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ABSTRACT. This paper focuses on the boundary approximate controllability of
two classes of linear parabolic systems, namely a system of n heat equations
coupled through constant terms and a 2 X 2 cascade system coupled by means
of a first order partial differential operator with space-dependent coefficients.

For each system we prove a sufficient condition in any space dimension
and we show that this condition turns out to be also necessary in one dimen-
sion with only one control. For the system of coupled heat equations we also
study the problem on rectangle, and we give characterizations depending on
the position of the control domain. Finally, we prove the distributed approxi-
mate controllability in any space dimension of a cascade system coupled by a
constant first order term.

The method relies on a general characterization due to H.O. Fattorini.

1. Introduction. The controllability of parabolic systems is a difficult problem.
While Carleman estimates have been successfully used to prove the distributed null-
controllability of some linear parabolic systems (e.g. [2, 15, 16, 22, 8]), there are still
many cases where these estimates appear to be of no help. An example of such sit-
uation is when the control domain and the coupling domain do not meet each other
([1, 25, 9]). The boundary controllability is another of these situations and requires
new techniques to be solved. In [14] and [4], the authors developped the method
of moments of H.O. Fattorini and D.L. Russell to establish a characterization of
the boundary null-controllability in dimension 1 for a system of n coupled heat
equations. In [1], the authors used transmutation techniques to obtain a boundary
null-controllability result in any dimension for a system of 2 heat equations, with a
particular coupling. Finally, in [19] the authors proved the boundary approximate
controllability of a cascade system of 2 heat equations in any dimension by devel-
opping the solution into Fourier series. To the author knowledge, these results are
the only ones concerning the boundary controllability of linear parabolic systems
of heat-type. For more details, a good account on actual methods and recent open
problems for the distributed or boundary controllability of linear parabolic systems
we refer to the survey [5].
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In the present work we are interested in the boundary approximate controllability
of two classes of linear parabolic systems introduced in [14] and [19]. More precisely,
the first system we study is the following '

oy—Ay = Ay in (0,7) x Q,
y = 1,Bg on (0,T) x 09, (1)
y(0) = o in €2,

where T > 0,  is a bounded open subset of RY, assumed regular enough, y is the
state, yo is the initial data, A and B are n X n and n X m constant matrices with
complex coefficients, ¢ is the control, to be searched in L?(0,T; L?(92)™) - so that
in fact we have m controls - and v C 0f is the control domain.

First of all, let us recall some basic facts about this kind of systems and their
controllability properties:

1. System (1) is well-posed in the following sense: for every yo € H ()" and
g € L*(0,T; L?(0Q)™), there exists a unique solution defined by transposition
y € C°([0,T); H-H(Q)™) N L?(0,T; L*(2)™) that depends continuously on the
initial data yo and the control g.

2. System (1) is said to be approximately controllable at time T if for every
Yo,y1 € H~1(Q)™ and every e > 0, there exists a control g € L2(0,T; L2(9Q)™)
such that the corresponding solution y satisfies

||y(T) - ylHHfl(Q)n <e.

We say that system (1) is approximately controllable if it is approximately
controllable at time T for every T > 0.

3. It is nowadays well-known that the controllability has a dual concept called
observability and that they are linked by the following result: system (1) is
approximately controllable at time 7" if and only if its adjoint system 2

Oz—Az = A*z in(0,T)xQ,
z = 0 on (0,T) x 99,
z(0) = =z in Q,

is approximately observable at time 7', that is it verifies the following unique
continuation property

Vzo € Hy(Q)™, <B*1,Y6‘nz(t) =0 for ae. te (O,T)> = 29 =0. (2)

The boundary controllability problem for system (1) has been introduced in [14].
In this paper, the authors proved a necessary and sufficient condition for this system
to be null-controllable, and the same condition also characterizes the approximate
controllability, see [14, Theorem 1.1] and [14, Theorem 5.2]. We point out that this
work has been done in the dimension one and for 2 equations. A generalization
to the case of n equations can be found in [4], still in the one-dimensional case.

I'We will abuse the notation Ay when y = (y1,...,yn) to denote Ay = (Ay1, ..., Ayn).

2Since the data are more regular and the system is autonomous, the solution can be taken in
the sense of semigroups: z(t) = S(t)z0, where S(t) is the semigroup generated on L2(2)™ by the
operator A + A* with domain H2(Q)™ N H}(Q)™. Let us recall that, for zo € H}(Q)", we have
z € CO[0,T); HH()™) N L2(0, T; H2(Q)™ N HF (™).
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To the author knowledge, the only result that can be applied to system (1) in any
dimension is [1, Corollary 2.2], but the matrix A has to have a very particular
structure and it requires a geometric condition on 7.

In this paper we will provide conditions for the approximate controllability of
this system in several interesting particular cases, see the sections 2.1 to 2.5 below.
Some results are already known but we give new and simpler proofs.

The second system we deal with is the following

Oyr — Ay =0 in (0,7) x Q,

Oz — Ays = G(x) - Vyr +a(x)yn  in (0,T) x Q, @)
yi=1y9, y2=0 on (0,7T) x 99,

¥1(0) =y10, ¥2(0) = w20 in €2,

where G € WL (Q)N a € L>(1), and g is still the control, but this time we only
have one control: g € L(0,T; L*(99)).

The interest in the controllability of such systems started with [19]. In this paper
the authors gave sufficient conditions for the approximate controllability.

In the present work we bring a new point of view to treat this problem. This
allows us to recover the result of [19] and also to provide a necessary and sufficient
condition in the one-dimensional case.

