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Abstract

Everyone knows that π, e or Cn, the Champernowne number are transcen-
dentals, but what about π + e, π + Cn or e + Cn ? In this paper, we show a
method in the goal to know if they are.

The approach

A number is transcendantal if it is not the root of a polynomial equation

anx
n + an−1x

n−1 + ...+ a0 = 0

where ai are rational not all equal to zeo, else it is algebraic. We know that
π, e and Cn, the Champernowne number are transendantals, but we do
not know anything about e + π, π + Cn or e + Cn. Effectively, if A is trans-
cendantal : B transcendantal and we do not know the nature of A + B or
A−B. But if B is algebraic, then A+B and A−B are transcendantals. And
if A and B are algebraics, their sum and their différence are algebraics. Let
us trie to solve this problem. Let

C1 =













1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2













And let

C ′
1 =













0 5 10 15 20
10 15 20 0 5
20 0 5 10 15
5 10 15 20 0
15 20 0 5 10













1



Thus C1 + C ′
1 is a magic square. It contains all the numbers from 1 to 25.

Let

A =













1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1













And

C2 =













C1 C1 + 25A C1 + 50A C1 + 75A C1 + 100A
C1 + 75A C1 + 100A C1 C1 + 25A C1 + 50A
C1 + 25A C1 + 50A C1 + 75A C1 + 100A C1

C1 + 100A C1 C1 + 25A C1 + 50A C1 + 75A
C1 + 50A C1 + 75A C1 + 100A C1 C1 + 25A













And

C ′
2 =













C ′
1 C ′

1 C ′
1 C ′

1 C ′
1

C ′
1 C ′

1 C ′
1 C ′

1 C ′
1

C ′
1 C ′

1 C ′
1 C ′

1 C ′
1

C ′
1 C ′

1 C ′
1 C ′

1 C ′
1

C ′
1 C ′

1 C ′
1 C ′

1 C ′
1













The recurrence is

Ci+1 =













Ci Ci + 5iA Ci + 2.5iA Ci + 3.5iA Ci + 4.5iA
C1 + 3.5iA C1 + 4.5iA C1 C1 + 5iA C1 + 2.5iA
C1 + 5iA C1 + 2.5iA C1 + 3.5iA C1 + 4.5iA C1

C1 + 4.5iA C1 C1 + 5iA C1 + 2.5iA C1 + 3.5iA
C1 + 2.5iA C1 + 3.5iA C1 + 4.5iA C1 C1 + 5iA













And

C ′
i+1 =













C ′
i C ′

i C ′
i C ′

i C ′
i

C ′
i C ′

i C ′
i C ′

i C ′
i

C ′
i C ′

i C ′
i C ′

i C ′
i

C ′
i C ′

i C ′
i C ′

i C ′
i

C ′
i C ′

i C ′
i C ′

i C ′
i













And Ci + C ′
i is a magic square containing all the numbers from 1 to

5 + 20(5 + 52 + ...5i−1) + 20 = 5 + 100(1 + 5 + 52 + ...+ 5i−2) + 20

= 5 + 100(
5i−1 − 1

4
) + 20 = 5 + 25(5i−1 − 1) + 20 = 5i+1

The sum of Ci+1 is Si+1 = 5Si + 10.5i + 5S ′
i (S1 = 65, S ′

i = 50.5i−1). Hence

Si+1 = 5Si + 60.5i

5Si = 52Si−1 + 60.5i
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...

5i−1S2 = 5iS1 + 60.5i

5iS1 = 5i(65) = 13.5i+1

Si+1 = (60i+ 65)5i = (12i+ 13)5i+1

If M is the greatest number of the square, S the sum, the value of the
integer π.10pi that approaches π in the square (example between 1 and 25,
π.10pi = 3 and between 1 and 125, it is 31). The number π (pi) dépends of
M and S. This square contains pi first digit of π without the dot, we note
it : π.10pi. It contains also e.10pi and Cn.10

pi (and also π + e, πe, π + Cn,
πCn...). For i+ 1, the greatest number in the square is M = 5i+2 which has

E( (i+2) log 5
log 10

) = i + 1 ciphers and begins by 1, 2, 3 and then pi = i, or by a

number geater and then pi = i+ 1. The sum is Si+1 = (12i+ 13)5i+1 which
has less than pi + 2 ciphers. The sum Si.10

−pi tends, in the infinity, to a
number S which has less than three ciphers ! But Si is rational, thus S is
rational and algebraic.

