About the transcendentality of some numbers

Jamel Ghannouchi

To cite this version:

Jamel Ghannouchi. About the transcendentality of some numbers. 2013. hal-00808463v11

HAL Id: hal-00808463 https://hal.science/hal-00808463v11

Preprint submitted on 8 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

About the transcendentality of some numbers

Jamel Ghanouchi
Ecole Supérieure des Sciences et Techniques de Tunis
jamel.ghanouchi@topnet.tn

Abstract

Everyone knows that π, e or C_{n}, the Champernowne number are transcendentals, but what about $\pi+e, \pi+C_{n}$ or $e+C_{n}$? In this paper, we demonstrate a method in order to know if they also are.

The approach

A number is transcendantal if it is not the root of a polynomial equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}=0
$$

where a_{i} are rational and different from zero, otherwise it would be algebraic. We know that π, e and C_{n}, the Champernowne number are transendentals, but we do not know anything about $e+\pi, \pi+C_{n}$ or $e+C_{n}$. Effectively, if A is transcendental : B transcendantal, we still do not know the nature of $A+B$ or $A-B$. But if B is algebraic, then $A+B$ and $A-B$ are transcendantals. And if A and B are algebraics, their sum as well as their différence are algebraics. Let us trie to solve this problem. Let us take

$$
C_{1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 1 & 2 & 3 \\
2 & 3 & 4 & 5 & 1 \\
5 & 1 & 2 & 3 & 4 \\
3 & 4 & 5 & 1 & 2
\end{array}\right)
$$

And take

$$
C^{\prime}{ }_{1}=\left(\begin{array}{ccccc}
0 & 5 & 10 & 15 & 20 \\
10 & 15 & 20 & 0 & 5 \\
20 & 0 & 5 & 10 & 15 \\
5 & 10 & 15 & 20 & 0 \\
15 & 20 & 0 & 5 & 10
\end{array}\right)
$$

Thus $C_{1}+C^{\prime}$ is a magic square. It contains all the numbers from 1 to 25 . Let us take

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

And

$$
C_{2}=\left(\begin{array}{ccccc}
C_{1} & C_{1}+25 A & C_{1}+50 A & C_{1}+75 A & C_{1}+100 A \\
C_{1}+75 A & C_{1}+100 A & C_{1} & C_{1}+25 A & C_{1}+50 A \\
C_{1}+25 A & C_{1}+50 A & C_{1}+75 A & C_{1}+100 A & C_{1} \\
C_{1}+100 A & C_{1} & C_{1}+25 A & C_{1}+50 A & C_{1}+75 A \\
C_{1}+50 A & C_{1}+75 A & C_{1}+100 A & C_{1} & C_{1}+25 A
\end{array}\right)
$$

And

$$
C^{\prime}{ }_{2}=\left(\begin{array}{lllll}
C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} \\
C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} \\
C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} \\
C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} \\
C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1} & C^{\prime}{ }_{1}
\end{array}\right)
$$

The mathematical induction is

$$
C_{i+1}=\left(\begin{array}{ccccc}
C_{i} & C_{i}+5^{i} A & C_{i}+2.5^{i} A & C_{i}+3.5^{i} A & C_{i}+4.5^{i} A \\
C_{1}+3.5^{i} A & C_{1}+4.5^{i} A & C_{1} & C_{1}+5^{i} A & C_{1}+2.5^{i} A \\
C_{1}+5^{i} A & C_{1}+2.5^{i} A & C_{1}+3.5^{i} A & C_{1}+4.5^{i} A & C_{1} \\
C_{1}+4.5^{i} A & C_{1} & C_{1}+5^{i} A & C_{1}+2.5^{i} A & C_{1}+3.5^{i} A \\
C_{1}+2.5^{i} A & C_{1}+3.5^{i} A & C_{1}+4.5^{i} A & C_{1} & C_{1}+5^{i} A
\end{array}\right)
$$

And

$$
C^{\prime}{ }_{i+1}=\left(\begin{array}{lllll}
C^{\prime} & C^{\prime}{ }_{i} & C^{\prime}{ }_{i} & {C^{\prime}}_{i} & C^{\prime}{ }_{i} \\
C_{i}^{\prime} & C_{i}^{\prime} & C_{i}^{\prime} & C_{i}^{\prime} & C^{\prime}{ }_{i} \\
C_{i}^{\prime} & C_{i}^{\prime} & C_{i}^{\prime} & C_{i}^{\prime} & C^{\prime}{ }_{i} \\
C^{\prime} & C_{i}^{\prime} & C^{\prime}{ }_{i} & {C^{\prime}}_{i} & C^{\prime}{ }_{i} \\
C^{\prime}{ }_{i} & C^{\prime}{ }_{i} & C^{\prime}{ }_{i} & C^{\prime}{ }_{i} & C^{\prime}{ }_{i}
\end{array}\right)
$$

