

About the transcendentality of some numbers Jamel Ghannouchi

▶ To cite this version:

Jamel Ghannouchi. About the transcendentality of some numbers. 2013. hal-00808463v1

HAL Id: hal-00808463 https://hal.science/hal-00808463v1

Preprint submitted on 5 Apr 2013 (v1), last revised 8 May 2013 (v11)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

About the transcendentality of some numbers

Jamel Ghanouchi

jamel.ghanouchi@topnet.tn

Abstract

Everyone knows that π , e or C_n , the Champernowne number are transcendentals, but what about $\pi + e$, $\pi + C_n$ or $e + C_n$? In this paper, we show a method in the goal to know if they are.

The approach

An number is transcendantal if it is not the rooth of a polynomial equation

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

where a_i are not all equal to zeo, else it is algebraic. We know that π , e and C_n , the Champernowne number are transendantals, but we do not know anything about $e + \pi$, $\pi + C_n$ or $e + C_n$. Effectively, if A is transcendantal : B transcendantal and we do not know the nature of A + B or A - B. But if B is algebraic, then A + B and A - B are transcendantals. And if A and B are algebraics, their sum and their différence are algebraics. Let us trie to solve this problem. Let

$$C_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \\ 2 & 3 & 4 & 5 & 1 \\ 5 & 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}$$

And let

$$C'_{1} = \begin{pmatrix} 0 & 5 & 10 & 15 & 20 \\ 10 & 15 & 20 & 0 & 5 \\ 20 & 0 & 5 & 10 & 15 \\ 5 & 10 & 15 & 20 & 0 \\ 15 & 20 & 0 & 5 & 10 \end{pmatrix}$$

1

Thus $C_1 + C'_1$ is a magic square. It contains all the numbers from 1 to 25. Let

And

$$C_{2} = \begin{pmatrix} C_{1} & C_{1} + 25A & C_{1} + 50A & C_{1} + 75A & C_{1} + 100A \\ C_{1} + 75A & C_{1} + 100A & C_{1} & C_{1} + 25A & C_{1} + 50A \\ C_{1} + 25A & C_{1} + 50A & C_{1} + 75A & C_{1} + 100A & C_{1} \\ C_{1} + 100A & C_{1} & C_{1} + 25A & C_{1} + 50A & C_{1} + 75A \\ C_{1} + 50A & C_{1} + 75A & C_{1} + 100A & C_{1} & C_{1} + 25A \end{pmatrix}$$

And

$$C'_{2} = \begin{pmatrix} C'_{1} & C'_{1} & C'_{1} & C'_{1} & C'_{1} \\ C'_{1} & C'_{1} & C'_{1} & C'_{1} & C'_{1} \\ C'_{1} & C'_{1} & C'_{1} & C'_{1} & C'_{1} \\ C'_{1} & C'_{1} & C'_{1} & C'_{1} & C'_{1} \\ C'_{1} & C'_{1} & C'_{1} & C'_{1} & C'_{1} \end{pmatrix}$$

The recurrence is

$$C_{i+1} = \begin{pmatrix} C_i & C_i + 5^i A & C_i + 2.5^i A & C_i + 3.5^i A & C_i + 4.5^i A \\ C_1 + 3.5^i A & C_1 + 4.5^i A & C_1 & C_1 + 5^i A & C_1 + 2.5^i A \\ C_1 + 5^i A & C_1 + 2.5^i A & C_1 + 3.5^i A & C_1 + 4.5^i A & C_1 \\ C_1 + 4.5^i A & C_1 & C_1 + 5^i A & C_1 + 2.5^i A & C_1 + 3.5^i A \\ C_1 + 2.5^i A & C_1 + 3.5^i A & C_1 + 4.5^i A & C_1 & C_1 + 5^i A \end{pmatrix}$$

And

$$C'_{i+1} = \begin{pmatrix} C'_{i} & C'_{i} & C'_{i} & C'_{i} & C'_{i} \\ C'_{i} & C'_{i} & C'_{i} & C'_{i} & C'_{i} \\ C'_{i} & C'_{i} & C'_{i} & C'_{i} & C'_{i} \\ C'_{i} & C'_{i} & C'_{i} & C'_{i} & C'_{i} \\ C'_{i} & C'_{i} & C'_{i} & C'_{i} & C'_{i} \end{pmatrix}$$

And $C_i + C'_i$ is a magic square containing all the numbers from 1 to

$$5 + 20(5 + 5^{2} + \dots 5^{i-1}) + 20 = 5 + 100(1 + 5 + 5^{2} + \dots + 5^{i-2}) + 20$$
$$= 5 + 100(\frac{5^{i-1} - 1}{4}) + 20 = 5 + 25(5^{i-1} - 1) + 20 = 5^{i+1}$$

The sum of C_{i+1} is $S_{i+1} = 5S_i + 10.5^i + 5S'_i$ ($S_1 = 65, S'_i = 50.5^{i-1}$). Hence

$$S_{i+1} = 5S_i + 60.5^i$$

$$5S_i = 5^2 S_{i-1} + 60.5^i$$

$$5^{i-1}S_2 = 5^iS_1 + 60.5^i$$

$$5^iS_1 = 5^i(65) = 13.5^{i+1}$$

$$S_{i+1} = (60i + 65)5^i = (12i + 13)5^{i+1}$$

...

