
HAL Id: hal-00808151
https://hal.science/hal-00808151

Submitted on 5 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern-based constraint satisfaction and logic puzzles
Denis Berthier

To cite this version:
Denis Berthier. Pattern-based constraint satisfaction and logic puzzles. Lulu.com, pp.480, 2012,
978-1-291-20339-4. �hal-00808151�

https://hal.science/hal-00808151
https://hal.archives-ouvertes.fr

Pattern-Based Constraint Satisfaction

and Logic Puzzles

Denis Berthier

Institut Mines Télécom

This is the full text of the book published in print form by Lulu

Publishers (Nov. 2012, ISBN 978-1-291-20339-4).

Due to technical reasons, this cover page is different.

Pattern-Based Constraint Satisfaction

and Logic Puzzles

Denis Berthier

Pattern-Based Constraint Satisfaction

and Logic Puzzles

Books by Denis Berthier:
Le Savoir et l’Ordinateur, Editions L’Harmattan, Paris, November 2002.
Méditations sur le Réel et le Virtuel, Editions L’Harmattan, Paris, May 2004.
The Hidden Logic of Sudoku (First Edition), Lulu.com, May 2007.
The Hidden Logic of Sudoku (Second Edition), Lulu.com, November 2007.
Constraint Resolution Theories, Lulu.com, November 2011.

Keywords: Constraint Satisfaction, Artificial Intelligence, Constructive Logic, Logic Puzzles, Sudoku,
Futoshiki, Kakuro, Numbrix®, Hidato®.

This work is subject to copyright. All rights are reserved. This work may not be translated or copied in
whole or in part without the prior written permission of the copyright owner, except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information storage or
retrieval, electronic adaptation, computer software, or by similar or dissimilar methods now known or
hereafter developed, is forbidden.

9 8 7 6 5 4 3 2 1

Dépôt légal: Novembre 2012

© 2012 Denis Berthier
All rights reserved

ISBN: 978-1-291-20339-4

Table of Contents

Foreword ... 9

1. Introduction .. 17
1.1 The general Constraint Satisfaction Problem (CSP) 17
1.2 Paradigms of resolution .. 20
1.3 Parameters and instances of a CSP; minimal instances; classification 24
1.4 The basic and the more complex resolution theories of a CSP 26
1.5 The roles of Logic, AI, Sudoku and other examples 28
1.6 Notations .. 33

PART ONE: LOGICAL FOUNDATIONS ... 35

2. The role of modelling, illustrated with Sudoku ... 37
2.1 Symmetries, analogies and supersymmetries ... 37
2.2 Introducing the four 2D spaces: rc, rn, cn and bn 42
2.3 CSP variables associated with the rc, rn, cn and bn spaces 48
2.4 Introducing the 3D nrc-space ... 49

3. The logical formalisation of a CSP ... 51
3.1 A quick introduction to Multi-Sorted First Order Logic (MS-FOL) 51
3.2 The formalisation of a CSP in MS-FOL: T(CSP) 58
3.3 Remarks on the existence and uniqueness of a solution 63
3.4 Operationalizing the axioms of a CSP Theory ... 64
3.5 Example: Sudoku Theory, T(Sudoku) or ST ... 65
3.6 Formalising the Sudoku symmetries .. 70
3.7 Formal relationship between Sudoku and Latin Squares 73

4. CSP Resolution Theories ... 75
4.1 CSP Theory vs CSP Resolution Theories; resolution rules 76
4.2 The logical nature of CSP Resolution Theories ... 77
4.3 The Basic Resolution Theory of a CSP: BRT(CSP) 86
4.4 Formalising the general concept of a Resolution Theory of a CSP 88
4.5 The confluence property of resolution theories .. 89
4.6 Example: the Basic Sudoku Resolution Theory (BSRT) 91
4.7 Sudoku symmetries and the three fundamental meta-theorems 94

6 Pattern-Based Constraint Satisfaction and Logic Puzzles

PART TWO: GENERAL CHAIN RULES ... 99

5. Bivalue chains, whips and braids .. 101
5.1 Bivalue chains .. 102
5.2 z-chains, t-whips and zt-whips (or whips) .. 103
5.3 Braids .. 108
5.4 Whip and braid resolution theories; the W and B ratings 109
5.5 Confluence of the Bn resolution theories; resolution strategies 112
5.6 The “T&E vs braids” theorem .. 115
5.7 The objective properties of chains and braids .. 119
5.8 About loops in bivalue-chains, in whips and in braids 124
5.9 Forcing whips, a bad idea? ... 126
5.10 Exceptional examples ... 127
5.11 Whips in N-Queens and Latin Square; definition of SudoQueens 144

6. Unbiased statistics and whip classification results .. 153
6.1 Classical top-down and bottom-up generators ... 155
6.2 A controlled-bias generator .. 156
6.3 The real distribution of clues and the number of minimal puzzles 161
6.4 The W-rating distribution as a function of the generator 163
6.5 Stability of the classification results .. 164
6.6 The W rating is a good approximation of the B rating 165

7. g-labels, g-candidates, g-whips and g-braids ... 167
7.1 g-labels, g-links, g-candidates and whips[1] .. 167
7.2 g-bivalue chains, g-whips and g-braids .. 171
7.3 g-whip and g-braid resolution theories; the gW and gB ratings 175
7.4 Comparison of the ratings based on whips, braids, g-whips and g-braids . 176
7.5 The confluence property of the gBn resolution theories 178
7.6 The “gT&E vs g-braids” theorem .. 182
7.7 Exceptional examples ... 184
7.8 g-labels and g-whips in N-Queens and in SudoQueens 197

PART THREE: BEYOND G-WHIPS AND G-BRAIDS 201

8. Subset Rules in a general CSP .. 203
8.1 Transversality, Sp-labels and Sp-links ... 204
8.2 Pairs .. 206
8.3 Triplets .. 209
8.4 Quads .. 211
8.5 Relations between Naked, Hidden and Super Hidden Subsets in Sudoku . 218
8.6 Subset resolution theories in a general CSP; confluence 220
8.7 Whip subsumption results for Subset rules .. 222

Table of Contents 7

8.8 Subsumption and non-subsumption examples from Sudoku 224
8.9 Subsets in N-Queens .. 234

9. Reversible-Sp-chains, Sp-whips and Sp-braids ... 237
9.1 Sp-links; Sp-subsets modulo other Subsets; Sp-regular sequences 238
9.2 Reversible-Sp-chains .. 241
9.3 Sp-whips and Sp-braids ... 246
9.4 The confluence property of the SpBn resolution theories 253
9.5 The “T&E(Sp) vs Sp-braids” theorem, 1≤p≤∞ ... 257
9.6 The scope of Sp-braids (in Sudoku) .. 259
9.7 Examples .. 261

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 265
10.1 g-Subsets .. 266
10.2 Reversible-gSp-chains, gSp-whips and gSp-braids 275
10.3 A detailed example ... 284

11. Wp-whips, Bp-braids and the T&E(2) instances .. 289
11.1 Wp-labels and Bp-labels; Wp-whips and Bp-braids 289
11.2 The confluence property of the BpBn resolution theories 301
11.3 The “T&E(Bp) vs Bp-braids” and “T&E(2) vs B-braids” theorems 306
11.4 The scope of Bp-braids in Sudoku… .. 310
11.5 Existence and classification of instances beyond T&E(2) 316

12. Patterns of proof and associated classifications .. 325
12.1 Bi-whips, bi-braids, confluence and bi-T&E ... 326
12.2 W*p-whips and B*p-braids ... 333
12.3 Patterns of proof and associated classifications 339
12.4 d-whips, d-braids, W*d-whips and B*d-braids ... 352

PART FOUR: MATTERS OF MODELLING ... 355

13. Application-specific rules (the sk-loop in Sudoku) 357
13.1. The EasterMonster family of puzzles and the sk-loop 358
13.2. How to define a resolution rule from a set of examples 360
13.3. First interpretation of an sk-loop: crosses and belts of crosses 361
13.4. Second interpretation of an sk-loop: x2y2-chains 366
13.5. Should the above definitions be generalised further? 368
13.6. Measuring the impact of an application-specific rule 371
13.7. Can an (apparently) application-specific rule be made general? 372

14. Transitive constraints and Futoshiki ... 373
14.1 Introducing Futoshiki and modelling it as a CSP 373
14.2 Ascending chains and whips .. 376

8 Pattern-Based Constraint Satisfaction and Logic Puzzles

14.3 Hills, valleys and S-whips .. 381
14.4 A detailed example using the hill rule, the valley rule and Subsets 383
14.5 g-labels, g-whips and g-braids in Futoshiki ... 389
14.6 Modelling transitive constraints ... 396
14.7 Hints for further studies on Futoshiki ... 397

15. Non-binary arithmetic constraints and Kakuro ... 399
15.1 Introducing Kakuro .. 400
15.2 Modelling Kakuro as a CSP ... 407
15.3 Elementary Kakuro resolution rules and theories 413
15.4 Bivalue-chains, whips and braids in Kakuro .. 417
15.5 Theory of g-labels in Kakuro ... 421
15.6 Application-specific rules in Kakuro: surface sums 426

16. Topological and geometric constraints: map colouring and path finding 437
16.1 Map colouring and the four-colour problem .. 437
16.2 Path finding: Numbrix® and Hidato® .. 441

17. Final remarks ... 459
17.1 About our approach to the finite CSP .. 459
17.2 About minimal instances and uniqueness .. 465
17.3 About ratings, simplicity, patterns of proof ... 468
17.4 About CSP-Rules ... 472

18. References ... 477
Books and articles .. 477
Websites ... 479

Foreword

Motivations for the approach of the present book

Since the 1970s, when it was identified as a class of problems with its own
specificities, Constraint Satisfaction has quickly evolved into a major area of
Artificial Intelligence (AI). Two broad families of very efficient algorithms (with
many freely available implementations) have become widely used for solving its
instances: general purpose structured search of the “problem space” (e.g. depth-first,
breadth-first) and more specialised “constraint propagation” (that must generally be
combined with search according to various recipes).

One may therefore wonder why they would use the computationally much harder
techniques inherent in the approach introduced in the present book. It should be
clear from the start that there is no reason at all if speed is the first or only criterion,
as may legitimately be the case in such a typical Constraint Satisfaction Problem
(CSP) as scene labelling.

But, instead of just wanting a final result obtained by any available and/or
efficient method, one can easily imagine additional requirements of various types
and one may thus be interested in how the solution was reached, i.e. by the
resolution path. Whatever meaning is associated with the quoted words below, there
are several inter-related families of requirements one can consider:

– the solution must be built by “constructive” methods, with no “guessing”;
– the solution must be obtained by “pure logic”;
– the solution must be “pattern-based”, “rule-based”;
– the solution must be “understandable”, “explainable”;
– the solution must be the “simplest” one.

Vague as they may be, such requirements are quite natural for logic puzzles and
in many other conceivable situations, e.g. when one wants to ask explanations about
the solution or parts of it.

Starting from the above vague requirements, Part I of this book will elaborate a
formal interpretation of the first three, leading to a very general, pattern-based
resolution paradigm belonging to the classical “progressive domain restriction”
family and resting on the notions of a resolution rule and a resolution theory.

10 Pattern-Based Constraint Satisfaction and Logic Puzzles

Then, in relation with the last purpose of finding the “simplest” solution, it will
introduce ideas that, if read in an algorithmic perspective, should be considered as
defining a new kind of search, “simplest-first search” – indeed various versions of it
based on different notions of logical simplicity. However, instead of such an
algorithmic view (or at least before it), a pure logic one will systematically be
adopted, because:

– it will be consistent with the previous purposes,
– it will convey clear non-ambiguous semantics (and it will therefore include a

unique complete specification for possibly multiple types of implementation),
– it will allow a deeper understanding of the general idea of “simplest-first

search”, in particular of how there can be various underlying concrete notions of
logical simplicity and how these have to be defined by different kinds of resolution
rules associated with different types of chain patterns. At this point, it may be useful
to notice that the classical structured search algorithms are not compatible with pure
logic definitions (as will be explained in the text).

Simplest-first search and the rating of instances

In this context, there will appear the question of rating and/or classifying the
instances of a (fixed size) CSP according to their “difficulty”. This is a much more
difficult topic than just solving them. The families of resolution rules introduced in
this book (by order of increasing complexity) will go by couples (corresponding to
two kinds of chains with no OR-branching but with different linking properties,
namely T-whips and T-braids); for each couple, there will be two ratings, defined in
pure logic ways:

– one based on T-braids, allowing a smooth theoretical development and having
good abstract computational properties; we shall devote much time to prove the
confluence property of all the braid and T-braid resolution theories, because it
justifies a “simplest-first” resolution strategy (and the associated “simplest-first
search” algorithms that may implement it) and it allows to find the “simplest”
resolution path and the corresponding rating by trying only one path;

– one based on T-whips, providing in practice an easier to compute good
approximation of the first when it is combined with the “simplest-first” strategy.
(The quality of the approximation can be studied in detail and precisely quantified in
the Sudoku case, but it will also appear in intuitive form in all our other examples.)

We shall explain in which restricted sense all these ratings are compatible. But
we shall also show that each of them corresponds to a different legitimate pure logic
view of simplicity.

In chapter 11, we shall analyse the scope of the previously defined resolution
rules in terms of a search procedure with no guessing, Trial-and-Error (T&E), and of

Foreword 11

the depth of T&E necessary to solve an instance. There are universal ratings,
respectively the B and the BB ratings, for instances in T&E(1) and T&E(2) (i.e.
requiring no more than one or two levels of Trial-and-Error). Universality must be
understood in the sense that they assign a finite rating to all of these instances, but
not in the sense that they could provide a unique notion of simplicity. For instances
beyond T&E(2), it is questionable whether a “pure logic” solution, with all the
complex and boring steps that it would involve, would be of any interest; moreover,
it appears that there may be many different incompatible notions of “simplest”; in
chapter 12, we shall introduce the notion of a pattern of proof and, based on it, we
shall re-assess our initial requirements. The main purpose is to provide hints about
the scope of practical validity of our approach.

Examples from logic puzzles

Mainly because they can be described shortly and they are easy to understand
with no previous knowledge, all the examples dealt with in this book will be logic
puzzles: Latin Squares, Sudoku, N-Queens…, with a special status granted to
Sudoku for reasons that will be explained in the Introduction. But they have been
selected in such a way that they make us tackle very different types of constraints,
so that this choice should not suggest a lack of generality in our approach: transitive
constraints in Futoshiki, non-binary arithmetic constraints in Kakuro, topological
and geometric constraints in Map colouring or path finding (Numbrix® and Hidato®).

In several places, we shall even give results that are only valid for 9×9 Sudoku
(e.g. the unbiased whip classification results of minimal instances in chapter 6 and
the analysis of extreme instances in chapter 11), for the purpose of illustrating with
precise quantitative data questions that cannot yet be tackled with such detail in
other CSPs and that call for further studies, such as:

– the difficulty (much beyond what one may imagine) of finding uncorrelated
unbiased samples of minimal instances of a CSP, a pre-requisite for any statistical
analysis; the way we present it shows that it is likely to appear in many CSPs; the
final chapters on various other CSPs show that this is indeed true for them; (a
related well known problem is that of finding the hardest instances of a CSP);

– the surprisingly high resolution power of short whips for instances in T&E(1);
– the concrete application of various classification principles to the extreme

instances.

The “Hidden Logic of Sudoku” heritage [mainly for the readers of HLS]

The origins of the work reported in this book can be traced back to my choice of
Sudoku as a topic of practical classes for an introductory course in Artificial
Intelligence (AI) and Rule-Based Systems in early 2006. As I was formalising for

12 Pattern-Based Constraint Satisfaction and Logic Puzzles

myself the simplest classical techniques (Subset rules, xy-chains) before submitting
them as exercises to my students, I had two ideas that kept me interested in this
game longer than I had first expected: logical symmetries between three well-known
types of Subset rules (Naked, Hidden and Super-Hidden, the last of which are
commonly known as “Fish”) and a simple non-reversible extension (xyt-chains) of
the well-known reversible xy-chains. As time passed, the short article I had planned
to write grew to the size of a 430-page book: The Hidden Logic of Sudoku – HLS in
the sequel (first edition, HLS1, May 2007; second edition, HLS2, November 2007).

The present book inherits many of the ideas I first introduced in HLS but it
extends them to any finite CSP. Based on the classical idea of candidate
elimination, HLS provided a clear logical status for the notion of a candidate (which
does not pertain to the original problem formulation) and it introduced the notions of
a resolution rule and a resolution theory. All the concepts were strictly formalised in
Predicate Logic (FOL) – more precisely in Multi Sorted First Order Logic (MS-
FOL) – which (surprisingly) was a new idea: previously, all the books and Web
forums had always considered that Propositional Logic was enough. Indeed, HLS
had to make a further step, because intuitionistic (or, equivalently, constructive)
logic is necessary for the proper formalisation of the notion of a candidate.

Notwithstanding the more general formulation, the “pattern-based” conceptual
framework developed in this book is very close to that of HLS. From the start, the
framework of HLS was intended as a formalisation of what had always been looked
for when it was said that a “pure logic solution” was wanted. The basic concepts
appearing in the resolution rules introduced in HLS were grounded in the most
elementary notions used to propose or solve a puzzle (numbers, rows, columns,
blocks, …); the more elaborate ones (the various types of chain patterns) were
progressively introduced and strictly defined from the basic ones. Because the
concepts of a candidate and of a link between two candidates were enough to
formulate most of the resolution rules, extending them to any CSP was almost
straightforward. The additional requirement that appeared in HLS in relation with
the idea of rating, that of finding the simplest resolution path, is also tackled here
according to the same general principles as in HLS.

On the practical puzzle solving side, HLS1 introduced new resolution rules,
based on natural generalisations of the famous xy-chains, such as xyt-, xyz- and
zyzt- chains; contrary to those proposed in the current Sudoku literature, these were
not based on “Subsets” (or almost locked sets – “ALS”) and most of these chains
were not “reversible”; the systematic clarification and exploitation of all the
generalised symmetries of the game and the combination of my first two initial ideas
had also led me to the “hidden” counterparts of the previous chains (hxy-, hxyt-
hxyzt- chains). Later, I found further generalisations (nrczt- chains and lassoes),
pushing the idea of supersymmetry to its maximal extent and allowing to solve

Foreword 13

almost any puzzle with short chain patterns. Giving a more systematic presentation
of these new “3D” chain rules was the main reason for the second edition (HLS2).

Still later, I introduced (on Sudoku forums) other generalisations (that, in the
simplified terminology of the present book and in a formulation meaningful for any
CSP, will appear as whips, braids, g-whips, Sp-whips, Wp-whips, …). These may
have justified a third edition of HLS, but I have just added a few pages to my HLS
website instead – concentrating my work on another type of generalisation.

It appeared to me that most of what I had done for Sudoku could be generalised
to any finite CSP [Berthier 2008a, 2008b, 2009]. But, once more, as I found further
generalisations and as the analysis of additional CSPs with different characteristics
was necessary to guarantee that my definitions were not too restrictive, the normal
size of journal articles did not fit the purposes of a clear and systematic exposition;
this is how this work grew into a new book, “Constraint Resolution Theories” (CRT,
November 2011).

As for the resolution rules themselves, whereas HLS proceeded by successive
generalisations of well-known elementary rules for Sudoku into more complex ones,
in CRT and in the present book, we start (in Part II) from powerful rules meaningful
in any CSP (whips, in chapter 5) equivalent (in the Sudoku case) to those that were
only reached at the end of HLS2 (nrczt- chains and lassoes).

As a result, in this book, patterns such as Subsets, with much less resolution
power than whips of same size and with more complex definitions in the general
CSP than in Sudoku, come after bivalue-chains, whips and braids, and also after
their “grouped” versions, g-whips and g-braids. Moreover, Subsets are introduced
here with purposes very different from those in HLS:
1) providing them with a definition meaningful in any CSP (in particular,
independent of any underlying grid structure);
2) showing that whips subsume most cases of Subsets in any CSP;
3) illustrating by Sudoku examples how, in rare cases, Subset rules can nevertheless
simplify the resolution paths obtained with whips;
4) defining in any CSP a “grouped” version of Subsets, g-Subsets; surprisingly, in
the Sudoku case, g-Subsets do not lead to new rules, but they give a new perspective
of the well-known Franken and Mutant Fish; this could be useful for the purposes of
classifying these patterns (which has always been a very obscure topic);
5) showing that, in any CSP, the basic principles according to which whips are built
can be generalised to allow the insertion of Subsets into them (obtaining Sp-whips),
thus extending the resolution power of whips towards the exceptionally hard
instances.