And $C_{i}+C^{\prime}{ }_{i}$ is a magic square containing all the numbers from 1 to

$$
\begin{gathered}
5+20\left(5+5^{2}+\ldots 5^{i-1}\right)+20=5+100\left(1+5+5^{2}+\ldots+5^{i-2}\right)+20 \\
=5+100\left(\frac{5^{i-1}-1}{4}\right)+20=5+25\left(5^{i-1}-1\right)+20=5^{i+1}
\end{gathered}
$$

The sum of C_{i+1} is $S_{i+1}=5 S_{i}+10.5^{i}+5 S^{\prime}{ }_{i}\left(S_{1}=65, S^{\prime}{ }_{i}=50.5^{i-1}\right)$. Hence

$$
\begin{gathered}
S_{i+1}=5 S_{i}+60.5^{i} \\
5 S_{i}=5^{2} S_{i-1}+60.5^{i}
\end{gathered}
$$

$$
\begin{gathered}
5^{i-1} S_{2}=5^{i} S_{1}+60.5^{i} \\
5^{i} S_{1}=5^{i}(65)=13.5^{i+1} \\
S_{i+1}=(60 i+65) 5^{i}=(12 i+13) 5^{i+1}
\end{gathered}
$$

If M is the greatest number of the square, S the sum, the value of the integer $\pi .10^{p_{i}}$ that approaches π in the square (example between 1 and 25 , $\pi .10^{p_{i}}=3$ and between 1 and 125, it is 31). The number $\pi\left(p_{i}\right)$ depends on M and S. This square contains p_{i} first digit of π without the dot, we note it : $\pi .10^{p_{i}}$. It contains also $e .10^{p_{i}}$ and $C_{n} \cdot 10^{p_{i}}$ (and also $\pi+e, \pi e, \pi+C_{n}$, $\left.\pi C_{n} \ldots\right)$. For $i+1$, the greatest number in the square is $M=5^{i+2}$ which has $E\left(\frac{(i+2) \log 5}{\log 10}\right)=i+1$ ciphers and begins with $1,2,3$ and then $p_{i}=i$, or with a greater number and then $p_{i}=i+1$. The sum is $S_{i+1}=(12 i+13) 5^{i+1}$ which has less than $p_{i}+2$ ciphers. The sum $S_{i} \cdot 10^{-p_{i}}$ tends, in the infinity, to a number S which has less than three ciphers! But S_{i} is rational, thus S is rational and algebraic.

Main results

$$
\left\{\begin{array}{l}
S=20 \\
A=S-\pi \\
B=S-e \\
C=S-C_{n} \\
A_{1}=S-\pi-e \\
A_{2}=S-\pi+e \\
A_{3}=S-\pi e \\
A_{4}=S-\pi^{2}
\end{array}\right.
$$

We know that

$$
S=\pi+A=e+B=\pi+e+A_{1}=\pi-e+A_{2}=\pi e+A_{3}
$$

Definition The following numbers can be called bricks or elements, because they constitute the bricks of the numbers. They exist, of course, and we prefer to call them prime numbers because they really generalize the concept of primes. Let us see this : A real number is compound if it is equal to $\pm p_{1}^{n_{1}} \ldots p_{i}^{n_{i}}$ where p_{j} are integer prime numbers and n_{j} are rationals. We define other real prime numbers which cannot be expressed like this: π, e, $\ln (2)$. Thus $\sqrt[q]{p}=p^{\frac{1}{q}}$ is compound.
Also $\sqrt[n]{p}+1$ is prime, with p prime, hence $\sqrt{p}-1=(p-1)(\sqrt{p}+1)^{-1}$ is compound!
Furthermore π and e are primes instead of $\pi^{n_{0}}$ and $e^{m_{0}}$ with $\left(n_{0}-1\right)\left(m_{0}-\right.$ 1) $\neq 0$.