The main tool to achieve our goals will be the use of a theorem of H.O. Fat-
torini. In fact, in 1966, H.O. Fattorini gave an interesting characterization of the
approximate controllability under a general abstract framework. In his paper [12]
he proved that, under some reasonable assumptions, the only observation of the
eigenfunctions completely characterizes the approximate controllability. Actually,
this theorem has been proved for bounded observation operators but it can easily
be generalized to the case of relatively bounded observation operators as follows:

Theorem 1.1. Let H and U be some complex Hilbert spaces. Assume that A :
D(A) ¢ H — H generates a strongly continuous semigroup S(t) on H, has a
compact resolvent, and the system of root vectors of its adjoint A* is complete in
H. LetC:D(C) C H— U be relatively bounded with respect to A. Then, we have
the property

V2o € D(A), (CS(t)zo =0 for a.e. t € (0, +oo)> = 20 =0, (4)
if and only if
Ker (s — A)NKer (C) = {0}, VsecC.

We give in appendix a proof of this theorem (which slightly changes from the
one of [12]), see also [6].

Remark 1.2. Note that the condition Ker (s —.A) N Ker (C) = {0} can also be
formulated as

Vzo € Ker (s — A), <C’8(t)zo =0 for a.e. t € (0, —l—oo)) = 29 =0.

‘We use the first formulation because it is more eloquent, see Remark 1.4 below, but
the most important is that Theorem 1.1 states that, in order to verify the property
(4) it is enough to do so only on the eigenspaces of A.
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Remark 1.3. We will see that the operators A we consider generate an analytic
semigroup. For instance, for the first system (1) we shall apply Theorem 1.1 to
A=A+ A*. Tt follows from this property that z(-) = S(+)z is analytic in time and
has a regularizing effect (S(t)zp € D (A*°) as soon as ¢t > 0, even for zy € H). This
allows us to replace in (4) the interval (0,+o00) by any interval (0,7), T > 0, and
to take the data zy in any space that at least contains D (A°°). This shows that
(2) and (4) are equivalent properties. In partictular, we see that the approximate
controllability of our systems is independent of the time of control T

Remark 1.4. When H = C" and U = C™, A = A* and C = B* (where A and
B are still contant matrices) this theorem can be used to prove that the ordinary
differential system

d
Y = Ay+Bg in(0,T),
y(0) = o,

is controllable® if and only if
Ker (s — A*)NKer (B*) = {0}, VseC.

This characterization is nowadays known as the Hautus test (despite it has been
proved earlier by H.O. Fattorini). M.L.J Hautus gave a direct proof of the equiv-
alence with another characterization, the well-known Kalman rank condition (see
[17, Theorem 17, §2])

rank (B|AB|A%B|---|A""'B) = n.

Finally, let us mention the recent work [6] where the authors also extended the
theorem of [12] in view of the stabilizability of some other parabolic systems.

Notation. We gather here some notations we shall frequently use in the sequel. We
denote by {—\;}, the distinct Dirichlet eigenvalues of A on €. For each [, we denote
by {¢1,m},, an orthonormal basis in L?(2) of the eigenspace of A associated with
the eigenvalue —)\;, and by m; the dimension of this eigenspace. It can be verified
that all the following results are independent of the choice of the basis {¢;m},,-

All along section 2 we denote by {#;}, C C the distinct eigenvalues of the ma-
trix A* and, for each i, by {w;;}; C C" a basis of Ker(6; — A%). In view of
section 2.3, we also denote by m; the dimension of Ker (§; — A*) and we define
P = (w11| o \wzm,) Again, one can check that all the following results do not
depend on the choice of the basis {w;,;} ;.

In section 3, we use the notation Py, for the orthogonal projection in L?(£2) on
the eigenspace of A associated with —X\;, that is Py,u = an”:l (u, ¢l,7n>L2(Q)¢l,Tﬂ7
for u € L*(Q).

In sections 2.3, 2.4 and 3.2, we consider the one-dimensional case. In particular
m; = 1 so that, for commodity, we simply use the notation ¢; instead of ¢; ;. We
also replace A by 0.

In section 2.5, we use the notation —)\le (resp. —)\ZX2) to emphasize that this is
the eigenvalues corresponding to the domain 2 = (0, X1) (resp. Q = (0, X3)), and
we denote by ¢ZX1 (resp. ¢le) a corresponding eigenfunction.

3In finite dimension all the notions of controllability are equivalent.
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2. A system of coupled heat equations. We start by applying Theorem 1.1 to
the operators

A=A+ A" DA =H*(Q)"NH; ()",

C = B*1,0,, D(C)=H*(Q)"nHj(Q)".

By a perturbation argument we can check that A generates an analytic semi-
group on L?(Q)", has a compact resolvent and the system of root vectors of A* is
complete in L?(Q)" (using, for instance, the Keldysh’s perturbation theorem, see
[21, Theorem 4.3, Chapter I, §4]), so that it satisfies the required hypothesis. On
the other hand, the operator C is clearly relatively bounded with respect to A.

Thus, system (1) is approximately controllable (at some time or at any time, see
Remark 1.3) if and only if

Ker (s — (A + A")) nKer (B*1,0,) = {0}, VseC. (5)

The next step is to describe the spectral elements of A + A*. Actually, it is not
difficult to see that the spectrum of A 4+ A* is

o(A+ A" ) ={-N+0:};,,
and its eigenspaces are
Ker (s — (A4 A%)) = span{w; jp1m} ij1m
— A\ +6;=s

As we can see, the spectral structure of the operator A+ A* is somehow separated
into a scalar differential part and a vectorial algebraic part. Moreover, the operator
C we consider is C = B*1,0,, and 1,0, acts on the scalar differential part while
B* acts on the vectorial algebraic part (recall that B is a constant matrix). In this

particular situation we have good hopes to obtain an easier characterization than
condition (5). This is what establish the results in the following sections.

Remark 2.1. We shall emphasize that the eigenvalues —\; + 6; are not necessarily
distinct. All along this work, for an eigenvalue s € o (A + A*), we will denote by
S0 and i, ..., 4% (with possibly rs = 1) all the distinct indices such that

T T
s = —>\l-i —|—9¢1 =...= _/\lis —l—osz

Note that r; < 400 since there is a finite number of 6;. As as result, any u €
Ker (s — (A + A*)) has a writing of the form

Ts
U=§ 5 Qk,j,mWig P2 m,

k=1 j,m

for some ay j,m € C.

