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Abstract: With the increase of flexibility and production rates, the complexity of manufacturing systems 
reached a point where the operator in charge of the production activity control of the system is not able to 
forecast efficiently the impact of his decisions on the global performances. As a matter of fact, more and 
more Decision Support Systems (DSS) are developed, as much in literature or industrial applications. 
DSS have one common point: the initialization of their forecasting functionality is based on data coming 
from the manufacturing system. Furthermore, this feature is fundamental, as it has a direct impact on the 
accuracy of the forecasts. Considering the variety of input and output data, a data processing is necessary 
to adapt those coming from the manufacturing system. The aim of this paper is to present several design 
approaches enabling the integrator of a new manufacturing system to speed up the implementation, with 
the idea of automate and systematize the maximum design phases thanks the model driven engineering. 

Keywords: Decision support systems, Data processing, Manufacturing systems, Model driven 
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1.  INTRODUCTION 

With the increase of flexibility and production rates, the 
complexity of manufacturing systems reached a point where 
the operator in charge of the production activity control of the 
system is not able to forecast efficiently the impact of his 
decisions on the global performances. 

As a matter of fact, more and more Decision Support Systems 
(DSS) are developed, as much in literature or industrial 
applications. Each DSS has its own performance and 
hypotheses, but they have one common point: the 
initialization of their forecasting functionality is based on 
data coming from the manufacturing system. Furthermore, 
this feature is fundamental, as it has a direct impact on the 
accuracy of the forecasts. 

As the data available on the system are generally not directly 
usable in the initialization of the DSS, a data processing is 
necessary to adapt the data (Fig.1). The major difficulty is 
that the entrance data are each time different, when those 
needed by the DSS are also each time different. 

 

Fig. 1. Initialization of a Decision Support System 

At last, the problem of response time is very important when 
dealing with short-term DSS. Indeed, as the forecasts are 
made on short horizons, the data processing has to be 
shortened so that the operator can make his decision as early 
as possible. 

The aim of this paper is to present several design approaches 
enabling the integrator of a new manufacturing system to 
speed up the implementation. The idea is to automate and 
systematize the maximum design phases so that the variety of 
data at the entrance and at the exit of the data processing can 
be reduced. These approaches are mainly base on Model 
Driven Engineering (MDE). 

First section of this paper shows several examples of DSS 
found in literature, in order to show the diversity of 
applications and data involved. Second section formalizes the 
problems of data processing. Third section suggests 
alternative architectures enabling an efficient data processing, 
according to the application aimed. Finally, last section 
exposes the design approaches suggested to help the 
implementation of the most complicated (but also the most 
efficient) solutions presented in third section. 

2.  MANUFACTURING SYSTEMS AND DSS 

When a disruption occurs on a manufacturing system, it is 
generally necessary to take decisions. Many Decision 
Support Systems can be found in literature. This section 
introduces some of the most used and detail the processing of 
data needed to feed them. 

Some kinds of DSS use online simulation. The performance 
of online simulation, base on short term decisions calculated 



 
 

     

 

by discrete-event simulators, is known for several decades. It 
has been recently experimented on large scale systems via 
observers (Cardin et al., 2009). On specific problems, 
(Mahdavi et al. 2010a), (Mahdavi et al. 2010b) use for 
initialization a list of past events and a forecasted list of 
probable future events. In (Chong et al., 2003), when a 
disruption occurs, several new schedules are calculated. A 
discrete-event simulator evaluates them before choosing the 
most adequate for the decision.  

Another kind of DSS refers to the field of artificial 
intelligence via fuzzy logic (Mok, 2009) (Garavalli, 1999) or 
artificial neural networks. The applications are wide, from the 
definition of a sensors fault tolerant control (Magdy, 2009) to 
the prediction of drill wear from thrust force and cutting 
torque signals (Yang et al., 2009). These systems need a 
learning phase, generally obtained with an observation of the 
states of the system along the production (Pierreval, 1992).  