We define the GCD of two numbers as following : If p_{1} and p_{2} are prime real numbers

$$
\begin{gathered}
p_{1} \neq p_{2} \Rightarrow G C D\left(p_{1}, p_{2}\right)=1 \\
n_{1} n_{2}<0 \Rightarrow G C D\left(p_{1}^{n_{1}}, p_{1}^{n_{2}}\right)=1 \\
n_{1} n_{2}>0 \Rightarrow G C d\left(p_{1}^{n_{1}}, p_{1}^{n_{2}}\right)=p_{1}^{\min \left(n_{1}, n_{2}\right)} \\
G C D\left(p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{i}^{n_{i}}, p_{1}^{\prime n_{1}^{\prime}} p_{2}^{\prime n_{2}^{\prime}} \ldots p_{j}^{\prime n_{j}^{\prime}}\right)=\prod_{i, j} G C D\left(p_{i}^{n_{i}}, p_{j}^{\prime \prime_{j}^{\prime}}\right)
\end{gathered}
$$

And if $x=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{i}^{n_{i}}$ and $y=p_{l_{1}}^{m_{l_{1}}} \ldots p_{l_{i}}^{m_{l_{j}}}$ then y divides x if $1<l_{k}<i$ and for $l_{i}=j, n_{j} m_{l_{i}}>0,\left|m_{l_{i}}\right|<\left|n_{j}\right|$.
Thus $\frac{3}{2}$ does not divise the prime 3.

Theorem If T_{1}^{\prime} and T_{2}^{\prime} are transcendental prime real numbers, $T_{1}^{\prime} T_{2}^{\prime}$ and $T_{1}^{\prime}+T_{2}^{\prime}$ are transcendentals.

Proof of the theorem Let us take T_{1} and T_{2} two real compound transcendental numbers.
We have 4 possibilities
1)
$T_{1} T_{2}^{n}$ and $T_{1}+m T_{2}$ are algebraics
2)
$T_{1} T_{2}^{n}$ is algebraic and $T_{1}+m T_{2}$ is transcendental
3)
$T_{1} T_{2}^{n}$ is transcendental and $T_{1}+m T_{2}$ is algebraic
4)
$T_{1} T_{2}^{n}$ and $T_{1}+m T_{2}$ are transcendentals, $\forall m, n$
Thus
1)
$T_{1} T_{2}^{n}=A_{A}$ and $T_{1}+m T_{2}=A_{A}^{\prime}$ are algebraics, then

$$
T_{1} T_{2}^{n}+m T_{2}^{n+1}=A_{A}+m T_{2}^{n+1}=A_{A}^{\prime} T_{2}^{n}
$$

And T_{2} is supposed to be the fitting solution to this algebraic equation : it is impossible!
2)

If $T_{1} T_{2}^{n}$ and $T_{1} T_{2}^{n^{\prime}}$ are algebraics, then
$T_{1} T_{2}^{n}\left(T_{1} T_{2}^{n^{\prime}}\right)^{-1}=T_{2}^{n-n^{\prime}}$ is algebraic and it is impossible with $n \neq n^{\prime}$
There is only one $n=n_{0}$ for which $T_{1} T_{2}^{n}$ is algebraic, all the others are transcendentals!
If we suppose that n_{0} is not unique, there are three possibilities : $T_{1} T_{1}^{\prime}\left(T_{2} T_{2}^{\prime}\right)^{n}$ is transcendental for all n or $T_{1} T_{1}^{\prime-1}\left(T_{2} T_{2}^{\prime-1}\right)^{n}$ is transcendental for all n or
there exists l_{0} and l_{0}^{\prime} for which

$$
\left\{\begin{array}{l}
T_{1} T_{2}^{n_{0}}=A_{A} \\
T_{1}^{\prime} T_{2}^{\prime n_{0}^{\prime}}=A_{A}^{\prime} \\
T_{1} T_{1}^{\prime}\left(T_{2}^{\prime} T_{2}\right)^{l_{0}}=A_{A}^{\prime \prime} \\
T_{1} T_{1}^{\prime-1}\left(T_{2} T_{2}^{\prime-1}\right)^{l_{0}^{\prime}}=A_{A}^{\prime \prime \prime}
\end{array}\right.
$$

