek to correct
model parameters using existing observations, in this case
discharges recorded at the basin outlet. This correction will
be calculated using a simplified Kalman filter algorithm,
known as best linear unbiased estimator (BLUE). The study
is conducted on a Mediterranean basin located in the South
of France. The objectives of this article are threefold: (i) to
select the parameter(s) that offer the most efficient correction
of the peak discharge to be forecasted; (ii) to demonstrate the
impact of the correction of the initial moisture deficit of the
soil reservoir on simulated discharges at the catchment outlet
using data assimilation; and (iii) to identify and understand
situations when the assimilation procedure leads to a degra-
dation of the simulated discharge. Section 2 presents the hy-
drological model as well as the assimilation method and hy-
drological dataset used to simulate the flood events on which
the procedure is tested. Section 3 offers a sensitivity study of
model parameters, along with the results of the data assimila-
tion procedure implemented to correct the parameters, which
have the greatest impact on model results. Section 4 provides
an analysis of cases where the assimilation method was not
effective and proposes a number of precautions to be applied
when using this technique.

2 Model and data

2.1 The hydrological model

The simulation of discharges for this study is performed with
an event-based, distributed, parsimonious rainfall-runoff
model. It has been implemented on a set of regular and
independent grid cells (water does not flow between grid
cells, but rather is transported directly to the outlet). This
model combines a Soil Conservation Service derived (SCS-
derived) runoff function with a “lag-and-route” routing func-
tion. SCS-LR model was presented in Coustau et al. (2012),
and will be briefly summarized as follows:

i. The catchment is divided into a mesh of regular and in-
dependent grid cells.

ii. The rainfall is interpolated in each cell at each time step.

iii. The total runoff is determined by using two reservoirs
(cf. Fig. 1 in Coustau et al., 2012) – both empty at the
beginning of the event. The cumulated rainfall reservoir
has an infinite capacity and determines the direct runoff
using a runoff coefficient derived from the SCS runoff
model, as used by Gaume et al. (2004):

C(t) =

{
0, if P(t) < 0.2S(

P(t)−0.2S
P (t)+0.8S

) (
2 −

P(t)−0.2S
P (t)+0.8S

)
, if P(t) > 0.2S,

(1)

whereP(t) denotes the cumulated rainfall at timet ,
and S the runoff parameter. TheS parameter denotes
the maximal water storage capacity at the beginning of
the event. It acts as the initial condition of the event-
based model. The cumulated rainfall reservoir has a dis-
charge in order to take into account the reduction of
the runoff coefficient during pauses in the rainfall (ds
parameter) in the case of multi-peak events. An addi-
tional subsurface runoff is also considered, as a fraction
of the discharge of the cumulative infiltration reservoir
(w parameter). Because the runoff coefficient is related
to the cumulated rainfall (Eq. 1) and, from a physical
point of view, to the cumulated infiltration reservoir,
the discharge coefficients, ds, of the two reservoirs are
the same in order to release the reservoirs in the same
proportions.

iv. The runoff from a cell is then routed through the catch-
ment and produces an elementary hydrograph to the out-
let (cf. Fig. 2 in Coustau et al., 2012):

Qm(t) =
it (t0)

Km

· exp

(
−

t − (t0 + Tm)

Km

)
· A, (2)

whereit (t0) denotes the runoff from the cell at the time
t0, A the catchment area, and

Km = K0 · Tm, with Tm =
lm

V
, (3)



Table 1.Selected flood events –QHp: discharge peak with an hourly time step (m3 s−1); rt: response time (the delay between rainfall peak
and discharge peak) (h);P : average cumulative rainfall (mm) calculated according to the Thiessen method;Scal: the value (mm) of the initial
condition after calibration; Nashcal: the Nash value after calibration; Hu2ini the value of the Hu2 index used to initialize the initial condition
of the model. The values shown in bold correspond to simulations run with rainfall radar data.

Start/UTC Duration QHp rt P Number Scal Nashcal Hu2ini
(h) (m3 s−1) (h) (mm) of peaks (mm) (%)

18 Oct 1994, 06:00 206 124 3 212 2 200 0.66 62.04
27 Oct 1994, 06:00 365 99.8 4 170 2 121 0.60 71.41
17 Dec 1996, 06:00 275 139 2 190 1 146 0.82 66.81
16 Dec 1997, 06:00 258 122 5 184 1 150 0.68 61.97
16 Jan 2001, 06:00 200 93.1 8 94 1 101 0.84 70.67
9 Oct 2001, 06:00 128 238 4 102 1 139 0.94 64.71
8 Sep 2002, 06:00 100 103 6 133 1 238 0.90 58.98
9 Dec 2002, 06:00 283 376 2 322 4 95 0.88 69.33
22 Sep 2003, 06:00 81 91.5 3 117 1 254 0.90 51.87
29 Nov 2003, 06:00 262 424 3 273 1 101 0.89 75.54
5 Sep 2005, 06:00 57 467 4 357 2 246 0.81 48.66
19 Oct 2008, 06:00 144 109 4 205 2 392 0.88 48.39

wherelmis the distance between the cellm and the out-
let, V andK0 are 2 routing parameters respectively act-
ing as the routing speed and the diffusion coefficient.

v. The sum of the elementary hydrographs from all the
cells of the catchment, at all the time steps of the event
provides the complete hydrograph of the flood.

The complete hydrological model features a total of 5 pa-
rameters:S, w, ds,V andK0, which remain uniform over all
catchment grid cells. This model was implemented using the
ATHYS modelling platform (www.athys-soft.org).

2.2 Available data

This study was conducted on the Lez Mediterranean catch-
ment in southern France; this catchment covers an area of
114 km2 and is located upstream of the city of Montpellier.
Floods primarily occur during autumn and winter and are
caused by intense rainfall events (sometimes reaching several
hundreds of mm within a 24-h period), characterized by short
response times (on the order of 2 to 5 h) with high peak dis-
charge (up to 480 m3 s−1 in September 2005). For this study
12 flood events are selected between 1994 and 2008. All of
these events display a peak discharge above 90 m3 s−1, which
corresponds to a return period of 2 yr or more as displayed in
Table 1.