Main results














































S = 20
A = S − π

B = S − e

C = S − Cn

A1 = S − π − e

A2 = S − π + e

A3 = S − πe

A4 = S − π2

We know that

S = π + A = e+B = π + e+ A1 = π − e + A2 = πe+ A3

Definition A real number is composed if it is equal to ±pn1

1 ...pni

i where pj
are integer prime numbers and nj are rationals. We define other real prime

numbers which can not be expressed like this : π, e, ln (2). Thus q
√
p = p

1

q is
composed.
Also n

√
p + 1 is prime, with p prime, hence

√
p − 1 = (p − 1)(

√
p + 1)−1 is

composed !
And π and e are primes in stead of πn0 and em0 with (n0 − 1)(m0 − 1) 6= 0.
We define the GCD of two numbers : If p1 and p2 are prime real numbers

p1 6= p2 ⇒ GCD(p1, p2) = 1

n1n2 < 0 ⇒ GCD(pn1

1 , pn2

1 ) = 1
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n1n2 > 0 ⇒ GCd(pn1

1 , pn2

1 ) = p
max(n1,n2)−min(n1,n2)
1

GCD(pn1

1 pn2

2 ...pni

i , p1
′n′

1p2
′n′

2 ...pj
′n′

j ) =
∏

i 6=j

GCD(pni

i , p′j
n′

j)

And if x = pn1

1 pn2

2 ...pni

i and y = p
nm1

m1
...pmi

mi
then y divises x if 1 < ml < i for

1 ≤ l ≤ i and for mi = j, |nmi
| < |j].

Theorem If T1 and T2 are transcendental prime real numbers, T1T2 and
T1 + T2 are transcendentals.

Proof of the theorem Let T1 = S − A and T2 = S − B (S algebraic) two
real prime transcendental numbers. We have

nTi
2 −mTi + (−nTi +m)Ti = 0

n is algebraic, i ∈ {1, 2{, as Ti is transcendental, it can not be solution of a
polynomial equation, thus (−nTi +m)Ti is transcendental ∀m,n algebraic.
We have possibilities, for all (m,n) 1) T1T

n
2 = TA and T1 + mTm

2 are al-
gebraics ∀m,n 2) T1T

n
2 is algebraic and T1 +mTm

2 is transcendental, ∀m,n

3) T1T
n
2 is transcendental and T1 + mTm

2 is algebraic, ∀m,n 4) T1T
n
2 and

T1 +mTm
2 are transcendentals, ∀m,n

Thus 1)
m = n implies that nT1T

n
2 and T1 + nT n

2 are algebraics, but

T 2
1 − (T1 + nT n

2 )T2 + nT1T
n
2 = 0

Is impossible means that they can not be algebraics simultaneously !
2)
T1T

n
2 + n = (T1 + nT−n

2 )T n
2 = TAT

n
2 = AA is algebraic and T1 + nT−n

2 = TA

is transcendental.
And T1T

−n
2 + n = (T1 + nT n)T−n

2 = T ′
AT

−n
2 = A′

A is algebraic, with T1 +
nT n

2 = T ′
A transcendental

TAT
′
A = AAA

′
A = (T1 + nT n

2 )(T1 + nT−n
2 ) = T 2

1 + n2 + nT1T
n
2 + nT1T

−n
2

means that T 2
1 is algebraic and it is impossible ! 3)

T1T
n
2 + n = (T1 + nT−n

2 )T n
2 = AAT

n
2 = TA is transcendental and T1 + nT−n

2

is algebraic
2T1T

−n
2 + n = (2T1 + nT n

2 )T
−n
2 = A′

AT
−n
2 = T ′

A

AAA
′
A = TAT

′
A = (T1T

n
2 + n)(2T1T

−n
2 + n)

= 2T 2
1 + n2 + nT1(T2 + T−n

2 ) = n2 + T1(T1 + nT−n
2 + T1 + nT n

2 )

And = n2 + T1A
′′
A = AA.A

′
A

Where A′′
A, A

′
A, AA are algebraics and it is impossible !

Thus T1T
n
2 and T1 +mTm

2 are transcendentals for all m,n.
Thus T1T2, T1T

−1
2 , T2T

−1
1 , T1 − T2 and T1 + T2 are transcendentals ! In our
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hypothesis T1 and T2 are primes, we can not have T1 = uT−1
2 , we can not

have T1 + T2 = AA an algebraic number, as T1T
m
2 = Tm

2 (AA − T2) is never
algebraic !

Application of the theorem T1 = π and T2 = e are transcendental prime
real numbers. We have T1T2 = eπ and T1 + T2 = e+ π, are transcendentals
for example !
If πm and en are the prime numbers, then πmen and πm + en are transcen-
dental for all m,n.
Also, by the same way, we prove that πn, em, Cn

r, πnem, Cn
rπn and Cn

rem

are transcendentals for all n,m, r !

Conclusion

We did not presented like this, but we have given a method to find the na-
ture of several numbers, we have shown the nature of πnem, πnCn

p, emCn
p,

πn, em and Cn
p...
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