This short study intends to show that the different DSS 
encountered in literature need various data coming from the 
manufacturing system. Furthermore, the set of data is very 
variable, can be huge, and the precision required is various 
(mean load of a buffer / identification of the products present 
in the buffer, for example). 

3. THE PROBLEM OF AVAILABILITY OF 
DATA FOR DSS INITIALIZATION. 

This section delineates the problematic. To illustrate this, a 
simple case study is presented, based on a conveying system 
with a workstation in derivation. This example will be later 
used to illustrate the concepts which will be developed in 
section 4. 

3.1  Introduction 

As shown on figure 3, the physical structure of the 
workstation is made of 2 conveyors, 3 sensors and 1 stopper. 
When a part reach sensor 1, and if workstation 1 is available, 
then stopper 1 let the part go and the divergence makes the 
part enter the station. 

 
Fig. 2. The example of a workstation 

3.2  Data in a manufacturing system 

A manufacturing system is constituted of many data, of 
variable nature and localization. Among the most classical 
data, data coming from the sensors, coming from the 
actuators or data coming from the production activity control, 
such as the state of execution of the manufacturing orders, 
could be cited. It is theoretically necessary to retrieve the 

values of all these variables to define, at time t, the set 

)(tS system , corresponding to the state of the system.  

Inside this set, the subset of observable states )(tSobs  

contains all the values of the variables that can be retrieved at 
time t. These data can be located in the control devices (and 
thus generally easy to retrieve via protocols such as OPC, 
MODBUS, etc…) or in the MES database for example. 

Non-observable states subset )(tSunobs  contains all the 

variables which value cannot be retrieved at time t. When 
some variables are inside this subset at any time, some can be 
part of one set or another, depending on the considered date. 
The most classical example is the location of a part on a 
conveyor with a minimalist control. Its exact position is 
known when it is in front of a sensor; no data directly give 
the exact location of the part between two sensors.  

The state of the system can thus be defined as the union of 
both the subsets previously defined: 

 )()()( tStStS unobsobssystem ∪=
  

(1) 

With:                 
 ∅=∩ )()( tStS unobsobs                           (2) 

3.3  Concurrent data representation in the control 

Among all the data available on the control system, let us 
focus on the implementation of the resource sharing of 
workstation 1. Different classical implementations could 
indeed be considered. 

Fig. 3 shows three different ways to code the authorization 
for a part to enter the station. These three examples are all 
written using the same IEC 61131-3 SFC language to 
facilitate the reading, but the reader should keep in mind in 
the following that the language could furthermore be 
different.  

 

Fig. 3. Three ways of coding a workstation entrance 

First way is to evaluate the activation delay of the entrance 
sensor. When a critical threshold is reached, the station is 



 
 

     

 

considered as full. Second way, more classical, uses a 
counter, representing the number of part present in the 
station. The increment of the counter is represented; the 
decrement is located in the exit_station’s program. Third way 
uses a second sensor (2b), located just after sensor (2). When 
both sensors are active at the same time, then the station is 
considered as full. 

)(tSobs  differs between the 3 examples, alternatively 

containing variables such as “sensor1”, “sensor2”, 
“sensor2b”, “stopper1” or “nbProd”. 

If the DSS requires data about the state of the station’s buffer 
(“full”/”not full”/”empty”), one variable (“nbProd”), two 
variables (“sensor2” and “sensor2b”) or the activation time of 
a SFC step alternatively are to be retrieved. However, these 
data needs to be adapted to fit the need of the DSS.  

So although these three ways of coding have the same 
behavior, they cannot enable the implementation of any DSS 
directly connected to the control. 