If M is the greatest number of the square, S the sum, the value of the integer $\pi .10^{p_i}$ that approaches π in the square (example between 1 and 25, $\pi .10^{p_i} = 3$ and between 1 and 125, it is 31). The number π (p_i) dépends of M and S. This square contains p_i first digit of π without the dot, we note it : $\pi .10^{p_i}$. It contains also $e .10^{p_i}$ and $C_n .10^{p_i}$ (and also $\pi + e$, πe , $\pi + C_n$, $\pi C_n ...$). For i + 1, the greatest number in the square is $M = 5^{i+2}$ which has $E(\frac{(i+2)\log 5}{\log 10}) = i + 1$ ciphers and begins by 1, 2, 3 and then $p_i = i$, or by a number geater and then $p_i = i + 1$. The sum is $S_{i+1} = (12i + 13)5^{i+1}$ which has less than $p_i + 2$ ciphers. The sum $S_i .10^{-p_i}$ tends, in the infinity, to a number S which has less than three ciphers! But S_i is rational, thus S is rational and algebraic. By another way, we pose

$$\begin{cases} S = 20 \\ A = S - \pi \\ B = S - e \\ C = S - C_n \\ A_1 = S - \pi - e \\ A_2 = S - \pi + e \\ A_3 = S - \pi e \\ A_4 = S - \pi^2 \end{cases}$$

We know that

$$S = \pi + A = e + B = \pi + e + A_1 = \pi - e + A_2 = \pi e + A_3 = \pi^2 + A_4$$

But

$$\tau^2 - n\pi - (\pi - n)\pi = 0$$

1

As π is transcendental, it can not be solution of a polynomial equation, thus $(\pi - n)\pi$ is transcendental $\forall n$ algebraic. Also if $e\pi$ is algebraic, as e is transcendental, $e(\pi + n)$ is transcendental, $\forall n$ algebraic, thus $e\pi$ or (and) $e(\pi \pm n)$ is transcendental. Also $e\pi$ or (and) $\pi(e \pm n)$ is transcendental, $\forall n$ algebraic. Let us prove now that $e\pi$ is transcendental. Let us suppose that $\exists n_0, m_0$ integers for which $e\pi^{n_0}$ and πe^{m_0} are algebraics for $m_0, n_0 \neq 0$ and $e\pi^n$ and πe^m are transcendentals for $n \neq n_0, m \neq m_0$, thus

$$e^{m_0+n_0}\pi^{n_0^2+1} = (e\pi^{\frac{n_0^2+1}{m_0+n_0}})^{m_0+n_0}$$

is algebraic it means that

$$e\pi^{n_0}\pi^{\frac{n_0^2+1}{n_0+m_0}-n_0} = e\pi^{n_0}\pi^{\frac{1-n_0m_0}{n_0+m_0}}$$

is algebraic and $\pi^{(1-n_0m_0)}$ is algebraic then $n_0 = m_0 = \pm 1$ and $e\pi$ and $\frac{e}{\pi}$ are algebraics ! But

$$n\pi^{2} - (\frac{e}{\pi} + n)\pi^{2} + e\pi = 0$$

And

$$n\pi^{-2} - (e\pi + n)\pi^{-2} + \frac{e}{\pi} = 0$$

 π and π^{-1} are transcendentals, they can not be solutions of polynomial equations, thus two at least of the numbers $\frac{e}{\pi}$, $e\pi$, $\frac{\pi}{e}$ are transcendentals : let us suppose $e\pi = A_A$ algebraic, we have

$$e\pi - (e + \pi)\pi + \pi^{2}$$

$$= \pi^{2} - (e + \pi)\pi + A_{A} = 0$$

$$= (S - A)^{2} - (e + \pi)\pi + A_{A} = 0$$

$$= A^{2} - 2AS - (e + \pi)\pi + A'_{A} = 0$$

$$A = S \pm \sqrt{A^{2} - A'_{A} + (e + \pi)\pi}$$

$$S^{2} - 2AS + A'_{A} - (e + \pi)\pi = 0$$

$$= -2AS - A''_{A} - (e + \pi)\pi = 0$$

$$= -2(S - \pi)S - A''_{A} - (e + \pi)\pi = 0$$

$$= A''_{A} - \pi(-2S + e + \pi) = 0$$

$$A''_{A} - (-2S + \pi)\pi - e\pi = A'''_{A} + 2S\pi - \pi^{2} = 0$$

It means that π is solution of a polynomial equation : it is impossible, $e\pi$ can not be algebraic, it is transcendental! We prove by the same way that $\frac{\pi}{e}$ and $\frac{e}{\pi}$ are transcendentals. The initial hypothesis is false : m_0, n_0 do not exist, $e\pi^n$ or πe^m is transcendental for all n, m! Then m = 1 or n = 1 implies that $e\pi$ is transcendental! Let us prove now that $e + \pi$ is transcendental, we suppose it algebraic : $e + \pi = A_A$, it means that $A + B = 2S - \pi - e = A'_A$ is algebraic, but