14 Pattern-Based Constraint Satisfaction and Logic Puzzles

What is new with respect to “Constraint Resolution Theories” [mainly for the
readers of CRT]

This book can be considered as the second, revised and largely extended edition
of Constraint Resolution Theories (CRT). Following a colleague’s advice, we
changed the title (which seemed too technical) so that it includes the “Constraint
Satisfaction” key phrase referring to its global domain; “Pattern-Based” was then a
natural choice for qualifying our approach, while the explicit reference to “Logic
Puzzles” became almost necessary with the addition of all the examples in part IV to
the already existing Sudoku content. Apart from this cosmetic change, there are
three different degrees of newness with respect to CRT, in increasing magnitude.

Firstly, this book corrects a few typos and errors that remained in CRT in spite of
careful re-readings; in several places, it also marginally improves or completes the
wording and it adds a few remarks or comments; moreover:

– z-chains are no longer included in the analysis of loops in sections 5.8.1 to
5.8.3; instead, the obvious and simpler fact that z-whips subsume z-chains with a
global loop is mentioned;

– an unnecessary restriction in the definition of a g-label (section 7.1.1.1) has
been eliminated, without modifying the notion of a g-link; this leaves unchanged the
definitions of a g-candidate and of predicate “g-linked” (relating a g-candidate and a
candidate); as before, these two definitions refer to the full underlying g-label and
label (this is why the restriction was unnecessary); nothing else had to be changed in
chapter 7 or in any place where g-labels are dealt with; in particular, this does not
change the sets of g-labels of the various examples already tackled by CRT;
however, the restriction made it impossible to apply the initial definition given in
CRT to g-labels in Futoshiki (see chapter 14);

– the “saturation” or “local maximality” condition in the definition of a g-label
has been broadened for an easier applicability to new examples; it has also been
isolated by splitting the initial definition into two parts; as it was there only for
efficiency purposes, but it had no impact on theoretical analyses, this entails no
other changes; however, the efficiency purposes should not be underestimated:
section 15.5 shows how essential this condition is in practice in Kakuro;

– section 11.4 of CRT (bi-whips, bi-braids, W*-whips and B*-braids) has been
significantly reworded, corrected and extended, giving rise to a new chapter of its
own (chapter 12);

– a section (17.4) describing our general pattern-based CSP-Rules solver, used
for all the examples presented in this book, has been introduced.

Secondly, this book adds a few new results, mainly to the W-whip and B-braid
patterns and/or to the Sudoku CSP case study. The following list is not exhaustive:

Foreword 15

– very instructive whip[2] examples are given in section 8.8.1; they are the key
for understanding why whips can be more powerful than Subsets of same size;

– an example of a non-whip braid[3] in Sudoku is given in section 5.10.5;
– a new graphico-symbolic representation of W-whips is introduced in section

11.2.9, based on the analogy between whips and Subsets;
– the most recent collections of extreme puzzles, harder than most of those

already considered in CRT, published in the meantime by various puzzle creators,
are analysed and their B?B classifications are given in section 11.4; these new
results show that a few puzzles (we have found only three in these collections)
require B7-braids and they provide very strong support to our old conjecture that all
the 9×9 Sudoku puzzles can be solved by T&E(2) and to our new one that they can
all be solved by B7-braids;

– occasionally, larger sized Sudoku grids are considered; this allows in
particular to show that the universal solvability by T&E(2) is not true for them.

Thirdly and most importantly, chapter 12 and part IV about modelling various
logic puzzles are almost completely new; in particular:

– chapter 12, revolving around the notion of a pattern of proof, shows that our
initial simplicity and understandability requirements may be at variance for
instances beyond T&E(1) or gT&E(1); it discusses various options for their
interpretation, such as B*-braid solutions; it shows that a pure logic approach is still
possible in theory, although the computational complexity may be much higher,
depending on which patterns of proof one is ready to accept;

– chapter 13, via an illustrative example (the sk-loop in Sudoku), tackles general
questions about modelling resolution rules; these arise when one wants to formalise
new (possibly application-specific) techniques; although part of the material in it has
been available for several years on the Sudoku part of our website in a rather
technical form, subtle changes (making the presentation much simpler and slightly
more general) appear here for the first time;

– chapter 14 on transitive constraints and the Futoshiki CSP concretely shows
how the general concepts and resolution rules defined in this book can be applied to
a CSP with significantly different types of constraints (inequalities) than the
symmetric ones considered in the LatinSquare, Sudoku and N-Queens examples; it
also shows that the few known, apparently application-specific, resolution rules of
Futoshiki (ascending chains, hills and valleys) are special cases of these general
rules; finally, it indicates how our controlled-bias approach to puzzle generation, at
the basis of any unbiased statistical results, can be adapted to it in a straightforward
way;

– chapter 15 on non-binary arithmetic constraints and the Kakuro CSP may be
the most important one among our non-Sudoku examples, as it shows that the binary

16 Pattern-Based Constraint Satisfaction and Logic Puzzles

constraints restriction of our approach can be relaxed not only in theory but also in
practice and that non-binary constraints can be efficiently managed in application-
specifc ways (better than by relying on the standard general replacement method);

– chapter 16 deals with some topological and geometric constraints associated
with map colouring and path finding (in Numbrix® and Hidato®); together with
chapters 14 and 15, it confirms that our generalisations from Sudoku to the general
CSP work concretely – a point in which CRT was partially lacking.

1. Introduction

1.1. The general Constraint Satisfaction Problem (CSP)

Many real world problems, such as resource allocation, temporal reasoning,
activity scheduling, scene labelling…, naturally appear as Constraint Satisfaction
Problems (CSP) [Guesguen et al. 1992, Tsang 1993]. Many theoretical problems
and many logic games are also natural examples of CSPs: graph colouring, graph
matching, cryptarithmetic, N-Queens, Latin Squares, Sudoku and its innumerable
variants, Futoshiki, Kakuro and many other logic games (or logic puzzles).

In the past decades, the study of such problems has evolved into a main sub-area
of Artificial Intelligence (AI) with its own specialised techniques. Research has
concentrated on finding efficient algorithms, which was a necessity for dealing with
large scale applications. As a result, one aspect of the problem has been almost
completely overlooked: producing readable solutions. This aspect will be the main
topic of the present book.

1.1.1. Statement of the Constraint Satisfaction Problem

A CSP is defined by:
– a set of variables X1, X2, … Xn, the “CSP variables”, each with values in a

given domain Dom(X1), Dom(X2), …, Dom(Xn),
– a set of constraints (i.e. of relations) these variables must satisfy.

The problem consists of assigning a value from its domain to each of these
variables, such that these values satisfy all the constraints. Later (in Chapter 3), we
shall show that a CSP can easily be re-written as a theory in First Order Logic.

As in many studies of CSPs, all the CSPs we shall consider in this book will be
finite, i.e. the number of variables, each of their domains and the number of
constraints will all be finite. When we write “CSP”, it should therefore always be
read as “finite CSP”.

Also, we shall consider only CSPs with binary constraints. One can always
tackle unary constraints by an appropriate choice of the domains. And, for k > 2, a
k-ary constraint between a subset of k variables (Xn1, .., Xnk) can always be replaced
by k binary constraints between each of these Xni and an additional variable

18 Pattern-Based Constraint Satisfaction and Logic Puzzles

representing the original k-ary constraint; although this new variable has a large
domain and this may be a very inefficient way of dealing with the given k-ary
constraint, this is a very standard approach (for details, see [Tsang 1993]). With the
Kakuro CSP, chapter 15 will show an example of how this can be done in practice,
using application specific techniques more efficient than the general method.

Moreover, a binary CSP can always be represented as a (generally large) labelled
undirected graph: a node (or vertex) of this graph, called a label, is a couple < CSP
variable, possible value for it > (or, in our approach, an equivalence class of such
couples); given two nodes in this graph, each binary constraint not satisfied by this
pair of labels (including the “strong” constraints induced by CSP variables, i.e. all
the contradictions between different values for the same CSP variable) gives rise to
an arc (or edge) between them, labelled by the name of the constraint and
representing it. We shall call this graph the CSP graph. (Notice that this is different
from what is usually called the constraint graph.) The CSP graph expresses all the
direct contradictions between any two labels (whereas the constraint graph usually
considered in the CSP literature expresses their compatibilities).

1.1.2. The Sudoku example

As explained in the foreword, Sudoku has been at the origin of our work on
CSPs. In this book, we shall keep it as our main example for illustrating the
techniques we introduce, even though we shall also deal with other CSPs in order to
palliate its specificities (for other detailed examples, see chapters 14 to 16).

Let us start with the usual formulation of the problem (with its own, self-
explanatory vocabulary in italics): given a 9×9 grid, partially filled with numbers
from 1 to 9 (the givens of the problem, also called the clues or the entries), complete
it with numbers from 1 to 9 in such a way that in each of the nine rows, in each of
the nine columns and in each of the nine disjoint blocks of 3×3 contiguous cells, the
following property holds:

– there is at most one occurrence of each of these numbers.

Although this defining condition could be replaced by either of the following
two, which are obviously equivalent to it, we shall stick to the first formulation, for
reasons that will appear later:

– there is at least one occurrence of each of these numbers,
– there is exactly one occurrence of each of these numbers.

Figure 1.1 shows the standard presentations of a problem grid (also called a
Sudoku puzzle) and of a solution grid (also called a complete Sudoku grid).

Since rows, columns and blocks play similar roles in the defining constraints,
they will naturally appear to do so in many other places and a word that makes no

1. Introduction 19

difference between them is widely used in the Sudoku world: a unit is either a row
or a column or a block. And one says that two cells share a unit, or that they see
each other, if they are different and they are either in the same row or in the same
column or in the same block (where “or” is non exclusive). We shall also say that
these two cells are linked. It should be noticed that this (symmetric) relation between
two different cells, whichever of the three equivalent names it is given, does not
depend on the content of these cells but only on their place in the grid; it is therefore
a straightforward and quasi physical notion.

 1 2 6 7 3 8 9 4 5 1 2
 3 5 9 1 2 7 3 5 4 8 6
 6 7 8 4 5 6 1 2 9 7 3
7 3 7 9 8 2 6 1 3 5 4
 4 8 5 2 6 4 7 3 8 9 1
1 1 3 4 5 8 9 2 6 7
 1 2 4 6 9 1 2 8 7 3 5
 8 4 2 8 7 3 5 6 1 4 9
 5 6 3 5 1 9 4 7 6 2 8

Figure 1.1. A puzzle (Royle17#3) and its solution

As appears from the definition, a Sudoku grid is a special case of a Latin Square.
Latin Squares must satisfy the same constraints as Sudoku, except the condition on
blocks. Following HLS1, the logical relationship between the two theories will be
fully clarified in chapters 3 and 4.

What we need now is to see how the above natural language formulation of the
Sudoku problem can be re-written as a CSP. In Chapter 2, the essential question of
modelling in general and its practical implications on how to deal with a CSP will
be raised and we shall see that the following formalisation is neither the only one
nor the best one. But, for the time being, we only want to write the most
straightforward one.

For each row r and each column c, introduce a variable Xrc with domain the set
of digits {1, 2, 3, 4, 5, 6, 7, 8, 9}. Then the general Sudoku problem can be
expressed as a CSP for these variables, with the following set of (binary)
constraints:
Xrc ≠ Xr’c’ for all the pairs {rc, r’c’} such that the cells rc and r’c’ share a unit,
and a particular puzzle will add to these binary constraints the set of unary
constraints fixing the values of the Xrc variables corresponding to the givens.

Notice that the natural language phrase “complete the grid” in the original
formulation has naturally been understood as “assign one and only one value to each

20 Pattern-Based Constraint Satisfaction and Logic Puzzles

of the cells” – which has then been translated into “assign a value to each of the Xrc
variables” in the CSP formulation.

1.2. Paradigms of resolution

A CSP states the constraints a solution must satisfy, i.e. it says what is desired.
But it does not say anything about how a solution can be obtained; this is the job of
resolution methods, the choice of which will depend on the various purposes one
may have in addition to merely finding a solution. A particular class of resolution
methods, based on resolution rules, will be the main topic of this book.

1.2.1. Various purposes and methods

If one’s only goal is to get a solution by any available means, very efficient
general-purpose algorithms have been known for a long time [Kumar 1992, Tsang
1993]; they guarantee that they will either find one solution or all the solutions
(according to what is desired) or find a contradiction in the givens; they have lots of
more recent variants and refinements. Most of these algorithms involve the
combination of two very different techniques: some direct propagation of constraints
between variables (in order to progressively reduce their sets of possible values) and
some kind of structured search with “backtracking” (depth-first, breadth-first, …,
possibly with some forms of look-ahead); they consist of trying (recursively if
necessary) a value for a variable and propagating (based on the constraints) the
consequences of this tentative choice as restrictions on other variables; eventually,
either a solution or a contradiction will be reached; the latter case allows to conclude
that this value (or this combination of values simultaneously tried in the recursive
case) is impossible and it restricts the possibilities for this (subset of) variables(s).

But, in some cases, such blind search is not possible for practical reasons (e.g.
one is not in a simulator but in real life) or not allowed (for a priori theoretical or
æsthetic reasons), or one wants to simulate human behaviour, or one wants to
“understand” or to be able to “explain” each step of the resolution process (as is
generally the case with logic puzzles), or one wants a “constructive” solution (with
no “guessing”) or one wants a “pure logic” or a “pattern-based” or a “rule-based” or
the “simplest” solution, whatever meaning they associate with the quoted words.

Contrary to the current CSP literature, this book will only deal with the latter
cases and more attention will be paid to the resolution path than to the final solution
itself. Indeed, it can also be considered as an informal reflection on how notions
such as “no guessing”, “a constructive solution”, “a pure logic solution”, “a pattern-
based solution”, “an understandable proof of the solution”, “an explanation of the
solution” and “the simplest solution” can be defined (but we shall only be able to
say more on this topic in the retrospective “final remarks” chapter). It does not mean

1. Introduction 21

that efficiency questions are not relevant to our approach, but they are not our
primary goal, they are conditioned by such higher-level requirements. Without these
additional requirements, there is no reason to use techniques computationally much
harder (probably exponentially much harder) than the general-purpose algorithms.

In such situations, it is convenient to introduce the notion of a candidate, i.e. of a
“still possible” value for a variable. As this intuitive notion does not pertain to the
CSP itself, it must first be given a clear definition and a logical status. When this is
done (in chapter 4), one can define the concepts of a resolution rule (a logical
formula in the “condition ⇒ action” form, which says what to do in some factual,
observable situation described by the condition pattern), a resolution theory (a set of
such rules), a resolution strategy (a particular way of using the rules in a resolution
theory). One can then study the relationship between the original CSP and several of
its resolution theories. One can also introduce several properties a resolution theory
can have, such as confluence and completeness (contrary to general purpose
algorithms, a resolution theory cannot in general solve all the instances of a given
CSP; evaluating its scope is thus a new topic in its own; one can also study its
statistical resolution power in specific CSP cases).

This “rule-based” or “pattern-based” approach was first introduced in HLS1, in
the limited context of Sudoku. It is the purpose of this book to show that it is indeed
very general and chapters 14 to 16 will concretely show that it does apply to the
very different types of constraints appearing in Futoshiki, Kakuro and map
colouring, but let us first illustrate how these ideas work for Sudoku.

1.2.2. Candidates and candidate elimination in Sudoku

The process of solving a Sudoku puzzle “by hand” is generally initialised by
defining the “candidates” for each cell. For later formalisation, one must be careful
with this notion: if one analyses the natural way of using it, it appears that, at any
stage of the resolution process, a candidate for a cell is a number that has not yet
been explicitly proven to be an impossible value for this cell.

Usually, candidates for a cell are displayed in the grid as smaller and/or clearer
digits in this cell (as in Figure 1.2). Similarly, at any stage, a decided value is a
number that has been explicitly proven to be the only possible value for this cell; it
is written in big fonts, like the givens.

At the start of the game, one possibility is to consider that any cell with no input
value admits all the numbers from 1 to 9 as candidates – but more subtle
initialisations are possible (e.g. as shown in Figure 1.2) and a slightly different,
more symmetric, view of candidates can be introduced (see chapter 2).

Then, according to the formalisation introduced in HLS1, a resolution process
that corresponds to the vague requirement of a “pure logic” solution is a sequence of

22 Pattern-Based Constraint Satisfaction and Logic Puzzles

steps consisting of repeatedly applying “resolution rules” of the general condition-
action type: if some pattern – i.e. configuration of cells, possible cell-values, links,
decided values, candidates and non-candidates – defined by the condition part of the
rule, is effectively present in the grid, then carry out the action(s) specified by the
action part of the rule. Notice that any such pattern always has a purely “physical”,
invariant part (which may be called its “physical” or “structural” support), defined
by conditions on possible cell-values and on links between them, and an additional
part, related to the actual presence/absence of decided values and/or candidates in
these cells in the current situation. (Again, this will be generalised in chapter 2 with
the four “2D” views.)

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
 3
 4 5 6
 8 9

 3
 4 6
 7 9

 3
 4 5 6
 7 8 9

 7 8 9

 4
 7 8 9

 4
 7 8 9

 4 5
 9

1 2 r1

r2
 2
 4 6
 8 9

1 2
 4 6
 7 9

1 2
 4 6
 7 8 9

 2

7 8 9
3 5

 4
 9

 6
 8 9

 4 6
 8 9

r2

r3
 2 3
 4 5
 8 9

1 2 3
 4
 9

1 2 3
 4 5
 8 9

6
1
 4
 8 9

1 2
 4
 8 9

 4 5
 9

7
 3
 4 5
 8 9

r3

r4 7
 2
 4 6
 9

 2
 4 5 6
 8 9

 2
 5
 8 9

1
 5 6
 8 9

1 2
 6
 8 9

3
 2
 5 6
 9

1
 4 5 6
 9

r4

r5
 2 3
 5 6
 9

 2 3
 6
 9

 2 3
 5 6
 9

4
1
 5 6
 7 9

1 2 3
 6
 7 9

8
 2
 5 6
 9

1
 5 6
 7 9

r5

r6 1
 2 3
 4 6
 9

 2 3
 4 5 6
 8 9

 2 3
 5
 7 8 9

 5 6
 7 8 9

 2 3
 6
 7 8 9

 2
 4 5
 7 9

 2
 5 6
 9

 4 5 6
 7 9

r6

r7
 3
 4 6
 9

 3
 4 6
 7 9

 3
 4 6
 7 9

1 2
 3
 4 6
 7 8 9

 5
 7 9

 3
 5
 8 9

 3
 5
 7 8 9

r7

r8
 2 3
 6
 9

8
1 2 3
 6
 7 9

 3
 5
 7 9

 5 6
 7 9

 3
 6
 7 9

1 2
 5
 7 9

4
1 3
 5
 7 9

r8

r9
 2 3
 4
 9

5
1 2 3
 4
 7 9

 3

7 8 9

 4
 7 8 9

 3
 4
 7 8 9

6
 2 3

 8 9

1 3

 7 8 9
r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 1.2. Grid Royle17#3 of Figure 1.1, with the candidates remaining after the elementary
constraints for the givens have been propagated

Depending on the type of their action part, such resolution rules can be classified
into two categories (assertion type and elimination type):

– either they assert a decided value for a cell (e.g. the Single rule: if it is proven
that there is only one possibility left for it); there are very few such assertion rules;

– or they eliminate some candidate(s) (which we call the target(s) of the
pattern); as appears from a quick browsing of the available literature, almost all the

1. Introduction 23

classical Sudoku resolution rules are of this type (and, apart from Singles, the few
rules that seem to be of the assertion type can be reduced to elimination rules); they
express elaborated forms of constraints propagation; their general form is: if such
pattern is present, then it is impossible for some number(s) to be in some cell(s) and
the target candidates must therefore be deleted; for the general CSP also, all the
rules we shall meet in this book, apart from Singles, will be of the elimination type.

The interpretation of the above resolution rules, whatever their type, should be
clear: none of them claims that there is a solution with such value asserted or such
candidate deleted. Rather, it must be interpreted as saying: “from the current
situation it can be asserted that any solution, if there is any, must satisfy the
conclusion of this rule”.

From both theoretical and practical points of view, it is also important to notice
that, as one proceeds with resolution, candidates form a monotone decreasing set
and decided values form a monotone increasing set. Whereas the notion of a
candidate is the intuitive one for players, what is classical in logic is increasing
monotonicity (what is known / what has been proven can only increase with time);
but this is not a real problem, as it could easily be restored by considering non-
candidates instead (i.e. what has been erased instead of what is still present).

For some very difficult puzzles, it seems necessary to (recursively) make a
hypothesis on the value of a cell, to analyse its consequences and to eliminate it if it
leads to a contradiction; techniques of this kind do not fit a priori the above
condition-action form; they are proscribed by purists (for the main reason that they
often make the game totally uninteresting) and they are assigned the infamous,
though undefined, name of Trial-and-Error. As shown in HLS and in the statistics of
chapter 6, they are needed in only extremely rare cases if one admits the kinds of
chain rules (whips) that will be introduced in chapter 5.