are algebraics, we have

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{A}^{2} T_{2}^{l_{0}+l_{0}^{\prime}-2 n_{0}} T_{2}^{l_{0}-l_{0}^{\prime}}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} \\
A_{A}^{\prime 2} T_{2}^{l_{0}-l_{0}^{\prime}} T_{2}^{l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime}-1 \\
A_{A} A_{A}^{\prime} T_{2}^{l_{0}-n_{0}} T_{2}^{l_{0}-n_{0}^{\prime}}=A_{A}^{\prime \prime} \\
A_{A} A_{A}^{\prime-1} T_{2}^{l_{0}^{\prime}-n_{0}} T_{2}^{n_{0}^{\prime}-l_{0}^{\prime}}=A_{A}^{\prime \prime}
\end{array}\right. \\
& \\
& \Rightarrow\left\{\begin{array}{l}
T_{2}^{A}=A^{\prime} T_{2}^{\prime B} \\
A=l_{0}+l_{0}^{\prime}-2 n_{0} \\
B=l_{0}^{\prime}-l_{0} \\
A^{\prime}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} A_{A}^{-2} \\
T_{2}^{-B}=B_{2}^{\prime} T_{2}^{\prime C} \\
C=-\left(l_{0}+l_{0}-2 n_{0}^{\prime}\right) \\
B^{\prime}=A_{A}^{\prime 2} A_{A}^{\prime \prime-1} A_{A}^{\prime \prime \prime} \\
T_{2}^{D}=C^{\prime} T_{2}^{\prime E} \\
D=l_{0}-n_{0} \\
E=n_{0}^{\prime}-l_{0} \\
C^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime-1} \\
T_{2}^{F}=D^{\prime} T_{2}^{\prime G} \\
F=l_{0}^{\prime}-n_{0} \\
G=l_{0}^{\prime}-n_{0}^{\prime} \\
D^{\prime}=A_{A}^{\prime \prime \prime} A_{A}^{-1} A_{A}^{\prime}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
T_{2}^{-A B}=A^{\prime-B} T_{2}^{\prime-B^{2}} \\
=T_{2}^{-A B}=B^{\prime A} T_{2}^{\prime A C} \\
T_{2}^{\prime B C}=A^{\prime-C} T_{2}^{A C} \\
=T_{2}^{\prime B C}=B^{\prime-B} T_{2}^{-B^{2}} \\
T_{2}^{D G}=C^{\prime G} T_{2}^{\prime E G} \\
T_{2}^{E F}=D^{\prime E} T_{2}^{\prime E G}=D^{\prime E} C^{\prime-G} T_{2}^{D G} \\
T_{2}^{A E}=A^{E E} T_{2}^{\prime B E}=T_{2}^{D B} C^{\prime-B} \\
A=l_{0}+l_{0}^{\prime}-2 n_{0} \\
B=l_{0}^{\prime}-l_{0} \\
A^{\prime}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} A_{A}^{-2} \\
\left.C=-l_{0}+l_{0}-2 n_{0}^{\prime}\right) \\
B^{\prime}=A_{A}^{\prime 2} A_{A}^{\prime \prime-1} A_{A}^{\prime \prime \prime} \\
D=l_{0}-n_{0} \\
E=n_{0}^{\prime}-l_{0} \\
F=l_{0}^{\prime}-n_{0} \\
G=l_{0}^{\prime}-n_{0}^{\prime} \\
C^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime-1} \\
D^{\prime}=A_{A}^{\prime \prime \prime} A_{A}^{-1} A_{A}^{\prime}
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
-B^{2}=A C=-\left(l_{0}-l_{0}^{\prime}\right)^{2}=-\left(l_{0}+l_{0}^{\prime}-2 n_{0}\right)\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right) \\
E F=D G=\left(n_{0}^{\prime}-l_{0}\right)\left(l_{0}^{\prime}-n_{0}\right)=\left(l_{0}-n_{0}\right)\left(l_{0}^{\prime}-n_{0}^{\prime}\right) \\
A E=D B=\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right)\left(n_{0}^{\prime}-l_{0}\right)=\left(l_{0}^{\prime}-l_{0}\right)\left(l_{0}-n_{0}\right) \\
B^{\prime-B^{2}}=B^{\prime A C}=A^{\prime-B C} \\
A=l_{0}+l_{0}^{\prime}-2 n_{0} \\
B=l_{0}^{\prime}-l_{0} \\
A^{\prime}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} A_{A}^{-2} \\
C=-\left(l_{0}+l_{0}-2 n_{0}^{\prime}\right) \\
B^{\prime}=A_{A}^{\prime 2} A_{A}^{\prime \prime-1} A_{A}^{\prime \prime \prime} \\
D=l_{0}-n_{0} \\
E=n_{0}^{\prime}-l_{0} \\
F=l_{0}^{\prime}-n_{0} \\
G=l_{0}^{\prime}-n_{0}^{\prime} \\
C^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime-1} \\
D^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
-B^{2}=A C=-\left(l_{0}-l_{0}^{\prime}\right)^{2}=-\left(l_{0}+l_{0}^{\prime}-2 n_{0}\right)\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right) \\
\left(n_{0}-n_{0}^{\prime}\right)^{2}=\left(n_{0}+n_{0}^{\prime}-2 l_{0}\right)\left(n_{0}+n_{0}^{\prime}-2 l_{0}^{\prime}\right) \\
\left(n_{0}^{\prime}-l_{0}\right)\left(l_{0}^{\prime}-n_{0}\right)=\left(l_{0}-n_{0}\right)\left(l_{0}^{\prime}-n_{0}^{\prime}\right) \\
A E=D B=\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right)\left(n_{0}^{\prime}-l_{0}\right)=\left(l_{0}^{\prime}-l_{0}\right)\left(l_{0}-n_{0}\right)
\end{array}\right. \\
& \left(n_{0}^{\prime}-l_{0}\right)\left(l_{0}+2 l_{0}^{\prime}-n_{0}-2 n_{0}^{\prime}\right)=\left(l_{0}-n_{0}\right)\left(2 l_{0}^{\prime}-l_{0}-n_{0}^{\prime}\right) \\
& =\left(n_{0}^{\prime}-l_{0}\right)\left(l_{0}-n_{0}\right)+\left(n_{0}^{\prime}-l_{0}\right)\left(2 l_{0}^{\prime}-2 n_{0}^{\prime}\right)=\left(l_{0}-n_{0}\right)\left(l_{0}^{\prime}-n_{0}^{\prime}\right)+\left(l_{0}-n_{0}\right)\left(l_{0}^{\prime}-l_{0}\right) \\
& A=l_{0}+l_{0}^{\prime}-2 n_{0} \\
& B=l_{0}^{\prime}-l_{0} \\
& \Rightarrow\left\{\begin{array}{l}
A^{\prime}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} A_{A}^{-2} \\
C=-\left(l_{0}+l_{0}-2 n_{0}^{\prime}\right)
\end{array}\right. \\
& B^{\prime}=A_{A}^{\prime 2} A_{A}^{\prime \prime-1} A_{A}^{\prime \prime \prime} \\
& D=l_{0}-n_{0} \\
& E=n_{0}^{\prime}-l_{0} \\
& F=l_{0}^{\prime}-n_{0} \\
& G=l_{0}^{\prime}-n_{0}^{\prime} \\
& \begin{array}{l}
C^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime-1} \\
D^{\prime}=A_{A}^{\prime \prime \prime} A_{A}^{-1} A_{A}^{\prime}
\end{array} \\
& \left\{\begin{array}{l}
-B^{2}=A C=-\left(l_{0}-l_{0}^{\prime}\right)^{2}=-\left(l_{0}+l_{0}^{\prime}-2 n_{0}\right)\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right) \\
\left(n_{0}-n_{0}^{\prime}\right)^{2}=\left(n_{0}+n_{0}^{\prime}-2 l_{0}\right)\left(n_{0}+n_{0}^{\prime}-2 l_{0}^{\prime}\right) \\
\left(n_{0}^{\prime}-l_{0}\right)\left(l_{0}^{\prime}-n_{0}\right)=\left(l_{0}-n_{0}\right)\left(l_{0}^{\prime}-n_{0}^{\prime}\right) \\
A E=D B=\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right)\left(n_{0}^{\prime}-l_{0}\right)=\left(l_{0}^{\prime}-l_{0}\right)\left(l_{0}-n_{0}\right)
\end{array}\right. \\
& \left(l_{0}-n_{0}\right)\left(n_{0}^{\prime}-l_{0}^{\prime}\right)=\left(l_{0}^{\prime}-n_{0}^{\prime}\right)\left(l_{0}-n_{0}-2 n_{0}^{\prime}+2 l_{0}\right)=\left(l_{0}^{\prime}-n_{0}^{\prime}\right)\left(3 l_{0}-n_{0}-2 n_{0}^{\prime}\right) \\
& A=l_{0}+l_{0}^{\prime}-2 n_{0} \\
& B=l_{0}^{\prime}-l_{0} \\
& A^{\prime}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} A_{A}^{-2} \\
& \Rightarrow\left\{\begin{array}{l}
B=-\left(l_{0}+l_{0}-2 n_{0}^{\prime}\right) \\
C \\
B^{\prime \prime} A^{\prime 2} A^{\prime \prime-1} A^{\prime \prime \prime}
\end{array}\right. \\
& B^{\prime}=A_{A}^{\prime 2} A_{A}^{\prime \prime-1} A_{A}^{\prime \prime \prime} \\
& D=l_{0}-n_{0} \\
& E=n_{0}^{\prime}-l_{0} \\
& F=l_{0}^{\prime}-n_{0} \\
& G=l_{0}^{\prime}-n_{0}^{\prime} \\
& \begin{array}{l}
C^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime-1} \\
D^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime}
\end{array}
\end{aligned}
$$