It has been demonstrated that, in the Lez Basin, radar rain-
fall at the beginning of autumn is of higher quality than at the
end of autumn or during winter. Since the basin is located at
a distance of approximately 60 km from the radar station, the
limited vertical extension of clouds coupled with the low el-
evation of the 0◦C isotherm during winter results in a poor
quality of the measurements (Coustau et al., 2012).

Radar rainfall data were used to simulate the events taking
place on October 2001, September 2003, September 2005
and October 2008. Ground rainfall data were used for all
other events. Ground precipitation data are provided with an
hourly time step and recorded using 4 rain gauges – one lo-
cated on the topographic basin and the other three within a
radius of 5 to 10 km outside the basin (cf. Fig. 3 in Coustau
et al., 2012). Ground precipitation data were interpolated ac-
cording to the Thiessen polygon method. Between 1994 and
2000, only the Prades rain gauge on the topographic basin de-
termined the rainfall. Since 2000 the Saint-Martin and Mont-
pellier rain gauges have allowed for a better representation
of the rainfall, notably in the west and the south of the catch-
ment. The Mauguio rain gauge is used when a data gap oc-
curs for one of the other three rain gauges.

2.3 Model calibration and initialization

The five parameters (S, w, ds, V and K0) of the model
were calibrated using 21 events (including the 12 events of
Table 1) observed between 1994 and 2008 (Coustau et al.,
2012). These parameters are first calibrated separately for
each event. Next, a global calibration procedure, which con-
sists on averaging the value of each parameter over the entire
set of events, was applied for all parameters, except forS,
which represents the initial water deficit at the beginning of
the event. Thus,S varies from one event to another. The op-
timal S value (denotedScal in Table 1) is determined for each
event by maximizing the Nash criterion

Nash= 1 −

∑
(Qsim(t) − Qobs(t))

2∑
Qobs(t) − Qobs)2

, (4)

where Qsim(t) are the simulated discharges,Qobs(t) the
observed discharges andQobs the average of observed

www.athys-soft.org


Table 2. Values of the parametersS andV before (background) and after (analysis) correction with discharge assimilation and number of
data assimilated.Sb, V b: background value;Sa, V a: analysis value.

Peak Number of Background Correction Correction Correction on
assimilated values onS onV bothS andV

data points Sb V b Sa V a Sa V a

(mm) (m s−1) (mm) (m s−1) (mm) (m s−1)

Oct 94 Peak 1 9 184 1.30 178 1.23 176 1.21
Oct 94 Peak 2 24 184 1.30 186 1.29 185 1.29
Nov 94 Peak 1 0 101 1.30 101 1.30 101 1.30
Nov 94 Peak 2 20 101 1.30 131 1.25 131 1.33
Nov 94 Peak 3 34 101 1.30 130 1.22 130 1.28
Dec 9 Peak 12 141 1.30 145 1.26 145 1.29
Dec 97 Peak 20 184 1.30 172 1.28 165 1.16
Jan 01 Peak 7 107 1.30 109 1.30 109 1.31
Oct 01 Peak 1 160 1.30 131 1.44 128 1.51
Sep 02 Peak 5 211 1.30 243 1.13 225 1.17
Dec 02 Peak 1 5 119 1.30 121 1.29 121 1.29
Dec 02 Peak 2 26 119 1.30 113 1.33 114 1.31
Dec 02 Peak 3 37 119 1.30 91 1.64 98 1.56
Dec 02 Peak 4 91 119 1.30 88 1.31 88 1.29
Sep 03 Peak 1 273 1.30 266 1.31 266 1.31
Dec 03 Peak 41 64 1.30 111 0.97 91 1.11
Sep 05 Peak 1 5 302 1.30 210 1.84 224 1.39
Sep 05 Peak 2 10 302 1.30 205 1.52 199 1.25
Oct 08 Peak 1 0 304 1.30 304 1.30 304 1.30
Oct 08 Peak 2 8 304 1.30 346 1.35 355 1.45

discharges. For the 12 events selected for data assimila-
tion experiments, the Nash values (denoted Nashcal in Ta-
ble 1), obtained withScal and the batch-calibrated parameters
(ds = 0.28 day−1; w = 101 mm;V = 1.3 m s−1; andK0 = 0.3),
range between 0.60 and 0.94 with a median value of 0.86.
Thus, using an optimal initialization, the model is shown to
satisfactorily reproduce the 12 selected flood events. How-
ever, theScal value cannot be determined while the event is
going on and, in an operational situation, theS value has to
be set with external predictors of the initial wetness state of
the basin. TheScal values are correlated with various predic-
tors including the root-layer humidity output by the Safran-
Isba-Modcou (SIM) distributed hydrometeorological model
(Habets et al., 2008; Quintana Seguı́ et al., 2009) (denoted
Hu2ini in Table 1) and the piezometric level, both taken at
the beginning of the event. Linear regressions established be-
tween these predictors andScal are used to estimate a value
of S, denotedSreg, and allow for the initialization of the
event-based model in an operational framework (Coustau et
al., 2012). For example,Sreg is calculated from Hu2ini ac-
cording to the following equation:Sreg=−8.84 Hu2ini + 732
(R2 = 0.69). The values ofSreg used for the model initializa-
tion are presented in Table 2. They correspond to the back-
ground valueSb used by the data assimilation method.

3 Data assimilation

3.1 The data assimilation method

The data assimilation method used in this study is the best
linear unbiased estimator algorithm. In this case, the most
sensitive parameters of the model are corrected using the dis-
charge observations at the catchment outlet. The correction
is calculated over a single time window and not cycled. Be-
cause of the non-linear relationship between the simulated
discharges and the most sensitive parameters of the hydro-
logical model, an outer loop was necessary to overcome this
difficulty.

