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This paper presents a review of the most widely-used methods in order to determine the structure of eigenmodes propagating in 
periodic materials. Both real and Fourier domain methods are outlined. The basic concepts such as eigensolutions and their k-
labeling, reciprocal lattice, Brillouin zones, etc., are gradually introduced and explained. Special attention is devoted on the 
physical aspect and all non usual nomenclatures are defined. In a similar way, all indispensable mathematics are described and their 
physical content expounded. For completeness, all nonessential notions in a first reading are maintained but deferred in Appendix. 
Going on with the tutorial, we show how Brillouin exploited the correspondence between the real and Fourier domain 
representations in order to explain the band structure and especially its periodicity in the Fourier domain. Then, following the 
way paved by Brillouin, we show how the Bloch theorem may be deduced from general considerations concerning Fourier analysis. 
To this aim, using nowadays available mathematical tools inspired from the fields of discrete signal analysis we have built a 
formalism which allows a comprehensive vision of the two domain correspondence. This formalism, developed on mathematical tools 
well fitted to describe periodic media, introduces appreciable shortcuts and appears to be versatile and easily transposable to 
different physical domains. Formalism application examples are given in the case of solid-state, photonic and phononic crystals.

1. Introduction

The advent of photonic and phononic crystals has enlarged the application fields of wave propagation in periodic media.
Initially mostly limited to electronic wavefunctions and lattice vibrations i.e., solid state crystals [1–3], periodic media
include now studies concerning also optical and acoustical waves in man-made periodically nano-structured materials
[4–19]. Common to all these topics is the fact that the propagating wave functions are governed by a second order partial
differential equation with periodic coefficients. These periodic coefficients stand for the material parameters characterizing
the crystal under consideration; for example, periodic potential for solid state crystals, electric permittivity and/ormagnetic

Abbreviations: RD-CFE, Real space Domain Closed-Form Expression of a periodic function; FD-CFE, Fourier Domain Closed-Form Expression of a periodic 
function.
∗ Corresponding author at: Univ Lille Nord de France, F-59000 Lille, France. Tel.: +33 327511452.
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permeability for photonic crystals, mass density, and stiffness coefficient for phononic crystals. The general form of the
eigensolutions, usually calledBloch functions or Blochmodes, is dictated by theBloch theorem. Explicitly, this theoremstates
that only a special type of waveforms may propagate in periodic media. This result is a direct consequence of the discrete
translation symmetry of the crystal structure. It is a universal feature in the sense that it does not depend on the nature of
the propagating wave: electronic, photonic or phononic, nor on the particular distribution of the periodic parameters inside
a period. Traditionally, the Bloch theorem is expressed by one of the two equivalent statements: any eigenfunction may be
expressed in the form of a propagating plane wave modulated by a function which exhibits the periodicity of the crystal
lattice. This corresponds to the Floquet statement, restricted to purely propagating wave (i.e. not subject to attenuation):
when thewave function undergoes a translation by any direct lattice translation vector R, it differs from the original function
by at most a phase factor eik•R. It is worth noting that none of these statements completely defines the wave function but
only gives its general form. Indeed, the periodic modulating function depends on the particular distribution of the periodic
parameters characterizing the propagating medium.

Over time, different methods have been initiated to demonstrate the Bloch theorem. These methods may be classified
in two main approaches according to whether they are developed in real space domain or within the space of Fourier
domain. The later, according to the crystallographic terminology, is frequently called reciprocal domain as opposed to
the direct domain which refers to the real three-dimensional space. In the real space approaches, we can distinguish
between the classical method of solving differential equations [20] from the subsequent methods [21], inherited from
quantummechanicswhich are based on group theory and/or theory of operators [22–24]. Similarly, in the reciprocal domain,
approaches in which the periodic parameters were described by a single sinusoidal function [25] or by their Fourier series
expansion [26], may be viewed as the classical precursor methods for later derivations which takes full advantage of the
uninterrupted developments in Fourier analysis techniques [1,2].

It is advisable not to oppose these two methods but rather to take advantage from their complementarities. Indeed,
understanding the two domain correspondence is a sine qua non condition in order to have a firm grasp about the wave
propagation in periodicmedia. The two domain representations ofwave propagation in periodicmedia are intricately linked
via Fourier transform. Brillouin had exploited this two domain correspondence associated to its solid experience on the
electronic filters to develop the concept of band structure i.e. ‘‘the Fourier domain characteristics’’ of wave propagation in
periodic media [3]. The concept of band structure includes: the establishment of the periodicity in the reciprocal domain,
the definition of the Brillouin zones and the understanding of the existence of allowed and forbidden (bandgap) frequency
bands as well as the slow wave principle.

In this paper following the Brillouin conception of the two domain correspondence, we give a Bloch theorem
interpretation based only on Fourier transform considerations. This has been made possible since the approach is
constructed directly in the distribution function framework both in the direct and Fourier domains. Also, this approach
appears to be very versatile and relevant whatever is the complexity of the medium (its dimensionality or anisotropy) or
that of the field under consideration (scalar or vector). The method is so straightforward that, even in the most complex
cases, the reciprocal lattice wave equation can be established by a simple inspection of its expression in the direct domain.

In Section 2, we give a tutorial overview on the classical interpretations of wave propagation in periodic media. Real
and Fourier domain methods are separated in two independent subsections. Wherever needs arise, basic concepts such
as: eigensolutions and their k-labeling, reciprocal lattice, Brillouin zones, etc., are introduced and explained. In order to
lighten this overview and at the same time preserve its completeness, all the nonessential notions in a first reading are
deferred in appendixes. Section 3 is devoted to illustrate the Brillouin vision of the problem i.e. the indispensable perception
of the correspondence between the two domain representations in order to draw meaningful conclusions. In Section 4,
following the Brillouin illustrative example of elastic wave propagation in regularly spaced point masses, we present a
versatile formalismwell adapted to investigate the two domains correspondence in the field ofwave propagation in periodic
media. This formalism is inspired from digital electronic filter and/or discrete signal analysis techniques which use well
established mathematical tools originated from the distribution functions theory. In Section 5, we illustrate the application
of this approach to different situations. We begin by the simplest case of scalar waves (de Broglie waves) in solid state
crystals. Then, we consider vector fields in suchmedia that does not exhibit any other anisotropy than that introduced by the
periodic non-homogeneities illustrated by electromagnetic fields in photonic crystals. Finally we address phononic crystals
as an illustration of the general case of vector field in periodic media where the constitutive materials exhibit anisotropic as
well as piezoelectric properties. Finally, in Section 6 we present a comprehensive discussion of the physical aspects of the
presented approach.

2. Overview on the classical demonstrations of the Bloch theorem

The aim of this section is to present an overview on the standard methods used to introduce the Bloch nature of
propagatingwaves in periodicmedia. Special attention is devoted on their basic concepts and physical interpretations rather
than on mathematical rigor. Readers may wish to refer to the provided literature for more details.

To introduce these classical methods, we limit ourselves to the simplest case of scalar waves i.e. electronic waves in a
solid state crystal. The wave equation governing the electronic wave is the Schrödinger equation. Under the assumptions of

harmonic dependence ψ (x, t) = ψ (x) e
−i E

h̄
t , the one-dimensional time independent Schrödinger equation reduces to the
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well-known form [1,2]:

− h̄2

2m

∂2ψ (x)

∂x2
+ U (x) ψ (x) = Eψ (x) (1)

using standard notations: U (x) for the periodic potential of period a, E = h̄ω for the eigenenergy, h̄ for the reduced Planck’s
constant, ω for the angular frequency andm for the mass of particle. The correspondent three-dimensional equation, reads:

− h̄2

2m
∇2ψ (r)+ U (r) ψ (r) = Eψ (r) . (2)

The operator ∇2 stands for the Laplacian operator and the three-dimension periodicity of the potential U (r) is depicted
using the concept of a primitive 3-D unit cell i.e., the smallest region of the space which replicate itself periodically. We say
that each unit cell is assigned to a node of a virtual lattice known as the Bravais or direct lattice defined by three basis vectors
a1, a2 and a3. Our aim is to find the general form of the solutions of partial differential equations with periodic coefficients.
We separate the techniques used to derive the Bloch theorem in two distinct subsections i.e. the real space domain and
the Fourier domain approaches. Each method reveals some aspect of the physical problem. So, to have a comprehensive
perception of the problem, itwould be interesting and insightful to have a good idea on bothmethods. These two subsections
are constructed independently and may be read in any sequence. In order to lighten this overview, all the nonessential
notions in a first reading are deferred in appendixes.

2.1. Real space methods

We begin this subsection by introducing the classical method used by Floquet for the investigation of a differential
equation with periodic coefficients. This will enable one to familiarize with the main concepts and have a better
understanding of the more elaborated Bloch method based on group theory.

2.1.1. Classical approach of Floquet

The paper of Floquet published in 1883 [20] does not directly concern wave propagation but it falls under the classical
theory of differential equations. This work remains very instructive, since he carried out a complete investigation of the one
dimensional linear homogeneous differential equations of order nwith periodic coefficients, explicitly this equation writes:

dnψ (x)

dxn
+ p1(x)

dn−1ψ (x)

dxn−1
+ p2(x)

dn−2ψ (x)

dxn−2
+ · · · pn(x)ψ (x) = 0 (3)

where, the pn stand for periodic coefficients, all of them exhibiting the same period a. i.e. pn (x + a) = pn (x).
In a first step Floquet observed that ifψi(x) is a given solution thenψi(x+ a)will also be a solution. Indeed, the periodic

coefficients are invariant under the change of variables x → (x + a) i.e. pn(x + a) = pn(x) whereas, ψi(x + a) ≠ ψi (x).
He concluded that, if a complete set {ψi(x)} of independent solutions ψi(x); i = 1, . . . , n have been established, then the
respective expressions of any of the ψi(x + a)may be written as linear combinations of this set:

ψi (x + a) =
n


j=1

Aijψj (x) (4)

where, thematrix elements Aij represent the weighting factor of theψj(x) components in the expressionψi(x+a) i.e. image
of the ith basis functionψi(x) after the change of variables x → (x + a). In the second step, he seeks for the general form of
the solutions χ(x)which he baptized periodic function of 2nd kind. That is, a function satisfying the condition:

χ(x + a) = εχ(x), (5)

where, ε is a complex constant. Again, he expanded this general solution in the basis {ψi(x)}.

χ(x) =
n


p=1

cpψp (x) . (6)

Combining these three steps, and identifying the coefficients ofψp(x) he ended in an eigenproblem in terms of theweighting
constants of the form:

n


l=1

clAlp = εcp. (7)

Then, Floquet undergoes a complete mathematical study (which extended about forty pages) to establish the existence
and the uniqueness of this general form of the solution. He ended with the theorem which states that: At least one of the
solutions of the differential equation with the general form of χ(x + a) = εχ(x) exists for each distinct eigenvalue ε of
Eq. (7). In other words, this solution is unique if its eigenvalue corresponds to a single-root of the eigenproblem. Whereas,
it exists but it is not unique in case of multiple roots eigenvalues. Some important physical aspects are implicitly associated
to the general form of the Floquet solution given in Eq. (5) and are introduced in the next subsection.
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2.1.2. Physical contents of the Floquet theorem

2.1.2.1. Eigennature of the Floquet theorem. Let us draw the attention on the ‘‘eigennature’’ of the Floquet theorem. Looking
beyond the mathematical solution, it is instructive to realize the implications of the eigenproblem.

On the one-hand, we see that the expression ofψi(x + a) in Eq. (4) contains not only the original functionψi(x) but also
contributions from all other independent solutions ψj(x). This obviously leads to dissimilar overall shape for ψi(x) and its
imageψi(x+a). On the other hand, it is well known that the choice of the set of independent solutions {ψi(x)} is not unique.
So, by introducing the condition given in Eq. (5) Floquet imposes to choose the specific set of independent solutions in such a
manner that their overall shape is not altered as they undergo a discrete shifting. Indeed according to this conditionχ(x+a)
differs from χ(x) by at most a complex factor ε.

The fact that the function remains globally unchangedwhen it is subjected to the change of variable x → (x+a) explains
the German label eigen which means: own, inherent, appropriate . . . . For the same reason, some authors employ instead of
eigen the terms normal or proper to qualify this type of modes because they represent the modes which will ‘‘propagate’’
without distortion when injected in the media.

2.1.2.2. Bloch–Floquet theorem. Concerning the problem of wave propagation in periodic media, we are interested with the
special case where |ε| = 1 (i.e. neither amplification/attenuation phenomena are considered). In other words the complex
eigenvalue takes the form of a phase factor ε = eiθ ; −π < θ ≤ π Modulo (2π). Without loss of generality, introducing the
change of variable k = θ/a, we can write:

ε = eika; −π
a
< k ≤ π

a
Modulo



2π

a



. (8)

Finally, substituting in Eq. (5), the solution wavefunction has to satisfy the property:

χk(x + a) = eikaχk(x). (9)

This is equivalent to say that the general form of the solution is:

χk(x) = eikxµk(x) (10)

where, µ(x) is a periodic function. Any of these two equivalent statements characterizing the property of a propagating
wave in a periodic media are known as the Bloch–Floquet Theorem.

2.1.2.3. k-labeling of the modes. As it is well known, expressing Eq. (7) in the specific set of eigenvectors (5) is equivalent
to matrix diagonalization. Reciprocally, the solution of the eigenproblem leads to the complete set of eigensolutions {χi(x)}
and each solution corresponds to an eigenvalue ε. Finally, the later being uniquely defined by the principal value of k via Eq.
(8) explains the k-labeling of themodes. This observation is a special case of themore general concept of mode classification
according to symmetry operations as it will be mentioned in the following section.

2.1.2.4. The ‘‘raison d’être’’ of the variable k. In this section, we have introduced the variable k as a normalization of the phase
shift with respect to the period a. But, this variable known as the wavevector owns implicit physical meanings that will be
revealed as we go along in this tutorial. For the moment, let us highlight that if k (equivalently θ ) is complex or imaginary,
the wave is damped or decreases exponentially. It does not represent a propagating wave. We say that the corresponding
angular frequency ω belongs to a ‘‘forbidden band’’ also termed ‘‘bandgap’’.

2.1.2.5. Principle of the 1st Brillouin zone. The reason of the restriction of the k value to the interval −π/a < k ≤ π/a
(i.e. to its principal value) is obvious. Indeed, according to Eq. (8) the eigenvalue ε is a periodic function of k with period
2π/a. So, for a given k value inside this interval, any k′ value such that k′ = k ± 2nπ/a will correspond to the same
eigenvalue ε and subsequently the same eigenfunction χk′(x) = χk(x). Thus, all distinct solutions are completely defined
on the principal value of k. This interval −π/a < k ≤ π/a is the well-known 1st Brillouin zone. The solutions replicate
themselves periodically outside this interval i.e. in the higher order Brillouin zones.

Clearly, there is a degree of arbitrariness in centering the 1st Brillouin zone on the k = 0. In fact,mathematically speaking,
any interval of period 2π/a will equivalently cover all the possible eigensolutions. Brillouin justified the practical interest
of this convention for wave propagation. The fundamental reason of this choice is to insure the even parity of the band
diagram. We will return to this point later in Section 2.2 and the fundamental reason will become evident in Section 3.2.

2.1.3. Viewpoint of Bloch

In his paper of 1928 concerning quantummechanics of the electrons in crystal lattices, Bloch [21] seeks the solutions for
the Schrödinger equation in the presence of three-dimensional periodic potential. This problem corresponds to an extension
of the Floquet differential equation to the three dimensions but restricted to a second order differential equation.