3.4  Requirements of DSS and the need for data adaptation 

This following example is based on a DSS, which is used 
when a part has to enter the station and the buffer is full. This 
DSS provides data to decide whether it is better to wait for 
the station to get available – thus blocking the other parts on 
the conveyors – or to stay on the conveyor and make one 
more lap before attempting again to enter the station – with a 
high level of risk for another part to have entered the station 
before. This kind of decision is relatively tricky, as it 
involves a lot of parameters. 

To be able to provide the most accurate data, the DSS needs a 
set of data coming from the system for its initialization: this 

set is denoted )(tS needed . This set depends on several 

parameters, such as the nature of the DSS, the time and the 
objective of the question asked to the DSS. Obviously, it does 
not correspond to the whole set of data composing the state of 
the whole system: 

 )()()( _ tStStS needednotneededsystem ∪=
      

(3) 

Considering the DSS of the example, it is obvious that the 
decision must be short-term. Thus, an important characteristic 

of the data adaptation between )(tS system  
and )(tSneeded is 

the response time.  Indeed, a long response time provides a 
bias in the prevision, which has to be reduced at a minimum 

value. As a matter of fact, if Ø)()( ≠∩ tStS unobsneeded , 

then a reconstruction, potentially time consuming is needed. 

3.5  Problematic 

The last section clearly stands the three major issues that 
have to be faced when implementing a DSS on an existing 
control. Firstly, the list and the nature of the variables 
necessary for the initialization of the DSS are generally 
completely different for one DSS to another.  Secondly, the 
correspondence with the data available in the system’s state is 
difficult to establish. Finally, the response time for 

initializing the DSS is an important feature to be taken into 
account when implementing the DSS. 

To face these issues, next section introduces and discusses 
several alternatives about data processing for DSS. 

4.  DATA PROCESSING TO INITIALIZE DSS 

In this section, various architectures, and the associated data 
processing, are presented with the objective to initialize a 
DSS coupled to a manufacturing system. Indeed, according to 

the content of )(tSobs  and the requirements of )(tSneeded , 

the architecture can be quite different. 

The illustrations are based on the example presented in the 
previous section. 

4.1  First solution: direct state transfer 

The easiest solution (Fig.4) to implement is to initialize the 
DSS directly with the state of the variables contained in the 

control of the system )(tSobs . The difficulty is to have a 

control and a DSS which deal with the same variables. 

Indeed, the DSS cannot access variables value 

from )(tSunobs , and cannot either reconstruct them, having 

no data about the evolution of the variables values before t. 
The previsions of the DSS are thus less precise, unless the 
control provides a lot of data, which is generally expensive to 
implement. 

 

Fig. 4. Direct data transfer 

As shown on Fig 4, a linking between data is necessary. This 
linking is made once, and enables relationships between the 
variables of the system and the variables of the DSS. It 
answers the concerns explained in section 3.3. 

4.2  Second solution: Using the history of events 

To get some data included in )(tSunobs , a solution is to work 

with the history of the data of the system. This history is 
stored along the production, and processed when the DSS is 
initialized (Fig. 5). 

The example of the parts on a conveyor is revealing. When 
the DSS is initialized, the last occurrences of the entrance and 
exit sensors are processed. Associated with the speed of the 
conveyor, the position of the items can be reconstructed with 
a simple regression. The content of the buffer in an 
accumulation conveyor can also be retrieved with the same 
data.  

Obviously, the data linking is still necessary when 
parameterizing the connection between the system and the 
DSS. However, the data processing is also composed of the 



 
 

     

 

state reconstruction, which can be long to process. As a 
matter of fact, this solution is not always compatible with 
applications for a very short-term DSS. Another problem 
remains in the amount of data to be stored during the life of 
the system. 

 

Fig. 5. Using a history of states.  

4.3   Third solution: Using a generic state reconstructor 

The third solution presented relies on the same idea, but tries 
to discard the problem of time consumption and data storage. 

This solution (Cardin, 2007) enables to reconstruct a 

)(tS system  as complete as possible of the system thanks to an 

observer, also called state reconstructor. The state of the 
observer can therefore be considered, at any time t, as the 

closest image of )(tS system  possible.  