1.2.3. Extension of this model of resolution to the general CSP

It appears that the above ideas can be generalised from Sudoku to any CSP.
Candidate elimination corresponds to the now classical idea of domain restriction in
CSPs. What has been called a candidate above is related to the notion of a label in
the CSP world, a name coming from the domain of scene labelling, which
historically led to identifying the general Constraint Satisfaction Problem. However,
contrary to labels that can be given a very simple set theoretic definition based on
the data defining the CSP, the status of a candidate is not a priori clear from the
point of view of mathematical logic, because this notion does not pertain per se to
the CSP formulation, nor to its direct logic transcription.

In chapter 4, we shall show that a formal definition of a candidate must rely on
intuitionistic logic and we shall introduce more formally our general model of

24 Pattern-Based Constraint Satisfaction and Logic Puzzles

resolution. Then we shall define the notion of a resolution theory and we shall show
that, for each CSP, a Basic Resolution Theory can be defined. Even though this
Basic Theory may not be very powerful, it will be the basis for defining more
elaborate ones; it is therefore “basic” in the two meanings of the word.

1.3. Parameters and instances of a CSP; minimal instances; classification

Generally, a CSP defines a whole family of problem instances.

Typically, there is an integer parameter that splits this family into subclasses. A
good example of such a parameter is the size of the grid in N-Queens, Latin
Squares, Sudoku or Futoshiki; in Kakuro, it could be the number of white cells. In
the resource allocation problem, it could be some combination of the number of
resources and the number of tasks competing for them. In graph colouring and graph
matching, it could be the size of the graph (e.g. the number of vertices or some
combination of the number of vertices and the number of edges).

1.3.1. Minimal instances

Typically also, once this main parameter has been fixed, there remains a whole
family of instances of the CSP. In 9×9 Sudoku, an instance is defined by a set of
givens. In N-Queens, although the usual presentation of the problem starts from an
empty grid and asks for all the solutions, we shall adopt for our purposes another
view of this CSP; it consists of setting a few initial entries and asking for a solution
or a “readable” proof that there is none. In “pure” Futoshiki, an instance is defined
by a set of inequalities between adjacent cells; in Kakuro by a set of sum constraints
in horizontal or vertical sectors. In graph colouring, the possibilities are still more
open: there may be lots of graphs of a given size and, once such a graph has been
chosen, it may also be required to have predefined colours for some subsets of
vertices (although this is a non-standard requirement in graph theory). The same
remarks apply to graph matching, where one may want to have predefined
correspondences between some vertices (and/or edges) of the two graphs.

In such cases, classifying all the instances of a CSP or doing statistics on the
difficulty of solving them meets problems of two kinds. Firstly, lots of instances will
have very easy solutions: if givens are progressively added to an instance, until only
the values of few variables remain non given, the problem becomes easier and easier
to solve. Conversely, if there are so few instances that the problem has several
solutions, some of these may be much easier to find than others. These two types of
situations make statistics on all the instances somewhat irrelevant. This is the
motivation for the following definition (inherited from the Sudoku classics).

1. Introduction 25

Definition: an instance of a CSP is called minimal if it has one and only one
solution and any instance obtained from it by eliminating any of its givens has more
than one solution. [This is a notion of local minimality.]

For the above-mentioned reasons, all our statistical analyses of a CSP (and only
the statistical ones!) will be restricted to the set of its minimal instances.

1.3.2. Rating and the complexity distribution of instances

Classically, the complexity of a CSP is studied with respect to its main size
parameter and one relies on a worst case (or more rarely on a mean case) analysis. It
often reaches conclusions such as “this CSP is NP-complete” – as is the case for
Sudoku(n) or LatinSquare(n), considered as depending on grid size n.

The questions about complexity that we shall tackle in this book are of a very
different kind; they will not be based on the main size parameter. Instead, they will
be about the statistical complexity distribution of instances of a fixed size CSP.

This supposes that we define a measure of complexity for instances of a CSP.
We shall therefore introduce several ratings (starting in chapter 5) that are
meaningful for the general CSP. And we shall be able to give detailed results (in
chapter 6) for the standard (i.e. 9×9) Sudoku case. In trying to do so, the problem
arises of creating unbiased samples of minimal instances and it appears to be very
much harder than one may expect. We shall be able to show this in full detail only
for the particular Sudoku case, but our approach is sufficiently general to suggest
that the same kind of problem is very likely to arise in any CSP; moreover, the final
chapters on different logic puzzles will show that they do face the same problem.

Indeed, we shall define measures of complexity associated with various families
of resolution rules. For each of them, the complexity of a CSP instance will be
defined as the complexity of the hardest rule in this family necessary to solve it,
which is also the complexity of the hardest step of the “simplest” resolution path
using only rules from this family. Sudoku examples show that a given set of rules
can solve puzzles whose full resolution paths vary largely in intuitive complexity
(whatever intuitive notion of complexity one adopts for the paths), but the hardest
step rating is statistically meaningful; moreover, there is currently no idea about
how to formally define the complexity of a full path, i.e. of how to combine in a
consistent way the complexities of a sequence of individual steps.

The main advantage of considering ratings of the hardest step type is that, for
each family of rules, an associated rank can be defined in a very simple, pure logic
way. This naturally leads to an interpretation of our initial “simplest solution”
requirement and to the notion of a “simplest-first strategy”.

26 Pattern-Based Constraint Satisfaction and Logic Puzzles

1.4. The basic and the more complex resolution theories of a CSP

Following the definition of the CSP graph in section 1.1.1, we say that two
candidates are linked by a direct contradiction, or simply linked, if there is a
constraint making them incompatible (including the obvious “strong” constraints,
usually not explicitly stated as such, that different values for a CSP variable are
incompatible).

1.4.1. Universal elementary resolution rules and their limitations

Every CSP has a Basic Resolution Theory: BRT(CSP). The simplest elimination
rule (obviously valid for any CSP) is the direct translation of the initial problem
formulation into operational rules for managing candidates. We call it the
“elementary constraints propagation rule” (ECP):

– ECP: if a value is asserted for a CSP variable (as is the case for the givens),
then remove any candidate that is linked to this value by a direct contradiction.

The simplest assertion rule (also obviously valid) is called Single (S):
– S: if a CSP variable has only one candidate left, then assert it as the only

possible value of this variable.

There is also an obvious Contradiction Detection rule (CD):
– CD: if a CSP variable has no decided value and no candidate left, then

conclude that the problem has no solution.

Together, the “elementary rules” ECP, S and CD constitute the Basic Resolution
Theory of the CSP, BRT(CSP).

In Sudoku, novice players may think that these three elementary rules express
the whole problem and that applying them repeatedly is therefore enough to solve
any puzzle. If such were the case, one would probably never have heard of Sudoku,
because it would amount to mere paper scratching and it would soon become boring.
Anyway, as they get stuck in situations in which they cannot apply any of these
rules, they soon discover that, except for the easiest puzzles, this is very far from
being sufficient. The puzzle in Figure 1.1 is a very simple illustration of how one
gets stuck if one only knows and uses the elementary rules: the resulting situation is
shown in Figure 1.2, in which none of these rules can be applied. For this puzzle,
modelling considerations related to symmetry (chapter 2) lead to “Hidden Single”
rules allowing to solve it, but even this is generally very far from being enough.

1.4.2. Derived constraints and more complex resolution theories

As we shall see later, there are lots of puzzles that require resolution rules of a
much higher complexity than those in the Basic Resolution Theory in order to be

1. Introduction 27

solved. And this is why Sudoku has become so popular: all but the easiest puzzles
need a particular combination of neuron-titillating techniques and they may even
suggest the discovery of as yet unknown ones.

In any CSP, the general reason for the limited resolution power of its Basic
Resolution Theory can be explained as follows. Given a set of constraints, there are
usually many “derived” or “implied” constraints not immediately obvious from the
original ones. Many resolution rules can be considered as a way of expliciting some
of the derived unary constraints. As we shall see that very complex resolution rules
are needed to solve some instances of a CSP, this will show not only that derived
constraints cannot be reduced to the elementary rules of the Basic Resolution
Theory (which constitute the most straightforward operationalization of the axioms)
but also that they can be unimaginably more complex than the initial constraints.

With all our examples being minimal instances, secondary questions about
multiple or inexistent solutions can be discarded. From an epistemological point of
view, the gap between the what (the initial constraints) and the how (the resolution
rules necessary to solve an instance) is thus exhibited in all its purity, in a concrete
way understandable by anyone. [In spite of my formal logic background and of my
familiarity with all the well-known mathematical ideas more or less related to it
(culminating in deterministic chaos), this gap has always been for me a subject of
much wonder. It is undoubtedly one of the main reasons why I kept interested in the
Sudoku CSP for much longer than I expected when I first chose it as a topic for
practical classes in AI.]

All the families of resolution rules defined in this book can be seen as different
ways of exploring this gap – and the consideration of derived binary constraints
and/or larger Sudoku grids shows that the gap can be still much larger or deeper
than shown by the standard 9×9 case.

1.4.3. Resolution rules and resolution strategies; the confluence property

One last point can now be clarified: the difference between a resolution theory (a
set of resolution rules) and a resolution strategy. Everywhere in this book, a
resolution strategy must be understood in the following extra-logical sense:

– a set of resolution rules, i.e. a resolution theory, plus
– a non-strict precedence ordering of these rules. Non-strict means that two

rules can have the same precedence (for instance, in Sudoku, there is no reason to
give a rule higher precedence than a rule obtained from it by transposing rows and
columns or by any of the generalised symmetries explained in chapter 2).

As a consequence of this definition, several resolution strategies can be based on
the same resolution theory with different partial orderings of its rules and they may
lead to different resolution paths for a given instance.

28 Pattern-Based Constraint Satisfaction and Logic Puzzles

Moreover, with every resolution strategy one can associate several deterministic
procedures for solving instances of the CSP, as given by the following (sketchy)
pseudo-code.

As a preamble (each of the following choices will generate a different procedure):
- list all the resolution rules in a way compatible with their precedence ordering (i.e.
among the different possibilities of doing so, choose one);
- list all the labels in a predefined order or take them in random order.

Given an instance P, loop until a solution of P is found (or until all the solutions are
found or until it is proven that P has no solution):
⎢ Do until a rule can effectively be applied:
⎢ ⎢ Take the first rule not yet tried in the list
⎢ ⎢ Do until its condition pattern is effectively active:
⎢ ⎢ ⎢ Try to apply all the possible mappings of the condition pattern of this rule
⎢ ⎢ ⎢ to subsets of labels, according to their order in the list of labels
⎢ ⎢ End do
⎢ End do
⎢ Apply the rule to the selected matching pattern
End loop

In this context, a natural question arises: given a resolution theory T, can
different resolution procedures built on T lead to an instance being finally solved by
some of them and unsolved by others? The answer lies in the confluence property of
a resolution theory, to be explained in chapter 5; this fundamental property implies
that the order in which the rules of T are applied is irrelevant as long as we are only
interested in solving instances (but it can still be relevant when we also consider the
efficiency of the procedure): all the resolution paths will lead to the same final state.

This apparently abstract confluence property (first introduced in HLS1) has very
practical consequences when it holds in a resolution theory T. It allows any
opportunistic strategy, such as applying a rule as soon as a pattern instantiating it is
found (e.g. instead of waiting to have found all the potential instantiations of rules
with the same precedence before choosing which should be applied first). Most
importantly, it also allows to define a “simplest first” strategy that is guaranteed to
produce a correct rating of an instance with respect to T after following a single
resolution path (with the easy to imagine computational consequences).

1.5. The roles of logic, AI, Sudoku and other examples

As its organisation shows, this book about the general CSP has a large part
(about a quarter) dedicated to illustrating the abstract concepts with a detailed case
study of Sudoku; to a lesser extent, it also provides examples from various other

1. Introduction 29

logic puzzles. It can be considered as an exercise in either logic or AI or any of these
games. Let us clarify the roles we grant each of these topics.

1.5.1. The role of logic

Throughout this book, the main function of logic will be to provide a rigorous
framework for the precise definitions of our basic concepts (such as a “candidate”, a
“resolution rule” and a “resolution theory”). Apart from the formalisation of the
CSP itself, the simplest and most striking example is the formalisation (in section
4.3) of the CSP Basic Resolution Theory informally defined in section 1.4.1 and of
all the forthcoming more complex resolution theories. Logic will also be used as a
compact notational tool for expressing some resolution rules in a non-ambiguous
way. In the Sudoku example, it will also be a very useful tool for expliciting the
precise symmetry relationships between different “Subset rules” (in chapter 8).

For better readability, the rules we introduce are always formulated first in plain
English and their validity is only established by elementary non-formal means. The
non-mathematically oriented reader should thus not be discouraged by the logical
formalism. Moreover, all the types of chain rules we shall consider will always be
represented in a very intuitive, almost graphical formalism.

As a fundamental and practical application of our strict logical foundations to the
Sudoku CSP, its natural symmetry properties can be transposed into three formal
meta-theorems allowing one to deduce systematically new rules from given ones
(see chapter 2 and sections 3.6 and 4.7). In HLS, this allowed us to introduce chain
rules of completely new types (e.g. “hidden chains”). It also allowed the statement
of a clear logical relationship between Sudoku and Latin Squares.

Finally, the other role assigned to logic is that of a mediator between the
intuitive formulation of the resolution rules and their implementation in an AI
program (e.g. our general purpose CSP-Rules solver). This is a methodological point
for AI (or software engineering in general): no program development should ever be
started before precise definitions of its components are given (though not
necessarily in strict logical form) – a commonsense principle that is very often
violated, especially by those who consider it as obvious [this is the teacher
speaking!]. Notice however that the logical formalism is only one among other
preliminaries to implementation (even in the form of rules of an inference engine)
and that it does not dispense with the need for some design work (be it only for
efficiency matters!).

1.5.2. The role of AI

The role we assign to AI in this book is mainly that of providing a quick testbed
for the general ideas developed in the theoretical part. The main rules have been

30 Pattern-Based Constraint Satisfaction and Logic Puzzles

implemented in our general CSP-Rules solver. This was initially designed for
Sudoku only (and accordingly named SudoRules), with input and output functions
dedicated to Sudoku, but the hard core (CSP-Rules) can be applied to any CSP and
all the examples of chapters 14 to 16 also rely on it. See section 17.4 for more about
CSP-Rules and the specific CSPs that have already been interfaced to it.

One important facet of the rules introduced in this book is their resolution power.
This can only be tested on specific examples but the resolution of each instance by a
human solver needs a significant amount of time and the number of instances that
can be tested “by hand” against any resolution method is very limited. On the
contrary, implementing our resolution rules in a solver allowed us to test about ten
millions of Sudoku puzzles (see chapter 6). This also gave us indications of the
relative efficiency of different rules. It is not mere chance that the writing of HLS,
CRT and the present book occurred in parallel with successive versions of
(SudoRules and) CSP-Rules. Abstract definitions of the relative complexities of
rules were checked against our puzzle collections for their resolution times and for
their memory requirements (in terms of the number of partial chains generated).

This book can also be considered as the basis for a long exercise in AI. Many
computer science departments in universities have used Sudoku for various projects.
According to our personal experience, it is a most welcome topic for student
projects in computer science or AI. This is also true of the other types of puzzles
introduced in chapters 14 to 16. Trying to implement some rules, even the “simple”
Subset rules of chapter 8 and even in an application-specific way, shows how re-
ordering the conditions can drastically change the behaviour of a knowledge-based
system: without care, Quads can easily lead to memory overflow problems. (We
give detailed formulations for Subset rules in Sudoku, also valid for games based on
similar square grids, so that they can be used for such exercises without too long
preliminaries.) Trying to implement Sp-whips or Wp-whips is a real challenge.

1.5.3. The role of Sudoku

Because some parts of this book related to the general CSP may seem abstract to
the non-mathematician reader (e.g. chapters 3 and 4) or technical (e.g. chapters 9 to
11), a detailed case study was needed to show progressively how the general
concepts work in practice. It is also necessary to show how the general theory can
easily be adapted, in the most important initial modelling phase, for dealing more
efficiently or more naturally with each specific case. Choosing Sudoku for these
purposes was for us a natural consequence of the historical development of the
techniques described here, both the general approach and all the types of resolution
rules. But there are many other reasons why it is an excellent example for the
general CSP.

1. Introduction 31

A fast browsing of this book shows that examples from the Sudoku CSP appear
in many chapters (generally at the end, in order not to overload the main text with
long resolution paths) and we keep our HLS constraint that all of them should
originate in a real minimal puzzle. But it should be clear for the readers of HLS that
the purpose here is very different: we have no goal of illustrating with a Sudoku
example each of the rules we introduce (for this, there is HLS).

Each example is chosen to satisfy a precise function with respect to the general
Constraint Satisfaction Problem, such as providing a counter-example to some
conjecture. As a result, most of our Sudoku examples will be exceptional cases, with
very long resolution paths – which (without this warning) could give a very bad idea
of how difficult the resolution paths look for the vast majority of instances; the
statistics in chapter 6 will give a much better idea: most of the time, the chains used
and the paths are short.

1.5.3.1. Why Sudoku is a good example

Sudoku is known to be NP-complete [Gary & al. 1979]; more precisely, the CSP
family Sudoku(n) on square grids of sizes n×n for all n is NP-complete. As we fix
n = 9, this should not have any impact on our analyses. But the Sudoku case will
exemplify very clearly (in chapter 6) that, for fixed n, the instances of an NP-
complete problem often have a broad spectrum of complexity. It will also show that
standard analyses, only based on worst case (worst instances) or (more rarely) mean
case, can be very far from reflecting the realities of a CSP.

For fixed n = 9, Sudoku is much easier to study than other readily formalised
problems such as Chess or Go or any “real world” example. But it keeps enough
structure so that it is not obvious.

Sudoku is a particular case of Latin Squares. Latin Squares are more elegant
(and somehow more “respectable”) from a mathematical point of view, because they
enjoy a complete symmetry of all the types of variables: numbers, rows, columns. In
Sudoku, the constraint on blocks introduces some apparently mild complexity that
makes it more exciting for players. But this lack of full symmetry also makes it
much more interesting from a theoretical point of view. In particular, it allows to
introduce the notion of a grouped label (g-label), not present in Latin Squares, and
new resolution rules based on it: g-whips and g-braids (see chapter 7). It is
noticeable that, with the proper definition of these patterns, they appear (in very
different guises) in many other CSPs.

There are millions of Sudoku players all around the world and many forums
where the rules defined in HLS have been the topic of much debate. A huge amount
of invaluable experience has been cumulated and is available – including generators
of random (but biased) puzzles, collections of puzzles with very specific properties
(fish patterns, symmetry properties, …) and other collections of extremely hard

32 Pattern-Based Constraint Satisfaction and Logic Puzzles

puzzles. The lack of similar collections and of generators of minimal instances is a
strong limitation for the detailed analysis of other CSPs.

1.5.3.2. Origin of our Sudoku examples

Most of our Sudoku examples rely on the following sets of minimal puzzles:
– the Sudogen0 collection consists of 1,000,000 puzzles randomly generated by

us with the top-down suexg generator (http://magictour.free.fr/suexco.txt), with seed
0 for the random numbers generator; puzzle number n is named Sudogen0#n;

– the cb collection consists of 5,926,343 puzzles we produced with a new kind
of generator, the controlled-bias generator (we first introduced it on the late Sudoku
Player’s Forum; see also [Berthier 2009] and chapter 6 below); it is still biased, but
much less than the previously existing ones and in a precisely known way, so that it
allows to compute unbiased statistics; puzzle number n is named cb#n;

– the Magictour collection of 1,465 puzzles considered to be the hardest (at the
time of its publishing); puzzle number n is named Magictour-top1465#n;

– the gsf collection of 8,152 puzzles considered to contain the hardest puzzles (at
the time of its publishing); puzzle number n is named gsf-top8152 #n;

– the recent eleven collection of 26,370 puzzles not solvable by T&E(S4); puzzle
number n is named eleven#n; we occasionally refer to complementary collections so
as to deal with all the known hardest puzzles (see chapter 11).

1.5.4. The role of non Sudoku examples

Although Sudoku is a very good CSP example, it has a few specificities, such as
(the major one of) having only “strong” constraints (i.e. all its constraints are
defined by CSP variables). With other examples (e.g. N-Queens), we shall show that
these specificities have no negative impact on our general theory: the main
resolution rules (for whips, g-whips, Subsets, Sp-whips, Wp-whips, braids, …) can
effectively be applied to other CSPs; we shall also illustrate how different these
patterns may look in these cases.