$$\pi e = (S - A)(S - B) = A''_A + AB$$

But

=

$$\pi(e + \pi) = A_A \pi$$

$$\Rightarrow e\pi = (e + \pi)\pi - \pi^2 = A_A \pi - \pi^2 = A''_A + AB$$

$$\pi^2 - A_A \pi + A''_A + AB = 0$$

$$= (S - A)^2 - A_A (S - A) + A''_A + AB = 0$$

$$= S^2 - 2AS + A^2 - A_A S + A_A A + A''_A + AB = 0$$

And

$$A^2 + (B + A_A''')A + A_A'''' = 0$$

Or

$$A = \frac{-B - A_A''' \pm \sqrt{(B + A_A'')^2 - 4A_A'''}}{2}$$

Or

$$(2A + B + A_A''')^2 = (A + A_A'''')^2 = B^2 + 2A_A'''B + A_A'''''''$$

And

$$A^{2} - B^{2} = A'_{A}(A - B) = 2A'''_{A}B - 2A''''_{A}A + A''''''_{A}$$
$$= A'_{A}(2A - A_{A}) = 2A'''_{A}(A_{A} - A) - 2A''''_{A}A + A'''''_{A}$$

And

$$A_A^{\prime\prime\prime\prime\prime\prime\prime}A = A_A^{\prime\prime\prime\prime\prime\prime\prime} \Rightarrow A = S - \pi = A_A^{\prime\prime\prime\prime\prime\prime\prime\prime}$$

It means that π is algebraic and it is impossible, thus $e + \pi$ is transcendental! Also, by the same way, we prove that π^n , e^m , $C_n^{\ r}$, $\pi^n e^m$, $C_n^{\ r} \pi^n$ and $C_n^{\ r} e^m$ are transcendentals for all n, m, p integers! More generally, if T_1, T_2 are transcendentals, and T_1T_2 is irrational. If T_1T_2 is algebraic, $T_1(T_2 \pm n)$ is transcendental, $\forall n$ algebraic, thus T_1T_2 or (and) $T_1(T_2 \pm n)$ is transcendental. Thus T_1T_2 or (and) $T_2(T_1 \pm n)$ is transcendental and a Liouville number, $\forall n$ algebraic. But

$$|T_1(T_2 \pm n)| > |T_1T_2 - \frac{p}{q}| > \frac{C}{q^m}$$

And $T_1(T_2 \pm n)$ is algebraic and we have supposed it transcendental it means that T_1T_2 can not be algebraic, it is transcendental! Hence $\pi + A$ and $C_n + C$ have the same nature : they are algebraics, with A and C transcendantals (because $\pi = S - A$ and $C_n = S - C$ are !), also $\pi + C$ and $C_n + A$ have the same nature, thus $2\pi + A + C = 4S - 2C_n - (A + C) = \pi + 2S - C_n$ has the same nature than $2C_n + A + C$. If A + C is algebraic, then $\pi + C_n$ will be algebraic and $\pi - C_n = 2S - (A + C) - 2C_n$ will be transcendantal! If A + C is transcendantal, then $\pi + C_n$ is ! By the same reasoning, if A + B is transcendantal, $\pi + e = 2S - (A + B)$ will be transcendental and if A + B is algebraic, then $\pi + e$ is algebraic and $\pi - e = 2S - (A+B) - 2e$ is transcendantal. The nature of $e + C_n$ depends of B + C. Let $\pi + e + C_n + A + B + C = 3S$, it is algebraic : $\pi + e + A + B$ has the same nature than $C_n + C$ (they are algebraics) and $\pi + e + C$ has the same nature than $C_n + A + B$ hence, by the same reasoning, if A + B + C is transcendantal then $\pi + e + C_n$ is transcendental, if A + B + C is algebraic, then $\pi + e$, $\pi + C_n$ and $e + C_n$ are transcendantals.

Conclusion

We did not presented like this, but we have given a method to find the nature of several numbers, we have shown the nature of $\pi^n e^m$, $\pi^n C_n^{\ p}$, $e^m C_n^{\ p}$, π^n , e^m and $C_n^{\ p}$...

Références

[1] Alan Baker, Transcendental number theory *Cambridge University Press*, (1975).