The initialization of the DSS (Fig. 6) is thus similar to the 
first solution, based on a direct data transfer between the state 
of the observer and the DSS, with a very short data 
processing.  

 

Fig. 6. Using a generic observer 

This solution is very efficient, but two main issues remain: 

1. The design of the observer is a difficult task, as the 
mechanisms of synchronization between the 
observer and the control are hard to establish; 

2. The data linking is still present, as it is necessary to 
establish the relationships between variables each 
time a new DSS has to be implemented. 

4.4  Fourth solution: DSS-oriented observer 

In order to overcome this last issue, the idea was to integrate 
the linking of the data directly in the design phase of the 
observer. The objective is to go from the state of the observer 

considered, at any time t, as the closest image of )(tS system  

possible as it was the case before, to the state of the observer 

considered, at any time t, as the closest image of )(tSneeded  

possible. Furthermore, this should decrease the complexity of 
design of the observer, as the number of variables should be 
decreased. 

The method consists thus in integrating the model of the 
considered DSS data structure as the data structure of the 
observer (Fig.7). 

The main issues of such a solution are: 

1. A supplementary observer has to be designed each 
time a new DSS needs to be implemented on the 
system, as the observer are dedicated to specific 
DSS; 

2. The design of the observer, although less time 
consuming because shorter, is even more complex 
as the data structure of the DSS has to be integrated. 

  

Fig. 7. DSS-oriented observer 

4.5  Conclusion about these solutions of data processing 
from a manufacturing system to the corresponding DSS 

As mentioned above, several ways are possible to deal with 
the identified problem, from the most simple to the most 
efficient. The main difference stands in the position of both 
the state reconstruction and the data linking. To evaluate the 
relevancy of implementation of one solution on a real case, 
four factors can be compared: 

• The need of the chosen DSS for variables belonging 

to )(tSunobs , and thus the need for state 

reconstruction; 
• The compliance with the real-time requirements of 

short term DSS; 
• The genericity of the approach; 
• The complexity of design of the solution. 

Table 1 classifies, for each of the suggested solutions, the 
level of these factors. 

The levels of the factors are very dependant of the use that is 
meant for the DSS. However, it underlines that the solutions 
with the observers are interesting. Their major drawback 
remains the design complexity, which makes their 
implementation quite impossible at wide range. Next section 
presents design approaches proposed to facilitate design of 
both the generic and the DSS-oriented observers. 



 
 

     

 

Table 1. Comparison of the solutions 
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Direct transfer No Yes No 
Very 
low 

Direct transfer 
with historical 
reconstruction 

Yes No No Low 

Generic Observer Yes Yes No High 

DSS-oriented 
Observer 

Yes Yes Yes 
Very 
high 

5.  DESIGN APPROACHES 

This section intends to present a generic design approach, 
declined in two versions depending whether it deals with a 
generic observer or a DSS-oriented observer. 

These approaches are based on Model-Driven Engineering 
(MDE) and have the originality to systematize a global 
design, including control and state reconstructor. To ease the 
designer work, as many steps as possible are automated. 

5.1.  Designing a generic observer 

This first approach was presented in (Adam et al., 2011). The 
aim of the authors was to create a design flow, presented in 
Fig. 8, automating the generation of the control code and the 
observer. 

 

Fig. 8. Design flow of a generic observer 

This flow enables the end user to generate a customizable 
observer, with all the links with the control already 
established, only based on the UML description of the 
conveying system, as described in (Lallican et al., 2007). 

Using the same standard as (Lallican et al., 2007) is 
interesting, as it allows to reuse their results about control 
code generation. This parallelism of generation is the key 
point for an easy establishment of the links between the 
control and the observer. 