The variational assimilation method (Bouttier and
Courtier, 1999) consists of minimizing the cost function,
J (x) in order to obtain the optimal values of the variables
stored in a control vector,x:

J (x) =
1

2

(
x − xb

)T

B−1
(
x − xb

)
+

1

2

(
yo

− H(x)
)T R−1 (

yo
− H(x)

)
. (5)

The control vector, lengthn, contains the set ofn variables to
be optimized. These variables may correspond to the forcing,
state variables, or model parameters.xb is the background
vector of lengthn, which contains the a priori values of the
control vector variables.yo is a vector of lengthp, which



contains thep observations to be assimilated. The cost func-
tion J (x) quantifies both the distance between the control
vectorx and the backgroundxb, and the distance between
the control vectorx projected in the observation space and
the observationsyo, weighted respectively by the error co-
variance matricesB andR. B, with a size ofn × n, andR,
of sizep × p, are both symmetric positive definite matrices
containing the covariances of the error in the backgroundxb

and in the observationsyo, respectively. The errors inxb and
yo are assumed to be independent, Gaussian and unbiased.
H is the observation operator: it maps the control space onto
the observation space and is usually non-linear. As a conse-
quence, the cost functionJ (x) is not quadratic and hence dif-
ficult to minimize. To overcome this difficulty,J (x) is locally
approximated using an incremental approach (Courtier et al.,
1994) which leads to a quadratic cost function,J inc

l (δx) that
is easier to minimize:

J inc
l (δx) =

1

2
δxT B−1δx

+
1

2

(
yo

− H (x l) − H l

(
δx + xb

− x l

))T

R−1
(
yo

− H (x l) − H l

(
δx + xb

− x l

))
, (6)

whereδx =x − xb andH l is derived from the linearization
of the observation operator about a reference vector,x l . H l
is approximated here by the forward finite difference for a
small perturbationδx = (..., δxi , ...) such that itsi-th column
reads

Hl,i =
∂H (x l)

∂xi

≈
H

(
· · · , xl,i + δxi, · · ·

)
− H (x l)

δxi

. (7)

This functionJ inc
l (δx) is minimum when its gradient is zero:

∇J inc
l (δx) = B−1δx − R−1H l(

yo
− H (x l) − H l

(
δx + xb

− x l

))
= 0. (8)

In order to solve∇J inc
l (δxa

l ) = 0 for δxa
l , an iterative process

that can be applied using a minimizer or the solution can be
derived analytically as in the best linear unbiased estimator
(BLUE) algorithm. Since the size of the error covariance ma-
tricesB andR is small in the present case, the direct inver-
sion of the BLUE algorithm (Gelb, 1974; Talagrand, 1997;
Bouttier and Courtier, 1999, Sect. 4) was chosen to find the
minimum of the cost function,J inc

l (δx). This minimum can
be calculated as

xa
l = xb

+ K l d l, (9)

whereK l is the gain matrix (Eq. 10) (Bouttier and Courtier,
1999),d l is the innovation vector (Eq. 14) representing the
difference between the observation vectoryo and the linear
approximation of the control vector in the observation space
H(x l) + H l(x − x l):

K l = HT
l R

(
B−1

+ HT
l R−1H l

)−1
(10)

d l = yo
−

[
H (x l) + H l

(
xb

− x l

)]
. (11)

The error covariance matrix ofxa
l is expressed as

A l = (I − K l H l) B. (12)

When calculating the BLUE analysis,xa
l , the incremental ap-

proximationJ inc
l (δx) is minimized rather than the true cost

function,J (x). In order to approximate the minimum of the
true cost function, as done so with the 3D-VAR approach,
an outer loop is applied to the BLUE algorithm. This loop
iteratively updates the linearization point value by setting
the background equal to the analysis of the previous itera-
tion (xl+1 =xa

l ). During the first iteration of this outer loop,
the linearization step is performed around the background
x1 =xb, whereas during subsequent iterations the lineariza-
tion occurs around the analysis from the previous iteration.
This approach accounts for some of the non-linearities in the
observation operator,H .

3.2 Sensitivity study to model parameters

The assimilation procedure uses discharge observations at
the catchment outlet in order to correct hydrological model
parameters after the calibration and initialization steps. A
sensitivity study of simulated discharges to various model pa-
rameters was carried out; this study serves to identify those
parameters which most heavily influence the flood discharge
arrival time and magnitude as well as those most suitable for
correction with the data assimilation algorithm.

The sensitivity study was conducted on the October 2001
event, which is representative of major flood events occurring
in the study catchment (Fig. 1). The observed hydrograph
(blue curve) indicates a single flood peak of approximately
240 m3 s−1. The simplicity of the hydrograph shape makes
it possible to accurately identify the influence of each model
parameter on discharges at the outlet. A “free run” (black
curve) was integrated with the calibrated parameter values
w, ds,V andK, in addition toSreg= 160 mm, derived from
the linear regression established with the Hu2 indicator. This
simulation shows an underestimation of the peak flow, which
can be explained by various errors: uncertainty in the rainfall
estimation, error in the initialization or error in the model
structure. Despite an underestimation of the flood peak, this
simulation provides a satisfactory depiction of discharges ob-
served at the outlet with a Nash criterion value of 0.88.

Starting from the free run, five “perturbed” simulations
were conducted by perturbing each of the five parameters,
one at a time, by +10 % with respect to its calibrated value.
In order to quantify the influence of these parameters on dis-
charges at the catchment outlet, the differences in discharge,
1Q, between the free run and each of the 5 “perturbed” sim-
ulations were calculated.



 

 

Figure 1. Sensitivity tests conducted on parameters V and S for the October 2001 event. Qobs 

(blue line) is the observed hydrograph, Qref (black line with circles) is the “free run”,Qpert are 

the “perturbed” simulation done with a +10% perturbation of S (dashed red line) or V (dashed 

green line); Q is the difference between the “perturbed” simulation and the “free run” for S 

(in dashed red line with circles) or V (dashed green line with circles) 

 

Fig. 1. Sensitivity tests conducted on parametersV andS for the
October 2001 event.Qobs (blue line) is the observed hydrograph,
Qref (black line with circles) is the “free run”,Qpert is the “per-
turbed” simulation done with a +10 % perturbation ofS (dashed red
line) or V (dashed green line);1Q is the difference between the
“perturbed” simulation and the “free run” forS (in dashed red line
with circles) orV (dashed green line with circles).

