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Abstract: In the context of categorical data analysis, the case of nominal and
ordinal data has been investigated in depth while the case of partially ordered
data has been comparatively neglected. We first propose a new specification of
generalized linear models (GLMs) for categorical response variables which en-
compasses all the classical models such as multinomial logit, odds proportional
or continuation ratio models but also led us to identify new GLMs. This unifying
framework makes the different GLMs easier to compare and combine. We then
define the more general class of partitioned conditional GLMs for categorical re-
sponse variables. This new class enables to take into account the case of partially
ordered data by combining nominal and ordinal GLMs.

Keywords: categorical data analysis; generalized linear model; partitioned con-
ditional model; recursively partitioned categories.

1 Specification of generalized linear models for
categorical response variables

Let Y denote the response variable with J categories (J > 1) and
X = (X1, . . . , Xp) be a vector of explanatory variables in a general form
(a categorical variable being represented by an indicator vector). The def-
inition of a GLM includes the specification of a link function g which is
a C1-diffeomorphism from M = {(π1, ..., πJ−1) ∈ ]0, 1[J−1|

∑J−1
j=1 πj < 1}

to an open subset of RJ−1, between the expectation π = E[Y |X=x] =
(π1, ..., πJ−1)T and the linear predictor η = (η1, ..., ηJ−1)T . All the classi-
cal link functions g = (g1, . . . , gJ−1), described in the literature -see Agresti
(2002) and Fahrmeir and Tutz (2001)- share the same structure which we
propose to write as

gj = F−1 ◦ rj , j = 1, . . . , J − 1,

where F is a continuous and strictly increasing cumulative density function
(cdf) and r = (r1, . . . , rJ−1)T is a C1-diffeomorphism from M to an open
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subset of ]0, 1[J−1. Thus we have

rj(π) = F (ηj) , j = 1, . . . , J − 1.

In the following we describe in more details the components r, F and η.

Ratio r: The linear predictor η is not directly related to the expectation
π but to a particular transformation r of the vector π which we call the
ratio. In the following we will consider four particular C1-diffeomorphism.
The adjacent, sequential and cumulative ratios are respectively defined by
πj/(πj+πj+1), πj/(πj+. . .+πJ) and π1+. . .+πj for j = 1, . . . , J−1, assume
order among categories but with different interpretations. The reference
ratio, defined by πj/(πj + πJ) for j = 1, . . . , J − 1, is mainly useful for
nominal response variables.

Latent variable cdf F : The most commonly used symmetric distribu-
tions are the logistic and Gaussian distributions but the Laplace and Stu-
dent distributions may also be useful. The most commonly used asymmetric
distributions are the Gumbel max and Gumbel min distributions. Playing
on the symmetrical or asymmetrical character and the more or less heavy
tails may markedly improve the model fit. In applications the Student(d)
distribution will be approximated by a Gaussian distribution when d > 30.

Linear predictor η: It can be written as the product of the design matrix
Z and the vector of parameters β (Fahrmeir and Tutz, 2001). Each explana-
tory variable can have its own design effect. For example, if X1 has a global
effect, X2 a local effect, . . . and Xp a global effect, the corresponding design
matrix, with J − 1 rows, is

Z =


1 xT1 xT2 xTp

1 xT1 xT2 xTp
. . .

...
. . . . . .

...
1 xT1 xT2 xTp

 .

This design will be denoted by the tuple (global, local,. . ., global) and a sin-
gle word global or local will denote the same design for all the explanatory
variables X1, . . . , Xp.

Finally, we propose to specify a particular GLM for categorical response
variables by the (r, F, Z) triplet with

r(π) = F(Zβ),

where F(η) = (F (η1), . . . , F (ηJ−1))T .

This specification eases the comparison of GLMs for categorical response
variables; see examples in Table 1. Moreover, it enables to define an enlarged
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TABLE 1. (r, F, Z) specification of some classical GLMs for categorical response
variables.