Considering the example Fig 2, the designer first models the 
conveying system (Fig. 9). This model contains all the 
relationships between components, their position on the 
conveyor, the tasks they can perform and all the details on the 
implementation which can be useful (such as the PLC 
technology and the language that is wished for example) 

 

Fig. 9. Component-based model of a workstation 

Fig. 10 shows the control technology model, containing all 
the basic components and the detail of the I/O cards.  

 

Fig. 10. Control technology model 

The biggest advantage of this solution, originally intended for 
an industrial integrator of automated facilities, is to 
systematize, automate and accelerate the implementation on 
the customer site by the designer. Furthermore, this designer 
only has to be trained to model the system he implements, 
without any knowledge about code generation. 

However, a long part of the job is made off-line, in a previous 
phase, by a specialist of code generation. This specialist, 
called modeler, has in charge to build the tools used by the 
designer (such as those shown Fig.10 and Fig. 11) and the 
model transformations to generate the codes.  

The components he generates have to be generic so that they 
can be reused. This reusability is crucial: indeed, this 
approach gives better and better results each time the 
developed tools for one application are used again on a new 
implementation. 

Using this approach of parallel generation of control code and 
observer is very helpful to establish the necessary link 
between the observer and the control for synchronization. 
Thus, the data linking problem is reduced, as the control 
primitives are always coded in the same way. However, the 
data linking is not totally solved, as the link with the DSS is 
not yet established. 

Furthermore, another drawback relies in the genericity of the 
observer: as it is intended to be synchronized with the whole 
system state, the observer model, although customizable, 
remains very complex, and therefore hard to apprehend. 

5.2  Designing a DSS-oriented observer 

This section intends to show how the flow introduced by 
(Adam et al., 2010) can be modified in order to cope with 
both the drawbacks that were shown in previous section. The 



 
 

     

 

idea is to model the DSS (whose result is finally close to the 

content of subset )(tSneeded ) in the early modeling phase, so 

that its features can be used in the model transformation 
based generation (Fig. 11). 

 

Fig. 11. DSS-oriented observer and control generation 

The components defined by the modeler are instantiated by 
the user. Several views are attached to each component. Each 
view contains parameters of the system, grouped according to 
their characteristics (Lallican et al., 2007). To include the 
DSS data, a new view has to be created. This view is filled 

with all the data of neededsystem SS ∩ which are needed to 

initialize the DSS. This set of data will be used to orient the 
observer, which will thus only observe the data needed and 
shrink. 

Obviously, the content of the view being dependent of the 
DSS, this view has to be enriched with the description of 
each new DSS that is meant to be implemented. 

5.3  Conclusion about the design approaches 

If the second approach is globally more efficient, the 
difficulty for the designer is generally to model the data 
needed by the DSS. However, this is often relatively close to 
those modeling the system by itself. 

The modeler deals with a greater difficulty. Indeed, the 
observer, being a simulation model, is classically generated 
using templates. The component-based generation makes the 
use of simulation templates coherent, as almost each 
component can be identified to a specific template. The 
definition of templates is the hardest task of the approach of 
the generic observer. 

The case of DSS-oriented observer often requires dedicated 
templates, as the observation functions of each template are 
not compatible with the templates corresponding with another 
DSS. This forces the modeler to build as many template 
libraries as DSS modeling views. However, the templates are 
generally simpler, as the functions are less complex due to 
the component based approach. 

CONCLUSION AND FUTURE WORKS 

The aim of this paper is to formalize and suggest solutions 
for the data processing between a manufacturing system and 
a coupled DSS. The suggested solutions were designed for   
considering multiple implementations of relatively close 
systems. 

As a matter of fact, as many procedures as possible were 
designed for simplicity and reusability. Of course, designing 

a simple solution for the designer in charge of 
implementation requires a higher load for the modeler to 
prepare the procedures. 

This work is intended to be applied with an industrial 
integrator. Evaluation of the performance of those solutions 
will be performed with the actual designers and modelers in 
order to spot the drawbacks of these approaches. 
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