We are aware that many more examples should be granted as much
consideration as Sudoku. We hope that the final chapters partially palliate this
shortcoming by considering CSPs based on constraints of very different kinds
(transitive in Futoshiki, non-binary arithmetic in Kakuro, topological and geometric
in Map colouring, Numbrix® and Hidato®). We also hope that this book will
motivate more research for applications to other CSPs.

1.5.5. Uniform presentation of all the examples

If we displayed the full resolution path of an instance, it would generally take
several pages, most of which would describe obvious or uninteresting steps. We

1. Introduction 33

shall skip most of these steps, by adopting the following conventions (the same as in
HLS):

– elementary constraint propagation rules (ECP) will never be displayed;
– as the final rules that apply to any instance are always ECP and Singles (at

least when these rules are given higher priority than more complex ones – which is a
natural choice), they will be omitted from the end of the path.

All our examples respect the following uniform format. After an introductory
text explaining the purpose of the example, the resolution theory T applied to it
and/or comments on some particular point, a row of two (sometimes three) grids is
displayed: the original puzzle (sometimes an intermediate state) and its solution.
Then comes the resolution path, a proof of the solution within theory T, where
“proof” is meant in the strict sense of intuitionistic/constructive logic.

Each line in the resolution path consists of the name of the rule applied, followed
by: the description of how the rule is “instantiated” (i.e. how the condition part is
satisfied), the “==>” sign, the conclusion allowed by the “action” part. The
conclusion is always either that a candidate can be eliminated (symbolically written
as r4c8 ≠ 6 in Sudoku) or that a value must be asserted (symbolically written as
r4c8 = 5). When the same rule instantiation justifies several conclusions, they are
written on the same line, separated by commas: e.g. r4c8 ≠ 8, r5c8 ≠ 8.
Occasionally, the detailed situation at some point in the resolution path (the
“resolution state”) is displayed so that the presence of the pattern under discussion
can be directly checked, but, due to place constraints, this cannot be systematic.

All the resolution paths given in this second edition were obtained with version
1.2 of our general pattern-based CSP solver: CSP-Rules1 (with occasional hand
editing for a shorter and/or cleaner appearance), using the CLIPS inference engine
(release 6.30), on a MacPro® 2006 running at 2.66 GHz. It was easily supplemented
with inpout/output functions specific to Sudoku (making it correspond to version
15d.1.12 of our SudoRules solver), Futoshiki, Kakuro, Map colouring, Numbrix®
and Hidato®.

1.6. Notations

Throughout this book, we consider an arbitrary, but fixed, finite Constraint
Satisfaction Problem. We call it CSP, generically. BRT(CSP) or simply BRT (when
there is no ambiguity) refers to its Basic Resolution Theory, RT to any of its
resolution theories, Wn [respectively Bn, gWn, gBn, SpWn, SpBn, BpBn, …] to its nth
whip [respectively braid, g-whip, g-braid, Sp-whip, Sp-braid, Bp-braid, …] resolution
theory. The same letters, with no n subscript, are used for the associated ratings.

1 See section 17.4 for more information about CSP-Rules.

Part One

LOGICAL FOUNDATIONS

2. The role of modelling, illustrated with Sudoku

Before we start with the logical formalisation of a general CSP, the main
purpose of this chapter is to show in detail, using the Sudoku example, how some
initial modelling choices and/or associated mental or graphical representations can
radically change our view of a CSP. Together with consequences of several non-
standard modelling choices that will appear throughout this book, it will also
illustrate the general epistemological principle that changing our representations of a
problem can drastically change its apparent complexity. Almost all of the material
here was first introduced in HLS1.

It may seem strange to start a part on the “logical foundations” with a chapter on
modelling that is almost only about Sudoku. But we mean to insist that, in CSP as in
any other domain, modelling choices are the starting point of any good application
of any general theory. And most of such choices can only be application specific.

Complementary considerations on modelling a CSP will appear in section 5.11,
when we introduce the N-Queens and the N-SudoQueens CSPs, after we have
defined our general logical framework and our first resolution rules. See also
chapters 14 to 16 for other detailed examples (Futoshiki, Kakuro, Map colouring…).

2.1. Symmetries, analogies and supersymmetries

2.1.1. Symmetries

Throughout this book, the word “symmetry” is used in the general abstract
mathematical sense. A Sudoku symmetry, or symmetry for short, is a transformation
that, when applied to any valid Sudoku grid, produces a valid Sudoku grid. Any
combination of symmetries is a symmetry, there is a null symmetry (that does not
change anything) and every symmetry has a reverse; therefore symmetries form a
group (in the usual mathematical sense).

Two grids (completed or not) that are related by some symmetry are said to be
essentially equivalent. The reason is that when the first is solved, its solution and its
resolution path can be transposed by the same symmetry to a solution and a
resolution path for the second. These abstract notions become very concrete and
intuitive as soon as a set of generators for the whole group of symmetries is given.

38 Pattern-Based Constraint Satisfaction and Logic Puzzles

By definition, any symmetry is then composed of a finite sequence of these
generating ones. The simplest set of generators one can consider is composed of two
different types of obvious symmetries (see e.g. [Russell 2005]):

– permutations of the numbers: the numerical values of the numbers used to fill
the grid are totally irrelevant; they could indeed be replaced by arbitrary symbols;
any permutation of the digits (which is just a relabeling of the entries) defines a
symmetry of the game; there are obviously 9! = 362,880 such symmetries.

– “geometrical” symmetries of the grid:
- permutations of individual rows 1, 2, 3;
- permutations of individual rows 4, 5, 6;
- permutations of individual rows 7, 8, 9;
- permutations of triplets of rows (“floors”) 1-2-3, 4-5-6 and 7-8-9;
- symmetry relative to the first diagonal (row-column symmetry).

From these primary geometrical symmetries, others can be deduced:
- permutations of individual columns 1, 2, 3;
- permutations of individual columns 4, 5, 6;
- permutations of individual columns 7, 8, 9;
- permutations of triplets of columns (“towers”) 1-2-3, 4-5-6 and 7-8-9;
- reflection (left-right symmetry);
- up-down symmetry;
- symmetry relative to the second diagonal;
- ± 90° rotation,
- and, more generally, any combination of symmetries in the generating set.

As of the writing of HLS1, the above-mentioned symmetries had been used
mainly to count the number of essentially non-equivalent grids. Expressed in terms
of elementary symmetries, two grids (completed or not) are essentially equivalent if
there is a sequence of elementary symmetries such that the second is obtained from
the first by application of this sequence.

Thus, it has been shown in [Russell 2005] that the number of non-essentially
equivalent complete Sudoku grids is 5,472,730,538 – much less than the a priori
possibly different 6,670,903,752,021,072,936,960 complete grids. But the number
of essentially different minimal puzzles is still much greater, its exact value being
still unknown (however, see our estimate in chapter 6: 2.55x1025). The point is that
each complete grid is, in the mean, the solution for 4.67×1015 minimal puzzles.

Later we shall formulate axioms for Sudoku in a logical language and in a way
that exhibits all the previous symmetries. In turn, such symmetries in the axioms
will lead to symmetries in the logical formulation of our resolution rules. But all the
types of symmetries will not be expressed in the same way in these axioms or rules.

2. The role of modelling, illustrated with Sudoku 39

Primary symmetries other than row-column will be totally transparent, in that
they will make use of variable names (for numbers, rows, columns…) but they will
refer to no specific values of these entities.

As for row-column symmetry, in elementary resolution rules, our formalisation
will stick to their classical formulation and it will be expressed by the presence of
two similar axioms or rules, each of which can be obtained from the other by a
simple permutation of the words “row” and “column". As a consequence of this
symmetry in the axioms, there will be a meta-symmetry in the theorems and the
resolution rules, as expressed by the following intuitively obvious

meta-theorem 2.1 (informal): for any valid Sudoku resolution rule, the rule
deduced from it by permuting systematically the words “row” and “column” is
valid and it obviously has the same logical complexity as the original. We shall
express this as: the set of valid Sudoku resolution rules is closed under row-
column symmetry.

In more evolved resolution rules, in particular in chain rules, we shall show that
a more powerful approach consists of building them only on primary predicates that
already take all the symmetries into account.

2.1.2. The two canonical coordinate systems on a grid

Let the nine rows be numbered 1, 2, …, 9 from top to bottom. Let the nine
columns be numbered 1, 2, …, 9 from left to right. Let the nine blocks and the nine
squares inside any fixed block be numbered according to the same scheme, as
follows:

1 2 3
4 5 6
7 8 9

Any cell, in “natural” row-column space, can be unambiguously located on the
grid via either of its two pairs of coordinates (row, column) or [block, square]. One
can therefore consider two coordinate systems on the grid. We call them the two
canonical coordinate systems and we write the coordinates of a cell in each of them
as (r, c) or as [b, s], respectively.

Change of coordinates F: (r, c) → [b, s] is defined by the following formulæ:
b = block (r, c) = 1 + 3×IP((r – 1)/3) + IP((c - 1)/3);
s = square(r, c) = 1 + 3×mod((r + 2), 3) + mod((c + 2), 3).

Conversely, change of coordinates [b, s] → (r, c) is defined by:
r = row(b, s) = 1 + 3×IP((b - 1)/3) + IP((s - 1)/3);
c = column(b, s) = 1 + 3×mod((b + 2), 3) + mod((s + 2), 3),
where “IP” stands for “integer part” and “mod” for “modulo”.

40 Pattern-Based Constraint Satisfaction and Logic Puzzles

Notice that transformation F: (r, c) → [b, s]: is involutive, i.e. F-1 = F or F•F = Id
(the identity), where “F-1” denotes as usual the inverse of F and “•” denotes function
composition.

2.1.3. Coordinates and names

Coordinates should not be confused with the various names that can be given to
the rows, columns, blocks, squares and cells for displaying purposes. Various
displaying conventions can be used (e.g. the chess convention: A1, A2, … G8, G9),
but we shall systematically stick to the following one, which we have found the
most convenient and which is easier to generalise to any CSP:

– rows are named: r1, r2, r3, r4, r5, r6, r7, r8, r9;
– columns are named: c1, c2, c3, c4, c5, c6, c7, c8, c9;
– cells in natural rc-space are named accordingly, in the obvious way: r1c1,

r1c2, …, r9c9;
– blocks are named: b1, b2, b3, b4, b5, b6, b7, b8, b9;
– squares in a block are named: s1, s2, s3, s4, s5, s6, s7, s8, s9;
– as a result, cells in rc-space can also be named: b1s1, b1s2, …, b9s9;
– when needed, numbers are named n1, n2, n3, n4, n5, n6, n7, n8, n9; this will

be useful in the next sections when we consider “abstract spaces”: row-number,
column-number and block-number and we want to name cells in these spaces: r1n1,
r1n2… in rn-space; c1n1, c1n2,… in cn-space; b1n1, b1n2,… in bn-space; the
reason is that r11, r12… or c11, c12… would be rather obscure and confusing.

Notice that the same lower case letters as for constants will be used for naming
variables, but with subscripts, e.g. r1, b3, …; these close conventions should not lead
to any confusion between variables and constants. In any case, the risk of confusion
is very limited: no variable symbol can appear in the description of any real fact on a
real grid and no constant symbol will ever appear in an axiom (except of course in
the axioms corresponding to the givens of the puzzle) or a resolution rule.

2.1.4. Supersymmetries

Up to now, symmetries relative to the entries (numbers) and “geometrical”
symmetries relative to the grid have been considered separately. One of the results
of HLS1 was the elicitation of other symmetries (named supersymmetries) that mix
numbers, rows and columns. It showed how they translate into relationships
between some of the constraints propagation rules, how they entail a new logical
classification of these rules, how this allows clearer definitions of the rules
themselves and how this leads to introduce new types of chains (“hidden” chains
and “supersymmetric” chains) and associated rules.

2. The role of modelling, illustrated with Sudoku 41

The main reason for our interest in supersymmetry is the following:

meta-theorem 2.2 (informal): for any valid Sudoku resolution rule mentioning
only numbers, rows and columns (i.e. neither blocks nor squares nor any property
referring to such objects), any rule deduced from it by any systematic permutation
of the words “number”, “row” and “column” is valid and it obviously has the
same logical complexity as the original. We shall express this as: the set of valid
Sudoku resolution rules is closed under supersymmetry.

Meta-theorem 2.2 is not intuitively as obvious as meta-theorem 2.1. From a
logical point of view, it is nevertheless a straightforward consequence of the
subsequent logical formulation of the problem in Multi-Sorted First Order Logic
(more on this in chapters 3 and 4). And, from a practical point of view, subtle
correspondences between Subset rules become explicit (see chapter 8). If we
consider the LatinSquare CSP, the above theorem has a much simpler formulation:
for any valid LatinSquare resolution rule, any rule deduced from it by a
systematic permutation of the words “number”, “row” and “column” is valid.

2.1.5. Analogies

Analogies should not be confused with symmetries. There are analogies between
rows and blocks (or between columns and blocks) but there is no real symmetry.

This is related to the fact that the two canonical coordinate systems do not share
the same properties with respect to the rules of Sudoku. There is a symmetry
between the coordinates in the first system (rows and columns) and, relying
explicitly on this symmetry, many axioms and rules exist by pairs; but there is no
symmetry between the coordinates in the second system (blocks and squares) so that
transposing rules from the first system to the second would be meaningless.

There is nevertheless a partial analogy between rows (or columns) and blocks,
captured by the following informal

meta-theorem 2.3 (informal): for any valid Sudoku resolution rule mentioning
only numbers, rows and columns (i.e. neither blocks nor squares nor any property
referring to such objects), if this rule displays a systematic symmetry between rows
and columns but it can be proved without using the axiom on columns, then the
rule deduced from it by systematically replacing the word “row” by “block” and
the word “column” by “square” is valid and it obviously has the same logical
complexity as the original one. We shall express this as: the set of valid Sudoku
resolution rules is closed under analogy.

What the phrases “systematic symmetry between rows and columns” and
“proved without using the axiom on columns” mean will be defined precisely in
chapter 3.

42 Pattern-Based Constraint Satisfaction and Logic Puzzles

2.2. Introducing the four 2D spaces: rc, rn, cn and bn

To better visualise the symmetries, supersymmetries and analogies defined in the
previous section, we introduce three 2D spaces and their graphical representations.
The latter can be grouped with the usual one to form an extended Sudoku board
(Figure 2.3). These new representations were first introduced in HLS1. How to build
and use them was explained in detail in HLS2; we do not repeat it here.

In the Subset rules of chapter 8, they will be used to illustrate how apparently
complex familiar rules (such as X-wing, Swordfish or Jellyfish) are no more than
the supersymmetric versions of obvious ones (Naked-Pairs, Naked-Triplets and
Naked-Quads, respectively); all this was already in HLS1, where they have also
been the basis for the notion of hidden chains and associated resolution rules.

In this book, however, the main role of these new spaces and representations will
be to justify intuitively the introduction of additional CSP variables.

2.2.1. Additional graphical representations of a puzzle

In addition to the standard “natural” row-column space (or rc-space), we
consider three new “abstract” spaces: row-number, column-number and block-
number. In the sequel, these four spaces will also be called respectively rc-space, rn-
space, cn-space and bn-space and “cells” in these four spaces will be called rc-cells,
rn-cells, cn-cells and bn-cells. As for their graphical representations, when they are
displayed together, they are aligned so that rows in the first two coincide and
columns in the first and the third coincide (cn space is thus displayed as nc).

When it comes to candidates, the reason for considering rn-cell with coordinates
(r, n) in rn-space is that it will contain all the possibilities (all the possible columns)
for the unique instance of number n that must occur in row r; similarly, the reason
for considering cn-cell with coordinates (c, n) in cn-space is that it will contain all
the possibilities (all the possible rows) for the unique instance of number n that must
occur in column c; finally, the reason for considering bn-cell with coordinates (b, n)
in bn-space is that it will contain all the possibilities (all the possible squares) for the
unique instance of number n that must occur in block b.

At any point in the resolution process, all the data in the grid (values and
candidates) can be displayed in any of these four representations. We insist that each
of them displays exactly the same logical information content – or, to say it more
formally: they correspond to the same underlying set of ground atomic formulæ in
the (basically 3D) logical language that will be introduced later. They should be
considered only as different visual supports for symmetry, supersymmetry and
analogy, in the sense that it is easier to detect some patterns in some representations
than in others, as illustrated by several chapters in this book and in HLS.

2. The role of modelling, illustrated with Sudoku 43

The correspondences are straightforward and are given by the equivalences:
– Boolean symbol True is present in nrc-cell (n, r, c), (3D view, to be discussed

in section 2.4),
– number n is present in rc-cell (r, c), (standard view),
– column c is present in rn-cell (r, n),
– row r is in present in cn-cell (c, n),
– square s is in present in bn-cell (b, n), where (r, c) = [b, s].

Notice that pseudo blocks (i.e. groups of 3×3 rn, cn or bn cells) have no meaning
in the new rn, cn or bn representations (this is why we do not mark them with thick
borders): only constraints valid for Latin Squares can be directly propagated in rn or
cn spaces (as will be proved in chapter 3). Moreover, links in bn-space cannot use
the number coordinate.

 column > number >

<
ro

w

 . 1 2

<
ro

w

8 9 0
 3 5 5 6
 6 7 4 8
7 3 7 1
 4 8 4 7
1 1
 1 2 4 5
 8 4 8 2
 5 6 2 7

 column > number >

<
nu

m
be

r 6 7 1

<
bl

oc
k

 7 1 5 6 7
 2 4 2 3 9 8
 5 8 7 1
 9 2 4
 3 9 1 4
4 3 8 5
 8 5 1 2
 5 7

Figure 2.1. Same puzzle Royle17#3 as in Figure 1.1, but viewed in the four different
representation spaces (rc, rn, cn, bn)

Generating these new grid representations by hand is easy as long as we consider
only values, as in Figure 2.1, but it is tedious when it comes to the candidates.

44 Pattern-Based Constraint Satisfaction and Logic Puzzles

Nevertheless, with some practice, it is relatively simple to apply the above stated
equivalences (see HLS). Moreover, programming a spreadsheet computing the three
new grids and their candidates automatically from the first is an easy exercise.

Let us illustrate these new representations with the example given in Figure 1.1
(puzzle Royle17#3). Starting from the standard form of the puzzle, we can first
display its entries in the standard grid and in the three new grids of Figure 2.1. After
applying all the elementary constraints propagation rules in rc-space, we get the
usual representation of the resolution state in rc-space (Figure 1.2).

Now, suppose we generate the full rn, cn and bn representations with candidates.
For our puzzle, there is nothing particularly appealing in the rn and bn
representations, so we skip them. But a surprise is awaiting us with its cn
representation (Figure 2.2). It makes it obvious that there is a cn-cell (c7n1) with
only one possibility left: the unique instance of number 1 that must appear
somewhere in column 7 is in fact confined to row 8 (i.e. cn-cell c7n1 has only one
row candidate: r8).

 c1 c2 c3 c4 c5 c6 c7 c8 c9

n1 r6
 r2 r3

 r2 r3

 r8 r9
r7

 r3
r4 r5

 r3
r4 r5

 r8
r1

r4 r5
 r8 r9

n1

n2
 r2 r3
 r5
 r8 r9

 r2 r3
r4 r5 r6

 r2 r3
r4 r5 r6
 r8 r9

 r2
r4 r6

r7

 r3
r4 r5 r6

 r6
 r8

r4 r5 r6
 r9

r1 n2

n3
r1 r3
 r5
r7 r8 r9

r1 r3
 r5 r6
r7

r1 r3
 r5 r6
r7 r8 r9

 r6
 r8 r9

r2

 r5 r6
r7 r8 r9

r4

r7 r9

 r3

r7 r8 r9
n3

n4
r1 r2 r3

r7 r9

r1 r2 r3
r4 r6
r7

r1 r2 r3
r4 r6
r7 r9

r5
r1 r3

 r9

r1 r3

r7 r9

r1 r2 r3
 r6

r8

 r2 r3
r4 r6

n4

n5
r1 r3
 r5

r9

r1 r3
r4 r5 r6

r4 r6
 r8

r4 r5 r6
 r8

r2
r1 r3
 r6
r7 r8

r4 r5 r6
r7

 r3
r4 r5 r6
r7 r8

n5

n6
r1 r2
 r5
r7 r8

r1 r2
r4 r5 r6
r7

r1 r2
r4 r5 r6
r7 r8

r3

r4 r5 r6
 r8

r4 r5 r6
r7 r8

r9
 r2
r4 r5 r6

 r2
r4 r5 r6

n6

n7 r4
r1 r2

r7

r1 r2

r7 r8 r9

r1 r2
 r6
 r8 r9

r1
 r5 r6
 r8 r9

r1
 r5 r6
r7 r8 r9

 r6
r7 r8

r3

 r5 r6
r7 r8 r9

n7

n8
r1 r2 r3

r8
r1 r2 r3
r4 r6

r1 r2
r4 r6
 r9

r1 r3
r4 r6
 r9

r1 r3
r4 r6
r7 r9

r5
 r2

r7 r9

 r2 r3

r7 r9
n8

n9
r1 r2 r3
 r5
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2
r4 r6
 r8 r9

r1 r3
r4 r5 r6
 r8 r9

r1 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
 r6
r7 r8

 r2
r4 r5 r6
r7 r9

 r2 r3
r4 r5 r6
r7 r8 r9

n9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 2.2. Same puzzle Royle17#3 as in Figure 1.2, but viewed in cn-space

2. The role of modelling, illustrated with Sudoku 45

As an example that the groups of 3×3 contiguous cn-cells have no meaning, we
can see that there are many of these pseudo-blocks in which the same candidate
(row) appears two or more times.