$$
\Rightarrow\left\{\begin{array}{l}
-B^{2}=A C=-\left(l_{0}-l_{0}^{\prime}\right)^{2}=-\left(l_{0}+l_{0}^{\prime}-2 n_{0}\right)\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right) \\
\left(n_{0}-n_{0}^{\prime}\right)^{2}=\left(n_{0}+n_{0}^{\prime}-2 l_{0}\right)\left(n_{0}+n_{0}^{\prime}-2 l_{0}^{\prime}\right) \\
\left(n_{0}^{\prime}-l_{0}\right)\left(l_{0}^{\prime}-n_{0}\right)=\left(l_{0}-n_{0}\right)\left(l_{0}^{\prime}-n_{0}^{\prime}\right) \\
A E=D B=\left(l_{0}+l_{0}^{\prime}-2 n_{0}^{\prime}\right)\left(n_{0}^{\prime}-l_{0}\right)=\left(l_{0}^{\prime}-l_{0}\right)\left(l_{0}-n_{0}\right) \\
\left(l_{0}^{\prime}-n_{0}^{\prime}\right)\left(-n_{0}+l_{0}+3 l_{0}-n_{0}-2 n_{0}^{\prime}\right)=0=\left(l_{0}^{\prime}-n_{0}^{\prime}\right)\left(4 l_{0}-2 n_{0}-2 n_{0}^{\prime}\right) A=l_{0}+l_{0}^{\prime}-2 n_{0} \\
B=l_{0}^{\prime}-l_{0} \\
A^{\prime}=A_{A}^{\prime \prime} A_{A}^{\prime \prime \prime} A_{A}^{-2} \\
C=-\left(l_{0}+l_{0}-2 n_{0}^{\prime}\right) \\
B^{\prime}=A_{A}^{\prime 2} A_{A}^{\prime \prime-1} A_{A}^{\prime \prime \prime} \\
D=l_{0}-n_{0} \\
E=n_{0}^{\prime}-l_{0} \\
F=l_{0}^{\prime}-n_{0} \\
G=l_{0}^{\prime}-n_{0}^{\prime} \\
C^{\prime}=A_{A}^{\prime \prime} A_{A}^{-1} A_{A}^{\prime-1} \\
D^{\prime}=A_{A}^{\prime \prime \prime} A_{A}^{-1} A_{A}^{\prime} \quad \Rightarrow l_{0}=l_{0}^{\prime}=n_{0}^{\prime}=n_{0}
\end{array}\right.
$$