In the derivation of the theorem, he makes use of the suggestion of Wigner [27], to apply well established lemma of the
group theory to quantum mechanics. This constitutes an elegant way which enables shortcuts as compared to the classical
differential equations theory used by Floquet [20]. Readers non familiar with group theory may, among the abundant
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available literature, begin with handy introduction text books for example: [28] in the field of the solid state, [29] in
semiconductor optics and [30] within the framework of photonic crystals.

What we only need to know here, among some dedicated terminology, is the definition of the ‘‘representation’’ of a
group. So, rather than going into the details of the group theory, it may be worth having, in this tutorial, an overview of
the method used by Bloch himself [21]. Indeed, at this time the theory of groups had just been introduced in the field of
quantum mechanics. So, on the one-hand, Bloch relies on physical foundations to introduce the use abstract groups and on
the other-hand he gives a brief demonstration of steps which are generally eluded when using the group theory shortcuts.

2.1.3.1. Some Terminology of group theory. Bloch beginswith the same observation pointed out by Floquet i.e. the invariance
of the Schrödinger equationunder the change of variables. He also expands the resulting functions in termsof basis functions.
Hemakes use of the terminology of the operator theory and symmetry transformations. So, let us introduce some knowledge
of the dedicated terminology taking translation symmetry as an illustrative example.

• The translation Group.

As stated above, classically, the periodic parameters of the crystal are described on a ‘‘primitive unit cell’’ and the
periodicity is depicted by replicating this primitive cell to all the sites of the Bravais lattice described, according to its
dimensionality, by one, two or three basis vectors (ai; i = 1, 2, 3). Any lattice site is uniquely addressed by a lattice vector
R = n1a1 + n2a2 + n3a3; n1, n2, n3 ∈ Z .

The terminology used in group theory originates from the mathematical branch concerning symmetry. The periodicity
of a crystal is described as the ‘‘discrete translation symmetries’’. That is, all the possible displacements of an unlimited
crystal (as a whole) that make the crystal to coincide into itself. We say that ‘‘the crystal is ‘‘invariant’’ after a symmetry
transformation’’. We also say that each translation, corresponding to a different lattice vector R = n1a1 +n2a2 +n3a3, i.e. to
a dissimilar triplet of integers (n1, n2, n3), constitutes a distinct ‘‘symmetry element’’ belonging to the ‘‘set’’ of discrete
translation symmetries.Wewill denote a translation symmetry element as TR. Clearly, the elements of the discrete symmetry
translations constitute an infinite set. This set is known as the ‘‘translation group’’ because it fulfills the four criteria defining
an abstractmathematical group [28,29,31] (See Appendix A). For themoment, let us define the ‘‘product of two ‘‘translation

elements’’. It is the result obtained when we apply successively these two translations. Clearly, it is also a translation with
a translation vector equals to the sum or the two translation vectors: TR1TR2 = T(R1+R2). Because this product operation is
commutative, we say that the translational group is ‘‘Abelian’’. This special type of groups owns important properties used
in the determination of eigenvalues.

• The translation operators.

In the framework of operator theory, a space translation TR, relative to a given lattice vector R, is described by the
‘‘translation operator’’ T̂R. That is, an operator which when acting on a function f (r) return the value f (r + R):

T̂Rf (r) ≡ f (r + R) . (11)

Following this definition it is clear that the action of the translational operator on a function is equivalent to the change of
variables r → (r + R) pointed out in the Floquet method.

In general, f (r) differs from f (r + R), the equality holds only if the function exhibit the periodicity of the crystal or
equivalently, its discrete translational symmetry. For instance, this is the case for the periodic potential U(r) = U(r + R).
We say that the periodic potential is ‘‘invariant’’ under these translational operations.

2.1.3.2. The short cuts introduced by the group theory. Using the operator notation Schrödinger equation (2) is written in the
form of an eigenproblem:

ĤψE (r) = EψE (r) (12)

where, Ĥ stands for the Hamiltonian operator: Ĥ ≡


−


h̄2 /2m


∇2 + U (x)


and the subscript E recalls that a specific
solution corresponds to a given eigenvalue. Here, the value of the eigenenergy E.

So, it is straightforward to show that, the invariance of the Hamiltonian under the change of variables r → (r + R),
mentioned by Floquet (see Section 2.1.1) is equivalent to the commutation property of the translation operators with
the Hamiltonian (Appendix B). A direct corollary is that the commutation property of the translation operators with the
Hamiltonian implies that any eigensolution of the translational operator is also an eigensolution of the Schrödinger equation
with the same eigenvalue E (Appendix C).

While in this tutorial we limit ourselves to the translation group, these two statements are not restricted to translation
symmetry, but still hold for all symmetry operations including point symmetries. In group theory the space group is defined
as the generalized group including translational and point symmetry groups.

The fact that translation and Hamiltonian operators have a common set of eigenvectors represents the essential benefit
of the theory of operator associated to Group theory. The properties of translational groups are well known. Specifically, the
general form of the eigensolutions of the translation group is known [28–31]. For instance, thanks to the above mentioned
Abelian nature of the translational groups it is easy to show that the eigenvalues of the translational operators are: eik•R.
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This implies that the eigenfunctions of the translational operator verify: T̂Rψk (r) ≡ ψk (r + R) = eik•Rψk (r). This later is
an expression of the Bloch theorem. Thus, the demonstration is done.

So, this is an elegant straightforward method which relegates to the well-known group theory all the mathematical
determinations of the solutions as well as the associated investigations of the existence and/or uniqueness of the solution.
It also allows one to clearly dissociate the commonly used double subscripts E and k to label the solution wavefunctions
ψE,k (r) of the Schrödinger equation. The former label is related to the eigenvalues of the Hamiltonian operator while the
later is referred to the eigenvalues of the symmetry translation operator.

However, this method has the drawbacks that go with its qualities: anyone who is not initiated to this theory would feel
hard done by, not being able to grasp the ins and outs of the physical content. Indeed, all the basic concepts are intrinsically
linked to group theory and are inaccessible without a brief presentation of this theory.

Roughly speaking, the approach followed by Bloch to introduce the group theory is a generalization of the Floquetmethod
within a well structured elegant formalism. The major advantage of introducing the group theory remains to transfer the
problem to already resolved problems in the field of symmetry operations. Indeed, the crystal symmetry operations are
limited to few ones and have been extensively studied and the results tabulated. The starting point resides in the fact that
the eigenfunctions of the symmetry operators are also eigensolutions of the differential equation. For completeness we
present in the Appendix D the details of the approach followed by Bloch to introduce the group theory. It may be viewed as
an illustrative example that provides more details on the group theory techniques.

2.1.3.3. Foundation of the three-dimensional reciprocal lattice. In the framework of the virtual box defined as the restriction of
the unlimited 3-D crystal to a subsystem of parallelepiped shape sustained by (N1×N2×N3) unit cells disposed respectively
along the three directions a1, a2 and a3 (N1,N2 and N3 being very large integers), we shown in Appendix D, that a given
eigensolution ϕ′

j of the translation operator has the general form:

ϕ′
j (x + n1a1, y + n2a2, z + n3a3) = e

i



2πm1,j
N1

n1+
2πm2,j

N2
n2+

2πm3,j
N3

n3



ϕ′
j (x, y, z); (13)

where the index j labels the triplet of integers:


m1,j,m2,j,m3,j



which define the mode under consideration.
Eq. (13) is nothing but the 3-D extension of the Bloch–Floquet theorem introduced in Section 2.1.2.2. To perceive this

assertion, it is convenient to express Eq. (13) in a form analogue to Eq. (9). That is, using vector notations Eq. (13) may be
written in the form:

ϕ′
k(r + R) = ei(k•R)ϕ′

k(r). (14)

This is made possible using the direct lattice vector R = n1a1 + n2a2 + n3a3 and introducing the discrete wavevector k
so that the dot product k • R verifies the exponential argument in Eq. (13). This imposes the following expression for the
wavevector:

k = m1

N1
b1 + m2

N2
b2 + m3

N3
b3 (15)

where: b1 = 2π
a2 × a3

a1 • (a2 × a3)
; b2 = 2π

a3 × a1

a2 • (a3 × a1)
and b3 = 2π

a1 × a2

a3 • (a1 × a2)
(16)

are known as the reciprocal lattice basis vectors1 which define the reciprocal latticeG = m1b1+m2b2+m3b3. The definition
of the reciprocal lattice basis vectors implies the condition bi • aj = 2πδij. Where, δij is the Kronecker-delta.

The k-labeling of the eigensolutions in Eq. (14) takes the place of the j subscript in Eq. (13). Note that the discreteness of
k-values is due to the artificially introduced ‘‘virtual box’’. We say that k is quasi-continuous. Indeed, since the values of the
Ni are very large numbers, the step between two adjacent values of k is vanishingly small.

To close this section, remember that since the translational operator commutes with the Hamiltonian, the general form
of the eigensolutions ϕ′

k(r) of the translational operator given in Eq. (14) stands also for the eigensolutions ψE,k of the
Schrödinger equation. The indices E and k respectively recall that each distinct solution corresponds to an eigenenergy of
the Hamiltonian and an eigenvalue of the translational operator.

ψE,k(r + R) = ei(k•R)ψE,k(r) (17)

1 The origin of the term reciprocal lattice resides in the representation of the dot product bi • aj = δij by the product of two 3 × 3 matrices B and A.
Where, assuming a rectangular coordinate system, the ith row of B contains the coordinates of the vector bi normalized with respect to 2π while the jth
column of A contains the coordinates of the vector aj . It is obvious that, according to the dot product bi • aj = δij , the matrices A an B are mutually the
reciprocal (inverse) of each other [3].
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Fig. 1. Boundaries of the first Brillouin zones. The boundary planes corresponding to the reciprocal basis vectors b1 and −b1 are represented by their
respective cross sections 1 and 1′ with the plane containing b1 and arbitrary wave vectors k and k′ having their end points on these boundaries.

2.1.3.4. Brillouin zone in the three-dimensional space. As in Section 2.1.2.5, the Brillouin convention to confine the complex
exponential argument into its principal value ]−π, π ] leads to the definition of the three-dimensional 1st Brillouin zone. It
is easy to show that the boundaries of Brillouin zone consist of the perpendicular bisector planes of the segments connecting
one reciprocal lattice sites chosen as the origin (k = 0) to its nearest neighbor [1–3]. These segments correspond to all the
basis vectors bi of the reciprocal lattice which are equivalent with respect to the crystal point symmetry operations.

Indeed, extending the principle introduced in Section 2.1.2.5 to the three dimensions case i.e. confining the principal
value of the phase shift associated to any of the equivalent basis vector translation T̂ai in the interval ]−π, π ] gives us [1–3]:

− π < k • ai ≤ π. (18)

In order to determine the 1st Brillouin zone boundaries we take the strict equality of the right-hand and/or left-hand
sides of Eq. (18). For instance, for i = 1 the right-hand side equality gives us k • a1 = π . Then, expressing k in the basis of
reciprocal lattice vectors {b1, b2, b3}, we can write:

k • a1 ≡ (k1b1 + k2b2 + k3b3) • a1 = π. (19)

Following the definition of the reciprocal lattice basis vectors bi • aj = 2πδij, Eq. (19) reduces to:

k1 = 1/2. (20)

This means that the component, along the direction of b1, of any k vector having its terminal point on the 1st Brillouin Zone
Boundary, would be exactly equal to |b1/2|. In other words, the locus of the terminal points of these k-vectors is the plane
1 that passes perpendicularly through themidpoint of b1. The later statement gives the geometrical procedure to construct
the 3-D boundaries as shown in Fig. 1. While, the first statement gives the mathematically expression of the boundaries:

k • (b1/2)

|b1/2|
= |b1/2| ⇔ k • b1

2
=








b1

2









2

. (21)

Referring to the equivalent perpendicular bisector plane 1′ of the reciprocal vector −b1 (instead of b1) this equation is
usually written in the form [1,28]:

2k • b1 + |b1|2 = 0. (22)

Doing the same for all other symmetrically equivalent directions, we obtain the other boundaries of the 1st Brillouin zone.
Themathematical expressions of higher order Brillouin zone boundaries are easily obtain using the general reciprocal lattice
vector G in place of b1 in Eq. (22). This writes: (2k + G) • G = 0 [1].

2.1.4. Concluding remarks

Roughly speaking, we can say that Floquet and Bloch approaches are analogous. The major difference resides in the fact
that Bloch elegantly eludes the classical exhaustive mathematical analysis undergone by Floquet. This is made possible
because these mathematical problems are already solved in the framework of group theory. Besides giving the general form
of the solution, the Bloch–Floquet theorem involves other important physical aspects ofwave propagation in periodicmedia.
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For instance: Reciprocal space (i.e. the need of introducing a wavevector k defined in a reciprocal lattice), first Brillouin zone
(i.e. the loci of all the distinct principal values of the wavevector), higher Brillouin zones (i.e. the periodicity in the reciprocal
domain) etc. A clearer perception of these topics will be acquired in the following subsection since all these quantities
will acquire a Fourier domain significance. The correspondence between the direct and reciprocal domains is addressed in
Sections 3 and 4.

2.2. Fourier domain methods

The second standard methods are developed directly in the Fourier Domain. These approaches are intimately linked to
the Plane Wave Expansion (PWE) representation of wavefunctions. Indeed in both cases we represent a propagating wave
by the superposition (i.e. linear combination) of a set ofmonochromatic sinusoidal waves i.e. their Fourier components. Each
of these elementary waves can be expressed as:

ϕE,k(r, t) = ϕE,ke
−i(ωt−k•r), (23)

which is completely defined by four quantities. Namely: the complex amplitude ϕE,k, the frequency (or period) ω = 2π/T ,
the wavevector k (or the wavelength λ and direction of propagation ℓ; k = (2π/λ) ℓ), and their relative phase shift
represented by the argument of the complex amplitude Arg



ϕE,k



. As indicated above, in solid state physics, the angular
frequency is related to the energy by the reduced Planck constant ω = E/h̄.

This set of monochromatic waves constitutes the spectrum of the wavefunction. This spectrum may be continuous or
discrete and/or unlimited or finite.

This method conveys an improved understanding of the physical meaning for the k-vector which we have introduced
in the real domain method as a more or less mathematical trick. It is worth noting that our purpose is not to oppose these
twomethods but rather to reveal their complementarities. Indeed, understanding the two domain correspondence is a sine
qua non condition in order to have a firm grasp about the wave propagation in periodic media. This correspondence is the
subject of Sections 3 and 4. For the moment let us specify this intricate linking by drawing attention to the fact that Fourier
domain methods can be viewed as a special case of the translation group representation in a specific basis. Namely, ‘‘the
Fourier basis’’ [22].

In this section we illustrate the concept of Fourier domain method using the simple case of one dimensional
wavefunction. The extension to the three-dimensional is deferred in Appendix E. Indeed, it is straightforward and do not
carry any new physical aspect to our survey.