Since we will always reason at s fixed, we will omit the dependence with respect
to s during the proofs (for the sake of clarity), though we will keep this notation in
the statements of the results.

2.1. A sufficient condition in any dimension. As noticed in Remark 2.1 it
may happen that some eigenvalue s can be written as s = —A\; +6; = =\ + 0,
with i’ # ¢ and I’ # . This phenomenon of ”resonance” is a consequence of the
coupling (the matrix A) and as a result is specific to the fact that we study a
system, in contrast with a single equation. We will see that all the difficulties will
precisely come from this point. This fact has been highlighted for the very first
time in [14]. The following theorem shows that, when there is no phenomenon of
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resonance, the controllability is simply reduced to an algebraic condition, whatever
the space dimension N and the control domain ~ are.
Theorem 2.2. Assume that
rs=1 Vseo(A+A"). (6)

Then, the N-dimensional system

oy—Ay = Ay in (0,T) x Q,
y = 1,Bg on(0,T) x 09,
y(0) = wo in Q,
is approximately controllable if and only if
Ker (6; — A*) NKer (B*) = {0}, Vi. (7)

In general, the assumption (6) is not a necessary condition, except in some very
particular cases, see Corollary 2.11 in section 2.4.

Remark 2.3. Condition (7) is nothing but the condition of Theorem 1.1 on the
algebraic part of the system (see also Remark 1.4). We would also expect to require
the similar condition concerning the scalar differential part, namely

Ker (—A\; — A)NnKer (1,0,) = {0}, WV, (8)

but actually this condition is always fulfilled, see [20, Lemma], so that it is implicitly
hidden in the theorem (and this will be used in the proof). This condition corre-
sponds to the approximate controllability of the heat equation from the boundary.

Example 2.4. An easy but nontheless interesting consequence of Theorem 2.2 is
when A* has only one eigenvalue. In this case the assumption (6) is naturally
satisfied. This permits for instance to easily prove that the N-dimensional cascade
system

0 0
any - .
Oy — Ay = . |y in (0,T) x £,
an,1 Gn,n—1 0
1
0
y = 1L,| |9 on (0,T) x 99,
0
y(0) = wo in Q,

is approximately controllable if and only if a; ;—1 # 0 for every q.

Proof of Theorem 2.2. Theorem 2.2 is a straightforward consequence of the follow-
ing two lemma. The first lemma shows that condition (7) is always a necessary
condition for the approximate controllability of system (1), while the second lemma
shows that this condition is also enough to ”control” the eigenvalues s for which
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rs = 1. Since we assume that there are only such eigenvalues, Theorem 2.2 will be
proved. O

Lemma 2.5. If system (1) is approzimately controllable, then (7) holds.

Lemma 2.6. Assume that (7) holds. Then, for any eigenvalue s € o (A + A*)
such that rs = 1, we have

Ker (s — (A + A%)) N Ker (B*1,8,) = {0} .

Proof of Lemma 2.5. Let w € Ker (§; — A*) NKer (B*). Let A € o (A). Taking any
nonzero ¢ € Ker (A — A) we see that u = ¢w belongs to Ker (A +6; — (A+ A*)) N
Ker (B*1,0,), so that u = 0 by assumption, and thus also w = 0. O

Proof of Lemma 2.6. Let s € 0 (A+ A*) with rs = 1, u € Ker(s — (A4 A*)) N
Ker (B*1,0,). Since ry = 1, u writes

U= § G m Wi, Bl m

Jsm

for some ., € C. Let us set 8; = 1,0, (3., @jm®Pi,,m) € L*(99) so that we have

B* Zﬂjwil’j =0.
J

Since >, Bjw;, ; € Ker (0;, — A*) we can use (7) to obtain >, 8w, ; = 0. Using
the linear independance of {w;, ; }j we deduce that §; = 0 for every j, that is

]-'yan (Z aj,m¢l1,m> =0, VJ

Since Y, 0 méi, m € Ker(—X;, —A), using now (8) gives >  a;m¢i,m = 0.
Thanks to the linear independance of {¢;,  },, we conclude that o, = 0 for every
7,m, that is u = 0. O

2.2. Systems with as many controls as equations. As a second result we
recover the known fact (see [14, Theorem 5.3]) that we can control the system from
the boundary if we put as many controls as equations. In this particular case, the
coupling becomes inconsequential (the matrix A can even be A = 0, that is no
coupling at all). This situation can be understood as n uncoupled equations with
one control for each. This result has been obtained in [14] by means of a Carleman
estimate but we provide here an alternative proof, which is also simpler in our case.

Theorem 2.7. The N-dimensional system
Oy —Ay = Ay in (0,T) x Q,
y = 1,Bg on (0,T) x 0Q,
y(0) = o in Q,
is approzimately controllable if we assume that

Ker (B*) = {0} .
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Proof. Let s be an eigenvalue of A+ A* and u € Ker (s — (A + A*))NKer (B*1,0,).

Then, u writes
-
w= ) kg Wi, Glm

k=1 j,m
for some ay, ;m € C. Since u € Ker (B*1,0,) and Ker (B*) = {0} by assumption,

we have
> (Z Oék,j,mlvanfﬁlk,m) w5 = 0.

k,j m

By the linear independence of {wj ;}, ; we obtain

1,0, <Z ak,j,mqslk,m) =0, Vk,Vj.

Since ), k. jm®i,.m € Ker (=N, — A) we deduce that ) o jm®i,,m = 0 (using
(8)), and by the linear independence of {¢;,},, it follows that ay, j ., = 0 for every
k,j,m, that is u = 0. O

2.3. The one-dimensional case. The one-dimensional case is a very particular
situation because the boundary is reduced to two points, {0} and {L}, if 2 = (0, L).
In particular, only three possibilities arise for 7, namely v = {0}, v = {L} or
v={0} U{L}. We will study these three cases.

The results of this section have already been obtained in [4], with another for-
mulation though, and a different proof.