Now, it appears that, if we had considered more attentively the standard rc
representation with candidates (Figure 1.2 of the Introduction), we could have seen
that, in column c7, there is only one row (row r8) having number 1 among its
candidates. Therefore, the unique instance of number 1 that must be found
somewhere in column c7 has only one possibility left of finding its place in this
column and that is in row r8. But the difference is, this cannot be seen in rc-space by
looking only at one rc-cell (namely r8c7) since it still has five candidates: 1, 2, 5, 7
and 9. What the representation in cn-space provides is the possibility of detecting
locally this forced value by looking at a single cn-cell, while in “natural” rc-space
we must examine all the nine rc-cells of column c7. This is a very elementary
example of how rn, cn or bn spaces can be used in practice.

This is our first example of a “Hidden-Single” (HS) in a column. Notice that the
phrase “hidden single in a column” suggests properly that, in column c7, cell r8c7
has a single possible value but that this fact is hidden, i.e. is not visible by looking
only at the candidates for this cell in the usual rc-representation. Of course, one can
also find Hidden-Singles in rows or in blocks. Actually, this Royle17#3 puzzle can
be solved using only these types of Hidden-Singles (in addition, of course, to Naked
Singles and the elementary constraints propagation rules).

Graphically, in the standard rc representation, spotting a Hidden-Single-in-a-
row [respectively in-a-column, in-a-block] for some Number n supposes that one
checks that the other eight cells in this row [resp. this column, this block] do not
contain n among their candidates. In the new rn [resp. cn, bn] representation, all
that is needed is checking that one cell has a single possibility left. Thus, even in
very elementary cases, the new representations simplify the detection job.

Now, a few comments about these new graphical representations are in order.
Should one consider them as a practical basis for human solving? There will
probably never be any general agreement on this point. Our personal opinion is that,
given the additional paperwork needed for building and maintaining the four
representations in parallel, they are not very useful for easy puzzles; but, one can
easily imagine a computerised interface that maintains the coherency between the
four grids (any time a candidate is eliminated from one of them or a value is asserted
in one of them, this information is transferred to the others). Moreover, there are
many difficult puzzles that become easier to solve if we use such representations
(and rules based on them): see HLS, a significant part of which was based on
symmetries, supersymmetries and “hidden” structures.

Anyway, in the present book, they will mainly be considered as a step towards
the introduction of new CSP variables and as a representation system for them.

46 Pattern-Based Constraint Satisfaction and Logic Puzzles

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r1

r2
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r2

r3
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r3

r4
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r4

r5
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r5

r6
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r6

r7
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r7

r8
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r8

r9
n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

n1
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n1

n2
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n2

n3
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n3

n4
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n4

n5
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n5

n6
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n6

n7
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n7

n8
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n8

n9
r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

r1 r2 r3
r4 r5 r6
r7 r8 r9

n9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 2.3. The Extended Sudoku Board, with the four rc, rn, cn and bn spaces; each cell in
this Extended Board represents a CSP variable of the extended list.

2. The role of modelling, illustrated with Sudoku 47

 n1 n2 n3 n4 n5 n6 n7 n8 n9

r1
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r1

r2
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r2

r3
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r3

r4
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r4

r5
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r5

r6
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r6

r7
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r7

r8
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r8

r9
c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

c1 c2 c3
c4 c5 c6
c7 c8 c9

r9

 n1 n2 n3 n4 n5 n6 n7 n8 n9

 n1 n2 n3 n4 n5 n6 n7 n8 n9

b1
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b1

b2
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b2

b3
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b3

b4
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b4

b5
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b5

b6
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b6

b7
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b7

b8
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b8

b9
s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

s1 s2 s3
s4 s5 s6
s7 s8 s9

b9

 n1 n2 n3 n4 n5 n6 n7 n8 n9

48 Pattern-Based Constraint Satisfaction and Logic Puzzles

2.2.2. Extended Sudoku Board

As several examples in HLS have shown, especially when we deal with chains,
the rn, cn and bn spaces allow to describe simple “hidden” patterns and rules that
would need much more complex descriptions in the standard rc-space. In order to
facilitate their use, the rn, cn and bn representations can be grouped with the
standard one into the Extended Sudoku Board of Figure 2.3. Notice that these
representations do not replace the standard one; they are added to it, so that the four
representations, when placed in the proper relative positions, form an extended
board. In order to avoid confusion between numbers, rows and columns, in this
extended board we tend to use systematically their full names: n1, n2, …; r1, r2, …;
c1, c2, … But, when an example uses only the rc-space, we may be lax on this.

2.3. CSP variables associated with the rc, rn, cn and bn cells

What is more important for the present book is that, corresponding to the full
set of four 2D views, one can define an extended set of CSP variables (with
cardinality 324 instead of 81): in addition to all the Xr°c° as before, one can now
introduce all the Xr°n°, Xc°n° and Xb°n° for n° in {n1, n2, n3, n4, n5, n6, n7, n8,
n9}, r° in {r1, r2, r3, r4, r5, r6, r7, r8, r9}, c° in {c1, c2, c3, c4, c5, c6, c7, c8, c9}
and b° in {b1, b2, b3, b4, b5, b6, b7, b8, b9}. And one has the following obvious
interpretation:

The Extended Sudoku Board represents the extended set of CSP variables for
Sudoku; and, at any stage in the resolution process, the content of each cell
represents the set of still possible values (the candidates) for the corresponding
CSP variable.

The original CSP can now be reformulated in a very different way: find a
value for each of these 324 CSP variables such that, for each n°, r°, c°, b°, s° with
(r°, c°) = [b°, s°], one has: Xr°c° = n° ⇔ Xr°n° = c° ⇔ Xc°n° = r° ⇔ Xb°n° = s°.

From a logical point of view, there is nothing really new, only obvious
rewritings of the initial natural language constraints with redundant CSP variables.
One may therefore wonder whether introducing such new variables and constraints
can be of any practical use. All this book will show that it is, but part of the answer
is already given, at the most intuitive and elementary level, by our analysis of the
Hidden Single rule in the example of Figure 2.1: written with the new variables, this
rule appears as a mere Naked Single rule. Thus, a very straightforward extension of
the original set of CSP variables is enough to suggest new resolution rules or to
extend the scope of the existing ones.

Moreover, this apparently innocuous method is indeed very powerful, even at
this basic level: only very few minimal Sudoku puzzles can be solved using

2. The role of modelling, illustrated with Sudoku 49

Elementary Constraints Propagation and Naked Singles; but 29% of the minimal
puzzles (in unbiased statistics) can be solved if we add Hidden Singles (for detailed
statistics, see HLS or chapter 6 of this book for a better version).

2.4. Introducing the 3D nrc-space

Can one go further? Could the above 2D representations be a mere stage towards
a more abstract, more synthetic, 3D representation? Instead of considering the four
2D spaces, one could consider a 3D space, with coordinates n, r, c. In the nrc-cell
with coordinates (n, r, c), one would put the Boolean True (or a 1, or a dot, or any
arbitrarily chosen sign) if n is present in rc-cell (r, c). The 2D spaces would then
appear as the 2D projections of the 3D nrc-space.

Corresponding to this 3D view, there would be a still larger set (of cardinality
2×93 = 1458) of possible CSP variables: all the Xn°r°c° and Xn°b°s° for all the
constants n°, r°, c°, b°, s° as above. Each of these CSP variables would take Boolean
values (True or False). The constraints would then have to be re-written in a
different, more complex way:
Xn°r°c° ∧ Xn°’r°’c°’ = False, for all the pairs {n°r°c°, n°’r°’c°’} such that

– either n° = n°’ and the rc-cells r°c° and r°’c°’ share a unit;
– or n° ≠ n°’ and r°c° = r°’c°’;

together with similar constraints for the Xn°b°s°. Moreover, obvious relationships
could be written between these “3D” CSP variables and the “2D” CSP variables of
the previous section: Xn°r°c° = True ⇔ Xr°c° = n° ⇔ Xr°n° = c° ⇔ Xc°n° = r° ⇔
Xb°n° = s° whenever (r°, c°) = [b°, s°].

However, considered as CSP variables, these “3D” variables would not bring
anything new (with respect to the four sets of “2D” CSP variables), because all the
“strong” CSP constraints they would allow to write can already be written in the
four sets of “2D” CSP variables. Actually, Sudoku has no “3D diagonal”
constraints. Rejecting the adoption of the “3D” variables as CSP variables is thus a
form of Occam’s razor principle.

Nevertheless, the 3D view will not be completely forgotten: each of these non-
CSP-variables will reappear later as a “label” (see section 3.2.1), i.e. as a name
n°r°c° or (n°, r°, c°) for the set of four equivalent possibilities: {Xr°c° = n°,
Xr°n° = c°, Xc°n° = r°, Xb°n° = s°}. And the 3D nrc-space will reappear as a
representation of the set of these labels.

3. The logical formalisation of a CSP

Although this book may be used as a support for exercises in Logic or AI and it
must therefore adopt a clear and non ambiguous formalism, it is not intended to be
an introductory textbook on these disciplines and it also aims at defining resolution
techniques readable with no pre-requisite. The non-mathematically oriented reader
should not be discouraged by the formalism introduced in this chapter: apart from
the proof (in chapter 4) of meta-theorems 2.1, 2.2 and 2.3 and some local remarks, it
will be used mainly as a general background for our resolution paradigm. On the
practical side of things, starting with Part II, the resolution rules will always be
formulated in plain English, so that it will be possible to skip the logical version, if
it is ever written. Moreover, most of the resolution rules (and, in particular, the chain
rules of the various types considered in this book) will also be displayed in very
simple, intuitive, quasi-graphical representations. As for the Sudoku example, the
Sudoku Grid Theory (SGT) and Sudoku Theory (ST) introduced in section 3.5
below can be considered as completely obvious from an intuitive point of view (so
that this chapter and the next can be skipped or kept for later reading).

3.1. A quick introduction to Multi-Sorted First Order Logic (MS-FOL)

In order to have a logical formalism as concrete and intuitive as possible, we
want our formulæ to be simple and compact; we shall therefore use Multi-Sorted
First Order Logic with equality (MS-FOL). A theory in formal logic always deals
with some limited topic and it does this in a well-defined language adapted to its
purpose. The distinctive feature of MS-FOL consists of assuming that the topic of
interest has different types of objects, called sorts.

From a theoretical point of view, such logic is known to be formally equivalent
to standard First Order Logic with equality (FOL): formulæ, theories and proofs in
MS-FOL translate easily to and from formulæ, theories and proofs in FOL. But, for
practical purposes, the natural expressive power of MS-FOL is much greater, i.e.
things are generally much easier to write. For a more extensive introduction to MS-
FOL and an easy but technical proof of its equivalence with FOL, see e.g. [Meinke
et al. 1993].

In most of the real world applications of logic and in computer science (where
modern languages are typed – and even object oriented), MS-FOL rather than FOL

52 Pattern-Based Constraint Satisfaction and Logic Puzzles

is the natural reference, whether or not any kind of variant or extension
(intuitionistic, modal, temporal, dynamic and so on) is required. This is not to
suggest that the specific sorts needed for an application are in any way “natural”;
they can only be the result of a modelling process, as shown in the previous chapter.

Our introduction to MS-FOL follows the standard lines of any introduction to
logic. It is here only for purposes of (almost) self-containment of this book. It also
introduces a few unusual but intuitive and useful abbreviations.

3.1.1. The language of a theory in MS-FOL

Every theory in FOL or MS-FOL is defined by a specific language reflecting the
concepts and only the concepts pertaining to the underlying domain or “universe of
discourse” (its “vocabulary”); but the syntax or “grammar” of all these specific
languages is built according to universal principles.

3.1.1.1. Specific sorts, constants and variables

First is given a set Sort of sorts; these are merely abstract symbols (generally
written as Greek letters or with a capital first letter), naming the various types of
objects of the application. Attached to each sort σ, there are two disjoint sets of
symbols: ct(σ) for naming constants of this sort and var(σ) for naming variables of
this sort. Moreover, the sets attached to two different sorts are disjoint (unless one
sort is a sub-sort of the other). When a variable appears anywhere (e.g. after a
quantifier), its sort does not have to be further specified: it is known from its name.

3.1.1.2. Specific predicates and functions

In FOL, predicate symbols (also called relation symbols) are names used to
express either properties of objects or relations between objects they relate. A
predicate symbol has an “arity”: an integer number defining the number of
arguments it takes. In MS-FOL, it also has a “signature”: a sequence of sorts, the
length of its arity, specifying that each of the arguments of this predicate must be of
the sort corresponding to the place it occupies in it.

One generally considers theories with equality. In this case, for each sort σ, there
is an equality predicate: "=σ” (= with subscript σ) expressing equality between
objects of the same sort σ. "=σ” has arity 2 and signature (σ, σ). We shall also use ≠σ
to express non-equality: if x1 and x2 are variables of sort σ, then x1 ≠σ x2 is an
abbreviation for ¬(x1 =σ x2). As sorts are known from the names of the variables, a
loose notation with = instead of =σ is generally used.

Similarly, a function symbol is a name used to refer to a function. In MS-FOL, it
has a sort (the sort of the result), an arity and a signature (specifying respectively the
number and the sequence of sorts of its arguments).

3. The logical formalisation of a CSP 53

3.1.1.3. Terms and atomic formulæ

From now on, we describe general principles (the “grammar” or syntax of MS-
FOL) for building formulæ (the “sentences” of MS-FOL) from the above-defined
specific “vocabulary”.

Terms of sort σ are defined recursively:
– if “a” is a symbol for a constant of sort σ, then it is a term of sort σ;
– if “x” is a symbol for a variable of sort σ, then it is a term of sort σ;
– if f is a symbol for a function of sort σ, arity n and signature (σ1, …, σn), and if

t1, …, tn are terms of respective sorts σ1, …, σn, then f(t1, …, tn) is a term of sort σ.

An atomic formula is the standard means for expressing elementary relations
between its arguments. Atomic formulæ are defined as follows:

– if R is a symbol for a predicate of arity n and signature (σ1, …, σn), and if t1,
…, tn are terms of respective sorts σ1, …, σn, then R(t1, …, tn) is an atomic formula.

An atomic formula R(t1, …, tn) is said to be ground if for every i from 1 to n, ti
contains no variable symbol. Such a formula expresses a relation between constants.

3.1.1.4. Logical connectives (or logical operators)

The language of MS-FOL has the standard logical connectives of FOL:
– “∧”, “&” or “and” are used indifferently to express conjunction;
– “∨“ or “or” are used indifferently to express disjunction;
– “¬” or “not” are used indifferently to express negation;
– “⇒” expresses logical implication;
– “∀x” expresses universal quantification over objects of the sort of x;
– “∃x” expresses existential quantification over objects of the sort of x.

We shall also make an extensive use of the following (not all very standard)
abbreviations (especially for the formal expression of the chain rules in chapter 5
and of the Subset rules in chapter 8), where F is any formula:

– “∃!xF(x)” expresses that “there exists one and only one x such that F(x)”;
– “∀x≠x1,x2,…,xnF” expresses a single quantification over x; by definition, it

will mean: ∀x[x=x1 ∨ x=x2 ∨ … ∨ x=xn ∨ F];
– “∀≠(x1,x2,…,xn)F” expresses n universal quantifications for n different

objects of the same sort; it should not be confused with the previous abbreviation;
by definition, it will mean:
∀x1∀x2…∀xn[x2=x1 ∨ x3=x1 ∨ x3=x2 ∨ … ∨ xn=x1 ∨ xn=x2 ∨ … ∨ xn=xn-1 ∨ F];

– “∀x∈{x1,x2,…xn}F(x)” does not surreptitiously introduce set theory; it merely
expresses the conjunction of n non quantified formulæ: F(x1) ∧ F(x2) ∧ … ∧ F(xn);

54 Pattern-Based Constraint Satisfaction and Logic Puzzles

– similarly, “∃x∈{x1,x2,…,xn}F(x)” merely expresses the disjunction of n non-
quantified formulæ: F(x1) ∨ F(x2) ∨ … ∨ F(xn).

3.1.1.4 Formulæ

Formulæ of an MS-FOL theory are defined recursively:
– if R(t1, …, tn) is an atomic formula, then it is a formula;
– Boolean combinations of formulæ are formulæ: if F and G are formulæ, then

¬F (also written “not F”), F ∧ G (also written “F & G” or “F and G”) , F ∨ G (also
written “F or G”) and F ⇒ G are formulæ;

– if F is a formula and x is a variable of any sort, then ∀xF and ∃xF are formulæ.

A variable x appearing in a formula is called free if it is not in the scope of a ∀x
or ∃x quantifier. A formula with no free variables is called closed (all its variables
are quantified); otherwise, the formula is called open. An open formula may have
quantifiers (when only some but not all of its variables are quantified).

3.1.2. General logic axioms and inference rules

Notice that, up to this point, no notion of truth has been introduced: a formula is
only a syntactic construct. Provability (rather than truth) will be defined via axioms
and rules of inference. As we shall need classical logic to formulate the CSP
problem in the rest of this chapter and intuitionistic logic to define the CSP
resolution theories in chapter 4, we shall introduce these axioms in a way that allows
a clear separation between classical and intuitionistic logic.

3.1.2.1 Gentzen’s “natural logic”

There are two main formulations of logic. Hilbert’s is probably the most familiar
one (it is the one we adopted in HLS). Here, we shall prefer Gentzen’s “natural
logic” [Gentzen 1934], for three reasons:

– it makes no formal distinction between an axiom (such as: A ∧ B ⇒ A) and a
rule of inference (such as Modus Ponens: from A and A ⇒ B, infer B);

– each logical connective is defined in itself by two complementary and very
intuitive rules of elimination and introduction (whereas some of Hilbert’s axioms
mix several connectives and they can have many equivalent formulations);

– in many occasions, proofs can be made recursively by following the structure
of a formula; a separate rule for each axiom makes this easier; in particular, our
three meta-theorems will be shown to be obvious.

 premises
 Gentzen’s formulation is a set of rules in the form: ———— (name of the rule),
 conclusion

3. The logical formalisation of a CSP 55

Γ1 ⏐⎯ φ1, Γ2 ⏐⎯ φ2 , Γ3 ⏐⎯ φ3, …
more precisely: ————————————————— (name of the rule)

 Δ ⏐⎯ ψ

Γ ⏐⎯ φ is interpreted as: φ can be deduced from Γ;
the whole rule is interpreted as: if φi can be deduced from Γi, for i = 1, 2, 3, …, then
ψ can be deduced from Δ;
here φi and ψ are formulæ, Γi and Δ are finite sets of formulæ (sets, not sequences –
the order of their elements is irrelevant).

This formalism is the same for classical and intuitionistic logic, but the intended
meaning of “can be deduced from” is stronger in intuitionistic logic: it means that
there is an effective, constructive proof (in particular, not only a proof by
contradiction). Whereas the classical interpretations are in terms of True and False
(i.e. φ means that φ is True), the intuitionistic ones are in terms of Provable and
Contradictory (i.e. φ means that φ is provable; φ1 ∧ φ2 means that φ1 is provable and
φ2 is provable; φ1 ∨ φ2 means that φ1 is provable or φ2 is provable).

3.1.2.2 Propositional axioms common to intuitionistic and classical logic

Most of the rules for the various connectives go by pairs (E for elimination, I for
introduction). We use the standard abbreviations such as: Γ, φ1, φ2 for Γ ∪ {φ1, φ2};
we also use the symbol ⊥ for the absurd, considered as a proposition always false.

– Implication:

Γ ⏐⎯ φ ⇒ ψ Γ ⏐⎯ φ Γ, φ ⏐⎯ ψ
——————————— (⇒ E) ——————— (⇒ I)

 Γ ⏐⎯ ψ Γ ⏐⎯ φ ⇒ ψ

(⇒ E) is the way Modus Ponens is expressed in Gentzen’s natural logic.