2.2.1. One-dimension method of solving the Schrödinger equation in a periodic potential

The classical method of solving differential equations in the Fourier domain implies that the solutions sought are
expressed in the form of the inverse Fourier transform of their spectral components ϕE (k). Unfortunately, the case of wave
propagating in an infinite periodic media corresponds to a situation that violates the conditions of the existence of a Fourier
transform.2 To overcome this difficulty, standard methods [1,2] apply the concept of the ‘‘virtual box’’ associated to the
Born–von Karman periodic boundary conditions as introduced in Appendix D. For a 1-D crystal consisting ofN unit cells this
boundary condition writes [1–3,21]:

ψE(x + Na) = ψE(x). (24)

Then, taking advantage of this artificially introduced periodicity one expands the solution in terms of Fourier series instead
of Fourier transform. So, following the Fourier method, we assume in a first step that the Fourier components ϕE,m of all the
harmonics exist and write the Fourier series:

ψE (x) =


m

ϕE,me
im 2π

Na
x (25)

where the replicating period is the length of the virtual box L = Na. Note that for shortness we have omitted the time
dependent exponential. In the same way, the potential U(x) being periodic with period a, it is also expressed in term of a
Fourier series3:

U (x) =


n

Une
−inbx (26)

where, b stands for the reciprocal basis vector b = 2π/a and Un for the Fourier components of the periodic potential. The
later are given by:

Un = 1

a



period
dxU (x) einbx (27)

2 As we will see in Section 4 a Fourier transform exists but in the field of distribution functions.
3 In all cases, except for the solution of the Schrödinger equation wewill use this sign convention. Note that in Eq. (25) we used the opposite convention.

This is because the rule of thumb in time independent Schrödinger equation is to retain the exponential e−i(ωt−k•r) for the propagating wave traveling
toward the positive k direction instead of ei(ωt−k•r) (see Appendix H for more details).
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Each of the Fourier components in Eq. (25) is of the form of Eq. (23). We can identify a discrete form for the wavevector
km = mkN . Where, kN = b/N stands for the step of this discretization. Since N tends toward infinity this step is vanishingly
small and so, kmis quasi-continuous as compared to the 1st Brillouin zone dimension b. This discretization is introduced by
the artificial confinement of the wavefunction in the virtual box. For convenience let us rewrite Eq. (25) in term of km:

ψE (x) =


km

ϕE,kme
ikmx (28)

2.2.1.1. The central equation and the dispersion relation. Now, in order to determine the Fourier components ψE,m, we
substitute Eqs. (26) and (28) in the Schrödinger equation (1). This gives us:

− h̄2

2m

∂2

∂x2



km

ϕE,kme
ikmx +



n

Une
−inbx



km

ϕE,kme
ikmx = E



km

ϕE,kme
ikmx. (29)

Rearranging the terms we obtain:



km



h̄2 k2m

2m
− E



ϕE,kme
ikmx +



k′m



n

UnϕE,k′me
i(k′m−nb)x = 0. (30)

Now, we change of dummy variables k′
m to km = k′

m − nb in the second summation in Eq. (30). Note that we have
anticipated this change by adjoining a prime to this dummy variable in going from (29) to (30). So, Eq. (30) writes:



km



ϕE,km



h̄2 k2m

2m
− E



+


n

UnϕE,(km+nb)



eikmx = 0 (31)

This sum must be zero whatever is the value of x. This is only possible if each term of the sum vanishes independently.4

Thus, in the Fourier domain, the expression of the Schrödinger equation reduces to an infinite set of linear equations
involving the set of variables ϕE,(km+nb); −∞ < n < ∞. The lines of this system are of the form5:

ϕE,km



h̄2 k2m

2m
− E



+


n

UnϕE,(km+nb) = 0. (32)

In the field of solid state physics this set of linear equation is known as the central equation [1]. It will lead to the
band structure E(k) i.e. the expression of the eigenenergy as a function of the wavevector. Remembering that E = h̄ω,
this is analogue to the well-known dispersion relation [8,30,32,33] in the field of propagating waves which expresses the
angular frequency in terms of the wavevector. In what follows, we will omit the indexm of k since the wavevector is quasi-
continuous.

2.2.1.2. Bloch theorem. The terms of the summation in the central equation (32) reveal that the real space periodicity couple
all those, and only those, Fourier spectral components which differ from one another by any reciprocal lattice vector G = nb.
Thus, once we are handling a given wave vector k, we are, in fact, dealing with a subsystem of linear equations involving
all components having wave vectors of the form (k + nb) for all n belonging to the relative integers Z (excluding all other
k values). This justifies the common ‘‘k-labeling’’ of eigensolutions ψE,k (x) referring to the k-subsystem. So, for a fixed k
value, only the terms belonging to k values of the form (k + nb)will be retained in Eq. (28). This later may be rewritten as:

ψE,k (x) =


n

ϕE,(k+nb)e
i(k+nb)x. (33)

Or equivalently:

ψE,k (x) =




n

ϕE,(k+nb)e
inbx



eikx. (34)

The term between brackets has the form of a Fourier series. So, it is a periodic function of x with period a (remember that
b = 2π/a). Denoting this function µk (x) Eq. (34) writes:

ψE,k (x) = µk (x) e
ikx. (35)

4 A more academic demonstration exists using the orthogonal property of the Fourier components [22,28].
5 Note that, according to Fourier transform properties, since U (x) is a real function, the Fourier components will exhibit the property U−n = U∗

n and if
in addition U (−x) = U (x), then U−n = U∗

n . These properties are very helpful in solving Eq. (32).
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This is one of the expressions the one dimensional Bloch theorem. Substituting x by x+ a, we obtain the second expression:

ψE,k (x + a) = eikaψE,k (x) . (36)

We recall that Bloch theorem gives only the general form of the solution. To completely determine the solution i.e. find its
periodic part,we have to solve the linear system. The index k recalls that the Fourier components ofµk (x) are the solutions of
the k-subsystem (32) of linear equations. Fortunately, in typical cases the Fourier components Un of the periodic parameter
decreases rapidly so, the number of equations retained in the linear system (32) usually reduces to a few ones.

2.2.1.3. 1st Brillouin zone as introduced in the Fourier domain methods. The ‘‘raison d’être’’ of the Brillouin zones is the
periodicity of the solution in the Fourier domain. In other words the complete solutions are totally defined in any one of
these periods. This is analogue to the conclusion introduced in Section 2.1.2.5. Here, we present the different Fourier domain
approaches generally used to ascertain this periodicity.

In the first approachwe consider the k-subsystem (32). The substitution of k by k+nb = k′ is equivalent to a permutation
of the subsystem rows. Thus the end result is an equivalent subsystem with the same eigensolutions. This reveals the
periodicity of the eigenvalues Enk in the Fourier (reciprocal) space. The second subindex k refers to the subsystem being
under consideration and the first subindex n to the classification of the eigenenergies by ascending order. Obviously, each
eigenvalue Enk is associated to an eigensolution giving the set of the Fourier (i.e. spectral) components ϕE,(k+nb) which
completely define the periodic part µk (x).

Other methods consist in considering any of the Eqs. (33) to (36). The simplest one is to consider Eq. (33) and substitute
k by k + mb. This is equivalent to a change of the summation dummy variable. We directly obtain:

ψE,k+mb (x) =


n

ϕE,[k+(m+n)b]e
i[k+(m+n)b]x =



n′
ϕE,[k+n′b]e

i[k+n′b]x = ψE,k (x) . (37)

In other words, the Bloch functions are invariant if the k-value is modified by any reciprocal vector G = nb. Finally,
as in Section 2.1.2.5, this periodicity justifies the restriction of k to its principal values that is the first Brillouin Zone:
−b/2 ≤ k ≤ b/2.

2.3. Concluding remarks

Aplus point of the Fourier domain approach resides in the fact that it gives a new regard to the reciprocal space. It conveys
an improved understanding of the physical meaning for the k-vector which we have introduced in the real domain method
as a more or less mathematical trick. This enables one not only to take advantage of all the mathematical techniques and
tools developed in this field but also to exploit the properties relating the real and Fourier domain representations to make
theoretical predictions. Sections 3 and 4 are devoted to this two domains correspondence.

3. Brillouin vision: or the ‘‘real and Fourier domain correspondence’’

In the historical survey concerning the special case of elastic wave propagation in an array of regularly spaced point
masses, Brillouin [3] provides an explanation of the reciprocal space periodicity of the wavefunction that is worthy of note.
He underlines that the physical reason of this periodicity resides in the fact that the particle displacements are measurable
only at the ‘‘discrete’’ regularly spaced positions of the pointmasses. In otherwords, the periodicity of the angular frequency
ω with respect to the wave number ℵ = 1/λ (or equivalently the wave vector k = 2π/λ) appears as a direct corollary of
the discretization of the wavefunction in the real space domain.

Also, throughout his work, Brillouin [3] has recurrently exploited the analogies between the mechanical and electrical
systems. Indeed, at this time electronics was extensively used to investigate physical problems of other natures.6 These
analogies are based upon themathematical one to one correspondence of the elements and themeasurable quantities of the
physical objects under considerationwith the electronic basic elements (resistances, inductances, and capacitances) and the
measurable electrical quantities (voltage, current intensity, electric charge. . . ). Several examples are given in Ref. [3], where
mechanical situations are represented by analog electrical filters.

Proceeding by analogy is very helpful to grasp the subtleties and the intricacy of the two domain correspondence. Indeed,
electronic systems have been extensively studied and a lot of useful mathematical tools have been developed for electronic
filters as well as for transfer lines analysis. The most striking example is the Fourier-transform correspondence between
the time impulse response of a filter and its transfer function i.e. its frequency response. It constitutes the cornerstone
of understanding the existence of pass-band, cutoff frequencies and stop band (i.e. forbidden band or bandgap). Also, the
concept of transfer function not only allows but supports the harmonic analysis of a system i.e. to focus the analysis on
a single Fourier component of the function and analyze the behavior of the transfer function as a function of the Fourier
domain independent variable: frequency in the case of time domain functions orwavevector in the case of real space domain

6 This is the origin of the so-called analog electronic as opposed to the digital electronic the later concerns discrete signal analysis.
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sin(k-b)x sin(kx) sin(k+b)x

Fig. 2. Sinusoidal curves standing for the Fourier components ukn (x, t) = Aei(ωt−knx) corresponding to three values of kn = k̃ + 2nπ/a; n = −1, 0 and 1,

for the special case a = 0.1 units of length i.e. b ≡ 2π/a = 20π and k̃ = b/12. The points of intersection at xm = ma = 0.1m are marked with bold dots.

functions. The underlying principle is the representation of a given function by its Fourier expansion.7 These tools, being
exclusively based on Fourier transform considerations, are easily transposable to any other physical domains.

In this section, following the same illustrative example used by Brillouin [3] i.e. elastic wave propagation in an array
of regularly spaced point masses, we summarize the fundamental points he used to reveal the physical properties of band
structures i.e. its periodicity, existence of allowed and forbidden bands, and the relation between the number of bands and
the media degrees of freedom.

3.1. Brillouin correspondence principle between the two domains: ‘‘Origin of the periodicity in the Fourier domain’’

Brillouin had illustrated the origin of the periodicity in the Fourier domain using the above-mentioned example of
regularly spaced point mass array. He examined the propagation of a Fourier component of the displacement uk(x, t) =
Aei(ωt−kx) where A is the amplitude and plot the corresponding sinusoidal curves ukn(x, t) (at a fixed time) for different kn-
values such that: kn = k̃ + 2nπ/a. Where: −π/a < k̃ ≤ π/a, and a is the distance between two adjacent particles and n
is an integer. As illustrated in Fig. 2 all these sinusoidal curves will look like very dissimilar. Higher absolute k-value plots
will appear more shrunk along the x-axis direction. But a more careful inspection shows that all these curves intersect at
the discrete abscissa xm = ma.

The reason of these intersections becomes obvious if we focus on the values of the Fourier component ukn(xm, t) at the
discrete abscissas xm = ma, i.e. we consider the series:

ukn,m (t) ≡ ukn(ma, t) = Aei(ωt−mkna). (38)

It is clear that the series ukn,m (t) remain invariant for different values of kn = k̃ + 2nπ/a, even if the corresponding

functions ukn(x, t) are quite different. Indeed, the product (kna) differs from


k̃a



by integermultiples of 2π . In other words,

the series (38) (i.e. the discretization of the function ukn(x, t) at the abscissa x = ma) are equivalently defined by any of the
Fourier components kn = k̃+ 2nπ/a. This corroborates the fact that the 2π/a periodicity of the Fourier domain expression
of the displacements is a direct result of discretization in the direct domain. In conclusion, the solution and consequently its
angular frequency ω are both periodic with period (b = 2π/a) with respect to k.

One who is familiar with discrete signal analysis and/or digital electronic filters fields will identify the well-known
sampling phenomenon. This shows how much Brillouin had taken advantage of its experience on the electronic filters.
Even if, at this time, the discrete signal analysis had not yet achieved the great development which it has reached today
with the advent of the fully digital systems (at this time, electronic filtering concerns analog rather than digital filters).

3.2. The first Brillouin zone convention, flat band location on zone boundaries and existence of slow waves

The periodicity of the wavefunction in the Fourier domain allows one to restrict the analysis on a unique period
(b = 2π/a). On the other-hand, in order to comply with the fact that the behavior of a propagating wave in an unlimited
media is invariant whatever it propagates along the positive or the negative x-axis, Brillouin decided to define the principal
value of k to be centered on k = 0 i.e. −π/a < k̃ ≤ π/a. According to this convention named after him ‘‘the first Brillouin
Zone (FBZ)’’, the dispersion relation ω(k) turns up to be an even function.

7 Fourier series or inverse Fourier transform depending on the discrete or continuous nature of the spectrum.
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The conjunction of the periodicity and the evenparity ofω(k) gives rise to the localization of extrema (maximaorminima)
every k = nπ/a; n ∈ Z including zero. These extrema points explain the existence of ‘‘flat bands’’ (i.e. dω/dk = 0) at the
edges of the 1st Brillouin Zone as well as at k = 0. The condition dω/dk = 0 is equivalent to say that wavefunctions exhibit
zero group velocity at the band edges. This explains the existence of slowwaves near band edgeswhich tend toward standing
waves as they approach the band edges.

3.3. Bandgaps and enumerating the allowed bands

Throughout this paperwe consider lossless unlimitedmedia. So, by propagatingwave,wemean awave travelingwithout
any attenuation. That is, its harmonic components are of the form u(x, t) = Aei(ωt−kx) where k is a real number. In some
situations, the solutions give complex or imaginary k-values. In the former case, the wave is attenuated and vanishes after
some damped oscillations over relatively short distances and in the later case the media does not oscillate at all but the
displacement decreases exponentially. In both cases, these waves are classified as non propagating waves. The range of
angular frequencies giving complex or pure imaginary k-values constitutes what we call a bandgap. In ideal lossless media
there is no absorption. This attenuation must be viewed as the inability for a local vibration to be transmitted step by step
to its neighborhood in a certain frequency range and thus explains the terminology of stop band or forbidden band. In other
words, to be able to propagate, a harmonic component has to fulfill a drastic condition: the ‘‘dispersion relation’’ relating
its frequency to its wavelength as introduce in Section 2.2.1.1. So, the existence of bandgaps is not so difficult to admit. It
stands for the range of frequencies where the dispersion relation cannot be satisfied.

3.3.1. Allowed band, bandgap and cutoff frequencies

Brillouin enlighten the uniqueness of the frequency band in the case of a Kelvin array of identical and regularly spaced
point masses.8 He also explains the existence of a high-cutoff frequency. For the simplest case where the interaction is
limited to the nearest-neighbors of the regularly spaced point masses, the understanding of this classification in frequency
bands is straightforward. Equating the force of inertia of a pointmass to the internal forces exerted by its nearest-neighbor [1,
3,33] the wave equation (which, in this special case, is equivalent to the equation of motion of one of the particles) reduces
to:

m
∂2un

∂t2
= η (un−1 − 2un + un+1) (39)

where, m is the particle mass and η is analogue to a spring constant. Substituting u(x, t) by its expression (38) we directly
obtain the dispersion relation:

ω = 2



η

m









sin



ka

2










. (40)

Considering Eq. (40) the high-cutoff frequency ωc corresponds to the maximum of the sine function. This gives us:

ωc = 2


η/m. (41)

Indeed, if ω > ωc Eq. (40) imposes a complex values for k. The expression of kwrites (Appendix F):

k = ±π
a

± i
2

a
cosh−1



ω

ωc



. (42)

The complex nature of k means that the harmonic component is attenuated exponentially as it propagates. So the cutoff
frequency is the ‘‘frontier’’ separating allowed and forbidden bandgap. Also, Eq. (40) highlights that the flatness of the
dispersion relation coincides with k = ±π/a (maximum of the sine function), in agreement with the conclusion of
Section 3.2.