The drainage coefficient, ds, and the parameter,w, which
controls the contribution of drainage to delayed flow, exert a
negligible influence on flood discharges. The discharge dif-
ferences between the “reference” and “perturbed” runs,1Q

lie below 2 m3 s−1, less than 1 % of the peak discharge value
in the “free run”. The discharge is also relatively insensitive
to theK0 parameter as the maximum difference (1Q) equals
6 m3 s−1 (approximately 3 % of the free run peak discharge).
This parameter has a relatively small impact on the slope of
the hydrograph during the rising and recession limbs. As the
value of parameterK0 increases the slopes of the hydrograph
flatten. For the transfer velocity,V (Fig. 2), the maximum
1Q equals 47 m3 s−1 (approximately 23 % of the free run
peak discharge). This parameter influences the flood peak ar-
rival time. As the velocityV increases, the flood peak arrives
earlier. The sensitivity of the model to parameterS is also
significant (Fig. 2) in that a 10 % perturbation in its value
causes a maximum perturbation of 25 m3 s−1 (approx. 12 %
of the “free run” peak discharge). This parameter mainly
influences the peak flood intensity. AsS grows larger, the
catchment’s initial moisture deficit is increased, lowering the
flood peak intensity. This parameter corresponds to the initial
catchment wetness state, with respect to which event-based
models are known to be highly sensitive (Zehe and Blöschl,
2004; Berthet et al., 2009). Because simulated discharges are
most sensitive toS andV , the data assimilation technique
will focus on correcting these two parameters.

3.3 Implementation of the assimilation technique

The assimilation algorithm (Sect. 3.1) was implemented for
use with the hydrological model (Sect. 2.1) using the Open-
PALM dynamic coupling software (Lagarde, 2000; Lagarde
et al., 2001), developed at CERFACS (http://www.cerfacs.
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Fig. 2. Observed hydrograph (blue curve), assimilated discharge
(blue cross), background discharge withSb = 160 mm (black curve)
and analysis discharge withSa= 131 mm (red curve) for the Octo-
ber 2001 event.

fr/globc/PALM WEB/). This software was originally devel-
oped for the implementation of data assimilation in oceanog-
raphy for the MERCATOR project. PALM allows for the
coupling of independent code components with a high level
of modularity in the data exchanges and treatment while pro-
viding a straightforward parallelization environment (Fouil-
loux and Piacentini, 1999; Buis et al., 2006).

The objective here is to improve flood peak forecasting
using a record of past flood events. Observed discharges are
assimilated during an assimilation window (“assimilation pe-
riod”) that extends from the beginning of the event until time
t0, 3 h prior to the flood peak (Fig. 2), in order to correct
model parameters. This lead time arbitrarily fixed 3 h be-
fore the peak represented a compromise between the use-
fulness of the lead time for forecasters and the frequency
of discharge observations available for the data assimilation
technique. The corrected parameters are then used to inte-
grate the hydrological model over the “assimilation period”
and beyond, until the end of the event (“forecast period”).
During the “forecast period”, the simulated discharges are
calculated with a known future rainfall (observed rainfall is
used to force the model in order to “forecast” a past event).
This choice allowed for the assessment of the performance of
the data assimilation method without being masked by uncer-
tainties in the forecasted rainfall. However, this methodology
did not allow us to test the performance of the hydrological
model coupled with the data assimilation method in a real-
time framework which is beyond the scope of this paper.

Following from the results of the sensitivity study, the con-
trol vectorx = (S, V )T contains the two most influential pa-
rametersS andV . Their a priori values are stored in the back-
ground vector,xb = (Sb, V b)T . Sb is given by the linear re-
gression with Hu2 (Sect. 2.2) andV b is the transfer velocity
obtained by the global calibration over the 21 events. The
background vector is used to compute the background sim-
ulated hydrograph. The standard deviation of the error inSb

was fixed at 19 % ofSb. This percentage corresponds to the

http://www.cerfacs.fr/globc/PALM_WEB/
http://www.cerfacs.fr/globc/PALM_WEB/


ratio of the average linear regression residuals to the aver-
age of the calibratedS values. To estimate this percentage,
the mean deviation between Sreg and Scal was estimated and
then divided by the mean value of Scal. The background vec-
tor is used to compute the background simulated hydrograph.
The standard deviation of the error inSb was fixed at 19 %
of Sb. This percentage corresponds to the ratio of the aver-
age linear regression residuals to the average of the calibrated
S values. The standard deviation of the error inV b was set
to 0.2 m s−1, which is the standard deviation value obtained
following an event-by-event calibration. The errors onSb and
V b are assumed to be uncorrelated. In the following exper-
iments, data assimilation is tested with a control vector that
contains (i) onlyS, (ii) only V or (iii) both S andV .

The observations used and stored in the observation vec-
tor yo correspond to the firstn observed discharges since
the beginning of an event at the catchment outlet. The er-
rors in the observed discharges are also assumed to be un-
correlated, leading to a diagonal matrixR. The observation
error standard deviation is set to 20 m3.s−1 for discharges
lying between 20 and 300 m3 s−1 (Sect. 3.4). Observations
above 300 m3 s−1 are not assimilated due to potentially sig-
nificant error resulting from the extrapolation of the rating
curve. Observations below 20 m3 s−1 are not assimilated due
to significant error in this range since the hydrological model
was calibrated using flood discharges.

The observation operatorH is the hydrological model
forced by rainfall inputs. Applied tox this operator produces
a record of simulated dischargesy =H(x). The computation
of the Jacobian matrix,H l (associated with the non-linear
observation operatorH ), using a finite difference scheme,
requires several runs of the hydrological model, namely:

– One run with the reference parametersx l .

– An additional run for each perturbed parameter:
x l + dS, 0)T for the perturbation applied toS, and
x l + 0, dV )T for the perturbation applied toV .

The dSand dV values were chosen to be of the same order
of magnitude as the difference between the background and
the analysis. Furthermore, the hydrological model (i.e.H )
remains almost linear over the dSand dV intervals. To
guarantee that the linear assumption is respected, we check
thatH(S + dS) and its linear approximationH(S) + H dS are
nearly the same. For events where the correction (i.e. the in-
terval between the background and the analysis parameter
values) is notable, an outer loop is used. Using the Open-
PALM coupler, the computation cost of calculating the Jaco-
bian was limited by running these model runs in parallel.