We start with the case v = {0} (we refer to the introduction for the notations):

Theorem 2.8. The one-dimensional system

Oy — Ozzy = Ay in (0,T) x (0, L),
Yy = 1{0}Bg on (OaT) X {O,L},
y(()) = Yo in (07 L)7

is approzimately controllable if and only if, for every s € o (0yr + A*), we have

Ts
""B*Pi;‘ig) = E m, -
) k=1

Proof. Let u € Ker (s — (9p0 + A*)) NKer (B*1{0}9y), where s € 0 (0y0 + A*). We
know that u writes

rank (B*PZ-i

T

U= E E Qe jm Wi, P,

k=1 j,m
for some oy, j,m € C and we have

r ’mik

DD Brwi,¢;, (0) = 0.

k=1 j=1

This implies that ay ; = 0 for every k, j if and only if the matrix

(6, @BP, | - | #.BP,)
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has full rank, that is

rank (¢21 (0)B*P;, | - | ¢l ) Z My, .
To conclude it remains to observe that
vank (g ()B*P, | - | @} ()B'P, ) =rank(B"P,| -+ [B'R,)
since ¢7(0) # 0 for every . O

The same result holds if we consider v = {L} instead of v = {0}. When ~ is the
whole boundary, that is v = {0} U {L}, we have the following characterization:

Theorem 2.9. The one-dimensional system

Oy — Oy = Ay in(0,T) x (0,L),
y = Bg on(0,T)x{0,L},
y(0) = yo in(0,L),

is approximately controllable if and only if, for every s € o (Ozr + A*), we have

rank

¢1: (0)B™ Py ’ | ¢2iS(O)B*Pif,S
(- (L)B Py o, (L)B"P;,

Ts
k=1

The proof is the same as the one of Theorem 2.8.

Remark 2.10. Further to these two theorems, we see that it may happen that
system (1) is controllable with a control acting on both parts of the boundary
whereas it is not controllable if the control only acts on one part. Indeed, let us
consider on §2 = (0, 7) the system described by

0 —4 1
A= , B=
1 5 0
We recall that the eigenvalues of 9., on (0,7) are —\; = —I? and the corresponding

eigenfunctions are ¢;(z) = \/%sin (lz). We can check that

o (A*) = {0, = 1,0, = 4},

1
Ker (f; — A™) = span , Ker (8 — A") = span
1

Since rs = 1 for every eigenvalue s € 0 (Ozp + A*) except s = —A1 + 61 = —Aa+ 0o,
it is not difficult to check that the condition of Theorem 2.9 is fulfilled, whereas the
one of Theorem 2.8 is not.
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2.4. Systems with only one control: m = 1. Another interesting situation
is when we try to control system (1) with only one control. This corresponds to
m =1, so that the matrix B is in fact a (column) vector.

Let us come back to the one-dimensional case. We can always assume that
Ker (6; — A*) N Ker (B*) = {0} for every i since it is a necessary condition (see
Lemma 2.5). It is not difficult to see that this condition is equivalent to

rank B*P;, = m;, Vi.
Thus, when B* has now only one line, we necessarily have
In such a case, note also that P; is reduced to w; 1, so that B*F; is a scalar, and
rank B*P; = 1 then simply means that this scalar is not zero. Thus, for every
s € 0 (0pp + A*), we have
rank ( B*P;s

Ts
E mg, = Ts.
k=1

As a result, in this particular case which is m = 1, Theorem 2.8 becomes

BBy, ) = rank (1]-+|1),

Corollary 2.11. Assume that m = 1. The one-dimensional system

Oy — Opey = Ay in (0,7) x (0, L),
Yy = 1{O}Bg on (OaT) X {Oa L} ’
y(0) = o in (0,L),

is approzimately controllable if and only if the following two conditions hold:
1. Ker (6; — A*) NKer (B*) = {0} for every i.
2. For every eigenvalue s € 0 (Ope + A*) we have vy = 1.

This result is historically the first relevant difference between distributed and
boundary controllability for parabolic systems (these properties are equivalent for
the heat equation for instance). This has been proved in [14]. Moreover, this also
shows that if this system is controllable with a boundary control then it is also
controllable with a distributed control (recall that the distributed controllability
of this system is characterized by only the first condition, see [2]). We insist on
the fact that this is a result in dimension one; except in the framework of [1], the
problem is open in higher space dimension.

We have a similar result for Theorem 2.9 when m = 1:

Corollary 2.12. Assume that m = 1. The one-dimensional system

Oy —Owzy = Ay in(0,T)x(0,L),
y = Bg on(0,T)x{0,L},
y(0) = o in (0, L),

is approzimately controllable if and only if the following two conditions hold:
1. Ker (6; — A*) N Ker (B*) = {0} for every i.
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2. For every eigenvalue s € o (Op + A*), either rs = 1, either ry = 2 with
6.(0) },(0)
(D) dly(L)

Finally, let us give a result in any dimension when m = 1.

ank = 2.

Theorem 2.13. Assume that m = 1. The N-dimensional system

oy = Ay+Ay in(0,T)xQ,
y = 1,Bg on (0,T) x 01,
y(0) = o in Q,

is approzimately controllable if and only if the following two conditions hold:
1. Ker (0; — A*) N Ker (B*) = {0} for every i.
2. For every s € o (A + A*), we have

(Ker (=Xs —A) +...+ Ker (_)‘l?s - A) ) NKer (1,0,) = {0}.

Note that the second condition is relevant only for s with r5 > 1, see (8).

Proof of Theorem 2.15. Let s € 0 (A + A*) andlet u € Ker (s — (A + A*))nKer (B*1,0,).
We know that u writes

T
UZE E Ak, j,m Wi, Pl m

k=1 j,m
for some, oy, j.m € C and we have
s

]-'yan (Z Z ﬁk,md)lk,m) = 07
k. m

where By = Zj ag jmB*w;, j. Since B* is a row vector, Bk, is a scalar, so that
we can use the second condition and obtain that ), = Bk m @i, m = 0 for every k. By
the linear indepedence of {¢; ., },, we obtain that 8 ,, = 0 for every k,m, that is

B* E A 5. mWiy 5 = O, Vk,m
J

Using now the first condition this gives )  Okj,m Wiy j = 0 and it follows that
oy, j.m = 0 for every k, j,m, that is u = 0.