3.3.2. The multiplicity of allowed bands and the number of distinct point masses in a unit cell (degrees of freedom)

Again considering the simplest case where the interaction is limited to the nearest-neighbors of the regularly spaced
point masses. But this time, the point masses constitute an alternate sequence of two distinct masses m1 and m2. We can
define the unit cell of the system in such a manner that the point masses m1 are located on the unit cell boundaries (i.e. at
xn = na) andm2 at the middle of the periods (i.e. at xn+1/2 = (n + 1/2) a) (See Fig. 3).

Two harmonic components of the form of Eq. (38) are introduced, one for each particle:

un,1(t) ≡ u1(na, t) = A1e
i(ωt−kna) and un,2(t) ≡ u2(na, t) = A2e

i(ωt−k(n+1/2)a) (43)

8 More accurately, 3 bands if we take into account the longitudinal and transverse vibrations: two for the transverse and one for the longitudinal
vibrations.
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Fig. 3. Layout of the array. The unit cells are defined in such a manner that the point masses m1 are located on the unit cell boundaries (i.e. at xn = na)
andm2 at the middle of the periods (i.e. at xn+1/2 = (n + 1/2) a).

where, the first subscript refers to the unit cell while the second labels the type of particle. At a fixed angular frequency
ω, these two components may pertain to the same mode only if they propagate with the same phase velocity vφ = ω/k
i.e., they have the same wavevector k. So, they can only differ by their amplitudes. The overall analysis is the same as in
the preceding section. But, due to the interaction between the two types of particles, the equation of motion (39) splits in a
system of two coupled equations:















m1
∂2un,1

∂t2
= η



un,2 − 2un,1 + un−1,2



m2
∂2un,2

∂t2
= η



un+1,1 − 2un,2 + un,1



.

(44)

Substituting un,1 and un,2, the dispersion relation come out as the condition of existence of solutions for a 2 × 2 system of
linear equations. This dispersion relation writes (Appendix G):

ω4 − 2η



m1 + m2

m1m2



ω2 + 4
η2

m1m2



sin2 (ka/2)


= 0. (45)

The two possible solutions: ω2
+ (k) and ω

2
− (k) of Eq. (45) give rise to two allowed bands (Appendix G). It is easy to show

that when k increases from k = 0 to k = π/a the lower band frequency ω− (k) increases from ω0 = 0 to a maximum
ω1 =

√
2η/m1 where, m1 being the heavier of the two masses and at the same time, the upper band frequency ω+ (k)

decreases from a maximum value ω3 =
√
2η (m1 + m2) /m1m2 to a minimum value ω2 =



2η/m2 [3].
On the other-hand, if we invert Eq. (45) i.e. we take ω as the independent variable. This reads:

sin2 (ka/2) =


m1 + m2

2η



−


m1m2

4η2



ω2



ω2, (46)

it is straightforward to demonstrate [3] that the values of k becomes complex if ω belongs to the interval ω1 < ω < ω2

while it is purely imaginary if ω > ω3. These two frequency intervals correspond to bandgaps.
So, we say that doubling ‘‘the degrees of freedom’’ (represented here by the number of particles per unit cell) splits the

allowed band in two distinct bands. Then,we can logically admit that increasing the number of particles per unit cell to 3will
endwith a 3×3 system of linear equation and thus 3 bands, and so on. . . . Finally, arrive at the conclusion that forN particles
per unit cell we will end with an N × N system with N allowed bands (3N if we consider the transverse displacements).

3.4. About the Bloch behavior of the solution in the Brillouin development

Brillouin had not given a lengthy dissertation on Bloch behavior of the wavefunction. But the method he used implicitly
includes the physical Bloch nature of the propagating modes.

In his model describing the microscopic wave equation, he introduces by physical arguments the general form of the
expected Fourier components of the solution. More especially, he specifies the required relative phase shift between the
different harmonic components such that these harmonics belong to the same propagating mode. Eq. (43) is a good case in
point.

4. A versatile formalismwell adapted to investigate the two domain correspondence in the field of wave propagation

in periodic media

We place ourselves within the two domain vision of wave propagation in periodic media initiated by Brillouin. We take
advantage of the now available mathematic tools inherited from discrete signal analysis and/or digital electronic filters and
exploit the correspondence between the real and reciprocal domains in order to investigate the wave behavior in periodic
media. Unlike the classical methods introduced in Section 2 which are intrinsically linked within a specific procedure of
findingwave equation solutions, the formalism thatwe develop here (like Brillouin approach) is essentially based on general
considerations relating the two domain representations of a function (i.e. on Fourier analysis techniques). And so, one of the
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advantages of our formalism resides in the fact that itmay be easily transposed to any physical domains: Solid state, photonic
or phononic problems.

Specifically, we make use of properties associated to the Dirac-comb: replicating, sifting and Fourier transform
properties [34]. The most important tools along with their main properties are tabulated in Appendix H. Proceeding this
way, we associate physical meaning to mathematical expressions. This enables one to have a larger look of the problem,
anticipate the results and introduce shortcuts.

We restrict this section to an extension of the Brillouin illustrative example studied in Section 3.3.2. That is, the special
case of the elastic waves propagation in a periodically varying mass density along a given axis. Obviously, this model is
not realistic in the case of continuous media. In fact, continuous media implies a very high density of particles and so, the
interaction cannot be restricted to the nearest neighbors. The extension to more realistic models is delayed to Section 5
which is devoted to solid-state, photonic and phononic crystal. In the first part of this section, we introduce a real domain
closed-form expression (RD-CFE) describing the periodic parameter of the media. Then we highlight the correspondence
with the physical conclusions established in the preceding section i.e. how this RD-CFE implicitly fulfills the Brillouin vision
of the Fourier domain periodicity in case of periodic media (not necessarily discrete). Finally, we introduce a Fourier domain
closed-form expression (FD-CFE) of the Bloch theorem as a direct result of the Brillouin two domains correspondence
principle (presented in Section 3.1); the real domain expression of the Bloch theorem appears as the inverse Fourier
transform of this FD-CFE of Bloch function.

4.1. Real domain closed-form expression of a periodic parameter

Consider a man-made material in which the mass m(x) varies periodically along the x-axis. We introduce the real space
domain closed-form expression (RD-CFE) ofm(x) using the replicating property of a Dirac-comb see Appendix H, [34]. That
is, periodically replicating its restriction to a unit cellm(x) via its convolution productswith aDirac-comb



n δ (x − na). The
underlying mathematical concept resides in the property of the convolution of a given function say m(x)with a Dirac-delta
function9 δ (x − na) centered at x = na. This convolution is known to return the shifted image m(x − na) of the function
centered at this abscissa [34]. In other words, we reconstruct the periodic functionm(x) using the real space domain closed-
form expression (RD-CFE):

m(x) = m(x)⊗


n

δ (x − na) (47)

where, the symbol ⊗ denotes the convolution product.
So defined, the RD-CFE closely matches the physical aspect of periodic media. Indeed, a crystal is described by a lattice

of nodes exhibiting the translational symmetry (i.e. the periodicity) then, a unit cell (describing the distribution over an
individual period a) is assigned to each node. In the sameway, the Dirac-comb



n∈Z δ (x − na) in Eq. (47) depicts the lattice
symmetry, while the convolution product mathematically assigns the restriction m(x), which represents the unit cell, to
each Dirac-delta function.

4.1.1. Correspondence with the Brillouin approach: discretization in the real domain ⇔ periodicity in the Fourier domain

Inside a given period we can express the restriction using the convolution with a Dirac-delta function:

m(x) =


period

dχ m (χ) δ (x − χ) . (48)

Considering a discretization along the x-axis with a uniform step10 dχq → a/N i.e., N steps per period a, the integral in (48)
will turn to be a discrete sum:

m(x) =


q

a

N
m



q
a

N



δ



x − q
a

N



⇔ m(x) =


q

a

N
ρ



q
a

N



(49)

where the discrete abscissa χq ≡ qa/N designates to the qth mass element and ρ(x) = m


q a
N



δ


x − q a
N



represents the
mass density at this abscissa.

Substituting in Eq. (47) gives us:

m(x) =
N−1


q=0

a

N
m



q
a

N



δ



x − q
a

N



⊗


n

δ (x − na) . (50)

9 A generalized function in the sense of distribution functions [35].
10 These steps are considered from a macroscopic point of view. That is, their dimensions are assumed sufficiently large as compared to inter-atomic
dimensions.
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Using the convolution property of two Dirac-delta functions δ (x − x1) ⊗ δ (x − x2) = δ (x − x1 − x2) and rearranging
the terms we obtain:

m(x) =


q





n

a

N
m



q
a

N



δ



x − na − qa

N





. (51)

The inner summations (one for each fixed q-value) represent juxtaposed arrays of elementary masses: ∆m


χq



=
a
N
m


χq



δ


x − χq



equally spaced by a distance a. As shown in Section 3.3.2, each of these arrays is characterized by a unique

displacement expression uk(x, t) ≡ uk(x, t) = Aqe
i(ωt−kx). The later having physical existence only at discrete abscissa:

xn,q = na + qa

N
and so, reduces to a discrete series according to (43):

un,q(t) ≡ uq(na, t) = Aqe
i(ωt−nka) (52)

where, we have absorbed the phase shift e−ikaq/N in the complex amplitude Aq. So, we retrieve the same inherent sampling
principle in the real domain emphasized by Brillouin and according to the sampling theorem, their Fourier domain
representation should be periodic with a period b = 2π/a. Again, in order to constitute a propagating mode different
q-value arrays (i.e. different masses), even if theymay exhibit different complex amplitudes, have to oscillate with the same
frequency and wavevector i.e. un,q′(t) ≡ uq′(na, t) = Aq′ei(ωt−kna)0 ≤ q′ ≤ (N − 1). Consequently, the problem splits in a
system of N coupled equations. Finally, since the pitch between two distinct arrays is vanishingly small in the continuum
(N → +∞), the number of bands tends toward infinity.

4.2. The two domains correspondence for the periodic parameter

4.2.1. Representation of the direct and the reciprocal lattice by Dirac-combs

A fundamental point concerning the proposed formalism resides in the Fourier transformof aDirac-combwhich is known
to be itself a Dirac-comb. For completeness, a brief demonstration is given in Appendix I where the Dirac-delta is approached
as the limit of a sequence of functions [34,36]. This Fourier transform writes:

F





n

δ (x − na)



= b


m

δ (k − mb) ; b = 2π/a. (53)

This shows that the analogy we pointed out in the real domain, i.e. the representation of the Bravais lattice by a Dirac-comb,
may be pursued in the Fourier domain. Indeed, we notice the correspondence between the spacing between two successive
Dirac-delta functions in Eq. (53) and the reciprocal lattice basis vector b = 2π/a. Thus, this Fourier domain Dirac-combmay
be viewed as the representation of the reciprocal lattice. This analogy is still valid in case of 3-Dimensional media since the
following relation holds in this case [34,36,37]:

F





R∈R

δ (r − R)



⇔ vRL


G∈G

δ (k − G) (54)

where, R and G are the direct and reciprocal lattice vectors as defined in Section 2.1.3 and describe respectively the nodes
positions in the two domains and vRL = b1 • (b2 × b3) = (2π)3 /vDL is the unit cell volume in the reciprocal lattice while,
vDL = a1 • (a2 × a3) is the unit cell volume in the direct lattice.

A direct inspection of the Fourier transform pair in Eq. (54) suffices to convince oneself how much the Dirac-comb
tools are well adapted to the implementation of periodic media: the concept of the reciprocal lattice vectors is already
included. The Dirac-delta functions of the right-hand side are located at the nodes of the reciprocal lattice as dictated by the
expression G = m1b1 + m2b2 + m3b3 and the common factor vRL specifies their strength. Hence, the determination of the
reciprocal lattice basis vectors is considered as an already solved mathematical problem. This observation, associated to the
self-transforming of the Dirac-comb explains the straightforwardness the proposed formalism.

4.2.2. Fourier Domain closed-form expression for the periodic parameter

We define the Fourier domain closed-form expression (FD-CFE) as the Fourier transform of the RD-CFE given in Eq. (47).
Since the property of the Fourier transform of a convolution product holds in the field of the distribution functions, the
convolution product in (47) converts to the simple product of the Fourier transform m(k) of the expression of the mass
restriction m(x) by the Fourier domain Dirac-comb (53). Finally, the Fourier transform of the periodic parameter turns out
to be a weighted Dirac-comb:

m(k) = bm(k)


m

δ (k − mb) =


m

bm(mb)δ (k − mb) . (55)

For clearness, the two domains correspondence is schematically illustrated in Fig. 4. This correspondence may be broken
down into three levels: the unit-cell expression m(x) ⇔ m(k), the direct and reciprocal lattice



n δ (x − na) ⇔
b


m δ (k − nb) as well as the two closed-form expressionsm(x) ⇔ m(k) as a whole.
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Fig. 4. Schematic representation of a periodic parameter using the replicating property in the direct domain and its corresponding representation in the
reciprocal domain. (a) Two domain representations of a unit cell. (b) Two domain representations of the lattice. (c) Two domain representations of the
periodic parameter.

4.3. Bloch theorem and the two domains correspondence principles

4.3.1. Bloch theorem in the Fourier domain as a corollary to the periodicity of the band structure established by Brillouin

As introduced in Section 3.1, Brillouin has established that the periodicity of the band structure (in the Fourier domain)
is a direct result of an implicit discretization of the wavefunction in the real space domain. In Section 4.1.1, we determine
the correspondence between our formalism and the Brillouin approach. This enables one to ascertain, if any proof were
still necessary, that the periodicity of the band structure ω(k) established by Brillouin is still valid in the case of periodic
but not discrete media. This constitutes the Brillouin correspondence principle between the two domains (real and Fourier
domains).

Now, consider the inverse problem. That is, given a mode labeled by its angular eigenfrequency ω, we look for the
corresponding wave vectors k. According to the above mentioned periodicity, k(ω) is a multi-valued function. More
specifically, for a fixed angular eigenfrequency ω, the k values are of the form:

k = k̃ − mb; m ∈ Z (56)

where, the continuum k̃ stands for the principal value of the wavevector i.e. the one within the first Brillouin zone and
b = 2π/a is the reciprocal lattice basis vector.

In other words, the general form of a propagating mode consists of all the k-values of the form of Eq. (56). Thus, carrying
on the problem of periodically varying mass m(x), the displacement spectrum u(k) will be composed a set of discrete
components of the form:

u(k̃ − mb). (57)

This point may be viewed as an intrinsic discretization of the wavefunction in the Fourier domain as a corollary of the band
structure periodicity. But this discretization is shifted with respect to the origin by the principal value k̃ of the wavevector.
The transcription of these results, in the framework of distribution functions, writes:

uk̃ (k) =


m∈Z

u



k̃ − mb



δ



k −


k̃ − mb



. (58)

In other words, the Fourier domain general expression of the wavefunction uk̃ (k) appears as a weighted Dirac-comb. Thus,

uk̃ (k) assembles in a closed form all the discrete components u(k̃ − mb) constituting an eigenmode.
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Now, we emphasize that periodicity is the unique constraint we have imposed on the medium. So, this last relation
necessarily involves the same physical contents as the Bloch theorem. In other words, expression (58) is nothing but the
Fourier domain closed-form expression (FD-CFE) of the Bloch theorem as it will be confirmed in the following section.