When the discharge observation (Fig. 2, blue cross) ex-
ceeds the corresponding discharge simulated with the back-
ground control vector (Fig. 2, black curve), the correction es-
timated by the data assimilation algorithm tends to decrease
the initial deficit of the soil moisture reservoir in order to in-
crease the analysis discharge simulated over the assimilation
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Fig. 3.Cost functionJ (x) (black curve) for the October 2001 event
and its incremental approximationsJ inc

1 (δx) (blue curve) for the

first outer loop, andJ inc
2 (δx) (red curve) for the second one. The

blue (respectively red) cross indicates the backgroundx1 =xb for
the first (respectively second) outer loop, and the circles indicate
the minima of the functions. The dashed lines represent the tangent
of the incremental approximations in blue for the first outer loop
and in red for the second one.

period (Fig. 2, red curve). Since the analysis parameters are
used to compute the discharge over both the assimilation and
forecast periods, the correction ofS leads to a monotonic cor-
rection of the discharge over the flood event. Since the back-
ground discharges are underestimated over the entire event,
the assimilation of one observation allows for an improve-
ment of the entire flood simulation, especially the peak dis-
charge. For the background run, the peak discharge was un-
derestimated by 16 %, whereas after assimilation the peak is
overestimated by 7 %. The error in the flood peak estimation
was thus reduced by 9 % compared to the observed value. If
the difference between the background simulated discharges
and the observations is not monotonic, the correction calcu-
lated by data assimilation is insufficient (when the sign of
the difference is constant) or, worse, leads to a degradation
of the discharge simulation (when the sign of the difference
changes during the flood event). This last case is discussed in
Sect. 4.

Figure 3 provides an illustration of how the outer loop op-
erates. For each iteration of the outer loop, the non-quadratic
cost functionJ (x) (black curve) is approximated at the ref-
erence pointx l (blue cross for the first iteration, red for the
second) by a quadratic incremental cost functionJ inc

l (δx)

(blue curve for the first iteration, red for the second), which
has the same gradient asJ (x) at the reference pointx l . The
initial approximation ofJ (x) by J inc

1 (δx) is calculated about
the backgroundx1 =xb (blue cross). Next, the BLUE algo-
rithm gives the minimum,xa

1 (blue circle) ofJ inc
1 (δx). This

minimum serves as the linearization pointx2 =xa
1 (red cross)

during the next outer-loop iteration. As seen in Fig. 3,xa
2

provides a better approximation of the minimum ofJ (x)

than the one given byxa
1. In the tests conducted, only five



outer-loop iterations were performed due to computation cost
constraints. Nevertheless, this number of iterations still as-
sures that the minimum of the incremental cost function
J inc

l (δx) (red and blue circles) converges to the cost func-
tion minimumJ (x) (black circle). In our case the compu-
tational cost constraints with 5 iterations are low (few min-
utes) in comparison with the observation frequency (1 obser-
vation/h). In the case of a sliding time window, many more
model integrations would be necessary and one would want
to reduce the number of iterations to three.

3.4 Efficiency of the data assimilation method

To assess the efficiency of the data assimilation method in
forecasting the peak flow, the following criterion is defined:

EQp =

∣∣∣∣∣Qsim
p − Qobs

p

Qobs
p

∣∣∣∣∣ , (13)

whereQobs
p is the observed peak discharge, andQsim

p the
simulated peak discharge.EQpdenotes the relative deviation
with respect to the observed peak discharge; it can be cal-
culated either before assimilation (Eb

Qp computed with the

background peak discharge,Qb
p) or after (Ea

Q computed with

the analysis peak discharge,Qa
p). If 1EQp =Ea

Qp − Eb
Qp < 0,

then the assimilation procedure has improved the peak dis-
charge simulation.

The criterionEtp allows for the evaluation of the impact of
the data assimilation procedure on the peak discharge arrival
time and is defined by

Etp =

∣∣∣tsim
p − tobs

p

∣∣∣ , (14)

where tobs
p is the observed peak discharge arrival time and

tsim
p the simulated peak discharge arrival time. This offset

can be calculated before assimilation (Eb
tp computed using

the background peak discharge arrival timetb
p) or after (Ea

tp
computed using the analysis peak discharge arrival timeta

p).

If 1Etp =Ea
tp − Eb

tp < 0, then the assimilation technique has
reduced the time offset between the simulated and observed
peaks.

4 Results

4.1 Statistical interpretation of the S and/or V

correction

The assimilation procedure was applied to 12 flood events
containing 20 flood peaks in order to correct: (i) parameterS

alone, (ii) the transfer velocity,V alone, and iii) bothS andV

simultaneously. Table 2 presents the value of the parameters
S andV before (background value) and after (analysis value)
correction by the data assimilation method.

As expected, theS correction modifies the flood peak in-
tensity but not the peak arrival time as show in Fig. 4a and d.
The assimilation improves the flood peak estimation by an
average of 12 % over 14 of the simulated peaks (events pos-
itive values in Fig. 4a). For 2 peaks (events with no bar in
Fig. 4a), there are no observations above 20 m3 s−1 during
the assimilation period, thus no data points are assimilated.
For 4 peaks (events with negative values in Fig. 4a), the
assimilation procedure leads to the degradation of the peak
simulation for reasons that will be discussed in Part 5.