n_{0} is unique
3)
$\left(T_{1}+n T_{2}\right)-\left(T_{1}+n^{\prime} T_{2}\right)=\left(n-n^{\prime}\right) T_{2}=A_{A}$ is algebraic, T_{2} could not be a solution to this algebraic equation, this can not be possible while $n=n^{\prime}$.
There is only one possibility, it is when $n=m_{0}$ making $T_{1}+n T_{2}$ algebraic, since all the others are transcendentals!
If m_{0} is not unique, there are three possibilities : $T_{1}+T_{1}^{\prime}+m\left(T_{2}+T_{2}^{\prime}\right)$ is transcendental for all m or $T_{1}-T_{1}^{\prime}+m\left(T_{2}-T_{2}^{\prime}\right)$ is transcendental for all m or there exists l_{0}, l_{0}^{\prime} for which

$$
\left\{\begin{array}{l}
T_{1}+m_{0} T_{2}=A_{A} \\
T_{1}^{\prime}+m_{0}^{\prime} T_{2}^{\prime}=A_{A}^{\prime} \\
T_{1}+T_{1}^{\prime}+l_{0}\left(T_{2}+T_{2}^{\prime}\right)=A_{A}^{\prime \prime} \\
T_{1}-T_{1}^{\prime}+l_{0}^{\prime}\left(T_{2}-T_{2}^{\prime}\right)=A_{A}^{\prime \prime}
\end{array}\right.
$$