Let us now show that these conditions are also necessary. We only prove it for
the second condition since it is already known for the first one, see Lemma 2.5. Let
¢ =¢y +...+ ¢, with ¢; € Ker (—\; — A), be such that 1,0,¢ = 0. For every
k, let w;, be any eigenvector of A* associated with 6;,. We know that B*w; is a
scalar and B*w; # 0 thanks to the first condition (we have just recalled that it is a
necessary condition). Thus, we can define

1 1
u = mwild)ll + ...+ B*iujirwir(z)lr.
We can see that u € Ker (s — (A + A*))NKer (B*1,0,) so that u = 0 by assumption.

It follows from the linear independence of {w;}, that ¢;, = 0 for every k, that is
¢ =0. O
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2.5. Analysis on a particular geometry. In this section we still consider system
(1) but the domain  is now a rectangle

Q= (O,Xl) X (O,XQ)

We denote the faces of our rectangle by ~vr, vg, v and g, as on Figure 1:

(0, X») T
L Q VR
(0’ 0) VB (leo)

FI1GURE 1. Domain {2 for section 2.5.
The goal of this section is to prove several results about the boundary controlla-
bility of system (1), by discussing on the geometric position of ~.

Theorem 2.14. If v = vy, then system (1) is approzimately controllable if and
only if so is the following one-dimensional system

aty - 8931I1y = Ay in (OvT) X (Oa Xl)v
Y = 1{()}Bg on (OaT) X {07X1}7 (9)
y(0) = o in (0, X4).

If v = v U~yg then system (1) is approximately controllable if and only if so is
the following one-dimensional system

8ty - 83313’:1:[! = Ay n (OvT) X (OaX1)7
y = Bg on (07T) X {OaX1}7
y(0) = o in (0, X1).

We recall that the controllability of these one-dimensional systems has been stud-
ied in sections 2.3 and 2.4.

For the heat equation, a similar result has been established in [13, 23] for the
null-controllability when ~ is one of the faces of 0€2.

We consider next the case of two consecutive faces, with for instance v = v, U~vyp.

Theorem 2.15. Assume that Ker (6; — A*) N Ker (B*) = {0} for everyi. If v =
vr U~r and n = 2, then system (1) is approzimately controllable.

The geometry of v (including two different directions v, and 7r) is such that in
some sense it "creates” an additional control. Thus, everything happens as if we
had two controls for two equations and we can expect the controllability to hold,
as it is showed in section 2.2. Theorem 2.14 shows that this is not true if we pick
two parallel faces v = v, Uyg. When more equations are considered, the following
counter-example strengthen this point of view.
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Proposition 2.16. Even if v = v U~r and Ker (6; — A*) N Ker (B*) = {0} for
every i, system (1) may be not approximately controllable when n > 2.

Remark 2.17. It is worth mentioning that, in all the previous statements, we can
replace vy, (resp. Yr, Y1, Y5) by a nonempty open part of it. This is easily seen in
the following proofs by using the analyticity of the one-dimensional eigenfunctions
of Opyuyn (O Ogyay)-

The main ingredient that will make the proofs work is the following. The (not
necessarily distinct) eigenvalues of A = 0,4, + Oxpa, o0 (0, X7) X (0, X3) are

_ _ X1 (X2
Apg=—X, Ayt

and the corresponding eigenfunctions are
O, (1, 22) = ¢5 (21) 5 % (2), a1 € (0, X1), x5 € (0, Xa).

In this case the dimension m; of the eigenspace of A associated with —J\; is exactly
the number of distinct couples of indices (p, ¢) such that A, , = A;. We denote by
(psq)s- - (P, q"") all such indices. Note that for every m we necessarily have

p Aol and g # g, Ym' #£m. (10)
Indeed, it follows from the definition of these indices and the form of A, 4 that, if

pt = p{”,, then we also have ¢;* = qlml, which is excluded by definition.

Proof of Theorem 2.1/. Let us consider the case v = yr; the proof for v = vy Uvgr
relies on the same kind of arguments. We also only prove that, if system (9) is
approximately controllable, then so is system (1), the converse being easier.
Let s € 0 (A+ A*) and u € Ker (s — (A + A*)) N Ker (B*1,,0,). With the
notations previously introduced u then writes
o My
u=3 > | Do CkimWing | Sph gt
k=1m=1 7
for some oy, j,m € C, and we have
ro My,
> ﬂk,mgb;lin: (z9) =0, Vs € (0,Xy), (11)
k=1m=1
where we have set

/
Brem = —Yk,m (G%i) 0), Yrom =B | Y ok jmwi,
J

Note that we can always assume that Ker (§; — A*) N Ker (B*) = {0} for every 4
since it is a necessary condition (see Lemma 2.5) for both systems (1) and (9). As
a result, to prove that u = 0 it is equivalent to show that v, = 0 (or Sgm = 0)
for every k,m.

For convenience we assume that » = 2. Thus (11) becomes

miy mig

Zl 51,m¢;l% (w2) + 252,771(152% (x2) =0, Vg € (0,X>).

Using the linear independence of {(bé(?}q in L2(0, X3), two cases may happen.

For some given m, if ¢;" # q{g/ for every m/ then, taking also (10) into account, we
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obtain /31, = 0. On the other hand, if there exists m’ such that Q= ql’;L', then
this m’ is unique thanks to (10) and we obtain that 8 ., + B2, = 0, that is

/
- (’717m¢;§r§ + 72,m'¢;(,i/) (0) = 0.