The parameterV correction has a less pronounced effect
on the flood peak intensity (Fig. 4b and e). For 9 of the
20 peaks tested, theV correction improved the peak inten-
sity by 8 % on average (negative1EQp in Fig. 4b). For the
other 9 peaks, the peak intensity was unchanged following
the V correction (zero1EQp in Fig. 4b), and for the last
2 peaks the correction degraded the quality of the flood peak
estimation (positive1EQp in Fig. 4b). As expected, the cor-
rection of this parameter also modified the flood peak arrival
time (non-zero1Etp). For 13 of the 20 peaks tested, the peak
arrival time remained unchanged (zero1Etp in Fig. 4e). For
2 of the peaks, the time offset between the simulated and ob-
served peaks was reduced by 1 h (negative1Etp in Fig. 4e),
and for the 5 remaining peaks, the offset increased by 1 h
(positive1Etp in Fig. 4e). The correction ofV by assimi-
lating discharges at the beginning of the flood tended to de-
grade rather than improve the simulated peak arrival time.
This is because flood discharges at the start of the event cor-
respond to the arrival of runoff located near the catchment
outlet. The transfer effect is thus limited for these initial dis-
charges, and the difference between simulated and observed
discharges stems from the runoff production. Because it is
not the source of uncertainty in this case, correcting a trans-
fer function parameter with the initial flood discharges may
introduce major errors into the discharge forecast. A correc-
tion of the value of the threshold that triggers the direct runoff
could be more efficient. This threshold has an influence on
the first discharges of the rising limb.

CorrectingS andV simultaneously allows for the modi-
fication of both the flood peak intensity and arrival time as
presented in Fig. 4c and f. For 14 of the 20 peaks, the correc-
tion of bothS andV serves to improve the flood peak estima-
tion by an average of 14 % (negative1EQp in Fig. 4c). For
2 peaks the correction had no impact (zero1EQp in Fig. 4c).
For 4 peaks theS andV corrections deteriorated the estima-
tion of the peak onset (positive1EQp in Fig. 4c). The flood
peak arrival time1Etp was also affected. In the majority of
cases (for 5 events out of the 6 with an altered arrival time fol-
lowing assimilation), the time offset between the simulated
and observed peaks increased (positive1Etp in Fig. 4f), as
presented in Fig. 4e.

To summarize the results presented in Fig. 4, in more than
75 % of cases, regardless of the corrected parameter, data
assimilation improves the estimation of the peak discharge
indicated by the negative value of1EQp. Nevertheless, the
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Fig. 4. Histograms that represent the correction efficiency on the estimation of the peak discharge value – histograms(a), (b) and(c) – and
on the estimation of the peak discharge arrival time – histograms(d), (e)and(f) – for respective correction onS, V and bothS andV .

correction ofV on its own or accompanied by theS correc-
tion actually hinders simulation quality, increasing the offset
between the simulated and observed peak arrival times. It is
thus preferable to avoid correctingV and to correctS alone.

4.2 Sensitivity to the ratio of the matrix B to the
matrix R

The efficiency of the assimilation procedure depends on the
ratio of the matrixB to the matrixR. The data assimilation
procedure was applied while varying the observation error
standard deviation between 0.01 and 100 m3.s−1 and keep-
ing the background error standard deviation equal to 19 % of
theS component ofxb. This experiment aims at demonstrat-
ing the validity of the data assimilation procedure as well as
confirming that the value selected for the observation error
standard deviationσR in this study is in agreement with a
physically reasonable value.σR indicates the relative error in
the river discharge observations.

Figure 5 shows that, as expected, data assimilation has a
larger impact when the observation error standard deviation
is smaller, meaning that the analysis is significantly different
from the background since more confidence is given to the
observations. For a standard deviation of 1 m3 s−1 and be-
low, the observations are assumed to be almost perfect and
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Fig. 5. Value of the1EQp criterion for the 20 flood peaks tested
for various observation error standard deviationsσR . Red crosses
correspond to extreme values, red lines represent the median, hori-
zontal blue lines represent the lower and upper quartiles and black
lines represent the lower and upper deciles.

the effects of the data assimilation method are the most im-
portant. These three boxplots present the same shape with
the same negative median value (median =−0.02), the same
largest spread (first quartile =−0.21 and third quartile = 0.02)
and the same two positive outliers (red crosses) correspond-
ing to the second peak of September 2005 and October 2001.



When the observation error standard deviationσR increases
above 1 m3 s−1, the confidence given to the observations is
reduced, and the effect of the assimilation algorithm grad-
ually decreases. WhenσR increases, the boxplot median
tends toward zero and the boxplot spread becomes narrower.
While the third quartile is equal to zero forσR greater than
10 m3 s−1, the first quartile becomes less and less negative.

When σR is equal to 10 m3 s−1, the flood peak simula-
tion is degraded for the October 2001 and September 2005
peaks, which are always both positive outliers. The deterio-
ration produced by data assimilation can be explained by an
underestimation of the observation error standard deviation
for October 2001 and by a difference in the rainfall estima-
tion between the 2 peaks for September 2005. For a stan-
dard deviation of 20 m3 s−1, only the September 2005 peak
is considerably degraded, which represents the only positive
outlier (red cross). The third quartile value is lower than for
10 m3 s−1, while the first quartile value remains high (relative
to the other tests). For these reasons this standard deviation
value (20 m3 s−1) was chosen for data assimilation.

5 Discussion

The correction ofS leads to a monotonic correction of the
flood discharge over the flood event. If the difference be-
tween the background simulated discharges and the obser-
vations is not monotonic, the correction calculated by data
assimilation is negligible (when the sign of the difference
is constant) or, in the worst case, leads to a degradation
of the discharge simulation (when the sign of the differ-
ence changes between the assimilation and forecast period).
This section details situations in which the data assimilation
procedure leads to a degradation of the flood peak simula-
tion as observed for the following events: the October 1994
(1st peak), December 1997, December 2002 (4th peak), and
September 2005 (2nd peak). Two situations were identified
as leading to a deterioration in estimation quality: (i) the
model does not reproduce the rising limb of the hydrograph
as quickly as it occurs in the observations (a situation en-
countered in all four problem cases); and (ii) in the case of
floods with multiple peaks (i.e. the fourth December 2002
peak and the second September 2005 peak), model error in
the peak discharge estimation differs from one peak to the
next.

The purpose of this discussion section is to analyze these
two situations, provide a solution to improve results and to
develop a set of limits for the use of this data assimilation
approach.