– Conjunction (there are two elimination rules, one for each conjunct):

Γ ⏐⎯ φ1 ∧ φ2 Γ ⏐⎯ φ1 Γ ⏐⎯ φ2
—————— (∧ E i) ————————— (∧ I)

Γ ⏐⎯ φi Γ ⏐⎯ φ1 ∧ φ2

– Disjunction (there are two introduction rules, one for each disjunct):

Γ ⏐⎯ φ1 ∨ φ2 Γ, φ1 ⏐⎯ ψ Γ, φ2 ⏐⎯ ψ Γ ⏐⎯ φi
—————————————————— (∨ E) —————— (∨ I i)

Γ ⏐⎯ ψ Γ ⏐⎯ φ1 ∨ φ2

56 Pattern-Based Constraint Satisfaction and Logic Puzzles

– Negation: there is no rule for negation, ¬φ is considered as an abbreviation for
φ ⇒ ⊥. Instead there is an elimination rule for the absurd:

– Absurd:

Γ ⏐⎯ ⊥
———— (⊥ E)
Γ ⏐⎯ φ

The meaning of rule (⊥ E) is that anything can be deduced from the absurd.
Contrary to the other connectives, there is (fortunately) no rule (⊥ I) for introducing
the absurd.

3.1.2.3 Propositional axioms specific to classical logic: “the excluded middle”

These are four intuitionistically equivalent forms of the only law specific to
classical logic, the “law of the excluded middle”:

– Excluded middle: ⏐⎯ A ∨¬A
– Reductio ad absurdum (reduction to the absurd): ⏐⎯ ¬¬A ⇒ A
– Contraposition: ⏐⎯ (¬B ⇒ ¬A) ⇒ (A ⇒ B)
– Material implication: ⏐⎯ (A ⇒ B) ⇔ (¬A ∨B)

3.1.2.4 Axioms on quantifiers

They can also be written as natural deductions:
– Universal quantification:

 Γ , φ[t/x] ⏐⎯ ψ Γ ⏐⎯ φ
——————— (∀ E) —————— (∀ I)
 Γ , ∀xφ ⏐⎯ ψ Γ ⏐⎯ ∀xφ

– Existential quantification:

 Γ , φ ⏐⎯ ψ Γ ⏐⎯ φ[t/x]
—————— (∃ E) —————— (∃ I)
 Γ , ∃xφ ⏐⎯ ψ Γ ⏐⎯ ∃xφ

In these rules, φ[t/x] is the formula obtained by replacing every free occurrence of
variable x in φ(x) by term t (where t does not contain variables present in φ). Notice
that, in intuitionistic logic, contrary to classical logic, ∃x is not equivalent to ¬∀x¬.
This is usually interpreted by saying that proofs of existence by the absurd are not
allowed; proofs of existence must be constructive; they must explicitly exhibit the
object whose existence is asserted.

3. The logical formalisation of a CSP 57

3.1.3. Theory specific axioms, proofs and theorems in an MS-FOL theory

In any logic, an axiom is defined as a closed formula and a theory as a set of
axioms including the general logic axioms. In Gentzen’s natural logic, an axiom
appears as a rule with no premise and with empty set Γ. In short notation, it can be
written, as: ⏐⎯ A (as we did in section 3.1.2.3).

A proof is a sequence of expressions of the form Γ ⏐⎯ φ, each of which is either
an axiom or the conclusion of a logic rule with premises equal to previous
expressions in the sequence. A theorem is the last expression of a proof, with empty
set Γ.

3.1.4. Model theory, consistency and completeness theorems

In this section, we shall consider classical logic only. Models of intuitionistic
logic will be introduced in chapter 4.

Definition: an interpretation of a theory T is a set of disjoint sets (unless one sort
is a subsort of another), one for each sort (more precisely, it is a functor i from Sort
to Set, i.e. to the category of sets), together with:

– for each sort σ, an application from ct(σ) into i(σ);
– for each n-ary function symbol f with sort σ and signature (σ1,… σn), a

function i(f): i(σ1) x….x i(σn) → i(σ);
– for each n-ary predicate symbol R with signature (σ1,… σn), a subset i(R) of

i(σ1) ×….× i(σn).

An interpretation i of a theory T can be extended to any formula of T in an
obvious way, following the recursive definition of formulæ. If i is an interpretation
of T and F is a formula, we introduce the symbol “|=” (read satisfies) and the
expression i |= F to mean that i satisfies F.

Definition: a model of T is an interpretation i of T such that its extension
satisfies all the axioms of T.

The most basic theorems of logic (proven in any logic textbook) are Gödel’s
consistency and completeness theorems. They establish the correspondence between
syntax and semantics, i.e. between formal proof and set theoretic interpretations:

– Consistency theorem: a formula provable in T is valid in any model of T;
– Completeness theorem: a formula valid in any model of T is provable in T.

3.1.5. Non uniqueness of models of an MS-FOL theory

In FOL or MS-FOL, there is no general means of specifying that a theory has a
unique model. For theories with an infinite model, it is even the contrary that is true:

58 Pattern-Based Constraint Satisfaction and Logic Puzzles

due to the “compactness” theorem, there are always infinitely many models and
there are models of arbitrarily large infinite cardinality.

3.2. The formalisation of a CSP in MS-FOL: T(CSP)

The CSP axioms can generally be classified into four general categories: CSP
sort axioms (defining the domain of the variables, e.g. rows, columns, …), CSP
background axioms (expliciting general structural properties of the problem, e.g. the
structure of the Sudoku grid), CSP constraints axioms (the core content of the CSP,
e.g. the famous four Sudoku axioms), CSP instance axioms (relative to each
instance of the CSP, e.g. the entries of a puzzle).

3.2.1. Sorts and predicates of the CSP

There are many ways a CSP could be expressed as a logical theory T(CSP).
Some of them may be simpler than the one proposed here, but our universal
formalisation is mainly intended to be a step towards the introduction of CSP
resolution theories.

Our approach will be based on the following two remarks. Firstly, as mentioned
in the Introduction, any non-unary constraint (including the implicit “strong”
constraints between different values for the same variable) is supposed to be re-
written as a set of binary constraints and we can thus suppose that our CSP is binary.

Secondly, the notion of a label will play a central role. Labels will be the basis
for a proper definition of candidates in chapter 4. Our non standard definition of a
label (as an equivalence class of pre-labels) may seem a little convoluted, but it
provides for the possibility of having multiple representations of the same basic
facts without confusing the underlying CSP variables. As shown in chapter 2 with
the four “2D” spaces in Sudoku, multiple representations are very useful in practice.

From a set theoretic point of view, a binary constraint c between two CSP
variables X1 and X2 (which may be the same one) is the subset of pairs in
Dom(X1)×Dom(X2) satisfying this constraint; equivalently, it is also a symmetric
subset of
[{X1}×Dom(X1) ⊕ {X2}×Dom(X2)] × [{X1}×Dom(X1) ⊕ {X2}×Dom(X2)]), which
is itself a symmetric subset of P×P (where P is the set of pre-labels, defined below).

The complement of this set in P×P is a symmetric subset DC(c) of P×P; it is
obviously equivalent to a set of pairwise c-links between pre-labels, if we say that
there is a c-link between two pre-labels p1 and p2 if and only if (p1, p2) ∈ DC(c), i.e.
if they are contradictory with respect to constraint c. The following definitions make
this more formal.

3. The logical formalisation of a CSP 59

Definition: in a CSP, a pre-label is a <variable, value> pair, i.e. a pair <X°, x°>,
where X° is a CSP variable and x° ∈ Dom(X°). The set P of pre-labels is thus the
disjoint union (the “direct sum”, the ⊕) of the domains of the variables. Informally,
this can also be viewed as the union of all the elements of all the domains, after each
element has been subscripted by the name of the variable.

Definition: in a CSP, two pre-labels <X°, x°> and <X°’, x°’> are equivalent if
equalities X° = x° and X°’ = x°’ are equivalent as a direct effect of the definitions.
Equivalence is the result of a modelling decision. It entails that the two equivalent
pre-labels are related to any other pre-labels by exactly the same constraints.

Definition: a label is a name for an equivalence class of pre-labels (with respect
to the above defined equivalence relation). If l° is a label and <X°, x°> is an element
of this class, i.e. if <X°, x°> ∈ l°, we often use <X°, x°> to mean l°, by abuse of
language. It should be noted that, given a CSP variable X° and a value x° in its
domain, there is a unique label associated with the <X°, x°> pair. But, conversely,
due to our approach of introducing several redundant representations in the
modelling process, given a label, there will generally be several elements in its
equivalence class.

Given a label l° and a CSP variable X°, there are only two possibilities: either
there is one and only one value x° in Dom(X°) such that <X°, x°> ∈ l° (in which
case we say that <X°, x°> is a representative of l° and that l° is a label for X°) or
there is no such x° (in which case we say that l° is not a label for X°).

Definition: two different labels l1 and l2 are linked by constraint c if there are
representatives p1 = <X1, x1> of l1 and p2 = <X2, x2> of l2 such that (p1, p2) ∈ DC(c).
“linked-by c” is a symmetric (but neither reflexive nor transitive) relation. This
definition entails that (p1, p2) ∈ DC(c) for any representatives p1 of l1 and p2 of l2.
By abuse of language, we sometimes write that (l1, l2) ∈ DC(c).

Definition: two different labels l1 and l2 are linked by some constraint or simply
linked if (l1, l2) ∈ DC(c) for some c. “linked” is a symmetric (but neither reflexive
nor transitive) relation.

Pre-labels are used as a technical tool for the definition of labels. From now on,
we shall meet mainly CSP variables, values and labels.

We can now define the logical language of T(CSP). Basically, it has the
following sorts, sort constants and sort variables:

– for each CSP variable X, there is a sort X; for CSP variable X, for each
element in Dom(X), there is a constant symbol of sort X (considered as a name for
this possible value of X); variables of sort X are: x, x’, x1, x2, …;

– a sort Label; for each element in the set of labels, there is a constant symbol of
sort Label (the name of this label); variables of sort Label are: l, l’, l1, l2, … but also

60 Pattern-Based Constraint Satisfaction and Logic Puzzles

(because it will be convenient when we define chains) z, z’, z1, z2, … and r, r’, r1, r2,
…; sometimes, we shall also use capital letters for labels;

– a sort Constraint; for each constraint in the CSP, there is a constant symbol of
sort Constraint (the name of this constraint); variables of sort Constraint are c, c’, c1,
c2, …; [additionally, or alternatively when each constraint can be defined in a
unique way by a label and a constraint type (as in the Sudoku or the N-Queens
cases), one may have a sort Constraint-Type; modifying accordingly the general
theory and all the resolution rules defined later in this book is straightforward];

– a sort CSP-Variable; for each CSP variable X, there is a constant symbol X of
sort CSP-Variable (CSP variables are considered to be their own name); variables of
sort CSP-Variable are V, V’, V1, V2, …; CSP-Variable is considered as a sub-sort
of Constraint; [one could also have CSP-Variable-Type, a sub-sort of Constraint-
Type];

– a sort Value; for each value in the (ordinary, set theoretic) union of the
domains of the CSP variables, there is a constant symbol; variables of sort Value are
v, v’, v1, v2, …

The logical language of the CSP has only the following four predicates:
– a unary predicate: value, with signature (Label); the intended meaning of

value(l) is that, if <X, x> is any representative of l, then x is the value of variable X;
– a ternary predicate: linked-by, with signature (Label, Label, Constraint); the

intended meaning is that the first two arguments, labels l1 and l2, are linked by the
constraint given in the third argument, i.e. they are incompatible for this constraint;

– a binary predicate: linked, with signature (Label, Label); the intended meaning
is that the two arguments, labels l1 and l2, are linked by some of the constraints.

For technical reasons, it also has the following predicate:
– a ternary predicate: label, with signature (Label, CSP-Variable, Value); the

intended meaning of label(l, X, x) is that l is the label of the <variable, value> pair
<X, x>.

Notice that, contrary to the sorts Label, Constraint [and/or Constraint-Type] and
CSP-Variable [and/or CSP-Variable-Type] that will play a major theoretical role in
the formulation of the resolution rules, sort Value and associated predicate “label”
will appear mainly for the technical purpose of specifying the correspondence
between labels and <variable, value> pairs (see the “meaning of labels” axiom
below) and for formulating the completeness of the solution (see the eponym axiom
below). In applications, there may be simpler, perhaps implicit ways of specifying
this correspondence and of writing this axiom (see section 3.5).

Optionally, the language of the CSP may include additional sorts useful for
formulating certain types of rules or for interacting with the outer world in natural

3. The logical formalisation of a CSP 61

terms; in some cases, the general sorts above may be defined from these additional
sorts. For details about this, see the Sudoku example (section 3.5).

What is most important here is that:
– the universal language necessary to formulate the general CSP theory is very

restricted;
– with the mere addition of a single predicate “candidate” in the CSP resolution

theories (in chapter 4), this language will be enough to define very general and
powerful resolution rules valid for any CSP.

3.2.2. Implicit CSP sort axioms

In MS-FOL, sort axioms do not have to be written explicitly, as would be the
case in FOL, because they are considered as part of the definition of sorts. For each
sort X, implicit sort axioms for a finite CSP would be of two kinds: exhaustiveness
of domain constants (the domain of X has no other value than those corresponding
to constants of this sort) and unique names assumption (two different constants for
X name two different objects of sort X). Notice that, contrary to constants, there is
no unique names assumption on variables: two variables (of same sort) can
designate the same object (of this sort); when one wants to specify that they refer to
different objects, this must be stated explicitly.

3.2.3. CSP background axioms

Until now, we have defined sorts, predicates and functions and we have given
their intended meaning. But we have written nothing that would formally ensure that
they really have this meaning. The role of the following background axioms is to
express the fixed structure of the problem and its translation into a graph of labels,
independently of any values; they deal with correspondences between original
<variable, value> pairs and labels, and with the re-writing of the original constraints
into symmetric links between labels:

meaning of labels: for each CSP variable X°, for each x° in Dom(X°), if l° is the
(unique) label of <X°, x°> , the axiom defined by the ground atomic formula:
label(l°, X°, x°);

re-writing of each constraint as a set of links: for each constraint c°, for each
pair of labels l°1 and l°2 such that (l°1, l°2) ∈ DC(c°), the axiom defined by the
ground atomic formula: linked-by(l°1, l°2, c°);

symmetry of links: ∀c ∀ l1 ∀ l2 {linked-by(l1, l2, c) ⇔ linked-by(l2, l1, c)}; (this is
normally useless, because it should be ensured by the modelling process);

exhaustiveness of constraints: ∀ l1∀ l2 {linked(l1, l2) ⇔ ∃c linked-by(l1, l2, c)}.

62 Pattern-Based Constraint Satisfaction and Logic Puzzles

This is the general, slightly artificial, formulation of background axioms for any
CSP. In each particular CSP, the concrete expression of these axioms may be
adapted to the specificities of the problem. They may even be partly implicit in the
definition of the “technical sorts”. This will appear clearly in the Sudoku example.

3.2.4. CSP constraints axioms

It is not enough to associate a link with each constraint; the fact that these links
really stand for constraints must also be written. We can now state what could be
called the “core” CSP axioms (the background ones being only technicalities):

Meaning of links as constraints: ∀ l1∀ l2 {value(l1) ∧ linked(l1, l2) ⇒ ¬value(l2)};

Completeness of solution: ∀V ∃!v ∃ l [label(l, V, v) ∧ value(l)].

We have written the first axiom in an asymmetrical way that will make the
transition to CSP resolution theories more natural. As for the second axiom, it can
be read as: each CSP variable has one and only one value. Notice that this does not
mean that the CSP has a unique solution; it only means that, in any solution, there is
one and only one value for each CSP variable.

3.2.5. Logical theory of the CSP: T(CSP)

Finally, define the Theory of the CSP, T(CSP), as the MS-FOL theory written in
the above defined language and consisting of (the implicit sort axioms,) the CSP
background axioms and the CSP constraints axioms.

3.2.6. CSP instance axioms

A given corresponds to the assertion of a value for a label: value(l0). An instance
P of the CSP is specified by a set of n givens l0

1, …, l0
n (where all the l0

i are meta-
symbols for – i.e. they stand for – constant label symbols) and it thus corresponds to
the conjunction:

value(l0
1) ∧ … ∧ value(l0

n). We name it indifferently E(P) or EP (E for “entries”).

Finally, we have the obvious theorem: there is a natural correspondence
between a solution of the original CSP instance P and a model of its logical theory
T(CSP) ∪ EP.

Consequence: as a logical theory can only prove properties that are true in all its
models, the CSP Theory for a given instance can only prove values that are common
to all the solutions of this instance, if there is at least one (it can prove anything if
there is no solution, i.e. if the instance axioms are inconsistent).

3. The logical formalisation of a CSP 63

3.3. Remarks on the existence and uniqueness of a solution

Notice that, given any instance P, the axioms of T(CSP) together with EP a
priori imply neither the existence nor the uniqueness of a solution for P. Concerning
the existence, this may seem to contradict the axiom of completeness, but this axiom
only puts a condition on a solution, it does not assert that there is a solution (i.e. that
EP is consistent with T(CSP)). Indeed, any axiom that would assert the existence of
a solution for any P would be trivially inconsistent. Let us consider the Sudoku
example (see section 3.5 for the specific notations).

In this case, no set of a priori conditions on the entries of an instance P is known
that would ensure that P has a solution (at least one). Obviously, some trivial
necessary conditions for existence can be written (such as not having the same entry
twice in a row, a column or a block) but they are very far from being sufficient.

As for uniqueness, for any puzzle P and corresponding axiom EP, one may think
that it could be expressed by the following additional axiom:

– ST-U: there is at most one solution:

∀r∀c∀nrc∀n’rc [value(nrc, r, c) ∧ value(n’rc, r, c) ⇒ nrc = n’rc].

But this is not true: such an axiom for uniqueness cannot imply that the solution
is unique. It can only imply that, if the solution is not unique, then EP contradicts
this axiom; i.e. theory ST ∪ ST-U ∪{EP} is inconsistent. This is why we prefer to
speak of the assumption rather than the axiom of uniqueness. Whereas the Sudoku
axioms are constraints the player must satisfy, the assumption of uniqueness puts a
constraint on the puzzle creator; a player may choose to believe it or not; if he does,
it amounts to accepting an oracle.

Uniqueness of a solution is a very delicate question (see also section 3.1.5). As
was the case for existence, some trivial necessary conditions on the givens can be
written for uniqueness (such as having entries for at least eight different numbers –
otherwise, given any solution, one could get a different one by merely permuting
two of the remaining numbers) but, again, they are very far from being sufficient.

Uniqueness of the solution (i.e. of a model of the puzzle theory) can only be a
consequence of the givens. But is it possible to write a formula U(P) that would be
equivalent to the uniqueness of the solution if the set of givens of P satisfies it? It is
likely that this problem is much more difficult than solving the puzzle.

There are famous examples of puzzles that have been proposed and asserted as
having a unique solution and that have indeed several. Many of the resolution rules
that have been proposed to take uniqueness into account have been used
inconsistently to conclude that some puzzle has a unique solution. Moreover, the
uniqueness of a solution for a given puzzle can be asserted only if it has already

64 Pattern-Based Constraint Satisfaction and Logic Puzzles

been proven – which supposes that there exists some means for proving it. In our
approach, unless explicitly stated otherwise, we shall never take the uniqueness of a
solution as granted and we therefore do not adopt this assumption for any CSP.

3.4. Operationalizing the axioms of a CSP Theory

From a logical point of view, the above-defined theory T(CSP) is necessary and
sufficient to define the CSP: given any instance P (with axiom EP corresponding to
its entries) and any complete solution G of P, the following are equivalent:

– G is a solution (in the intuitive sense) of instance P of the CSP;
– G is a model of T(CSP) ∪ {EP} (in the standard sense of mathematical logic

introduced in section 3.1);
– G satisfies the axioms of T(CSP) ∪{EP}.

T(CSP) is therefore theoretically perfect: for any instance of the CSP, its formal
and intuitive meanings coincide. The only problem with it is practical: it does not
give any indication on how to build a solution.

From an operational point of view, the “meaning of links as constraints” axioms
could be considered as a set of contradiction detection rules. For instance, they
could be re-written in the following operational form: if, at some point in the
resolution process of an instance, we reach a situation in which two different values
should be assigned to the same variable, then we can conclude that this instance has
no solution (the entries of this instance are contradictory with the axioms). This is,
somehow, an operational form of these axioms. But do these forms express all the
operational consequences of the original formulæ? Actually, the developments in
chapter 4 will show that they do not (and they are indeed very far from doing so).
The situation for the “completeness of a solution” axiom is still worse, since it does
not tell anything about how it can be used in practice.