2
. ’
Since ;"' = gj; we have

X X
—Apih + 0, = X+ 0.,
and the assumption that system (9) is approximately controllable permits to con-
clude that vi,m = v2,m’ = 0.
Thus, in both situations v; ,, = 0, and it follows that 73, = 0 (when r > 2 we
reason by induction). O

Proof of Theorem 2.15. Since we assume that n = 2, the matrix A* has at most
two distinct eigenvalues. If A* has only one eigenvalue then we already know that
the system is approximately controllable, see Example 2.4 in section 2.1. Let us
then assume that A* has two distinct eigenvalues

0;, # 0. (12)

With the same notations as in the proof of Theorem 2.14, let us show that is it
not possible to have

mll ml2

E X E Xo _
/Bl,m(bq,"l" + BQ,mqﬁqz/ — Yy

m=1 m=1

mll mlz

X X1
D mbpt + Y Sambph =0,
m=1 m=1
with v, # 0 for every k, m, where
!
Shm = hm (637) (X2).
k
3 m m’
From the first equation we see that the sets {ql1 }1§m§mll and {% }1gm’§m,,2

are in bijection. Indeed, if there exists m such that ¢ # q[;‘l for every m’ then,
using the linear independence of {¢;* }q in L?(0, X5), we obtain £1,m, = v1,m = 0.

Since the same fact holds for the second equation, the sets {p]”} and
171<m<my,
’ . .o .
{p}" } are also in bijection.
2 ) 1<m/<my,
As a consequence, denoting M = m;, = m;,, we have
M M M M
DoONEE DN D A=Y A
qll qu pll p12
m=1 m’=1 m=1 m’=1
so that
M M
Z Apﬁ’qz"f = Z Aq{g"7ql"2’"'
m=1 m/=1
Let us denote by S this common value. Since —Apm ;m +60;; = —Agm .m + 0;
Py ap) 1 i -ap 2

for every m, if we sum we obtain

—S+ M6;, = —S + M6

129
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and thus

a contradiction with our assumption (12). O

Proof of Proposition 2.16. We provide an example of system with 4 equations for
which the condition Ker (§; — A*)NKer (B*) = {0} holds for every ¢ and that is not
approximately controllable on v =~ U~p. This example can easily be generalized
to the case n > 4.

We take X7 = X5 = m, so that the eigenvalues of A are simply

—Ny =1 — ¢,

and we choose

000 O 1
1 0 0 120 0
A= , B=
010 -1 0
0 0 1 —10 0

We can check that
o(A*)={6, =—-8,00 = 5,03 =3,0, =0}.
Ker (6; — A*) NnKer (B*) = {0}, i=1,2,3,4.
Now, observe that we have the relation
A1 +01=—Ay1 + 02 =—Ay 3+ 03 =—A; 3+ 04 =—10.

In view of this relation we define

1

1 1
u= 11— §¢2,1 + 6¢2,3 - §¢1,3-

Clearly u # 0. Let us show that however d,u = 0 on vz U vy, which will prove
Proposition 2.16 thanks to Theorem 2.13. Taking into account that ((bffl)/ (0) =

p\/g, for o € (0,7) we have

~onu0.a) == ((6) © - 3 (6) ©) o (a2)

(LY o) = L (e X
(5 () @3 (") @) 65(aa)
so that indeed d,u =0 on . In the same way, for z; € (0,7) we have

Onzu(orm) = o) (%) (0 - 3 (65%) @)

and thus d,u = 0 also on ~vp. O
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3. A cascade system coupled by a first order term. We now turn out to the
results concerning the second system

Oy — Ay =0 in (0,7) x Q,
Ory2 — Ayo = G(x) - Vyr +a(x)yr  in (0,T) x Q,
y1=1y9, y2=0 on (0,T) x 09,
y1(0) =y10, %2(0) = w20 in Q.

As mentionned in the introduction, it is known that this system is approximately
controllable at time T if and only if its adjoint system

Orz1 — Az = —G(x) - Vza + (a(z) — divG(z))ze  in (0,T) x Q,

Opzg — Az =0 in (0,T) x Q,
z21=0, 22=0 on (0,T) x 09,
21(0) = 21,0, 22(0) = 22,0 in Q,

has the unique continuation property
VZL(M 22,0 € H(:)l (Q), <173n21 (t) =0 for a.e. t € (O,T)) = 21,0 = 22,0 = 0.

For commodity, let us denote
Q=—-G(z) -V + (a(z) — divG(z)).
As before we apply Theorem 1.1, this time to the operators

A 9

A= , D(A) = H*(Q)? N Hi ()2,
0 A

c= (1,0, 0), DE=H©?NH©Q)

Again, by using a perturbation argument we can check that A generates analytic
semigroup and indeed satisfies the hypothesis of Theorem 1.1. The operator C is of
the same kind as for the first system we studied. As a consequence, this system is
approximately controllable if and only if

s—A -9

Ker N Ker( 1,0, 0 ) = {0}, VseC. (13)
0 s—A
It is not difficult to see that the spectrum of A is
a (A) = {_Al}l 9
and that its eigenspaces can be decomposed as follows:
Ker (—>\l — .A) =U,aV,
with

Uu S, Qv
U[: 5 ‘/l: : ’

v
u€Ker(—X\;—A) vEKer(—Al—A)ﬂKer(P)\l Q)
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where §; : f € Ker (Py,) — u € Ker (Py,) with u the unique solution (in Ker (Py,))
of the equation (—=\; — A)u = f.

3.1. A sufficient condition in any dimension. The following theorem is, in
some sense, the analogue of Theorem 2.2 in section 2.1. This also recovers [19,
Theorem 1.5].

Theorem 3.1. Assume that
Ker (—\; — A)NnKer (P, Q) = {0}, Vi (14)

Then, the N-dimensional system

Oy1 — Ay =0 in (0,T) x Q,
Ory2 — Ays = G(x) - Vy1 +a(z)yr in (0,T) x Q,
yi=1y9, y2=0 on (0,T) x 09,
y1(0) =y10,  ¥2(0) = y20 in §,

is approximately controllable.