algebraics, then

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 T_{1}+l_{0}\left(T_{2}+T_{2}^{\prime}\right)+l_{0}^{\prime}\left(T_{2}-T_{2}^{\prime}\right)=A_{A}^{\prime \prime}+A_{A}^{\prime \prime \prime} \\
=2 T_{1}+2 m_{0} T_{2}+l_{0}\left(T_{2}+T_{2}^{\prime}\right)+l_{0}^{\prime}\left(T_{2}-T_{2}^{\prime}\right)-2 m_{0} T_{2} \\
=2 A_{A}+\left(l_{0}+l_{0}^{\prime}-2 m_{0}\right) T_{2}+\left(l_{0}-l_{0}^{\prime}\right) T_{2}^{\prime} \\
2 T_{1}^{\prime}+l_{0}\left(T_{2}+T_{2}^{\prime}\right)-l_{0}^{\prime}\left(T_{2}-T_{2}^{\prime}\right)=A_{A}^{\prime \prime}-A_{A}^{\prime \prime \prime} \\
2 A_{A}^{\prime}+\left(l_{0}-l_{0}^{\prime}\right) T_{2}+\left(l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime}\right) T_{2}^{\prime}
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
A T_{2}+B T_{2}^{\prime}=C \\
A=l_{0}+l_{0}^{\prime}-2 m_{0} \\
B=l_{0}-l_{0}^{\prime} \\
C=A_{A}^{\prime \prime}+A_{A}^{\prime \prime \prime}-2 A_{A} \\
B T_{2}+B^{\prime} T_{2}^{\prime}=C^{\prime} \\
B^{\prime}=l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime} \\
C^{\prime}=A_{A}^{\prime \prime}-A_{A}^{\prime \prime \prime}-2 A_{A}^{\prime}
\end{array}\right.
\end{aligned}
$$

$$
\left.\left.\begin{array}{c}
\\
\end{array} \begin{array}{l}
A B T_{2}+B^{2} T_{2}^{\prime}=B C \\
B^{\prime} A T_{2}+B B^{\prime} T_{2}^{\prime}=B^{\prime} C \\
A B T_{2}+A B^{\prime} T_{2}^{\prime}=A C^{\prime} \\
B^{2} T_{2}+B B^{\prime} T_{2}^{\prime}=B^{\prime} C^{\prime} \\
A=l_{0}+l_{0}^{\prime}-2 m_{0} \\
B=l_{0}^{\prime}-l_{0} \\
C=A_{A}^{\prime \prime}+A_{A}^{\prime \prime \prime}-2 A_{A} \\
B^{\prime}=l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime} \\
C^{\prime}=A_{A}^{\prime \prime}-A_{A}^{\prime \prime \prime}-2 A_{A}^{\prime}
\end{array}\right\} \begin{array}{l}
B^{2}=A B^{\prime} \\
A B T_{2}+A B^{\prime} T_{2}^{\prime}=B C=A C^{\prime} \\
B C=A C^{\prime} \\
B^{\prime} C^{\prime}=B^{\prime} C \\
A=l_{0}+l_{0}^{\prime}-2 m_{0} \\
B=l_{0}^{\prime}-l_{0} \\
C=A_{A}^{\prime \prime}+A_{A}^{\prime \prime \prime}-2 A_{A} \\
B^{\prime}=l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime} \\
C^{\prime}=A_{A}^{\prime \prime}-A_{A}^{\prime \prime \prime}-2 A_{A}^{\prime}
\end{array}\right\} \begin{aligned}
& \left(l_{0}-l_{0}^{\prime}\right)^{2}=\left(l_{0}+l_{0}^{\prime}-2 m_{0}\right)\left(l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime}\right) \\
& \left(l_{0}^{\prime}-l_{0}\right) C=\left(l_{0}+l_{0}^{\prime}-2 m_{0}\right) C^{\prime} \\
& \left(l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime}\right)\left(C^{\prime}-C\right)=0 \\
& A=l_{0}+l_{0}^{\prime}-2 m_{0} \\
& B=l_{0}^{\prime}-l_{0} \\
& C=A_{A}^{\prime \prime}+A_{A}^{\prime \prime \prime}-2 A_{A} \\
& B^{\prime}=l_{0}+l_{0}^{\prime}-2 m_{0}^{\prime} \\
& C^{\prime}=A_{A}^{\prime \prime}-A_{A}^{\prime \prime \prime}-2 A_{A}^{\prime}
\end{aligned} \Rightarrow \begin{aligned}
& \Rightarrow l_{0}=l_{0}^{\prime}=m_{0}=m_{0}^{\prime}
\end{aligned}
$$

m_{0} is unique!
Thus there are finally two possibilities :
I)