5.1 Model error in the simulation of the rising limb

For the four study peaks which were degraded following
assimilation, the model did not reproduce the flood rise
as quickly as the observations. Consequently, the sign of
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Fig. 6. Data assimilation results for the December 1997 event. The
blue curve corresponds to observations; the black curve is the back-
ground simulated hydrograph (before assimilation), and the red
curve is the simulated analysis hydrograph (after assimilation). Blue
crosses represent the assimilated data points.

the difference between the background and observed dis-
charges changes during these events. As seen with the De-
cember 1997 event (Fig. 6), the model without assimilation
(black curve) underestimates the discharge at the beginning
of the flood rise (before tinter), while it overestimates the
discharge at the end of the rise (after tinter). This situa-
tion can be deconstructed by noting that during the flood
rising phase, the observed and simulated hydrographs inter-
sect. Since the assimilation period includes a large number
of discharges underestimated by the model, the assimilation
technique tends to compensate for this underestimation by
lowering theS value. This correction exacerbates the peak
discharge overestimation (see Fig. 6, red curve: hydrograph
after assimilation). In these 4 problem cases, an assimila-
tion that uses observations well before the peak discharge
(i.e. prior to the intersection of the rising limbs of the hy-
drographs) uses excessively high discharge observations in
comparison with the simulated discharges that serve to am-
plify the flood peak overestimation.

In order to improve the assimilation results for these test
cases, we increase the value of the threshold above which ob-
served discharges are assimilated so as to only assimilate dis-
charges positioned after the intersection of the rising limbs.
Hence, this threshold has been raised from 20 to 60 m3 s−1

(Table 3).
The threshold increase from 20 to 60 m3 s−1 limits the de-

terioration of the fourth December 2002 peak (1EQp, de-
creases from +0.17 for the threshold at 20 m3 s−1 to +0.13 for
the threshold at 60 m3 s−1) and improves the December 1997
peak forecast (1EQp, decreases from +0.06 for the thresh-
old at 20 m3 s−1 to −0.04 for 60 m3 s−1). However, as the
threshold is increased there are no more observations left to
assimilate for the October 1994 (1st peak) event. The case
of September 2005 (2nd peak) will be discussed in Sect. 5.2.
In order to adjust the observation threshold, the observed hy-
drograph must be described up to the flood peak, which limits



Table 3. Comparison of the number of assimilated data points and
1EQp criteria for an observed discharge threshold set at either

20 or 60 m3 s−1.

Thresholdat20 m3 s−1 Threshold at 60 m3 s−1

Event No. of 1EQp No. of 1EQp
assimilated assimilated
data points data points

Oct1994,Peak 1 9 0.04 0 0
Dec 1997 20 0.06 5 −0.04
Dec 2002, Peak 4 91 0.17 29 0.13
Sep 2005, Peak 2 10 0.41 8 0.41

the use of this solution to past events only. Please note that
such an increase in the threshold value is acceptable as a sen-
sitivity test but not for real-time applications. If this higher
threshold limits the effects of the data assimilation method
for these four problematic peaks, the results would be proba-
bly less positive for all other peaks. An alternative approach
compatible with real-time forecasting would be to carry out
the data assimilation analysis using a sliding time window,
including observations as they become available to correct
the catchment wetness state over time. This sequential ap-
proach assumes that the uncertainty results not only from the
estimation of the initial condition of the model given by the
wetness state indicators, but also stems from the evolution
of the wetness state given by the model equations during the
event. With such an implementation, each observation would
be used once. At each time step, the analysis from the pre-
vious window becomes the background for the current win-
dow and theB matrix is evolved in time by the Kalman filter
equations.

5.2 Challenges in representing multiple peak episodes
presented by a sample case

Among the four peaks for which assimilation degraded sim-
ulation quality, two of them occurred following an initial dis-
charge peak. The loss of model quality observed after data
assimilation may thus be explained not only by a problem in
representing the flood rise, but also by an error in the estima-
tion of the rainfall peak, which differs from one peak to the
next. Such is the case for the second September 2005 peak
which displays 2 successive flood peaks (Fig. 7). The model
without assimilation (black curve) underestimated the first
observed flood peak (blue curve), while overestimating the
second. If the error is not monotonic over the 2 peaks, then
assimilating the discharge data from the first peak in order to
correct the second could lead to significant errors. To identify
the consequences of errors resulting from data assimilation,
the discharge data were then assimilated in two ways: (i) data
from both the first discharge peak and the beginning of the
second peak were assimilated (“grouped assimilation”); and
(ii) only discharge data from the beginning of the second
peak were assimilated (“separate” assimilation). In the first

 1 

 

 

Figure 7. Data assimilation results for the September 2005 event. The blue curve corresponds 
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Fig. 7. Data assimilation results for the September 2005 event.
The blue curve corresponds to observations; the black curve is the
background simulated hydrograph (before assimilation), and the red
curve is the analysis simulated hydrograph (after assimilation). Blue
crosses represent the assimilated data points.

case, the discharge data from all peaks were assimilated to-
gether in a “grouped” manner, while in the second case the
data from each peak were assimilated “separately”.

The separate assimilation was tested on both the fourth
December 2002 peak and second September 2005 peak. For
the latter, “separate” assimilation still deteriorated the flood
peak estimation (1EQp = +0.17), albeit to a lesser extent than
the grouped assimilation (1EQp = +0.42). For the fourth De-
cember 2002 peak, the separate assimilation approach im-
proved the flood peak estimation (1EQp =−0.14), whereas
the grouped approach still degraded the flood peak estima-
tion 1EQp = +0.17). The fact that the assimilation is unable
to improve both peaks reveals that model errors do not result
solely from an inaccurate specification ofS. Other sources of
errors have to be considered and corrected by the data assim-
ilation technique such as the threshold that triggers the runoff
or the rainfall that force the model. The correction of this last
component is within the scope of Harader et al. (2012). In the
case of the second or subsequent peaks in multi-peak events,
such as December 2002 or September 2005, uncertainties in
the parameters or variables which control the shape of the
falling limb, such as ds andw or stoc(t), could be also taken
into account.

6 Conclusions

Hydrological model calibration is essential for ensuring that
simulations are coherent with observations. The global cal-
ibration approach is insufficient as certain model parame-
ters (as well as their errors) are event dependent. Within the
framework of data assimilation, these parameters can be cal-
ibrated using observational data as they become available in
order to forecast the flood peak. In this study flood forecast-
ing is done using known future rainfall, while acknowledg-
ing that this would not be the case in a real-time framework.