Multinomial logit model

P (Y = j) =
exp(αj + xT δj)

1 +
∑J−1
k=1 exp(αk + xT δk)

(reference, logistic, local)

Odds proportional logit model

log

{
P (Y ≤ j)

1− P (Y ≤ j)

}
= αj + xT δ (cumulative, logistic, global)

Proportional hazard model
(Grouped Cox Model)

log {− logP (Y > j)} = αj + xT δ (cumulative, Gumbel min, global)

Adjacent logit model

log

{
P (Y = j)

P (Y = j + 1)

}
= αj + xT δj (adjacent, logistic, local)

Continuation ratio logit model

log

{
P (Y = j)

P (Y > j)

}
= αj + xT δj (sequential, logistic, local)

set of GLMs for nominal response variables by {(reference, F, Z)} triplets,
which includes the multinomial logit model. GLMs for nominal and ordinal
response variables are usually defined with different design matrices Z; see
the first two rows in Table 1. Fixing the desing matrix Z may ease the
comparison of GLMs for nominal and ordinal response variables.
Finally, a single estimation procedure based on Fisher scoring algorithm
can be applied to all the GLMs specified by (r, F, Z) triplets. Using the
chain rule, the score function can be separated into two parts where the
first depends on the triplet (r, F, Z), whereas the second does not.

∂l

∂β
= ZT

∂F

∂η

∂π

∂r︸ ︷︷ ︸
(r,F,Z) dependant part

Cov(Y |X = x)−1 [y − π]︸ ︷︷ ︸
(r,F,Z) independent part

.
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2 Partitioned conditional GLMs for categorical
response variables

The main idea is to recursively partition the J categories and then to spec-
ify a GLM for each partition. Such combinations of GLMs have already
been proposed such as the two-step model of Morawitz and Tutz (1990),
that combines sequential and cumulative models, or the partitioned condi-
tional model for partially ordered set (POS-PCM) of Zhang and Ip (2012)
that combines multinomial logit and odds proportional logit models. Our
proposal can be seen as a generalization of POS-PCMs that benefits from
the genericity of the (r, F, Z) specification. In particular, our objective was
not only to propose GLMs for partially-ordered response variables but also
to differentiate the role of explanatory variables for each partition of cate-
gories using for instance different design matrices.

Definition: Let J ≥ 2 and 1 ≤ k ≤ J − 1. A k-partitioned conditional
GLM for categories 1, . . . , J is defined by:

• A partition tree T of {1, . . . , J} with V∗, the set of non terminal
nodes of cardinal k. Let ΩVj be the children of node V ∈ V∗.

• A collection {(rV , FV , ZV (xV )) | V ∈ V∗} of GLM(s) for each
conditional probability vector πV = (πV1 , . . . , π

V
JV −1), where πVj =

P (Y ∈ ΩVj |Y ∈ V,XV = xV ) for j = 1, . . . , JV .

Model estimation: It can be shown that the log-likelihood of partitioned
conditional GLMs can be decomposed into components such that each com-
ponent can be maximised individually because GLMs attached to each par-
tition of categories do not share common regression coefficients (Zhang and
Ip, 2012). Each component corresponds to the partition of a parent node
V ∈ V∗, and therefore, each GLM (rV , FV , ZV (xV )) can be estimated
separately using the procedure described in Section 1.

3 Application to back pain prognosis

Doran and Newell (1975) describe a back pain study with 101 patients.
The response variable y was the assessment of back pain after three weeks
of treatment using the six ordered categories: worse, same, slight im-
provement, moderate improvement, marked improvement, complete relief.
The three selected explanatory variables observed at the beginning of the
treatment period were x1 = length of previous attack (1=short, 2=long),
x2 = pain change (1=getting better, 2=same, 3=worse) and x3 = lordosis
(1=absent/decreasing, 2=present/increasing).
The best model we obtained for this data set was a 2-partitioned condi-
tional GLM (log-likelihood of −151.36 with 9 parameters); see figure 1.
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Anderson (1984) obtained a log-likelihood of −154.39 with 9 parameters
for the stereotype model. This gain is mainly due to the modularity of par-
titioned conditional GLMs (change of ratio r and design matrix Z between
the two partitions).

FIGURE 1. Representation of a 2-partitioned conditional GLM (partition tree
T of six response categories and two associated GLMs for categorical response
variables)
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