Vague as this may remain, let us define the aim we shall pursue with CSP
Resolution Theories: we want to replace the above axioms by another set of axioms
that could easily be interpreted as (or transformed into) a set of operational rules for
building a solution. And, since most known resolution rules in the Sudoku case and
in many logic puzzles are based on the notion of a candidate and on the progressive
elimination of candidates, and since this idea corresponds to the common one of
domain restriction in the general CSP, we want to write rules explicitly designed for
this purpose. The problem is that, unless one admits recursive search (which is not a
rule), no theory of this kind is known that would be equivalent to T(CSP).

This book can thus be considered as being about the operationalization of the
axioms of a CSP Theory – or about its replacement by a set of axioms that can be
used in a constructive way.

3. The logical formalisation of a CSP 65

3.5. Example: Sudoku Theory, T(Sudoku) or ST

The rest of this chapter illustrates the abstract general theory with the Sudoku
case. T(Sudoku) is written ST for short. With the detailed Sudoku example, our goal
is to illustrate simultaneously the above formalism and the ways of taking some
liberty with it in order to simplify it in any specific case. For this purpose, we start
with the “natural” formalisation of Sudoku and we show how it can be made
compliant with the above general approach. For the most part, at the cost of some
redundancy, the following sections are designed in such a way that they can be read
independently of the previous ones or before them, for readers who do not like the
abstract technicalities of formal logic.

3.5.1 Sudoku background axioms: Sudoku Grid Theory, SGT

The minimal underlying framework of Sudoku – the minimal support necessary
for the representation of any Sudoku puzzle and any intermediate state in the
resolution process – is a 9×9 grid composed of nine disjoint square blocks of 3×3
contiguous cells. Therefore, whichever formulation one chooses for the constraints
(in rows, columns and blocks) defining the game, any theory of Sudoku must
include an appropriate theory of such a grid. In the sequel, (our version of) this
theory will be called 9-Sudoku Grid Theory (or simply Sudoku Grid Theory or
SGT); it will contain all the general and “static” or “structural” knowledge about
grids and only this knowledge, i.e. all the knowledge that does not depend on any
particular entries for a puzzle and that does not change throughout the resolution
process.

3.5.1.1. Sorts

In the limited world of SGT (and of ST in the next section), we shall consider
the following sorts:

– Number: “Number” is the type of the objects intended to fill up the rc-cells of
a grid; when, outside of the formal ST world, we need to refer to other kinds of
numbers, we shall use their standard specific mathematical type: for instance,
integers from 0 to infinity are simply called integers; the subscripts appearing in
variables of any sort are integers, not Numbers; we have chosen to introduce the sort
Number, because Sudoku is generally expressed in terms of digits, but one could
introduce instead a sort Symbol, with nine arbitrary constant symbols;

- constant symbols: n1, n2, n3, n4, n5, n6, n7, n8, n9;
- variable symbols: n, n’, n’’, n0, n1, n2, …;

– Row:
- constant symbols: r1, r2, r3, r4, r5, r6, r7, r8, r9;
- variable symbols: r, r’, r’’, r0, r1, r2, …;

66 Pattern-Based Constraint Satisfaction and Logic Puzzles

– Column:
- constant symbols: c1, c2, c3, c4, c5, c6, c7, c8, c9;
- variable symbols: c, c’, c’’, c1, c2, …;

– Block:
- constant symbols: b1, b2, b3, b4, b5, b6, b7, b8, b9;
- variable symbols: b, b’, b’’, b0, b1, b2, …;

– Square:
- constant symbols: s1, s2, s3, s4, s5, s6, s7, s8, s9;
- variable symbols: s, s’, s’’, s0, s1, s2, …;

– Label: we define Label as a sort with domain the 729 elements (n°, r°, c°) such
that n° is a Number constant, r° is a Row constant and c° is a Column constant; each
label (n°, r°, c°) will be the label for four different <variable, value> pairs, one
associated with each of the four groups of CSP-Variables, namely: (n°, r°, c°) =
{<Xr°c°, n°>, <Xr°n°, c°>, <Xc°n°, r°>, <Xb°n°, s°>}, where [b°, s°] = (r°, c°);
labels can be assimilated with cells in 3D space; we sometimes use a loose notation
n°r°c° for (n°, r°, c°);

- constant symbols: (n1, r1, c1), … (n9, r9, c9); sometimes also written in a
loose notation: n1r1c1, … n9r9c9;

- variable symbols: l, l’, …, r, r’,… , z, z’;
– Constraint-Type (and CSP-Variable-Type):

- constant symbols: rc, rn, cn, bn; notice that we use only four symbols
corresponding to the four original types of constraints (a number in a cell, a row, a
column or a block), not to specific constraints (e.g. a given number in a given row);

- variable symbols: lk, lk’, lk’’, lk0, lk1, lk2, … (“lk” instead of “c” in the
general theory, because symbol “c” is used for columns in Sudoku; we choose the
“lk” symbol because constraint types are used to link candidates).

As the variable symbols explicitly carry their sort with the first letter(s) of their
name, they can be used straightforwardly in quantifiers or in equality with no further
specification. For instance:

– ∀r always means “for all rows r”,
– ∀c always means “for all columns c”,
– ∃n always means “there exists a number n”,
– = can only be used with objects of the same sort, so that writing r = c is not

allowed; to be more formal, the = sign should also be subscripted according to the
type of objects it relates; for instance, to assert that two rows r1 and r2 are equal, we
should use a specific equality symbol =r and write r1 =r r2 (but we shall be lax on this
notation also, since no confusion can arise from it).

3. The logical formalisation of a CSP 67

Here is a very simple example of how MS-FOL simplifies formulæ: one can
write ∀rF instead of what could only be written in FOL with an additional “row”
predicate, something like ∀r[row(r) ⇒ F]. In longer formulæ, this may lead to
drastic simplifications.

Remark on Constraint versus Constraint-Type: while the four elements of
Constraint-Type correspond to the four 2D-spaces, the elements of Constraint (if we
used this sort instead of Constraint-Type) would be represented by the 324 2D-cells
of these four 2D spaces. Given any label l = (n°, r°, c°) and any constraint type lk,
there is one and only one constraint of type lk “passing through l”.

3.5.1.2. Function and predicate symbols

The SGT language has the “label” predicate necessary to specify all the
correspondences between each label n°r°c° and its four <Xr°c°, n°>, <Xr°n°, c°>,
<Xc°n°, r°>, <Xb°n°, s°> representatives. It also has the following functions: block
and square [both with signature (Row, Column) and with respective sorts Block and
Square], row and column [both with signature (Block, Square) and with respective
sorts Row and Column], establishing the correspondences between the two
coordinate systems: (r, c) and [b, s]. See sections 2.3 and 2.4 for details.

3.5.1.3. Background axioms (Axioms of Sudoku Grid Theory: SGT)

SGT has all the axioms asserting the equivalences stated in section 2.3.5, but
they are now written in the form specified by the general theory (meaning of labels),
i.e. for each Number constant n°, for each Row constant r°, for each Column
constant c°, for each Block constant b° and for each Square constant s° such that
[b°, s°] = (r°, c°), the following four ground atomic formulæ are axioms of SGT:
label(n°r°c°, r°c°, n°), label(n°r°c°, r°n°, c°), label(n°r°c°, c°n°, r°),
label(n°r°c°, b°n°, s°).

3.5.1.4. Block-free Grid Theory, LatinSquare Grid Theory (LSGT)

The Sudoku Grid Theory defined above can be simplified according to the
following principles:

– forget the sorts Block and Square,
– forget all the functions and predicates referring to the above sorts.

What is thus obtained is a theory of grids that does not mention blocks and that
is appropriate for Latin Squares: LSGT.

Theorem 3.1: There is a one-to-one correspondence between the models of
SGT and the models of LSGT with added functions defining the proper
correspondence between the two coordinate systems.

68 Pattern-Based Constraint Satisfaction and Logic Puzzles

Proof: the proof involves some easy but tedious technicalities concerning the
correspondence between theories in MS-FOL and in FOL (along the lines of
[Meinke & al. 1993]). Given a model of SGT, just forget anything about blocks and
squares to get a model of LSGT. Conversely, given a model of LSGT, the key is that
the added functions can be used to define new predicates for blocks and squares and
that these predicates can, in turn, be used to introduce the new sorts Block and
Square. Details of the proof are left as an exercise for the motivated reader.

3.5.2. Sudoku axioms, Sudoku Theory (ST)

With a proper choice of the sorts, Sudoku Theory (ST) can be axiomatised as a
mere transliteration of the naive problem formulation. ST is an extension of Sudoku
Grid Theory (SGT).

3.5.2.1. The sorts, functions and predicates of Sudoku Theory

ST has the same sorts, functions and axioms as SGT.

In addition, in conformance with the general theory, ST also has a predicate
value with signature (Number, Row, Column). We define an auxiliary predicate
value’ with signature (Number, Block, Square) by the change-of-coordinates axiom:

CC: ∀n∀b∀s {value’[n, b, s] ⇔ value(n, row(b, s), column(b, s))}.

3.5.2.2. The axioms of Sudoku Theory

The only point in stating the ST axioms is that we must be careful if we want to
guarantee the best possible proximity with the resolution theories to be defined later.
For instance, if we write that there must be one value for each cell (in fine an
inescapable condition of the problem), this precludes all intermediate states from
satisfying this axiom; we therefore try to limit the number of such assertions: indeed
it will appear in only one axiom (ST-C). All the other general conditions in the
statement of the problem can be expressed as “single occupancy” or “mutual
exclusion” axioms – this is why, anticipating on the present formalisation, we
adopted the first presentation of the game in the Introduction.

ST is defined as the specialisation of SGT (i.e. it has all the axioms of SGT) with
CC and the following additional five axioms.

The first four axioms, “meaning of links as constraints axioms” are the quasi
direct transliteration of the English formulation of the problem, as given in the
Introduction:

– ST-rc: in natural rc-space, every rc-cell has at most one number as its value
(i.e. given any rc-cell, it can have at most one value):

∀r∀c∀n1∀n2 {value(n1, r, c) ∧ n1 ≠ n2 ⇒ ¬value(n2, r, c)};

3. The logical formalisation of a CSP 69

notice that the condition linked-by(l1, l2, rc) of the general theory is here written
more explicitly by giving the same values to the r and c components of both labels
l1 = n1rc and l2 = n2rc and different values to their n components; the same remark
applies to the next three axioms;

– ST-rn: in abstract rn-space, every rn-cell has at most one column as its value
(i.e. given a row, a given number can appear in it in at most one column):

∀r∀n∀c1∀c2 {value(n, r, c1) ∧ c1 ≠ c2 ⇒ ¬value(n, r, c2)};

– ST-cn: in abstract cn-space, every cn-cell has at most one row as its value (i.e.
given a column, a given number can appear in it in at most one row):

∀c∀n∀r1∀r2 {value(n, r1, c) ∧ r1 ≠ r2 ⇒ ¬value(n, r2, c)};

– ST-bn: in abstract bn-space, every bn-cell has at most one square as its value
(i.e. given a block, a given number can appear in it in at most one square):

∀b∀n∀s1∀s2 {value’[n, b, s1] ∧ s1 ≠ s2 ⇒ ¬value’[n, b, s2]};

As in the general theory, the last axiom of ST says that the grid is complete:
– ST-C: the grid must be complete:

∀r∀c∃n value(n, r, c).

At this point, it is important to notice that the first three of these axioms exhibit
the symmetries and supersymmetries reviewed in chapter 2 (and they are block-free
according to the definition in the next section), while the fourth exhibits analogy
with the second and the third (and it is not block-free).

To better explicit the link with the general theory, let us introduce the following
auxiliary predicate, with arity 7 and signature (Number, Row, Column, Number,
Row, Column, Constraint-Type):
linked-by(n1, r1, c1, n2, r2, c2, lk) is defined as a shorthand for:
[lk = rc ∧ r1 = r2 ∧ c1 = c2 ∧ n1 ≠ n2] ∨
[lk = rn ∧ r1 = r2 ∧ n1 = n2 ∧ c1 ≠ c2] ∨
[lk = cn ∧ c1 = c2 ∧ n1 = n2 ∧ r1 ≠ r2] ∨
[lk = bn ∧ block(r1, c1) = block(r2, c2) ∧ n1 = n2 ∧ square(r1, c1) ≠ square(r2, c2)].

Then predicate “linked” of the general theory, with arity 6 and signature
(Number, Row, Column, Number, Row, Column), is obviously equivalent to:
[n1 ≠ n2 ∧ r1 = r2 ∧ c1 = c2] ∨ [n1 = n2 ∧ share-a-unit(r1, c1 , r2, c2)]
with auxiliary predicate share-a-unit(r1, c1, r2, c2) defined as:
[r1 = r2 ∨ c1 = c2 ∨ block(r1, c1) = block(r2, c2)] ∧ [r1 ≠ r2 ∨ c1 ≠ c2].

70 Pattern-Based Constraint Satisfaction and Logic Puzzles

3.5.2.3. The axioms of LatinSquare Theory: LST

One can define LatinSquare Theory (LST) as the Theory obtained from ST by
forgetting any sort, function, predicate and axiom mentioning blocks and/or squares.
In formal logic, we should normally have started with LST and specialised it to ST,
but we are more interested in ST than in LST.

3.5.3 Instance specific axioms (specifying the entries of a given puzzle)

In order to be potentially consistent with any set of entries, ST includes no
axioms on specific values. With any specific puzzle P we can associate the axiom EP
defined as the finite conjunction of the set of all the ground atomic formulæ
value(nk, ri, cj) such that there is an entry of P asserting that number nk must occupy
rc-cell (ri, cj). Then, when added to the axioms of ST, axiom EP defines the theory of
the specific puzzle P.

3.6. Formalising the Sudoku symmetries

In this section, we introduce the concept of a block-free formula and we define
three transformations on formulæ (in the language of ST) that will be used in
chapter 4 to state and prove the formal versions of the intuitive meta-theorems 2.1,
2.2 and 2.3. We also prove a theorem that may be interesting in its own respect: it
states that if a block-free formula (a formula that does not mention blocks or
squares) can be proved in ST, then it can be proved without axiom ST-bn. As a
result, a block-free formula is true for Sudoku (i.e. in ST) if and only if it is true for
Latin Squares (i.e. in LST).

3.6.1. Block-free predicates and formulæ

The notion of a block-free formula is the formalisation of the natural language
phrase (“mentioning only numbers, rows and columns”) that we used in chapter 2 to
express informally our Sudoku meta-theorems. Block-free formulæ play a major
role in all that is related to Sudoku, because they are the formulæ to which these
meta-theorems can be applied.

Definition: a function or predicate is called block-free if the sorts Block and
Square do not appear in its sort or signature. “=n”, “=r” and “=c” are block-free
predicates, and so are “label” and “value”, whereas “=b" and “=s” are not.

Definition: a formula is called block-free if it is built only on block-free
functions and predicates and it does not contain the bn constant (of Constraint-
Type). For instance, “value” is block-free but “value’ ” is not.

3. The logical formalisation of a CSP 71

3.6.2. The Src, Srn and Scn transformations of a block-free formula

In order to deal properly with the different kinds of symmetries reviewed in
chapter 2, we need the following definitions. For any block-free formula F, we
define inductively the three block-free formulæ Src(F), Srn(F) and Scn(F). These
formulæ have the same arity as F but they have different signatures.

Before giving the formal definitions, notice that they are just a pompous way of
saying what was said informally in chapter 2, so that they can be skipped as
technicalities of secondary interest:

– Src(F) is the formula obtained from F by permuting systematically the words
“row” and “column”,

– Srn(F) is the formula obtained from F by permuting systematically the words
“row” and “number”,

– Scn(F) is the formula obtained from F by permuting systematically the words
“column” and “number”.

As is usual in logic, the formal definitions of Src(F), Srn(F) and Scn(F) are given
recursively, following the general construction of a formula:

– block-free terms (notice that the sorts cannot be permuted in functions, but the
subscripts on the variables are permuted instead; this is technically important,
especially when we deal with transformations of formulæ with different numbers of
variables of different sorts):

– block-free atomic formulæ (as in functions, the sorts cannot be permuted in
predicate “value”, but the subscripts on the variables are permuted instead):

F Src(F) Srn(F) Scn(F)
f(ni, rj, ck) f(ni, rk, cj) f(nj, ri, ck) f(nk, rj, ci)

F Src(F) Srn(F) Scn(F)
ni =n nj ni =n nj ri =r rj ci =c cj
ri =r rj ci =c cj ni =n nj ri =r rj
ci =c cj ri =r rj ci =c cj ni =n nj
lk = rc lk = rc lk = cn lk = rn
lk = rn lk = cn lk = rn lk = rc
lk = cn lk = rn lk = rc lk = cn
value(ni, rj, ck) value(ni, rk, cj) value(nj, ri, ck) value(nk, rj, ci)

72 Pattern-Based Constraint Satisfaction and Logic Puzzles

– logical connectives: each of the logical connectives merely commutes with
each of Src, Srn, Scn;

– quantifiers: they partly commute, with quantified variables exchanged:

Notice that the three transformations are involutive, i.e. for any block-free
formula F, one has Src•Src(F) = F, Srn•Srn(F) = F and Scn•Scn(F) = F.

3.6.3. Srcbs transformation of a block-free formula

For a block-free formula F, its Srcbs transform is also defined recursively by:
– block-free terms (notice again that the sorts cannot be permuted in the

functions, but the subscripts on the variables are permuted instead; this is technically
important, especially when we deal with transformations of formulæ with different
numbers of variables of different sorts):

– block-free atomic formulæ:

F Srcbs(F)
ni =n nj ni =n nj
ri =r rj bi =b bj
ci =c cj si =s sj
lk = rc lk = rc
lk = rn lk = bn
lk = cn ⊥
value(ni, rj, ck) value’[ni, bj, sk]

– logical connectives: all of them merely commute with Srcbs;

– quantifiers: they partly commute, (r, c) variables being changed to [b, s]:

F Src(F) Srn(F) Scn(F)
∀niF, ∃niF ∀niSrc(F), ∃niSrc(F) ∀riSrn(F), ∃riSrn(F) ∀ciScn(F), ∃ciScn(F)
∀riF, ∃riF ∀ciSrc(F), ∃ciSrc(F) ∀niSrn(F), ∃niSrn(F) ∀riScn(F), ∃riScn(F)
∀ciF, ∃ciF ∀riSrc(F), ∃riSrc(F) ∀ciSrn(F), ∃ciSrn(F) ∀niScn(F), ∃niScn(F)

F Srcbs(F)
f(ni, rj, ck) f(ni, bj, sk)

3. The logical formalisation of a CSP 73

F Srcbs(F)
∀niF, ∃niF ∀niSrcbs(F), ∃niSrcbs(F)
∀riF, ∃riF ∀biSrcbs(F), ∃biSrcbs(F)
∀ciF, ∃ciF ∀siSrcbs(F), ∃siSrcbs(F)

3.6.4. Formal symmetries between the ST axioms

Using the above definitions, figure 3.1 shows all the symmetry, supersymmetry
and analogy relationships between the four main axioms of ST.

Figure 3.1. The symmetry relationships between the ST axioms

3.7. Formal relationship between Sudoku and Latin Squares

3.7.1. Block-free transform of a formula

With any formula G (not necessarily block-free) one can associate a well-defined
block-free formula BF(G), called its block-free transform. It is defined recursively:

– if G is a block-free atomic formulæ, then BF(G) is F;
– if G is a non block-free atomic formulæ, then BF(G) is ⊥;
– logical connectives ¬, ∧, ∨, and ⇒ merely commute with BF;

Src

ST-rc

Srn

ST-rn

Scn

ST-cn

Src

Scn

Srn

ST-bn
STrcbs

74 Pattern-Based Constraint Satisfaction and Logic Puzzles

– if G is ∀xG1, then BF(G) is ∀xBF(G1) if x is a block-free variable and it is
merely G1 if x is a non block-free variable;

– if G is ∃xG1, then BF(F) is ∃xBF(G1) if x is a block-free variable and it is
merely G1 if x is a non block-free variable.

Remarks:
– the last two conditions are justified by the fact that non block-free variables

are eliminated together with the non block-free atomic formulæ containing them;
– for any formula G (and not only the atomic ones), if G is block-free, then

BF(G) is merely G.

3.7.2. Formal relationship between Sudoku and Latin Squares

Theorem 3.2: a block-free formula that is valid in ST has a block-free proof.

As an obvious corollary, we have:

Theorem 3.3: a block-free formula is valid for Sudoku (i.e. is a theorem of ST)
if and only if it is valid for Latin Squares (i.e. it is a theorem of LST).

Proof of theorem 3.2: Remember the standard definition of a proof of F: it is a
sequence of formulæ ending with F, where each formula in the sequence either is a
logical axiom or is an axiom of ST or can be deduced from the previous ones by the
rules of natural deduction.