The assimilation technique presented in this paper uses dis-
charges observed at the catchment outlet during the begin-
ning of the flood event in order to correct the initial deficit
of the soil moisture reservoir,S and/or the transfer speedV ,
which were found to be the most sensitive model parameters.
As a consequence, in most cases, the use of the corrected pa-
rameters allows for an improved representation and forecast
of the entire flood event.

In this study a BLUE algorithm together with an outer
loop procedure were built around a distributed, event-based,
parsimonious hydrological model. The outer loop accounts
for some of the non-linearities between the model parame-
ters and simulated discharges. The assimilation experiments
conducted in this study demonstrated that the correction ofS

is preferred over the correction ofV . TheS parameter influ-
ences the production function which plays an essential role in
the representation of discharges early in the flood event (dur-
ing the assimilation period), leading to an improvement in
the flood peak estimation for 75 % of the tested peaks when
correctingS. In contrast, the error in the observed discharge
at the beginning of the event is not related to errors in the
transfer function since its effect on the simulated hydrograph
is limited during this period; thus, the correction onV is not
recommended for this data assimilation approach.

Given that model parameters are assumed to be constant
over the flood event, the correction of the discharges intro-
duced by the algorithm is monotonic. Such a correction is not
well adapted to cases in which the difference between simu-
lated and observed discharges strongly varies over the flood
event, as illustrated for 25 % of the test cases. These results
can be improved by either using only observations above an
arbitrary threshold or separating multiple peak events into
distinct events. Possible improvement could be expected by
extending the data assimilation correction to other compo-
nents of the hydrological model such as the value of the
threshold that triggers the direct runoff, the parameters that
control the shape of the falling limb during multi-peak events
or the rainfall calculated over the catchment. This last cor-
rection is addressed in Harader et al. (2012). The present
study, which presents the benefits and the limitations of a
data assimilation for hydrological forecast, must be extended
to other lead times, other catchments and hydrological mod-
els in order to draw more general conclusions. A potential
follow-up to this study is the sequential application of the
data assimilation algorithm on a sliding time window as in
Ricci et al. (2011). This technique would take into account
the latest observations available to provide a time varying es-
timation of the model parameters over the flood event. This
sequential approach would deal with two kinds of uncertain-
ties: the estimation of the initial condition of the model given
by the indicators at the beginning of the event, and the evolu-
tion of the catchment wetness state given by the model dur-
ing the event. This kind of sequential assimilation could be
adapted to a real-time application.
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QuintanaSegúı, P., Martin, E., Habets, F., and Noilhan, J.: Im-
provement, calibration and validation of a distributed hydrolog-
ical model over France, Hydrol. Earth Syst. Sci., 13, 163–181,
doi:10.5194/hess-13-163-2009, 2009.

Refsgaard, J. C.: Validation and intercomparison of different updat-
ing procedure for real-time forecasting, Nord. Hydrol., 28, 65–
84, 1997.

Reichle,R. H.: Data assimilation methods in Earth sciences, Adv.
Water Resour., 31, 1411–1418, 2008.

Ricci, S., Piacentini, A., Thual, O., Le Pape, E., and Jonville, G.:
Correction of upstream flow and hydraulic state with data assim-
ilation in the context of flood forecasting, Hydrol. Earth Syst.
Sci., 15, 3555–3575, doi:10.5194/hess-15-3555-2011, 2011.

Talagrand, O.: Assimilation of observation, an introduction, J. Me-
teorol. Soc. Jpn., 75, 191–209, 1997.

http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/Assim_concepts21.html
http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/Assim_concepts21.html
http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/Assim_concepts21.html
http://dx.doi.org/10.5194/nhess-12-1119-2012
http://dx.doi.org/10.1029/2007JD008548
http://dx.doi.org/10.5194/hess-16-4247-2012
http://dx.doi.org/10.5194/hess-16-4247-2012
http://dx.doi.org/10.1029/2004WR003604
http://dx.doi.org/10.5194/npg-13-443-2006
http://dx.doi.org/10.5194/hess-13-163-2009
http://dx.doi.org/10.5194/hess-15-3555-2011


Tarantola, A.: Inverse problem theory and methods for model pa-
rameter estimation, edited by: Society for Industrial and Applied
Mathematics, SIAM, Philadelphia, 2004.

Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., and
Habets, F.: A past discharges assimilation system for ensemble
streamflow forecasts over France – Part 1: Description and val-
idation of the assimilation system, Hydrol. Earth Syst. Sci., 14,
1623–1637, doi:10.5194/hess-14-1623-2010,2010.

Toukourou, M. S., Johannet, A., Dreyfus, G., and Ayral, P.-A.: Flash
flood forecasting by statistical learning in the absence of rainfall
forecast: a case study, Eng. Appl. Neural Netw., 98–107, 2009.

Tramblay, Y., Bouvier, C., Martin, C., Didon-Lescot, J. F., Todor-
ovik, D., and Domergue, J. M.: Assessment of initial soil mois-
ture conditions for event-based rainfall–runoff modelling. J. Hy-
drol., 387, 176–187, 2010.

Weisse, A., Oudin, L., and Loumagne, C.: Assimilation of soil
moisture into hydrological models for flood forecasting: com-
parison of a conceptual rainfall–runoff model and a model with
an explicit counterpart for soil moisture, Revue des Sciences de
l’Eau, France, 16, 173–197, 2003.

Xiong,L. and O’Connor, K. M.: Comparison of four updating mod-
els for real-time river fow forecasting, Hydrolog. Sci. J., 47, 621–
639, 2002.

Yang, X. and Michel, C.: Flood forecasting with a watershed model:
a new method of parameter updating, Hydrolog. Sci. J., 45, 537–
546, 2000.

Zehe,E. and Bl̈oschl, G.: Predictability of hydrologic response at
the plot and catchment scales: Role of initial conditions, Water
Resour. Res., 40, W10202, doi:10.1029/2003WR002869, 2004.

http://dx.doi.org/10.5194/hess-14-1623-2010
http://dx.doi.org/10.1029/2003WR002869