Proof. The assumption (14) means that V; = {0} for every [, so that Ker (—\; — A) =
U, for every I. Thus, any w € Ker (—=\; — A) N Ker (C) writes

for some u € Ker (—\; — A) and satisfies Cw = 1,0,,u = 0. This implies u = 0 (see
(8)) and thus also w = 0. O

Remark 3.2. Condition (14) can be reformulated into the following rank condition:
<Q¢l,17¢l,1>L2(Q) <Q¢l,1a¢l,mz>L2(Q)

rank =my, VI. (15)
<Q¢l,mla¢l,1>L2(Q) e <Q¢l,7nl7¢l,ml>L2(Q)

3.2. Complete caracterization in dimension one. As for Corollary 2.11 in
section 2.4, condition (14) turns out to be also necessary in dimension one:

Theorem 3.3. The one-dimensional system

Ory1 — Oty =0 in (0,7) x (0, L),

Ory2 — Opay2 = G(x) - Vy1 + a(x)yr  in (0,T) x (0, L), (16)
y1=11019, y2=0 on (0,7) x {0, L},

y1(0) =y10, y2(0) =20 in (0, L),

is approzimately controllable if and only if

/OL (—;G’(x) + a(x)) gy () dx £ 0, VL. (17)

Example 3.4. For a = 0 and G constant, the corresponding system is not approx-
imately controllable.
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Proof of Theorem 3.3. From Theorem 3.1 we know that (14) is a sufficient condi-
tion. Let us prove that it is also necessary in dimension one. To this end, assume
that (14) does not hold. Then, for some [, there exists at least one eigenfunction of
A associated with —)\; in U; and another one in V, say

S Qu
e, w=|"""]ew
0 v
If Cw = 0, that is (§Qv)’(0) = 0, then the approximate controllability condition

(13) already fails. On the other hand, if (§;Qv)’(0) # 0, then condition (13) also
fails because of the following relation

1 1 !
(u’(())u_ (Sle)/ (O)Sle> (0) =0.

As a result, (14) is a necessary and sufficient condition in dimension one. To
conclude it remains to observe that, since m; = 1 for every | (N = 1), condition
(15) now reads as

(Qdbi, d1) 12y 70, VL,
which gives condition (17) after an integration by part on the gradient term.
O

4. Further results: distributed controllability. All along this work we were in-
terested in the boundary controllability problem but let us mention that the method
also works for distributed controllability. For instance, we can recover the result of
[2] concerning system (1). We can also obtain the following result:

Theorem 4.1. Let w be a nonempty open subset of Q. Assume that  is connected
and G and a are real analytic functions in Q. Then, the N-dimensional system

Owy1 — Ay = 1,9 in (0,T) x Q,
Ohy2 — Ayz = G(z) - Vy1 +a(z)yr  in (0,T) x Q,
11=0, y2=0 on (0,T) x 09,
y1(0) = y1.0,  42(0) =920 in ,
is approzimately controllable if and only if
Ker (=\; — A)NKer (Q) = {0}, Wi, (18)

where we recall that @ = —G(x) - V + (a(x) — div G(z)).

To the author knowledge [8] and [16] are the only works for the distributed
controllability of this system. However in these papers, even for ¢ = 0 and G
constant, additional assumptions are needed. Indeed, for this case the system is null-
controllable in dimension one (consequence of [16, Theorem 4]) or in any dimension
but with a geometric condition on w ([8, Theorem 1.1]).

Proof of Theorem 4.1. This time the observation operator is C = (1w 0) (it is a
bounded operator on L?(2)?). Let w € Ker (—A\; — .A) N Ker (C). Thus, w writes

U S;Qu
+

v
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for some u € Ker (—A; — A) and v € Ker (—A\; — A) NKer (P, Q), and satisfies
L, (u+ & Qu) = 0. (19)

Since v is an analytic function, so is Qu. Thus, §;Qu is an analytic function as
solution of an elliptic partial differential equation with analytic data (see for instance
[18, Theorem 7.5.1]). Note that u is also analytic. Thus, (19) is equivalent to

u+ & Qv =0.

This implies that v = 0 since u = —§;Qv € Ker (Py,) and u € Ker (= — A) =
Im (Py,). Thus, §;Qv = —u = 0 and it follows that Qu = 0 (see the definition of
S;). This implies v = 0 if and only if (18) holds. O

Example 4.2. Let us illustrate this result with a = 0 and G # 0 constant. This
means that we take @ = —G - V. We can verify that this operator Q satisfies (18)
since we actually have the stronger property

Yu€ Hy(Q), G-Vu=0in Q= u=0.
Indeed, set v(x) = e“Tu(x). We have v € HZ () and (using the hypothesis on )
G-Vo=|Glv.
Multiplying this equality by v and integrating by parts we obtain

|G|2/ lo(@)|? dz = 0.
Q

This implies that v = 0 and thus also v = 0.
As aresult, we can apply Theorem 4.1 and obtain that the N-dimensional system

Oyr — Ay = Lug in (0,T) x Q,
Oyo — Ays =G - Vi in (0,7) x €,
y1=0, y2=0 on (0,7T) x 0L,

y1(0) =y10, 22(0) =920 in €,

is approximately controllable.

Appendix A. Proof of Theorem 1.1. For the sake of completeness we give here
the proof of Theorem 1.1. We recall that this proof is just adapted from the one in
[12] in order to deal with relatively bounded observation operators.

Let us recall the notations and assumptions. H and U are complex Hilbert
spaces, A : D(A) C H — H generates a strongly continuous semigroup on H,
has a compact resolvent, the system of root vectors of A* is complete in H, and
C:D(C) C H— U is relatively bounded with respect to A.

We denote by p(A) the resolvent set of our closed linear operator A and, for
A€ p(A), R(A\A) = (A — A)~! the resolvent operator.

