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About the transcendentality of some numbers

Jamel Ghanouchi

jamel.ghanouchi@topnet.tn

Abstract

Everyone knows that π, e or Cn, the Champernowne number are transcen-
dentals, but what about π + e, π + Cn or e + Cn ? In this paper, we show a
method in the goal to know if they are.

The approach

An number is transcendantal if it is not the rooth of a polynomial equation

anx
n + an−1x

n−1 + ...+ a0 = 0

where ai are not all equal to zeo, else it is algebraic. We know that π, e and
Cn, the Champernowne number are transendantals, but we do not know
anything about e + π, π + Cn or e + Cn. Effectively, if A is transcendantal :
B transcendantal and we do not know the nature of A+B or A−B. But if
B is algebraic, then A+B and A−B are transcendantals. And if A and B

are algebraics, their sum and their différence are algebraics. Let us trie to
solve this problem. Let

C1 =













1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2













And let

C ′

1 =













0 5 10 15 20
10 15 20 0 5
20 0 5 10 15
5 10 15 20 0
15 20 0 5 10












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Thus C1 + C ′

1 is a magic square. It contains all the numbers from 1 to 25.
Let

A =













1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1













And

C2 =













C1 C1 + 25A C1 + 50A C1 + 75A C1 + 100A
C1 + 75A C1 + 100A C1 C1 + 25A C1 + 50A
C1 + 25A C1 + 50A C1 + 75A C1 + 100A C1

C1 + 100A C1 C1 + 25A C1 + 50A C1 + 75A
C1 + 50A C1 + 75A C1 + 100A C1 C1 + 25A













And

C ′

2 =













C ′

1 C ′

1 C ′

1 C ′

1 C ′

1

C ′

1 C ′

1 C ′

1 C ′

1 C ′

1

C ′

1 C ′

1 C ′

1 C ′

1 C ′

1

C ′

1 C ′

1 C ′

1 C ′

1 C ′

1

C ′

1 C ′

1 C ′

1 C ′

1 C ′

1













The recurrence is

Ci+1 =













Ci Ci + 5iA Ci + 2.5iA Ci + 3.5iA Ci + 4.5iA
C1 + 3.5iA C1 + 4.5iA C1 C1 + 5iA C1 + 2.5iA
C1 + 5iA C1 + 2.5iA C1 + 3.5iA C1 + 4.5iA C1

C1 + 4.5iA C1 C1 + 5iA C1 + 2.5iA C1 + 3.5iA
C1 + 2.5iA C1 + 3.5iA C1 + 4.5iA C1 C1 + 5iA













And

C ′

i+1 =













C ′

i C ′

i C ′

i C ′

i C ′

i

C ′

i C ′

i C ′

i C ′

i C ′

i

C ′

i C ′

i C ′

i C ′

i C ′

i

C ′

i C ′

i C ′

i C ′

i C ′

i

C ′

i C ′

i C ′

i C ′

i C ′

i













And Ci + C ′

i is a magic square containing all the numbers from 1 to

5 + 20(5 + 52 + ...5i−1) + 20 = 5 + 100(1 + 5 + 52 + ...+ 5i−2) + 20

= 5 + 100(
5i−1 − 1

4
) + 20 = 5 + 25(5i−1 − 1) + 20 = 5i+1

The sum of Ci+1 is Si+1 = 5Si + 10.5i + 5S ′

i (S1 = 65, S ′

i = 50.5i−1). Hence

Si+1 = 5Si + 60.5i

5Si = 52Si−1 + 60.5i
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...

5i−1S2 = 5iS1 + 60.5i

5iS1 = 5i(65) = 13.5i+1

Si+1 = (60i+ 65)5i = (12i+ 13)5i+1

If M is the greatest number of the square, S the sum, the value of the
integer π.10pi that approaches π in the square (example between 1 and 25,
π.10pi = 3 and between 1 and 125, it is 31). The number π (pi) dépends of
M and S. This square contains pi first digit of π without the dot, we note
it : π.10pi. It contains also e.10pi and Cn.10

pi (and also π + e, πe, π + Cn,
πCn...). For i+ 1, the greatest number in the square is M = 5i+2 which has

E( (i+2) log 5
log 10

) = i + 1 ciphers and begins by 1, 2, 3 and then pi = i, or by a

number geater and then pi = i+ 1. The sum is Si+1 = (12i+ 13)5i+1 which
has less than pi + 2 ciphers. The sum Si.10

−pi tends, in the infinity, to a
number S which has less than three ciphers ! But Si is rational, thus S is
rational and algebraic. By another way, we pose















