There are three sub-possibilities :
$T_{1} T_{1}^{\prime \prime}\left(T_{2} T_{2}^{\prime \prime}\right)^{n}$ is transcendental for all n, for all $T_{1}^{\prime}, T_{2}^{\prime}$ transcendental prime numbers, there exists $T_{1}, T_{1}^{\prime \prime}, T_{2}, T_{2}^{\prime \prime}$ for which $T_{1}=T_{1}^{\prime} T_{1}^{\prime \prime-1}$ and $T_{2}=T_{2}^{\prime} T_{2}^{\prime \prime-1}$, in this case $T_{1}^{\prime} T_{2}^{\prime}$ is always transcendental and of course $T_{1}^{\prime}+T_{2}^{\prime}$ too.
If $T_{1} T_{1}^{\prime \prime-1}\left(T_{2} T_{2}^{\prime \prime-1}\right)^{n}$ is transcendental for all n, for all $T_{1}^{\prime}, T_{2}^{\prime}$ transcendental prime numbers, there exist $T_{1}, T_{1}^{\prime \prime}, T_{2}, T_{2}^{\prime \prime}$ for which $T_{1}=T_{1}^{\prime} T_{1}^{\prime \prime}$ and $T_{2}=$ $T_{2}^{\prime} T_{2}^{\prime \prime}$, in this case $T_{1}^{\prime} T_{2}^{\prime}$ is always transcendental and of course $T_{1}^{\prime}+T_{2}^{\prime}$ too. $T_{1} T_{2}^{n}$ is transcendental $\forall n \neq n_{0}$ and $T_{1}+m T_{2}$ is transcendental $\forall m$, in this case $T_{1}^{2} T_{2}^{n_{0}}$ is transcendental, and $T_{1}^{2} T_{2}^{n_{0}}$ and $T_{1}+m T_{2}$ are always transcendentals. For all $T_{1}^{\prime}, T_{2}^{\prime}$ prime real numbers exist $T_{1}=T_{1}^{\prime \frac{1}{2}}$ and $T_{2}=T_{2}^{\prime \frac{1}{n_{0}}}$ and $m=1$, thus $T_{1}^{\prime} T_{2}^{\prime}$ and $T_{1}^{\prime}+T_{2}^{\prime}$ are transcendentals !
II)

There are three sub-possibilities :
$T_{1}+T_{1}^{\prime \prime}+m\left(T_{2}+T_{2}^{\prime \prime}\right)$ is transcendental for all m, for all $T_{1}^{\prime}, T_{2}^{\prime}$ transcendental prime numbers, there exists $T_{1}, T_{1}^{\prime \prime}, T_{2}, T_{2}^{\prime \prime}$ for which $T_{1}=T_{1}^{\prime}-T_{1}^{\prime \prime}$ and $T_{2}=T_{2}^{\prime}-T_{2}^{\prime \prime}$, in this case $T_{1}^{\prime}+T_{2}^{\prime}$ is always transcendental and of course $T_{1}^{\prime} T_{2}^{\prime}$ too.
$T_{1}-T_{1}^{\prime \prime}+m\left(T_{2}-T_{2}^{\prime \prime}\right)$ is transcendental for all m, for all $T_{1}^{\prime}, T_{2}^{\prime}$ transcendental prime numbers, there exists $T_{1}, T_{1}^{\prime \prime}, T_{2}, T_{2}^{\prime \prime}$ for which $T_{1}=T_{1}^{\prime}+T_{1}^{\prime \prime}$ and $T_{2}=T_{2}^{\prime}+T_{2}^{\prime \prime}$, in this case $T_{1}^{\prime}+T_{2}^{\prime}$ is always transcendental and of course $T_{1}^{\prime} T_{2}^{\prime}$ too.
$T_{1} T_{2}^{n}$ is transcendental $\forall n$ and $T_{1}+m T_{2}, \forall m \neq m_{0}$, in this case $2 T_{1}+m T_{2}$ is always transcendental, for all $T_{1}^{\prime}, T_{2}^{\prime}$ prime real numbers exist $T_{1}=\frac{T_{1}^{\prime}}{2}$ and $T_{2}=\frac{T_{2}^{\prime}}{m_{0}}$ and $n=1$, thus $T_{1}^{\prime}+T_{2}^{\prime}$ and $T_{1}^{\prime} T_{2}^{\prime}$ are transcendentals !

The theorem application $T_{1}^{\prime}=\pi$ and $T_{2}^{\prime}=e$ are transcendental prime real numbers which implies that $e \pi, e+\pi$ and $e-\pi$, are transcendentals for example!
$\pi^{m} e^{n}$ and $\pi^{m}+e^{n}$ are transcendental for all m, n.
Also, by the same way, we prove that $\pi^{n}, e^{m}, C_{n}{ }^{r}, \pi^{n} e^{m}, C_{n}{ }^{r} \pi^{n}$ and $C_{n}{ }^{r} e^{m}$ are transcendentals for every n, m, r !

Conclusion

Through this exposé, we have given a method to find the nature of several numbers, we have shown the nature of $\pi^{n} e^{m}, \pi^{n} C_{n}{ }^{p}, e^{m} C_{n}{ }^{p}, \pi^{n}, e^{m}$ and $C_{n}{ }^{p} \ldots$

Références

[1] Alan Baker, Transcendental number theory Cambridge University Press , (1975).