4.3.2. The real domain Bloch theorem as a Fourier inverse transform of the FD-CFE

Using the property F
−1 {δ [k ± B]} = (1/2π) e±iBx, the inverse Fourier transform of the FD-CFE directly gives us:

uk̃ (x) = 1

2π





m∈Z

u



k̃ − mb



eimbx



e−ik̃x (59)

where, we have factorized e−ik̃x. Now, recalling that b = 2π/a, the summation between brackets represents a Fourier series
expansion and so, it stands for a periodic function µ (x) of period a

µ (x + a) = µ (x) . (60)

Finally, Eq. (59) exhibits the Bloch nature of the displacement wave and confirms our previous allegation. We can write:

uk̃ (x) = 1

2π
µ (x) e−ik̃x. (61)

Theminus sign in the phase factor in Eqs. (59)–(61), as compared to the plus sign obtained in Eqs. (34)–(35), is a consequence
of the different Fourier transform conventions used in solid-state and phononic crystals (see footnote 3 in Section 2.2.1 and
Appendix H).

4.3.3. Bloch theorem as a result of the conjunction of sampling and shift Fourier transform theorems

The inherent discretization pointed out in the Section 4.3.1 enables one to establish the real domain Bloch theorem as a
second principle of the two domain correspondence. Eq. (58) can be viewed as a periodic sampling of un (k) in the Fourier
domain with a sampling rate b = 2π/a dictated by the periodicity a of the media but, these samples are collectively shifted
by a wavevector k̃ in the Fourier Domain. So, in the real domain, the periodic part of the Bloch function results from the
discretization of the Fourier spectrum and the phase factor originates from the collective shifting of these discrete Fourier
components. We will return to this issue in Section 6.2.2.

4.4. Conclusion

Themain advantage of the approach presented in this section resides in the fact that it is based on general considerations
of Fourier analysis techniques relating the two domain representations and is not embedded within a mathematical
procedure of solving wave equations. This permits to have a good perception of the phenomenon of wave propagation
in periodic media and thus leads to short cuts. For instant, this highlights the universal character of the Bloch theorem since
it appears as a direct consequence of general Fourier analysis theorems, namely: the combination of the well-known shift
and sampling theorems.

In addition, this approach introduces other short cuts which are especially appreciable in complex cases as it will be
illustrated in Section 5. The use of RD-CFE and FD-CFE, will end with a universal systematic two step procedure applicable
in the treatment of periodic media. The method is so straightforward that, even in the most complex cases, the reciprocal
latticewave equation can be established by a simple inspection of its expression in the direct domain. Finally, this formalism
permits to preserve the twodomain correspondence at different levels: it concerns not only thewavefunction representation
but also the periodic media itself with a clear dissociation between the lattice and the unit cell expressions in the two
domains.

5. Solid state, photonic and phononic periodic media in the formalism of the closed-form expressions

In this section we illustrate the application of the method introduced in Section 4 to Solid-state, Photonic and phononic
materials. In Section 5.1 we examine the simplest case of scalar electronic de Broglie waves propagation in one-dimension
periodic potential and widen the method to three dimensions. The expressions of the Bloch theorem in both the real and
Fourier domain are derived. The extension to vector fields is presented in Section 5.2 where, we consider electromagnetic
fields in photonic crystals in the special case where the material does not exhibit any other anisotropy than that introduced
by the periodic non-homogeneities. Finally, Section 5.3 addresses phononic crystals as an illustration of the general case of
vector field in periodic media where the constitutive materials exhibit anisotropic as well as piezoelectric properties.

5.1. Solid state crystals

In the first subsection we apply the formalism in a one-dimension periodic solid-state media. Then we show that the
extension of the method to the three-dimension crystals is straightforward and does not require special efforts.
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5.1.1. The de Broglie waves in 1-d unlimited solid state crystals

As in Section 2, we consider the one dimensional Schrödinger equation (1) but, this time in the framework introduced in
Section 4

− h̄2

2m

∂2ψ (x)

∂x2
+ U (x) ψ (x) = Eψ (x) . (1)

The first step consists of writing closed form equations of the periodic parameter in the two domains i.e. the RD-CFE U (x)
and its Fourier transform the FD-CFE U (k). These closed-form expressions write:

U (x) = u (x)⊗


q∈Z

δ (x − qa) ⇔ U (k) = u (k)


q∈Z

bδ (k − qb) = b


q∈Z

u (qb) δ (k − qb) (62)

where, we identify the Fourier transform pairs:

• U (x) ⇔ U (k): The two-domain expressions of the periodic potential.
• u (x) ⇔ u (k): The two-domain contribution of a unit cell to the periodic potential
•


q∈Z δ (x − qa) ⇔


q∈Z bδ (k − qb): The two-domain lattice representations, the direct and reciprocal ones with their
respective basis vectors a ⇔ b = 2π/a (scalar in the 1-D case)

Using Eq. (62) and the Fourier transform of the differential operator recalled in Appendix H, the Fourier transform
of Schrödinger equation is straightforward. Indeed, the simple product ψ (x)U (x) in the real space transforms into a
convolution product [U (k)⊗ ψ (k)] /2π in the reciprocal domain then using the replicating property Appendix H (in the
reciprocal domain) of the wave function with the weighted Dirac-comb directly gives us:

h̄2 k2

2m
ψ (k)+ b

2π



q∈Z

u (qb) · ψ (k − qb) = Eψ (k) (63)

where, ψ (k) stands for the Fourier transforms of ψ (x).
Obviously, Eq. (63) corresponds exactly to the central equation (32) obtained in Section 2.2 by the traditional method.

But, with the fundamental differences, that in our approach we use neither virtual box concept nor the Fourier series. The
straightforwardness is evident as compared to the classical method and it will be confirmed in the 3-D case which is still a
two step procedure while the classical approach becomes more and more complex (see Appendix E). Note that the factor
b/2π = 1/awhich appears in Eq. (63) fulfills the correspondence between Fourier transform and the coefficients of Fourier
series expansion used in the traditional method.

• Bloch Function in Fourier domain.

As introduced in Section 4.3, taking account of the intrinsic k̃-shifted discretization of thewavefunction9kn in the Fourier
domain, it may be written in the form of the weighted Dirac-comb:

9kn



k′ =


q∈Z

ψn (k − qb) δ


k′ − (k − qb)


(64)

where, the weighting factors stand for the unknowns of the linear equations system (63). In other words, concerning the
linear system of equations, 9kn may be viewed as the eigenvector whose coordinates correspond to the eigensolutions
ψn (k − qb). As explained in Section 4.3.1, Eq. (64) stands for the FD-CFE of the Bloch theorem, its inverse Fourier transform
gives the real space Bloch function:

9kn (x) = 1

2π





q∈Z

ψ (k − qb) e−iqbx



eikx = µ (x) eikx; µ (x + a) = µ (x) . (65)

Note the sign inversion with respect to Eqs. (60)–(61) since we use the property: F
−1 {δ [k ± B]} = (1/2π) e∓iBx relative to

the Fourier transform convention in solid-state crystals (see Appendix H).

5.1.2. Three-dimensions extension

Following the same procedure, we consider the 3-D time independent Schrödinger equation:

− h̄2

2m
∇2ψ (r)+ U (r) ψ (r) = Eψ (r) . (66)

We begin with the introduction of the three-dimension RD-CFE and FD-CFE for the periodic potential:

U (r) = u (r)⊗


R∈R

δ (r − R) ⇔ U (k) = u (k)



vRL


G∈G

δ (k − G)



= vRL


G∈G

u (G) δ (k − G) . (67)
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 Again we identify the Fourier transform pairs:

• U (r) ⇔ U (k): The two-domain expressions of the 3-D periodic potential.
• u (r) ⇔ u (k): The two-domain contribution of the 3-D unit cell to the periodic potential.
•


R∈R δ (r − R) ⇔ vRL


G∈G δ (k − G) The 3-D direct and reciprocal lattice representations, with their respective lattice
vectors:R = n1a1+n2a2+n3a3 ⇔ G = m1b1+m2b2+m3b3 constructed respectively on the direct and reciprocal lattice
basis vectors ai ⇔ bi. The sets R and G include respectively all the direct and reciprocal lattice vectors i.e. all triplets of
integers (n1, n2, n3) and (m1,m2,m3); vRL = b1 • (b2 × b3) = (2π)3 /vDL stands for the volume of the reciprocal lattice
unit cell and vDL is the volume of the direct lattice unit cell.

Following the same procedure as in the one-dimension case, the simple product ψ (r)U (r) in Eq. (66) converts into a
convolution product [U (k)⊗ ψ (k)] / (2π)3 (see Appendix H); where U (k) is the weighted Dirac-comb given in Eq. (67).
Like in the 1-D case, we obtain the 3-D Schrödinger equation in the Fourier domain by simple inspection:

h̄2 k2

2m
ψ (k)+ vRL

(2π)3



G∈G

u (G) ψ (k − G) = Eψ (k) . (68)

As before, we can write the FD-CFE for the Bloch theorem in the 3-D space:

9kn



k′ =


G∈G

ψn (k − G) δ


k′ − (k − G)


(69)

which straightforwardly inverse Fourier transforms to:

9n,k (r) =


1

(2π)3



G∈G

ψn (k − G) e−iG•r



eik•r. (70)

Again, identifying the brackets to a 3-D periodic function µkn (r)we obtain the Bloch function in real space:

9kn (r) = µkn (r) e
ik•r. (71)

Following the formalism, the treatment of the 3-D problem is analogue to the 1-D one and does not complicate the solution
process. In both cases the Bloch nature of the solution appears as an intrinsic character of wave propagation in periodic
media. As indicated in Section 4.3.3, the real Bloch waveform originates from, the second principle of the two domain
correspondence i.e., the conjunction of the sampling and shifting theorem in the Fourier domain.

5.2. Photonic crystals

In what follows we will point out the appreciable straightforwardness of the method when applied to more complex
problems such as vector fields.

5.2.1. Vector field equation in the real space domain

Usually, the electromagnetic field equations may be expressed in terms of H [38] (or E [39]) by respectively eliminating
electric (ormagnetic) field fromMaxwell’s equations. Traditionally, one use the terminology introduced by Sözüer et al. [39]
and refers as ‘‘H-method’’ to the procedure consisting in solving wave equation for H, and then finds out E. The opposite
method is known as ‘‘E-method’’. The H-method shows two advantages concerning numerical calculations: First, it leads to
an ordinary Hermitian eigenproblem whereas; the E-method leads to a generalized Hermitian eigenproblem [39]. Second,
one can take advantage of the transversality property of the magnetic vector k • H = 0 while the inhomogeneities
introduced by the periodicity impose that the electric field is not transverse [40]. Here, we will point out the versatility
and the straightforwardness of our formalism when applied to the H-method. In the case of nonmagnetic, non dispersive
and sources free dielectrics unlimited materials with no other anisotropy than the 3-D periodic non-homogeneity; only
the relative permittivity εr (or equivalently the impermittivity η = ε−1

r ) is position dependent. Thus, the real space wave
equation reads [38]:

∇ × [η (r)∇ × H (r)] + ε0µ0
∂2H (r)

∂t2
= 0. (72)

5.2.2. Vector field equation in the reciprocal domain

As in the previous section, the method begins by introducing a RD-CFE for the periodic parameter η (r) using the
convolution products of a Dirac-comb displaying the 3-D periodicity with the position dependent functions υ (r) pertaining
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to a unit cell. Thus we can write:

η (r) = υ (r)⊗


R∈R

δ (r − R) . (73)

Its Fourier transform straightforwardly gives us:

η (k) = vRL


G∈G

υ (G) δ (k − G) . (74)

The simple product [η (r)∇ × H (r)] in Eq. (72) will transform as a convolution product in the reciprocal domain.

F {[η (r)∇ × H (r)]} = 1

(2π)3
η (k)⊗ [−ik × H (k)] . (75)

Then, using the replicating property with the weighted Dirac-comb (74) we directly rewrite Eq. (75) as:

F {[η (r)∇ × H (r)]} = −ivRL

(2π)3



G∈G

υ (G) (k − G)× H (k − G) . (76)

Finally, using the compact notation k20 = µ0ε0ω
2 = (ω/c)2, the Fourier transform of Eq. (72) is simply given by:

1

vDL
k ×



G∈G

υ (G) [(k − G)× H (k − G)] + k20H (k) = 0. (77)

Eq. (77) stands for an infinite subset of coupled linear equations where the unknowns are the magnetic field spectral
components H(k − G). Since it is more convenient to deal with scalar quantities, we express the H vectors in terms of their
components in the following section.

5.2.3. Expression of the H vector field equation in terms of its scalar components

The application of Fourier transform implicitly assumes that the general solution consists of superposition of planewaves
(i.e. plane wave packet). Taking advantage of the transverse nature of the magnetic field of each individual plane wave, the
magnetic vector H(k − G) of a given plane wave in Eq. (77) may be expressed by its components h1(k − G) and h2(k − G)
along two orthogonal unit vectors, say h1,k−G and h2,k−G, laying in the plane perpendicular to its wavevector (k− G). Thus,
we substitute in Eq. (77) the following expressions of H(k − G), (k − G) and k:

H (k − G) = h1 (k − G)h1,k−G + h2 (k − G)h2,k−G (78)

(k − G) = |k − G|


h1,k−G × h2,k−G



and k = |k|


h1,k × h2,k



. (79)

Then, performing the double cross product in Eq. (77) we obtain the following vector relation expressed in the {h1,k,h2,k}
basis.



G∈G

υ (G)

vDL
|k| |k − G|



+


h2,k • h2,k−G



−


h2,k • h1,k−G



−


h1,k • h2,k−G



+


h1,k • h1,k−G



 

h1 (k − G)
h2 (k − G)



= k20



h1 (k)
h2 (k)



. (80)

Thus each vector equation of the subsystem (77) splits into 2 scalar equations.

5.2.4. Correspondence with the traditional relations

In our derivation of wave propagation in the reciprocal domain, we have implicitly expanded the field components in
Fourier basis functions e−ik•r while, the conventional method (using Fourier series and/or Poisson summation formulas),
retains spectral components basis of the form e−i(k+G′′)•r. Thus, to show the correspondencewith the usual relations [38–40],
we have to change the variables k into k+G′′ in Eq. (80) and the summation dummy variableG intoG′ = G′′−G. We, obtain:



G′∈G

υ


G′′ − G′

VDL



k + G′′




k + G′




+


h2,k+G′′ • h2,k+G′


−


h2,k+G′′ • h1,k+G′


−


h1,k+G′′ • h2,k+G′


+


h1,k+G′′ • h1,k+G′


 

h1



k + G′

h2



k + G′


= k20



h1



k + G′′

h2



k + G′′


. (81)

This relation is in full agreement with the results derived by Ho et al. [38]. It is worth noting that the volume of the unit cell
VDL which appears in our equations fulfills the correspondence between Fourier transform and the coefficients of Fourier
series expansion used in the traditional method. Actually, Eqs. (80) and (81) are two representations of the same system of
coupled linear equations since the summation runs over all the reciprocal lattice vectors G ∈ G.
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5.3. Phononic crystals

This section illustrates the effectiveness of our method when applied to the general case of vector field in 3-D periodic
media whose constituent materials being anisotropic without any restriction concerning their symmetry. Actually, our
approach turns out to be a systematic ‘‘two steps’’ procedure for determining wave equations in the reciprocal space. Thus
its straightforwardness is not altered whatever is the complexity of the constituent material anisotropy.