Since A has a compact resolvent, its spectrum o (A) = C\p(A) consists in a
sequence of isolated points, say {fx;},. In particular p(A) is path connected. We
have o (A*) = o (A) = {15;} -

Let now C; C p(.A) be a positive-oriented small circle enclosing ;1; and such that
no other eigenvalue than p; lies inside this circle. For every j we define the spectral

IR
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projection
P,: H — H
1
u > —/ R (& A)udé.
2mi Jo,

The operator P, is a bounded linear operator and one can prove that the range of
this operator is exactly the root subspace of A associated with p;, i.e. Ker (u; —.A)7,
where 7; is the smallest indice k such that Ker (u; — A = Ker (pj — A)*. For
a proof of this fact we refer to [10, 2 Lemma, Chapter XIX]. A computation shows
that

Phy = 5 RAEAD dE

where Cj is the circle centered in 7z; with the same radius as C;. Since there are no
eigenvalue of A* except [ inside the circle @7 the range of this operator is exactly
the root subspace of A* associated with ;.

Let us now recall some properties of semigroups. Since A generates a strongly
continuous semigroup S(t) on H, we know that there exists M > 0 and wp € R
such that

||S(t)||£(H) < Mewot, vt > 0.

Moreover, for every zp € D (A), we have S(t)zp € D (A) with AS(t)zo = S(¢)Az
and the map t € [0, +00) — S(t)20 € D (A) is continuous. Finally, the resolvent
set p(A) contains the halfplane {A € C|ReX > wp}. For a proof of these facts
we refer to [11, Proposition 5.5, Chapter I], [11, Lemma 1.3, Chapter II] and [11,
Theorem 1.10, Chapter II], respectively.

Lemma A.1 (Corollary 2.2 of [12]). Let zgp € D (A) be fized. The three following
properties are equivalent:

1. CS(t)z0 =0 for a.e. t € (0,+00).

2. CR (A A) zg =0 for every A € C with Re A > wy.

3. CR (A A) z0 = 0 for every A € p(A).

Proof. Recall that the resolvent of an operator can be represented as the Laplace
transform of the semigroup it generates for Re A > wy (see for instance [11, Theorem
1.10, Chapter II}):

+oo
/ e MS(t)zo dt
0 .
J
= lim e MS(t)zodt  (limit in H).
j—=+oo Jo

Actually, this limit can also be considered in the sense of D (A). Indeed,
J
/ e MS(t)z0dt € D(A),
0
with

i i J
a [l ensmar= [Terasozii= [ smawr
0 0 0
R Az

j—+oo
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Since C is bounded on D (A) we obtain
—+o0
CR(NA)z = / e_)‘tCS(t)zo dt, Rel > wg.
0

It is now clear that 1. implies 2. while the converse follows from the injectivity of
the Laplace transform.

The remaining equivalence is a consequence of the analytic continuation of the
resolvent. O

Lemma A.2 (Proposition 3.1 of [12]). Let zo € D (A) be fized. If the third point
of Lemma A.1 holds, then CR (A; A) Py, z0 = 0 for every X € p(A) and every j.

Proof. Let A € p(A) lies outside the circle C;.
The first resolvent equation (A — )R (M A) R (§;A4) = R (& A) — R (A A) gives

ROAPy 20 = ROGA) o= [ R(EA)0dg

1
_ ijR(A;A)R(ﬁ;A)Zodé
1 REGEA-RMNA
o 271 C; 5_)‘ ZOdf

_ 1 R(&A) 1 1 .
__%iqu%%+@mA£‘HQR®@%-

Since X lies outside C}, the second integrand is analytic in some disk enclosing C;
and thus, by Cauchy’s theorem, the second integral is zero. This gives
1 R(§A)

R()\,A) ,PﬂjZO = _Tm g 5_7)\20 df

Once again this integral can be taken in D (A). Thus, applying C we have

1 CR(§A) 20 dE.

Using the assumption we obtain CR (A;A) Py, 20 = 0 for every such A, and thus, by
analytic continuation, for every A € p(A). O

We are now ready to prove Theorem 1.1. Let us just introduce a last definition
for commodity. For a subspace E C H invariant under S(t), we say that the pair
(A,C) is observable in FE if

Vzo € E, (CS(t)zo =0 for a.e. t € (0, +oo)> = 29 = 0.

Proof of Theorem 1.1. We will prove that the following properties are equivalent:

1. The pair (A,C) is observable in every eigenspace of A.

2. The pair (A,C) is observable in every root subspace of A.

3. The pair (A,C) is observable in D (A).
It is adapted from Corollary 3.2 and Corollary 3.3 of [12]. We recall that the first
condition is equivalent to: Ker (s —.A)NKer (C) = {0} for every s € C (see Remark
1.2).

The scheme of the proof is 1. = 2. = 3. = 1. (the last implication is
obvious).
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Assume that the pair (A, C) is observable in every eigenspace. If zg belongs to

the root subspace of A associated with p;, then S(t)zy is a polynomial in ¢, up to

a factor etit:

S(t)zo = e"i'p;(t),
with
=~ (-1
pit) =D ajot’, ajo = (= A%z
o=0 ’

This can be seen using the uniqueness of the solution to the evolution equation
satisfied by S(-)zg. Thus, the identity CS(+)zp = 0 reads
Clpj —A)f°2 =0, 0<o<T1;—1.
In particular for o = 7; — 1 we have
Clp; — A7 1z =0.
Now, recall that zq lies in the root subspace Ker (u; — A)™, so that
(nj — A) ™ 29 € Ker (uj — A) .
Thus, the assumption implies that
(1 — A2 = 0. (20)
Taking this time o = 7; — 2 we have
Clu; — A2 =0,
and from (20) we know that
(nj — A7 22 € Ker (i — A),
so that the assumption gives
(nj — A7 22 = 0.

Iterating this process we obtain zy = 0.

Assume now that the pair (A,C) is observable in every root subspace and let
z9 € D(A) be such that CS(t)zp = 0. Applying Lemma A.1 and Lemma A.2 we
obtain that CS(t)P,, 20 = 0 for a.e. ¢t € (0,+00) and every j. By assumption we

1
deduce that P,; 20 = 0 for every j, that is, 29 € (Im (P;J)) for every j. Since

the system of root vectors of A* is assumed to be complete in H, we conclude that
20 = 0. O
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