S = 20
A = S − π

B = S − e

C = S − Cn

A1 = S − π − e

A2 = S − π + e

A3 = S − πe

A4 = S − π2

We know that

S = π + A = e+B = π + e + A1 = π − e + A2 = πe + A3 = π2 + A4

But
π2 − nπ − (π − n)π = 0

As π is transcendental, it can not be solution of a polynomial equation,
thus (π − n)π is transcendental ∀n algebraic. Also if eπ is algebraic, as e is
transcendental, e(π + n) is transcendental, ∀n algebraic, thus eπ or (and)
e(π ± n) is transcendental. Also eπ or (and) π(e ± n) is transcendental, ∀n
algebraic. Let us prove now that eπ is transcendental. Let us suppose that
∃n0, m0 integers for which eπn0 and πem0 are algebraics for m0, n0 6= 0 and
eπn and πem are transcendentals for n 6= n0, m 6= m0, thus

em0+n0πn2
0
+1 = (eπ

n
2
0
+1

m0+n0 )m0+n0

is algebraic it means that

eπn0π
n
2
0+1

n0+m0
−n0 = eπn0π

1−n0m0
n0+m0
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is algebraic and π(1−n0m0) is algebraic then n0 = m0 = ±1 and eπ and e
π

are
algebraics ! But

nπ2 − (
e

π
+ n)π2 + eπ = 0

And
nπ−2 − (eπ + n)π−2 +

e

π
= 0

π and π−1 are transcendentals, they can not be solutions of polynomial
equations, thus two at least of the numbers e

π
, eπ, π

e
are transcendentals :

let us suppose eπ = AA algebraic, we have

eπ − (e+ π)π + π2

= π2 − (e+ π)π + AA = 0

= (S − A)2 − (e+ π)π + AA = 0

= A2 − 2AS − (e+ π)π + A′

A = 0

A = S ±
√

A2 −A′

A + (e + π)π

S2 − 2AS + A′

A − (e+ π)π = 0

= −2AS − A′′

A − (e+ π)π = 0

= −2(S − π)S −A′′

A − (e+ π)π = 0

= A′′

A − π(−2S + e+ π) = 0

= A′′

A − (−2S + π)π − eπ = A′′′

A + 2Sπ − π2 = 0

It means that π is solution of a polynomial equation : it is impossible, eπ
can not be algebraic, it is transcendental ! We prove by the same way that
π
e

and e
π

are transcendentals. The initial hypothesis is false : m0, n0 do not
exist, eπn or πem is transcendental for all n,m ! Then m = 1 or n = 1 implies
that eπ is transcendental ! Let us prove now that e + π is transcendental,
we suppose it algebraic : e+π = AA, it means that A+B = 2S−π−e = A′

A

is algebraic, but
πe = (S − A)(S −B) = A′′

A + AB

But
π(e+ π) = AAπ

⇒ eπ = (e+ π)π − π2 = AAπ − π2 = A′′

A + AB

π2 − AAπ + A′′

A + AB = 0

= (S − A)2 − AA(S − A) + A′′

A + AB = 0

= S2 − 2AS + A2 −AAS + AAA + A′′

A + AB = 0

And
A2 + (B + A′′′

A)A+ A′′′′

A = 0
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Or

A =
−B −A′′′

A ±
√

(B + A′′′

A)
2 − 4A′′′′

A

2

Or
(2A+B + A′′′

A)
2 = (A+ A′′′′′

A )2 = B2 + 2A′′′

AB + A′′′′′′

A

And
A2 − B2 = A′

A(A− B) = 2A′′′

AB − 2A′′′′′

A A+ A′′′′′′

A

= A′

A(2A−AA) = 2A′′′

A(AA − A)− 2A′′′′′

A A + A′′′′′′

A

And
A′′′′′′′

A A = A′′′′′′′′

A ⇒ A = S − π = A′′′′′′′′′

A

It means that π is algebraic and it is impossible, thus e+ π is transcenden-
tal ! Also, by the same way, we prove that πn, em, Cn

r, πnem, Cn
rπn and

Cn
rem are transcendentals for all n,m, p integers ! More generally, if T1, T2

are transcendentals, and T1T2 is irrational. If T1T2 is algebraic, T1(T2±n) is
transcendental, ∀n algebraic, thus T1T2 or (and) T1(T2 ± n) is transcenden-
tal. Thus T1T2 or (and) T2(T1±n) is transcendental and a Liouville number,
∀n algebraic. But

|T1(T2 ± n)| > |T1T2 −
p

q
| >

C

qm

And T1(T2 ± n) is algebraic and we have supoposed it transcendental it
means that T1T2 can not be algebraic, it is transcendental ! Hence π + A

and Cn+C have the same nature : they are algebraics, with A and C trans-
cendantals (because π = S−A and Cn = S−C are !), also π+C and Cn+A

have the same nature, thus 2π+A+C = 4S−2Cn− (A+C) = π+2S−Cn

has the same nature than 2Cn+A+C. If A+C is algebraic, then π+Cn will
be algebraic and π − Cn = 2S − (A + C) − 2Cn will be transcendantal ! If
A+C is transcendantal, then π+Cn is ! By the same reasoning, if A+B is
transcendantal, π+ e = 2S− (A+B) will be transcendental and if A+B is
algebraic, then π+e is algebraic and π−e = 2S−(A+B)−2e is transcendan-
tal. The nature of e+Cn depends of B+C. Let π+e+Cn+A+B+C = 3S,
it is algebraic : π + e + A + B has the same nature than Cn + C (they are
algebraics) and π + e + C has the same nature than Cn + A + B hence,
by the same reasoning, if A + B + C is transcendantal then π + e + Cn is
transcendental, if A+B +C is algebraic, then π+ e, π+Cn and e+Cn are
transcendantals.

Conclusion

We did not presented like this, but we have given a method to find the na-
ture of several numbers, we have shown the nature of πnem, πnCn

p, emCn
p,

πn, em and Cn
p...
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