In Section 5.3.1, as an introduction we consider the simple case of non-piezoelectric materials. Then, the most universal
case, where the constituent materials are piezoelectric, is addressed in Section 5.3.2.

5.3.1. Phononic crystals with non-piezoelectric constituent materials

5.3.1.1. Vector field equation in the real domain. Starting from dynamic equation of motion for the displacements ui, (i =
1, 2, 3) [33]:

ρ (r)
∂2ui (r)

∂t2
=


j

∂σij (r)

∂xj
. (82)

where, ρ(r) is the mass density and σij(r) the stress tensor. This later, in the linear approximation, writes:

σij (r) =


kl

cijkl (r)
∂uk (r)

∂xl
(83)

where, cijkl(r) is the stiffness tensor of rank 4. Eliminating the stress tensor between (82) and (83) we obtain the acoustic
wave equation expressed in terms of displacements, in the form of the following coupled partial differential equations:

ρ (r)
∂2ui (r)

∂t2
=


jkl

∂

∂xj



cijkl (r)
∂uk (r)

∂xl



. (84)

Again, we introduce a RD-CFE for the periodic parameters ρ(r) and cijkl(r) using the replicating property of their
respective restrictions o(r) and γijkl(r) to the unit cell we can write:

ρ(r) = o(r)⊗


R∈R

δ(r − R); cijkl(r) = γijkl(r)⊗


R∈R

δ(r − R). (85)

5.3.1.2. Vector field equation in the reciprocal domain. The FD-CFE are the Fourier transforms of RD-CFE (85) and writes:

ρ(k) = VRL



G∈G

o(G)δ(k − G); cijkl(k) = VRL



G∈G

γijkl(G)δ(k − G). (86)

Knowing these periodic parameter expressions in the two domains and assuming harmonic dependence of the form
ei(ωt−k•r), the wave equation (84) immediately transform to:



1

(2π)3



VRL



G∈G

o(G)δ(k − G)



⊗


−ω2ui (k)




=


jkl



−ikj




1

(2π)3



VRL



G

γijkl(Γ )δ(k − G)



⊗ [−ikluk (k)]



. (87)

By direct inspection, one can identify the correspondence between the two domains wave equations (84) and (87). That is,
the transformation of the simple product of functions in the real space domain (Eq. (84)) into the convolution product of
their respective Fourier transforms in the reciprocal domain (Eq. (87)) as well as the transformation of the partial derivatives
∂/∂xj to −ikj. Finally, applying the replicating property of Dirac-delta combs, gives us the phononic wave equation in the
reciprocal domain:

ω2


G∈G

o(G)ui(k − G) =


jkl



G∈G

γijkl(G)kj(kl − Gl)uk (k − G) . (88)

This illustrates the straightforwardness and the universality of our method. Indeed, whatever is the subject matter under
consideration: solid-state, photonic or phononic crystal, the two domain expressions of periodic parameters always display
the same general forms (Eqs. (85), (86)). Thus, only two truly systematic steps are needed to obtain the wave equation (88)
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in the reciprocal domain, knowing its real space expression (84). Eq. (88) may be written in the more suitable matrix form
for numerical calculations, just by rearranging the terms. We obtain:



G∈G



ω2o (G) I3 −Λ




u1 (k − G)
u2 (k − G)
u3 (k − G)



= 0 (89)

where the elements of the matrixΛ are:Λik =


jl γijkl(G)kj(kl − Gl) and I3 is the identity matrix.
Thus, we arrive at a compact equation not only easy to demonstrate but as well easy to handle. One can convince itself, of

the effortlessness as well as the effectiveness of our approach, by trying to reproduce the widely published special cases. For
instance, starting from Eq. (89) one can directly find out equivalent expressions for the 27 matrices derived in Ref. [41] for
the special case of two-dimensional phononic structures. By equivalent we mean that they lead to the same eigensolutions.
Nonetheless, as established in Section 5.2.4, in order to find the strict correspondence, one should first substitutekby (k+G′′)
and the dummy variable G by (G′ = G′′ − G). Indeed, Ref. [41] postulates the Bloch theorem i.e. assumes space and time
harmonic dependence of the form ei(ωt−(k+G′′)•r) whereas our approach is based on ei(ωt−k•r) harmonic dependence.

5.3.2. Phononic crystals with piezoelectric constituent materials

5.3.2.1. Vector field equation in the real domain. Considering piezoelectric materials, not only expression (83) must be
modified to take account of the electric field E contribution to the stress tensor but also, a subsidiary relation is needed
to express the contribution of the strain to the electric displacement vector D. Choosing as independent variables the
displacement uk and the electric potential φ instead of the electric field strength E = −∇φ, this system of equations
writes [33]:















σij (r, t) =


kl

cEijkl (r)
∂uk (r, t)

∂xl
+


l

elij (r)
∂φ (r, t)

∂xl

Di (r, t) =


kl

eikl (r)
∂uk (r, t)

∂xl
−


l

εSil (r)
∂φ (r, t)

∂xl

(90)

where, cEijkl is the stiffness constant at fixed electric fields, εSil the permittivity at fixed strain and eikl the direct piezoelectric
constants [33]. Substituting σij in the dynamic equation (82) and assuming charge free media i.e. zero divergence of the
electric displacement vector



i ∂Di (r, t) /∂xi = 0, we obtain:






















ρ (r)
∂2ui (r, t)

∂t2
=


j



∂

∂xj





kl

cEijkl (r)
∂uk (r, t)

∂xl
+


l

elij (r)
∂φ (r, t)

∂xl



0 =


i

∂

∂xi





kl

eikl (r)
∂uk (r, t)

∂xl
−


l

εSil (r)
∂φ (r, t)

∂xl



.

(91)

In order to determine the electromechanical wave equation in non-homogeneous periodic media, we do not eliminate
the electric potential in the coupled equations system (91) as it is the usual procedure in case of homogeneous media.
Instead, one [42] defines a generalized displacement vector ũ in which u4 represents the electrical potential φ. i.e.
ũ = [u1, u2, u3, φ]

T , and a generalized stress vectors in which: σi4 = Di. i.e. σ̃ i = [σi1, σi2, σi3,Di]
T . So doing, the

electromechanical wave equation (91) takes exactly of the same general form of the partial differential system (84) but
this time, it couples the four variables u1, u2, u3 and u4 = φ:

ρ̃ (r)
∂2ũi (r, t)

∂t2
=



j=1,2,3



∂

∂xj





k=1,2,3,4



l=1,2,3

c̃ijkl (r)
∂ ũk (r, t)

∂xl



. (92)

By identification with Eq. (91), the tilde constants are:

c̃ijkl (r) = cEijkl (r) ; . . . k = 1, 2, 3 and i = 1, 2, 3
= elij (r) ; . . . k = 4 and i = 1, 2, 3
= eikl (r) ; . . . k = 1, 2, 3 and i = 4
= εSil (r) ; . . . k = 4 and i = 4

and
ρ̃i (r) = ρ (r) ; . . . i = 1, 2, 3

= 0; . . . i = 4. (93)

5.3.2.2. Vector field equation in the reciprocal domain. Following our method i.e. introducing the RD-CFE of the tilde periodic
material parameters and their corresponding FD-CFE and using the replicating property of the weighted Dirac-comb we
obtain the required wave equation:

ω2


G∈G

õ(G)ũi(k − G) =


jkl



G∈G

γ̃ijkl(G)kj(kl − Gl)ũk (k − G) . (94)

22



This system is analogue to Eqs. (88). Again, rearranging the terms it may be written in a matrix form:



G′′′∈G



ω2o (G) Ĩ4 − Λ̃









ũ1 (k − G)
ũ2 (k − G)
ũ3 (k − G)
ũ4 (k − G)






= 0 (95)

where

Λ̃ik =


jl

γ̃ijkl(G)kj(kl − Gl) and Ĩ4 ≡







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0






. (96)

As usual replacing k by (k + G′′) and the dummy variable G by (G′ = G′′ − G) one obtains the correspondence with
Fourier series expansion method. Namely, here Eq. (94) is in total agreement with the coupled equation system (19) and
(22) of Ref. [43].

5.3.3. Advantages of our method, as an ending remark concerning ‘‘periodic anisotropic materials’’ treatment

This section reveals the effectiveness as well of the effortless of our approach. It is a systematic way for obtaining ‘‘in
only two steps’’ the reciprocal domain expressions of the wave equation for any periodic media. This, whatever is the
complexity of its anisotropy andwithout any additional intermediate algebra steps. This fact is not surprising since we have
turned towardwell-known theorems in the field of the distribution functionswhich have already resolved themathematical
problems. One who is familiar with the conventional method knows how tricky the implicit algebra procedure is. Our two-
steps systematic method will be time saving for mathematical formulation of practical problems.

6. Physical contents of the formalism

6.1. Discussion

The formalism is essentially based on Fourier analysis techniques and thus, as illustrated, it suits well any physical
domain.

1. Mathematically speaking, taking the Fourier transform of the wave equation implies that we operate in two steps.
In the former, we express the real space field under the differential operators in terms of their corresponding inverse
Fourier transforms (plane wave packets). In the later, we obtain the specific equation characterizing the subset equations
system by taking the Fourier transform i.e., by projecting each term of the differential equations on a selected Fourier basis
function. By essence, in 3-D spatial Fourier transform, this selected basis function is eik•r. In other words we follow the
plane wave expansion method (PWE), but in a Fourier continuum basis. In practice one does not have to go through all the
steps of this mathematical procedure. But, saves time by directly applying the well known properties of Fourier transforms,
namely: transformations of simple or convolution products of functions and distribution functions aswell as transformation
properties of differential operators. These are summarized in Appendix H.

2. Correspondence with the methods involving Poisson summation formulas.
Other approaches exist which use Fourier transform instead of Fourier series and avoid the use of virtual box concept.

They are based on Poisson summation formulas [39,44–48]. These approaches express the periodic parameters in terms of
distribution functions in the Fourier domain but, in terms of usual functions in the real space. For example, in solid-state
crystals, the real domain periodic potential is written as:

U(x) =


n∈N

u (x − na) . (97)

Then, the general form of the Poisson summation formulas enables one to convert a summation (of a regularly shifted usual
function) on the direct lattice into a sum on the reciprocal lattice. That is, another writing of (97) also in the real domain is:

U(x) =


n∈N

u (x − na) = 1

a



q∈N

u (qb) e−iqbx. (98)

This constitutes a first step in obtaining the Fourier transform of the periodic parameter:

U(k) = F



1

a



q∈N

u (qb) e−iqbx



= 2π

a



q∈N

u (qb) δ (k − qb) . (99)

This is exactly the same expression we obtained in Eq. (62). Even if the two approaches show the same straightforwardness
and gives the same end results. The two frameworks are separately self-consistent even if they can be deduced from one
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another (as shown in Appendix J). This self-consistency is justified by the fact that, as mentioned in Section 4.2.1 and
Appendix I, derivations exist for the self-transforming property of a Dirac-comb [34] which do not rely; neither on Poisson
formulas nor on Fourier series.

Beside this overall mathematical equivalence between the two methods differences exist. Taking full advantage of well
known properties of Dirac-comb, we introduce a RD-CFE and its corresponding FD-CFE for the periodicmaterial parameters.
So doing permits to visualize the two domain correspondence at different levels including lattice, unit cell and the periodic
parameter expression as a whole. In other words, the analogy between thesemathematical tools and the periodic structures
permits the dissociation between the lattice and the unit cell expressions and this dissociation is preserved in both the real
and Fourier domains by a one to one correspondence. Furthermore, applying the sameDirac-comb tools to thewavefunction,
the Bloch theorem is found to be a direct consequence of the conjunction of the well-known shift and sampling Fourier
analysis theorems.

3. Our definition of the function u(r)used in Eq. (62) or (67), requires some clarifications. Usually, in solid state crystals the
periodic potentialU(r) results from the superposition of potential overlaps between the surrounding unit cells contributions
u(r). In our formalism, U(r) is defined as the convolution product of a Dirac comb with u(r). So, it is fully adapted to
take into account these physically existing overlaps in the case where u(r) spreads out of the unit cell. However, in other
situations, like photonic or phononic crystal, it is the restriction to the unit cell u′ (r) of the periodic parameter which is
known rather than the unit cell contribution u(r). So, a very practical implementation of the periodic potential U(r) consists
in its reconstruction by a cyclic replication of its restriction u′ (r) to the unit cell: U (r) = u′ (r) ⊗



R∈R δ (r − R). It is
interesting to note, that since ourmethod is developed in the framework of distribution functions, the spectrumdiscreteness
of U(k) appears naturally as the simple product of the of u′(k) by a Dirac-comb: U (k) = u′ (k)



VRL



G∈G δ (k − G)


=
VRL



G∈G u′ (G) δ (k − G). Thus, the correspondence with Fourier coefficients is implicit and so, in the framework of the
approach presented here, the procedure steps are strictly the same whatever the given function is u (r) or u′ (r).

6.2. The origin of the Bloch theorem

As a consequence of the Brillouin two domain correspondence principle which establishes the periodicity of the band
structure, we clarified in Section 4.3 how the spectrumof a givenmodewith an eigenfrequencyω consists of discrete Fourier
components which are equally spaced from one another by reciprocal lattice vectors G and are collectively shifted in the
reciprocal domain by a given vector k ≠ G. These observations are transcribed by Eq. (69) whose inverse Fourier transform
imposes the real Bloch function behavior. In the following first subsection,we establish the correspondencewith the classical
Bloch theorem demonstration in Fourier domain method. In the second subsection we give a more detailed view of the two
domain expressions of the Bloch theorem.

6.2.1. Comparison with the establishment of the Bloch theorem within the classical method

The correspondence with the classical method is as follows. Starting from Eq. (68), we consider the case of homogeneous
materials (no periodic potential: U(r) = 0) there is no coupling at all between individual monochromatic plane waves. We
are in the presence of an infinite set of uncoupled equations. Thus, monochromatic plane waves are the eigensolutions. The
expression of any equation of this subset in the reciprocal domain gives the well-known dispersion relation: ω = E/h̄ =
h̄k2/2m.

In the case of periodic media, the material parameter appears as simple products U (r) ψ (r) in the real space central
equation (66) so; it will convert to convolution products in the reciprocal domain: (U (k)⊗ ψ (k)) / (2π)3. It is this
convolution product ofψ (k)with the Dirac-comb, appearing in the expression (67) of U (k)which introduces the selective
coupling between all spectral components ψn (k − G) which are exactly spaced from the selected k Fourier component by
regular intervals equal to reciprocal lattice vectors G. Finally, the mathematical transcription of this assertion leads to (69):
‘‘the FD-CFE for the Bloch theorem’’.

This writing of the Bloch theorem highlights the dissociation of the contributions related to the lattice structure from
those related to the unit cell. The contribution of the lattice structure is depicted by the 3-D sampling intervals represented
by the Dirac-comb while, the contribution of the unit cell is characterized by the weighting coefficients ψn (k − G) which
depend via Eq. (68), on the Fourier components u (G) of the unit cell potential distribution.

6.2.2. Bloch theorem in the direct domain

It is instructive to determine the inverse Fourier transform of Eq. (69) by another way. Using the convolution property of
two Dirac-delta functions δ (y − y1)⊗ δ (y − y2) = δ [y − (y1 + y2)], expression (69) may be rewritten as:

9kn



k′ =




G∈G

ψn (k − G) δ


k′ + G




⊗ δ


k′ − k


. (100)

Here the convolution product may be interpreted as the shifting of the weighted Dirac-delta comb (term between
brackets) to be centered at the fixed k-value which labels the mode. To who is familiar with Fourier analysis, this form
clearly evidences the Fourier correspondence with Eq. (71) in the real space. Indeed, the convolution product in Eq. (100)
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converts, in the real domain, into a simple product of a periodic factorµk,n (r) resulting from the reciprocal domain sampling
(termbetween brackets) by the phase factor eik•r introduced according to thewell-known shift theoremF

−1


δ


k′ − k


=
eik•r [34]. We conclude that, the inverse Fourier transform of Eq. (100) naturally displays the Bloch wave behavior.

7. Conclusion

The study of wave propagation in periodic media is a thrilling subject that has drawn many attentions since pioneer
works a century ago about electronic wave functions and quantum mechanics. We have witnessed over the last decades
a renewed interest with the emergence of man-made periodic media: photonic and phononic materials together with the
availability of powerful computation machines required to accompany the development of numerical methods.

Throughout this paper, we have presented how classical methods have been developed both in the real and Fourier
domains. We have pointed out the two domains correspondence as reported by Brillouin and, on the basis of his perception;
we have introduced mathematical tools originating from signal processing to highlight the two domains correspondence.
These tools, developed in the framework of Fourier analysis and distribution function theory, permit to establish a well
adapted approach to investigate wave propagation in periodic media.

Taking advantage of the two domains correspondence, the Bloch theorem appears to be a consequence of general
considerations concerning the Brillouin periodicity of the band structure together with Fourier analysis theorems. The
Brillouin periodicity implies an inherent ‘‘shifted discretization’’ of the eigenmode wavefunction expressions in the Fourier
domain. Then, the discretization in the Fourier domain introduces the periodic part of the Bloch theorem,while the k-shifting
is responsible of the existence of the phase factor.

Also, the approach permits to identify the two domain correspondence at different levels: expressions for Fourier
transform pairs have been introduced for the periodic parameters as a whole or separately for the crystal lattice and unit
cell expression and so, the contributions of the lattice structure are clearly dissociated from those related to the unit cell.
Finally, we end with a formalismwhich is straightforward whatever the complexity of problem is: one or three dimensions,
scalar or vector fields, in materials with or without anisotropy, as illustrated by the different analyzed examples.
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Appendix A

The set of symmetry translation constitutes a group. Indeed, it verifies the four following criteria:

1. The ‘‘composition law’’ associated to the set elements (here, the multiplication operation of two translations) is an
internal one. i.e. the resulting product is also an element belonging to the set. (It is clear that the product of two
translations is also a translation TR1TR2 = T(R1+R2))

2. The multiplication is associative:


TR1TR2



TR3 = TR1



TR2TR3



3. The existence of an identity element: TRTR=−→
0

= T
R=−→

0
TR = TR

4. The existence of an inverse for each element. TRT−R = T−RTR = T−→
0

The group is Abelian since multiplication is commutative. TR1TR2 = TR2TR1 ⇔ T(R1+R2).

Appendix B. Invariance of the Hamiltonian under the change of variables r → (r + R), is equivalent to the

commutation property of the translation operator with the Hamiltonian

Here we present a heuristic demonstration of this statement, a more rigorous demonstration may be found in any
quantum mechanics or solid-state textbooks for example [22,23,28–31].

Applying the same line of reasoning as Floquet (see Section 2.1.1) the assumption that the Hamiltonian is invariant under
the change of variables r → (r+R) imposes that: ifψ(r) is a solution of the Schrödinger equation thenψ(r+R) = T̂Rψ(r)
is also a solution with the same eigenvalue E. In terms of translational operator, this writes:

Ĥψ (r + R) = Eψ (r + R) ⇔ Ĥ



T̂Rψ (r)



= E



T̂Rψ (r)



. (B.1)

Now, applying the translation operators on both sides of the Schrödinger equation gives us:

T̂R



Ĥψ (r)



= T̂R {Eψ (r)} . (B.2)

The brackets used are notmandatory they have been used in order to clarifying the different situations. The right-hand sides
of the two previous equations are identical since E is a constant. So, identifying the two left-hand sides, we get:

ĤT̂Rψ (r) = T̂RĤψ (r) ⇔


ĤT̂R − T̂RĤ



= 0; ψ (r) ≠ 0. (B.3)
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In the language of operators we say that the translational operator T̂R commutes with the Hamiltonian operator Ĥ .
The opposite statement is also true. Indeed, starting this time by the assumption that the commutation of the operators T̂R

and Ĥ holds. We can write: Ĥ


T̂Rψ (r)



= T̂R



Ĥψ (r)



. Since we assume thatψ(r) is an eigensolution of the Hamiltonian

the second term reduces to : T̂R


Ĥψ



= E



T̂Rψ



. Thus the commutation property reduces to:

Ĥ



T̂Rψ (r)



= E



T̂Rψ (r)



⇔ Ĥψ (r + R) = Eψ (r + R) . (B.4)

We conclude that the commutation property of translation and Hamiltonian operators is strictly equivalent to the property
that ψ(r) and its translation T̂Rψ (r) ≡ ψ (r + R) are eigensolution of the Hamiltonian with the same eigenvalue E.

Appendix C. Corollary: property of two commutating operators ‘‘they own a common set of eigenvectors with the

same eigenvalue’’

This may be easily verified in the case of a non degenerate state. Since in this case, the fact that the two functions ψ (r)
and T̂Rψ (r) are solutions of Schrödinger equation belonging to the same eigenvalue E, means that they represent the same
eigenfunction and thus differ from one another by at most a constant factor. In other words: T̂Rψ (r) = tRψ (r)where tR is
a constant which depends on the translation vector R. The opposite statement is also verified. That is, if ψ (r) is a solution
of the translational operator T̂Rψ (r) = tRψ (r) then T̂Rψ (r) is proportional toψ (r). Now, because we assume thatψ (r) is
a solution of Schrödinger equation, then T̂Rψ (r)will also be a solution with the same eigenvalue.

In case of degenerate states, the problem is somewhat different but, we can always find linear combinations that are
simultaneously eigenfunctions of Schrödinger equation and translation operator [22,28].

Appendix D. An illustrative example of group theory ‘‘The translational symmetry group: representation and

eigensolutions’’

Our aim in this appendix is to introduce the representation of the translational symmetry operation following the way
paved by Bloch to find out its eigenvalues. For sake of simplicity, and without loss of generality, Bloch restricts his study to
the case of crystals with rectangular lattices with their basis vectors aligned along the coordinate axes. This assumption does
not have any incidence on the general conclusions he is seeking for. So, the outcomes he obtained are still valid for any other
crystallographic axes. More general demonstrations can be found in Refs. [22,28,29] which confirm Bloch assumptions. This
assumption enables one to use scalar coordinate notations.

D.1. Matrix representation of a space transformation operator

In group theory, the convention is to restrict the use of the term ‘‘representation’’ to the representation of the group
by a set of square matrices. Each matrix represents an element of the group.11 Here, we use translation operator as an
illustrative example.

Let {ϕi(x)} stands for a complete set of linearly independent orthonormal basis functions i.e.:


d3rϕ∗
i (x, y, z)ϕk(x, y, z) = δik. (D.1)

Consider the image of one of these basic functions after a space transformation. For instance the translation:
T̂a1ϕj(x, y, z) ≡ ϕj(x + a1, y, z). In an arbitrary chosen basis, this image is no more a basis function. It can be expanded
as a linear combination:

T̂a1ϕj(x, y, z) ≡ ϕj(x + a1, y, z) =


k

bkϕk(x, y, z). (D.2)

Multiplying the both sides of Eq. (D.2) by ϕ∗
i (x, y, z) and integrating all over the space we obtain:



d3rϕ∗
i (x, y, z)T̂a1ϕj(x, y, z) =



k

bk



d3rϕ∗
i (x, y, z)ϕk(x, y, z). (D.3)

11 Also, the product of matrices represents the symmetry elements product defined in Section 2.1.3.1.
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D.1.1. Matrix element of the operator

One defines the integral in left-hand side of Eq. (D.3)) as the matrix elementAij:

Aij ≡


d3rϕ∗
i (x, y, z)T̂a1ϕj(x, y, z). (D.4)

D.1.2. Interpretation

Substituting (D.4) in (D.3) and taking account of the orthonormal basis condition (D.1), Eq. (D.3) writes:

Aij =


k

bkδik = bi. (D.5)

Eq. (D.5) tells us that thematrix elementAij is numerically equal to theweighting coefficient bi of the basis functionϕi(x, y, z)
in the expansion (D.2) for the image ϕj(x+ a, y, z) corresponding to the basis function ϕj(x, y, z) after its translation by the

operator T̂a1 . Thus Eq. (D.2) writes:

T̂a1ϕj(x, y, z) ≡ ϕj(x + a1, y, z) =


i

Aijϕi(x, y, z). (D.2′)

D.1.3. Matrix representation of the operator

Proceeding in the same way for the images of the other basic functions one obtains equation lines similar to (D.2′). In
other words, the Eq. (D.2

′′
) stands for the matrix representation12 A =



Aij



of the operator T̂a1 :



















ϕ1(x + a, y, z)
ϕ2(x + a, y, z)

...
ϕj(x + a, y, z)

...
ϕn(x + a, y, z)



















=



















A11 A21 · · · Aj1 · · · An1

A21 A22 · · · Aj2 · · · An2
...

...
. . .

...
...

...
A1j A2j · · · Ajj · · · Anj

...
...

...
...

. . .
...

A1n A2n · · · Ajn · · · Ann





































ϕ1(x, y, z)
ϕ2(x, y, z)

...
ϕj(x, y, z)

...
ϕn(x, y, z)



















. (D.2
′′
)

D.2. Concluding remarks13

(i) Using the terminology or group theory this square matrix A =


Aij



is known as a ‘‘Representation’’ of the element of
the translation group corresponding to the translation vector a1.

(ii) The fact that following a translation the function ϕj(r + a1) acquires contributions from of all other basis functions
ϕi(r); i ≠ j, is referred to as its ‘‘contamination’’ by these basis functions. The relative weighting factors of these
contaminations are given by the constants Aij.

(iii) The transpose of the representationmatrix defined in (D.2
′′
) expresses the weighting coefficients dj of the expansion

of the imageψ(x+a1, y, z) =


j djϕj(x, y, z) of an arbitrary functionψ(x, y, z) =


j cjϕj(x, y, z) in terms of theweighting
coefficients cj of the latter in the {ϕi(x)} basis. So, this expression writes: di =



j Aijcj with the usual subindex notations.
(iv) Different basis function sets leads to different matrix representations. The change of basis functions from the initial

set {ϕi(x)} to the new one


ϕ′
i (x)



will introduce a new representation matrix A′. The determination of the later in term of
the initial representation matrix A follows the usual matrix formula: A′ = B−1AB. Where, the matrix B expresses the new
basis functions



ϕ′
i (x)



in term of the old ones {ϕi(x)}.

D.3. Matrix representation of the translation operator and eigensolutions

(a) case of translational symmetry element Ta1 where, the translation vector is a single lattice basis vector a1
The step in determining the eigensolutions consisting of diagonalization of the representationmatrixA is termed ‘‘finding

the irreducible representation’’ A′. Where, the prime symbol labels the irreducible representations. Obviously, A′ is an
equivalent representation of the operator in the eigenfunction basis set



ϕ′
i (r)



.

12 Note the unusual order notation of the subscript in the matrix element which rises by way of its definition in Eq. (D.4).
13 Floquet, outside the framework of group theory, has exhaustively studied all these situations. Once again, this shows equivalence between the two
approaches.
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Since symmetry translations constitute an Abelian group, the matrices are diagonalizable [22,24,28,29]. We say that
the ‘‘irreducible representation’’ is one-dimensional14 referring to the fact that its diagonal terms are formed by only one
constant A′

ii (i.e. a matrix of dimensions 1 × 1) A′
ij ⇒ A′

ijδij where, δij is the Kronecker-delta.

(b) case of the translational symmetry element Tn1a1 (n1 successive basis vectors a1)
Using an iterative method, beginning with: ϕj(x + 2a1, y, z) =



i Aijϕi(x + a1, y, z), it is easy to show that the

representation of the translation symmetry element T̂n1a1corresponds thematrix


Aij

n1 . So, in the irreducible representation
basis this matrix is also diagonal and writes:



A′
ijδij
n1 . (D.6)

(c) Expression of the Eigenvalues and the Born–von Karman boundary conditions

In order to determine the eigensolutions, Bloch relies on thermodynamic principles which establish the equivalence
between the physical properties pertaining to the entire crystal or to its restriction to a subsystem of parallelepiped shape
sustained by a large number of unit cells, provided that the dimensions of this parallelepiped are sufficiently large. We will
refer to this representation as the virtual box concept. This concept rely on the fact that, ‘‘the general form of wavefunctions
depends on the periodicity and has nothing to do with the artificially introduced boundaries’’. Then, he justifies the use
of Born–von Karman cyclic boundary conditions rather than the trivial boundary conditions imposed by the continuity of
the wavefunction with the vanishing electronic wavefunction outside the crystal. The reason is because the former leads to
propagating wave solutions (which we are dealing with) while the later imposes standing waves solutions.

The cyclic Born–von Karman boundary conditions impose the periodicities of N1a1, N2a2 and N3a3 respectively in the
three-directions of a1, a2 and a3. Where, N1,N2 and N3 stand for the number of unit cells constituting the crystal in the three
directions. For instance, in the direction a1 considered in this subsection this boundary condition reads:

ϕ′
j (x + N1a1, y, z) = ϕ′

j (x, y, z). (D.7)

Thus substituting n1 by N1 in the irreducible expression form of Eq. (D.6) leads to the identity matrix:



A′
ijδij
N1 = I. (D.8)

Now, since


A′
ij



is a diagonal matrix, we obtain A′
ij
N1δij = A′

jj
N1 = 1. Thus, the diagonal terms and so the eigenvalues are

the roots of unity. So, the representation of the translation operator T̂a1 is a diagonal matrix whose elements are the set of
eigenvalues:

A′
jj = e

i
2πm1
N1 ; −N1

2
< m1 ≤ N1

2
. (D.9)

Note that the interval −N1/2 < m1 ≤ N1/2 has been chosen in order to confine the principal value of the complex
exponential argument in the interval ]−π, π ].

Finally for a translation operator T̂n1a1 relative to a translation vector n1a1 for any integer n1, the matrix element writes:

A′
jj = e

i
2πm1
N1

n1; −N1

2
< m1 ≤ N1

2
. (D.10)

(d) Bloch theorem

Since


A′
ij



is diagonal, the diagonal terms given in Eq. (D.10) correspond to the eigenvalues of T̂n1a1 . Thus we can write:

ϕ′
j (x + n1a1, y, z) = e

i
2πm1,j

N1
n1ϕ′

j (x, y, z); −N1

2
< m1,j ≤ N1

2
and n1 ∈ Z . (D.11)

The added second index j tom1,j recalls the mutual correspondence between eigenvalues A′
jj and eigenfunctions ϕ′

j (x, y, z).
Doing the same for the two other directions gives us:

ϕ′
j (x, y + n2a2, z) = e

i
2πm2,j

N2
n2ϕ′

j (x, y, z); −N1

2
< m2,j ≤ N1

2
and n2 ∈ Z (D.12)

ϕ′
j (x, y, z + n3a3) = e

i
2πm3,j

N3
n3ϕ′

j (x, y, z); −N1

2
< m3,j ≤ N1

2
and n3 ∈ Z . (D.13)

14 Note that, in general, for other symmetry space transformations this diagonalization is not always possible. In this case one reduces the matrix as far
as possible and obtains at the end a block diagonal matrix. These blocks are known as the irreducible representation of order>1. Since we are interested
by translation operators, we will not treat this case here.
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Now, regrouping (D.11)–(D.13), we obtain15 for the general case of a 3-D translation vector corresponding to any arbitrary
lattice vector R = n1a1 + n2a2 + n3a3:

ϕ′
j (x + n1a1, y + n2a2, z + n3a3) = e

i



2πm1,j
N1

n1+
2πm2,j

N2
n2+

2πm3,j
N3

n3



ϕ′
j (x, y, z). (D.14)

This last relation is the general form of the solution and thus it stands for the Bloch–Floquet theorem. In Section 2.1.3.3, using
coordinate vector notations we give a more explicit form of this relation. This requires the introduction of the reciprocal
lattice concept.

Appendix E. 3-D Fourier domain method to determine the Bloch theorem

Consider a crystal consisting of N1 ×N2 ×N3 unit cells along the tree direction axes as defined by its lattice basis vectors
a1, a1 and a3 not necessarily orthogonal. Defining the unit vector along these axis ℓi = ai

ai
we can write any position vector

as: r = ℓ1ℓ1 + ℓ2ℓ2 + ℓ3ℓ3. Where ℓ1, ℓ2and ℓ3 are the coordinates along the oblique axes. The 3-D Born–von Karman
periodic boundary conditions write:



ψE(ℓ1 + N1a1, ℓ2, ℓ3) = ψE(ℓ1, ℓ2, ℓ3)
ψE(ℓ1, ℓ2 + N2a2, ℓ3) = ψE(ℓ1, ℓ2, ℓ3)
ψE(ℓ1, ℓ2, ℓ3 + N3a3) = ψE(ℓ1, ℓ2, ℓ3)

or in vector notation ψE(r + Niai) = ψE(r). (E.1)

Using the same sign conventions introduced in Section 2.2.1, and assuming that the Fourier harmonic components ϕE,p1,p2,p3

are known for all integers p1, p2 and p3, the 3-D Fourier series for the artificially introduced periodicity writes:

ψE (ℓ1, ℓ2, ℓ3) =


pi

ϕE,p1,p2,p3,e
i



p1
2π

N1a1
ℓ1+p2

2π
N2a2

ℓ2+p3
2π

N3a3
ℓ3



. (E.2)

In a similar way followed in Section 2.1.3.3 in order to introduce the reciprocal basis vectors, we can identify a discrete
form for thewavevectorkp1,p2,p3 = p1kN1+p2kN2+p3kN3 .Where,kNi

= bi/Ni. This discretization results from the artificially
limited crystal dimensions. Now, using this definition of kp1,p2,p3 , Eq. (E.2) reduces to the Fourier series in vector notation:

ψE (r) =


k∈k

ϕE,ke
i(k•r) (E.3)

where, for shortness we have omitted the k indices pi and k stands for the set including all the wavevectors kp1,p2,p3 . Note
that, in the limit where the Ni tend toward infinity the wavevector k recovers its continuous nature and the Fourier series
(E.3) turns out to be an inverse Fourier transform.

In the same way, the potential U (r) being periodic with period a, it is also expressed in term of a Fourier series:

U (r) =


G∈G

UGe
−iG•r (E.4)

where, G stands for the set of all the reciprocal lattice vectors G and UG are the Fourier components of the periodic potential.
The later are given by:

UG = 1

VDL



VDL

dr3U (r) eiG•r. (E.5)

Now, in order to determine the Fourier componentsψE,m, we substitute Eqs. (E.3) and (E.4) in the Schrödinger equation.
This gives us:

− h̄2

2m
∇2


k∈k

ϕE,ke
ik•r +



G∈G

UGe
−iG•r



k∈k

ϕE,ke
ik•r = E



k∈k

ϕE,ke
ik•r. (E.6)

Rearranging the terms we obtain:



k∈k



h̄2 |k|2
2m

− E



ϕE,ke
ik•r +



k′



G∈G

UGϕE,k′ei(k
′−G)•r = 0. (E.7)

15 A more rigorous derivation using the concept of the matrix ‘‘direct product’’ may be found in Refs. [28,29].
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Now, we change of dummy variable k′ to k = k′ −G in the second summation in Eq. (E.7). Note that we have anticipated
this change by adjoining a prime to this dummy variable in going from (E.6) to (E.7). So, Eq. (E.7) writes:



k∈k



ϕE,k



h̄2 |k|2
2m

− E



+


G∈G

UGϕE,k+G



eik•r



= 0. (E.8)

This sum must be zero for any coordinate vector r. This is only possible if each term of the sum vanishes independently.
Thus, in the Fourier domain, the expression of the Schrödinger equation reduces to an infinite set of linear equations
involving the set of variables ϕE,(k+G). This system of linear equations constitutes the three dimension central equation:

ϕE,k



h̄2 |k|2
2m

− E



+


G∈G

UGϕE,k+G = 0. (E.9)

The three-dimensional Bloch theorem.
The terms of the summation in the central equation (E.9) reveal that the real space periodicity couple all those, and only

those, Fourier spectral components which differ from one another by any reciprocal lattice vector G ∈ G. Thus, once we
are handling a given wave vector k, we are, in fact, dealing with a subsystem of linear equations involving all components
having awave vector of the form (k + G) for all G ∈ G (excluding all other k vectors). This justifies the common ‘‘k-labeling’’
of eigensolutions ψE,k (r) referring to the k-subsystem. So, for a fixed k vector, only the terms of the form (k + G) will be
retained in Eq. (E.3). This later may be rewritten as:

ψE,k (r) =


G∈G

ϕE,(k+G)e
i(k+G)•r. (E.10)

Or equivalently:

ψE,k (r) =




G∈G

ϕE,(k+G)e
iG•r



eik•r. (E.11)

The term between brackets has the form of a Fourier series. So, it is a 3-D periodic function. Denoting this functionµk (r)
equation (E.11) writes:

ψE,k (r) = µk (r) e
ik•r. (E.12)

This is one of the expression the three dimensional Bloch theorem. Substituting r by r + R, we obtain the second
expression:

ψE,k (r + R) = eik•RψE,k (r) . (E.13)

It is instructive to notice the correspondence between, (E.13) and (17). One can observe that the Fourier domain method
naturally leads to the Bloch function in the form of Eq. (E.12) and then deduces the other form whereas; the group theory
ends with the second form (E.13) and then the first is determined.

Appendix F. Complex expression of wavevector in the bandgap above the cutoff frequency ω > ωc

We are looking for the solutions of the equation:

sin



ka

2



= ω

ωc

> 1. (F.1)

In the case ω > ωc , real solutions do not exist. So let the complex solutions be of form:

ka

2
= A + iB. (F.2)

Then using the identity:

sin (A + iB) = sin A cosh B + i cos A sinh B, (F.3)

we can write:

sin



ka

2



= sin A cosh B + i cos A sinh B = ω

ωc

> 1. (F.4)
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Identifying the real and imaginary part in (F.4):

⇒


cos A sinh B = 0

sin A cosh B = sin
ka

2
.

(F.5)

Rejecting the trivial solution: sinh B = 0; sin A = sin ka/2, Eq. (F.5) gives us:

⇒


cos A = 0

sin A cosh B = sin
ka

2

(F.6)

⇒











A = ±π
2

mod (2π)

cosh B = ± sin
ka

2
= ± ω

ωc

.

Thus Eq. (F.2) writes:

⇒











ka

2
= ±π

2
mod (2π)+ iB

cosh B = ± ω

ωc

.
(F.7)

Finally, the principal values of k write:

⇒ k = ±π
a

± i
2

a
cosh−1



ω

ωc



. (F.8)

Appendix G. Splitting of the dispersion relation in two frequency bands ω+ and ω−

Substituting the displacement expressions from Eq. (43) in Eq. (44) and eliminating the exponential terms ei(ωt−nka) we
obtain:



−ω2m1A1 = η


A2e
−ika/2 − 2A1 + A2e

ika/2


−ω2m2A2 = η


A1e
−ika/2 − 2A2 + A1e

ika/2


.
(G.1)

Rearranging the terms we obtain:


2η − ω2m1



A1 − 2η cos (ka/2) A2 = 0
−2η cos (ka/2) A1 +



2η − ω2m2



A2 = 0.
(G.2)

Solutions exist if:










2η − ω2m1



−2η cos (ka/2)
−2η cos (ka/2)



2η − ω2m2











= 0 (G.3)

thus:

ω4m1m2 − 2ηω2 (m1 + m2)+ 4η2


1 − cos2 (ka/2)


= 0 (G.4)

or : ω4 −


2η

m1
+ 2η

m2



ω2 + (2η)2

m1m2



sin2 (ka/2)


= 0. (G.5)

The solutions may be written as:

ω2
± = η







m1 + m2

m1m2



±





m1 + m2

m1m2

2

− 4 sin2 (ka/2)

m1m2



 (G.6)

or:

ω2
± = η

m1m2



m1 + m2 ±


(m1 + m2)
2 − 4m1m2 sin

2 (ka/2)



. (G.7)

These two solutions give rise to two allowed branches.

31



Finally inverting the relation (G.5) we obtain expression (46), this equation will be used to investigate the forbidden
bands.

sin2 (ka/2) =


m1 + m2

2η



−


m1m2

4η2



ω2



ω2. (G.8)

Appendix H. List of the most important Fourier transform formulas used in the framework of our two domains

correspondence formalism [34,49]

Whenever needed, the Fourier transforms are separate according to the two conventions used in this paper.
The symbol ⇔ refers to Fourier transform pairs.
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Appendix I. The Fourier transform of a Dirac-comb is Dirac-comb [34]

Consider a Dirac-comb of period a:
+∞

n=−∞ δ (x − na). Using the Fourier transform pair δ (x ± a) ⇔ e∓ika The Fourier
transform of the Dirac-comb writes:

F



+∞


n=−∞
δ (x − na)



=
+∞


n=−∞
ejnak. (I.1)

Our aim is to write down the right-hand side of expression (I.1) in terms of a Dirac-comb in the reciprocal space without
using the Poisson formulas.
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(a) Qualitative considerations
Whenever the phase ak is different from an integer q times 2π , the phase factors ejnak summation will add destructively

to zero (like in a destructive interference situation). However, when ak = 2πq, the phase factors add up constructively and
the infinite summation tends toward infinity. So, we see that we are in the presence of periodic Dirac-delta functions spaced
by k = 2π/a i.e. it correspond to a Dirac-comb with a period equal to the reciprocal lattice basis vector b = 2π/a.

(b) Quantitative determination of the strength of one of the Dirac-delta functions constituting the Dirac-comb

We can have amore specific determination of the Dirac-comb using limiting geometrical figures approaching the central
Dirac-function of the comb. Let us begin by approximating the right-hand infinite summation in (I.1) as the limit of the
following finite sum:

+∞


n=−∞
ejnak = Lim

N→+∞

+N


n=−N

ejnak. (I.2)

And so, we have to determine the sum of a geometric series of 2N + 1 terms with LimN→+∞


e−jNak


as first term, and ejak

as common ratio. The sum of this series writes:

F



+∞


n=−∞
δ (x − na)



= Lim
N→+∞



e−jNak e
j(2N+1)ak − 1

ejak − 1



= Lim
N→+∞



sin [(2N + 1) ak/2]

sin [ak/2]



. (I.3)

• At the pole k = 0: we can specify the value of the limit in (I.3), using l’Hopital’s rule. This allows us to lift the
indeterminate form 0/0 and find out the limits. We obtain:

F



+∞


n=−∞
δ (x − na)



= Lim
N→+∞



(2N + 1) a
2 cos [(2N + 1) π ]
a
2 cos (π)



= Lim
N→+∞

(2N + 1) . (I.4)

Thus, the pole at k = 0 tends toward infinity as: (2N + 1).
• Determining the Zeros of the central Dirac-delta function: Since we have restricted the summation to N , the values

of k are discrete. Thus, the first zeros, which border on the central pole, correspond to those of the numerator of Eq. (I.3).
That is: (2N + 1) ak/2 = ±π . Finally, we obtain:

k = ±2π

a

1

2N + 1
= ± b

2N + 1
(I.5)

where, we identified the reciprocal lattice basis vector b = 2π/a.
• Geometrical figure approaching the central Dirac-delta function: Since N → +∞ the two zeros given in Eq. (I.5)

occur at k values which are vanishingly small on both sides of an infinitely pole of height (2N + 1). So we can approach
the geometrical aspects of the central Dirac-delta function constituting the Dirac-comb by a triangle of height (2N + 1)
and base = 2b/ (2N + 1). Its area equals b and gives the strength of the Dirac-delta functions forming the comb. Finally
we can write the Fourier transform:

F



+∞


n=−∞
δ (x − na)



= b

+∞


q=−∞
δ (x − qb) . (I.6)

Appendix J. Correspondence between the Dirac-comb concept and the Poisson summation formulas

In this appendix, we outline the correspondence by establishing that Poisson summation formulas may be viewed as an
immediate result of FT property of Dirac-comb which is the basis of our approach. Obviously, the opposite statement is also
true. Thus the two approaches are equivalent in the mathematical sense.

Poisson summation formulas as an immediate result of the property of the Fourier transform of a Dirac-comb used in our approach
(three-dimensional space)

We apply the same notations used in the paper and the Fourier transform convention adopted for photonic crystal. That
is:

f (k) =
 +∞

−∞
dr3f (r) eik•r ⇔ f (r) = 1

(2π)3

 +∞

−∞
dk3f (k) e−ir•k

where, we distinguish a function from its Fourier transform by its argument. If the argument contains real space (reciprocal)
coordinates it denotes the real space (Fourier transform) function.
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(a) Special case of the Dirac-comb/exponential pair
Starting from the Fourier transform pair:

D (r) =


R∈R

δ (r − R) ⇔ D (k) = VRL



G∈G

δ (k − G) = (2π)3

VDL



G∈G

δ (k − G) .

Comparing D (r) to the inverse Fourier transform of D (k), obtained by carrying out the inverse transform of individual
Dirac-delta functions inside the summation (linearity of FT), gives:

D (r) =


R∈R

δ (r − R) = 1

VDL



G∈G

e−iG•r

Taking the Fourier Transform on both sides gives its reciprocal domain expression:

D (k) =


R∈R

eiR•k = (2π)3

VDL



G∈G

δ (k − G)

(b) General case
Following the same procedure but this time beginning with the Fourier transform pair:

U (r) = u (r)⊗


R∈R

δ (r − R) =


R∈R

u (r − R) ⇔ U (k) = u (k) VRL



G∈G

δ (k − G) = VRL



G∈G

u (G) δ (k − G) .

ComparingU (r) to the inverse Fourier transform ofU (k) performed by using inverse transform of individual Dirac-delta
functions inside the summation gives:

U (r) =


R∈R

u (r − R) = 1

VDL



G∈G

u (G) e−iG•r

Taking the Fourier Transform on both sides gives its reciprocal domain expression:

U (k) =


R∈R

u (k) eiR•k = (2π)3

VDL



G∈G

u (G) δ (k − G)

where, we applied the shift theorem in order to determine the left-hand side FT.
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