Let F be a block-free formula and consider a proof of it in ST. It suffices to show
that, if we apply BF to any step in this proof, we get a block-free proof of BF(F).
This is an advantage of the Gentzen’s formulation of logic adopted in this book: it is
obvious (though tedious to check in detail) that all the rules of natural deduction in
section 3.1 are stable under the BF transformation. (See HLS1 for a slightly less
obvious proof based on Hilbert’s formalism instead of Gentzen’s). The proof
therefore reduces to the following obvious relationship between the sets of axioms
of ST and LST: BF(ST) = LST.

4. CSP Resolution Theories

Before we try to capture CSP Resolution Theories in a logical formalism, we
must establish a clear distinction between a logical theory of the CSP itself (as it has
been formulated in chapter 3, with no reference to candidates) and theories related to
the resolution methods (which we consider from now on as being based on the
progressive elimination of candidates). These two kinds of theories correspond to
two options: are we just interested in formulating a set of axioms describing the
constraints a solution of a given CSP instance (if it has any) must satisfy or do we
want a theory that somehow applies to intermediate states in the resolution process?
To maintain this distinction as clearly as possible, we shall consistently use the
expressions “CSP Theory” for the first type and “CSP Resolution Theory” for the
second type. Section 4.1 elaborates on this distinction. Since it has been shown in
chapter 3 that formulating the first theory is straightforward, theories of the second
kind will remain as our main topic of interest in the present book. Nevertheless, it
will be necessary to clarify the relationship between the two types of theories and
between their respective basic notions (“value” and “candidate”).

In section 4.2, we formalise the notion of a “resolution state”. This provides the
intuitive notion of a candidate with a clear logical status allowing to define precise
relationships between the basic formal predicates “value” and “candidate”.

As the first illustration of our logical formalism, section 4.3 shows that any CSP
has a minimal CSP Resolution Theory (its Basic Resolution Theory or BRT(CSP))
and it expresses its axioms in this formalism. Here, “minimal” means that all the
other resolution theories introduced in this book will be obtained by adding axioms
to BRT(CSP) (logically speaking, they will thus be specialisations of BRT(CSP)).
Section 4.4 then defines the general concepts of a CSP Resolution Theory. Section
4.5 defines a very important property a resolution theory can have (or not), the
confluence property, and it shows that BRT(CSP) has it in any CSP.

Finally, sections 4.6 and 4.7 deal with the Sudoku example. The latter proves the
formal versions of the informally stated meta-theorems 2.1, 2.2 and 2.3. It also
proves an extension of theorem 2.3 that will be very useful when we want to apply it
in practice. Notice that, even without understanding the technicalities of their proofs,
one can consider these meta-theorems as simple heuristics suggesting new potential
rules and one can prove directly all the resolution rules deduced from them (this will
generally be very easy).

76 Pattern-Based Constraint Satisfaction and Logic Puzzles

4.1. CSP Theory vs CSP Resolution Theories; resolution rules

As our first approximation, we could say that a CSP Theory is about what we
want (a complete assignment of values to the CSP variables satisfying the general
CSP constraints and the specific givens), with no consideration at all for the way it
can be obtained, whereas a CSP Resolution Theory is about how we can reach this
desired final state; but then we must correct the resulting erroneous suggestion that a
theory of this second kind would be mainly concerned with resolution processes.

To state it formally, throughout this book, the status we grant a CSP Resolution
Theory is logical, not operational; and we make a clear distinction between a
Resolution Theory and possible resolution methods that may be built as operational
counterparts or algorithmic computer implementations of it (e.g. by superimposing
priorities on the pure logic of the resolution rules). Such resolution methods may
themselves be considered from different points of view and different kinds of logic
may be used to express these. For instance, one might be interested in the dynamics
of the resolution processes associated with the method, in which case one could use
temporal or dynamic logic for modelling them. This is not the point of view chosen
in this book, where we consider a resolution method from the point of view of the
“resolution states” underlying it and we adopt modal logic (logic of necessity and
possibility) to model these. However, whereas the main part of this book deals with
resolution theories themselves, these theories can have properties, such as
confluence, that will be shown (in chapter 5) to be very important when one wants
to define and implement specific resolution methods based on them.

Then, from a logical standpoint, the only purpose of a Resolution Theory is to
restrict the number of resolution states compatible with the axioms (i.e. the number
of partial solutions, expressed in terms of values and candidates) and the
relationships that exist between them. From an operational standpoint, it can be used
as a reference for defining a resolution method that will dynamically modify the
current information content; but, before a resolution theory can be used this way,
there must be some operationalization process. This distinction is essential (and very
classical in Artificial Intelligence) because a given set of logical axioms (a
Resolution Theory) can often be operationalized in many different ways. (To be
more specific: it can, for instance, be expressed as very different sets of rules in an
inference engine; but it can also be implemented as a classical C program.)

Whereas CSP Theories, as developed in chapter 3 are very simple, CSP
Resolution Theories require a more complex approach. All the CSP Resolution
Theories should be restricted to satisfy two obvious general requirements: a) any of
their rules should be a consequence of the CSP theory (under conditions, to be
defined, on the relationship between values and candidates); b) they should apply to
any set of givens. This is very far from being enough to constrain the possible
theories of interest. But, as a consequence of these broad requirements, some aspects

4. CSP Resolution Theories 77

of CSP solving are excluded from our considerations, such as any form of
psychological bias: in Sudoku, we do not take into account the physical proximity of
rows or columns, although it is probably easier to see Hidden Triplets in three
contiguous cells in a row than in three cells disseminated in this row; in map
colouring, we forget the real shapes of the regions, although complicated shapes
may make some adjacency relations more difficult to see.

4.2. The logical nature of CSP Resolution Theories

The analyses in this section constitute the central part of this chapter and they are
the key to understanding the logical foundations of this book: given that the naive
notion of a candidate is the basis for the various popular resolution rules in many
logic puzzles and that it will also be the basis for the formulation of any resolution
rule for any CSP, can one grant it a well defined logical status? Another point to be
considered here is the relationship between the CSP Theory T(CSP), which does not
use this notion, and related CSP Resolution Theories, which are based on it.

4.2.1. On the (non existent) problem on non-monotonicity

Let us first clarify the following point. One apparent problem in choosing the
notion of a candidate as the basis for a logical formulation is that the set of
candidates for any CSP variable is monotonically decreasing throughout the
resolution process, whereas logic is usually associated with monotonically
increasing sets: starting from what is initially assumed to be true (the axioms), each
step in a proof adds new assertions to what has been proven to be true in the
previous steps; there is no possibility in standard logic for removing anything.

Do we therefore need to use some sort of non-monotonic logic, as is often the
case with AI problems? Not really: instead of considering candidates for a variable,
we can consider the complementary set of “not-candidates” or excluded values, i.e.
values that are effectively proven to be incompatible with all that is already known
(in the Sudoku case, the crossed or erased candidates in the grid on the paper
sheet) – and this is a monotonically increasing set. By “effectively proven”, one
should understand “proven by admissible reasoning techniques” (and the sequel will
show that the informal word “admissible” must in turn be understood technically as
“intuitionistically valid” or, equivalently, “constructively valid”).

What is really important in logic is that the abstract information content is
monotone increasing with the development of the proof. (One should not confuse
this information content with possibly varied representations of it.) In the sequel,
when we write resolution rules, we shall conform to what we have done in HLS for
Sudoku and we shall refer to candidates, but we must keep in mind that, when
expressed with not-candidates, the underlying logic is always monotone increasing.

78 Pattern-Based Constraint Satisfaction and Logic Puzzles

4.2.2. Resolution states and resolution models

Notwithstanding the above remarks on the informal notion of a candidate, can
we grant it a precise logical status allowing us to use it consistently in the expression
of the resolution rules? But, first of all, how is it related to the primary predicate
“value”? Notice the vocabulary we used spontaneously: a value is asserted as being
true, while a candidate is proven (or not proven) to be incompatible with all that is
already proven. The most straightforward way of interpreting this is as an indication
that the underlying logic of any CSP Resolution Theory based on candidates should
be modal: it should be a logic of possibility/necessity as opposed to a logic of truth
(such as standard logic or MS-FOL).

Before entering into the formal details, let us define the notions of a resolution
state and of a resolution model. Defining the model theoretic aspects before the
syntactic aspects is not the usual way to proceed in logic, but it is more intuitive.

4.2.2.1. Resolution states

Definitions (here, meta-variable l° designates a constant symbol for a label):
– a value datum is any ground atomic formula of the kind value(l°);
– a candidate datum is any ground atomic formula of the kind candidate(l°);
– a resolution state RS is any set of value data, of candidate data and of negated

candidate data; it is not necessarily devoid of (implicit) contradictions with respect
to the CSP constraints, but it cannot contain both candidate(l°) and ¬candidate(l°)
for the same label l°; we shall write RS |= value(l°), RS |= candidate(l°) and
RS |= ¬candidate(l°) to mean respectively that the value datum is present in RS, that
the candidate datum or the negated candidate datum is present in RS;

– for a resolution state RS and a label l°, if RS |= candidate(l°) [respectively
RS |= ¬candidate(l°), RS |= value(l°)], we say informally that l° is a candidate [resp.
is not a candidate, is a value] in RS.

Notice that:
a) we need not consider negated value data, because value data can only be asserted;
b) instead of considering the absence of a candidate from RS (which could have an
ambiguous interpretation), we consider the presence of its negation (the positive fact
that the candidate has been “effectively eliminated” from RS).

Any resolution state is a finite set and the whole set RS of resolution states is
therefore finite (and independent of any particular instance of the CSP) although
very large.

As suggested in part by the name, a resolution state is intended to represent the
totality of the ground atomic facts and their negations (in terms of value and
candidate predicates) that are present in some possible state of reasoning for some

4. CSP Resolution Theories 79

instance of the CSP. This is what we called informally the information content of
this state – in which all the “static” knowledge about the CSP, such as links between
labels, is considered as background knowledge and is not explicitly listed, but is
implicitly present. In the Sudoku CSP, a resolution state is a straightforward
abstraction for something very concrete: the set of decided values, of candidates still
present on the sheet of paper used to solve a puzzle and of candidates erased or
crossed. (And the structure of the grid remains implicit.)

Vocabulary: if RS is a resolution state, “a candidate l in RS” is an informal way
of saying “a label l such that RS |= candidate(l)”. Similarly, “a value in RS” is a way
of saying “a label l such that RS |= value(l)”.

4.2.2.2. Resolution models

In order to be able to give the above interpretation of a resolution state in a way
that respects our resolution paradigm, we must add some structure on the set RS of
all the resolution states and on the way they are related. On RS, we define a natural
partial order relation: RS1 ≤ RS2 if and only if, for any constant symbol l° for a
label, one has:

– if RS1 |= value(l°), then RS2 |= value(l°), (assertion/addition of a value is not
reversible),

– if RS1 |= ¬candidate(l°), then RS2 |= ¬candidate(l°) (negation/deletion of a
candidate is not reversible),

– if RS2 |= candidate(l°), then RS1 |= candidate(l°) (new candidates cannot
appear or re-appear in a posterior resolution state).

Thus, the intended meaning of RS1 ≤ RS2 is that when one passes from one
resolution state to a “greater” or “posterior” one (according to this abstract order
relation), the information content can only increase – the negation of a candidate
being considered as an increase of this information content. The last condition says
that no candidate absent from a resolution state can (re-)appear in a posterior one. In
practical terms, it also means that RS2 is closer to a solution (or to the detection of a
contradiction) than RS1 is.

Now, with any instance P of the CSP (considered as defined by a set of labels),
one can associate a unique well-defined resolution state RSP, called the initial
resolution state of P, in which:

– for every given l° in P, RSP |= value(l°),
– for every label l1 which has no direct contradiction with any of the givens l° of

P, i.e. such that linked(l°, l1) is not in the background axioms for any given l° of P,
RSP |= candidate(l1),

– RSP contains no other value or candidate data than those defined above (in
particular, it contains no negated candidate data).

80 Pattern-Based Constraint Satisfaction and Logic Puzzles

The resolution model of an instance P is then defined as the subset RSP of RS
(together with the order relation induced by RS) consisting of all the resolution
states RS such that RSP ≤ RS. When trying to solve P, one can never escape RSP, at
least as long as one reasons consistently. Any solution of P must be in RSP and it
can only be a maximally consistent element of RSP. But, conversely, a maximally
consistent element of RSP is not necessarily a solution (especially in case there is no
solution). By exploring systematically all the states in RSP, one is certain either to
prove that P has no solution or to find all the solutions of P, if P has any. Of course,
to find a solution, one does not have to explore all of RSP. In some sense, the
purpose of a resolution theory is to define a smart way of reducing RSP to a relevant
part as small as possible (without excluding any parts that may lead to a solution).

Our definition of RSP already includes the deletion of candidates obviously
contradictory with the givens of the problem instance. This amounts to restricting
from the start the resolution model RSP of P to a relevant part.

4.2.2.3. Remarks on the notions of a resolution state and a resolution model

Notice that the above notions of a resolution state and a resolution model are
very narrow. For instance, a resolution state does not include any “mental”
component such as having identified a pattern corresponding to the preconditions of
a resolution rule. Similarly, the resolution model RSP of an instance P defines only
an abstract order relation on the set of resolution states reachable from the initial
state RSP, it does not indicate how to pass from one state to a posterior one. But this
is the only way one can build a consistent semantics in case an instance has zero or
several solutions.

Simplistic as they may seem, the above-defined notions allow us to state
precisely what kind of resolution rules we are looking for. Given a resolution theory
T, the application of any resolution rule R in T to an instance P should lead from one
resolution state in RSP to a posterior one, with the following interpretation: if,
starting from a resolution state RS in RSP, we notice a pattern (or configuration) of
labels, links, values and candidates, satisfying the condition part of R, then R can be
applied to this pattern; and, if we apply it, then, in the resulting resolution state RS1
and in all the subsequent ones (still in RSP), the value(s) and candidate(s) specified
in the action part of R will respectively be asserted and negated (in a resolution rule,
values can only be asserted, candidates can only be negated). Notice that the whole
process of detecting a pattern, applying a rule and passing from RS to RS1 is
superimposed on RSP but is not part of this abstract static model.

Now, still starting from the same resolution state RS, if we notice that the
conditions of another resolution rule R’ in T are also satisfied in RS and if we apply
R’ instead of R, we usually reach a resolution state RS2 (still in RSP) different from
RS1. For a real understanding of what a resolution theory is and is not, it is crucial to
remark that the (relatively informal) definition we have just given does not a priori

4. CSP Resolution Theories 81

imply that the two states RS1 and RS2 are T-compatible, in the sense that there
would be a resolution state RS3 posterior to both RS1 and RS2 (i.e. such that
RS1 ≤ RS3, RS2 ≤ RS3) and accessible from each of RS1 and RS2 via rules in T (see
Figure 4.1). This is related to the fundamental question of the confluence property of
a resolution theory T (see section 4.5 for a definition and an example of a theory
with the confluence property).

Figure 4.1. The resolution model RSP of an instance P with two solutions (RS-Sol1 and RS-
Sol2) and the part of it accessible by some Resolution Theory T (full lines). Notice that the
resolution states RS1 and RS2 (or RS2 and RS3) are not T-compatible, but RS1 and RS3 are.

RSP

RS4 RS1 RS2 RS3

RS5 RS6 RS7 RS8 RS9

RS10 RS-Sol1 RS-Sol2

RS13

82 Pattern-Based Constraint Satisfaction and Logic Puzzles

4.2.3. Logical interpretations of a resolution model

There are two possible logical interpretations of the above notions. The most
straightforward one is in terms of modal logic. [In HLS, we used epistemic, instead
of modal, logic; but the final interpretation of resolution theories (intuitionistic or
constructive logic) is the same.]

4.2.3.1. The modal interpretation of a resolution model

Our notions of a resolution state and a resolution model appear to be a special
case of the classical notions of a possible world and a Kripke model in modal logic.

In modal logic, there is a modal operator “□” of necessity (and a modal operator
“◊” of possibility, which does not always appear explicitly, because it is equivalent
to ¬□¬ in the most common modal theories); for any formula A, □A and ◊A are
intended to mean respectively “A is necessary” and “A is possible”.

Our notion of a resolution model coincides with that of a canonical Kripke
model and the order relation we have defined on the set of resolution states
corresponds to the accessibility relation between possible worlds in this model
([Kripke 1963]). We can apply Hintikka’s interpretation of “□” ([Hintikka 1962]):
RS |= □A if and only if RS’ |= A for any possible world RS’ accessible from RS
(i.e., in our resolution model, such that RS ≤ RS’).

Which (propositional) logical axioms for the modal operator □ should one
adopt? This is the subject of much philosophical and scientific debate. It concerns
the general relationship between truth, necessity and possibility and the axioms
expressing this relationship. There are several modal theories in competition, the
most classical of which are, in increasing order of strength: S4 < S4.2 < S4.3 < S4.4
< S5 (on this point and the following, see e.g. [Feys 1965], [Fitting et al. 1999] or
the Stanford Encyclopaedia of Philosophy: http://plato.stanford.edu/entries/logic-
modal/).

Moreover, it is known that there is a correspondence between the axioms on □
and the properties of the accessibility relation between possible worlds (this is a
form of the classical relationship between syntax and semantics). A very general
expression of this correspondence was obtained by [Lemmon et al. 1977].

Here, we shall adopt the following rule of inference and set of axioms (in
addition to the usual axioms of classical logic), which constitute the (most
commonly used) propositional system S4 (we give them the names they are
classically given in modal logic and, because of axioms M and 4, we write the
accessibility relation “≤”):

– (Necessitation Rule) if A is a theorem, then so is □A;
– (Distribution Axiom) □(A ⇒ B) ⇒ (□A ⇒ □B);

4. CSP Resolution Theories 83

– (axiom M) □A ⇒ A: “if a proposition is necessary then it is true” or “only
true propositions can be necessary”; this axiom corresponds to the accessibility
relation being reflexive (for all RS in RS, one has: RS ≤ RS);

– (axiom 4, reflection) □A ⇒ □□A: if a proposition is necessary then it is
necessarily necessary; this axiom corresponds to the accessibility relation being
transitive (for all RS1, RS2 and RS3 in RS, one has: if RS1 ≤ RS2 and RS2 ≤ RS3,
then RS1 ≤ RS3).

From our definition of a resolution model, it can easily be checked that it
satisfies all the axioms of S4.

As for the predicate calculus part of our logic, quantifiers are generally a big
problem in modal logic. But we must notice that in our CSPs we deal only with
fixed domains; there is therefore no problem with quantifiers: we can merely adopt
as axioms both Barcan Formula (BF) and its converse (CBF) ([Barcan 1946a and
1946b]), namely:

– (BF) ∀x□A ⇒ □∀xA,
– (CBF) □∀xA ⇒ ∀x□A.

One final thing should be noted: in modal logic, for any ground atomic formula
A, “A ∨ ¬A” is true in any resolution state and it is also necessarily true, i.e. one
always has RS |= □(A ∨ ¬A), but this is not the case for “□A ∨ □¬A”. For instance,
given some definite place in space-time, it is always true that either it is raining (A)
or it is not raining (¬A) at this place, and this is necessarily true (□(A ∨ ¬A)). But it
is not true that either it is necessarily raining (□A) or it is necessarily not raining
(□¬A) at this place: the weather may change at this place. Said otherwise, “□¬A”
(A is necessarily false) and “¬□A” (A is not necessarily true) are very different
things and the first is much stronger than the second.

4.2.3.2. The intuitionistic interpretation of a resolution model

So far so good; but we are not very enthusiastic with the prospect of having to
overload the formulation of our resolution rules with modal operators. Let us try to
do one more step.

There is a well-known correspondence ([Fitting 1969]) between modal logic S4
and intuitionistic or constructive logic ([Bridges et al. 2006]). The language of a
theory in intuitionistic logic is the same as in classical logic (there is no □ or ◊
logical operator). Given a formula A in intuitionistic logic, one can define a formula
M(A) in S4 recursively by:

– for A atomic: M(A) = □A,
– M(A ∧ B) = M(A) ∧ M(B),
– M(A ∨ B) = M(A) ∨ M(B),

84 Pattern-Based Constraint Satisfaction and Logic Puzzles

– M(¬A) = □¬M(A),
– M(A ⇒ B) = □(M(A) ⇒ M(B)),
– M(∀xA) = ∀xM(A).

Then, for every formula F with no modal operator, one has the well-known
correspondence theorem (proven in any textbook on modal logic): F is a theorem in
intuitionistic logic if and only if M(F) is a theorem in modal logic S4.

In intuitionistic logic, although the formulæ are the same as in classical logic,
their informal interpretation is different:

– A means that A is effectively proven;
– ¬A means that A is effectively proven to be contradictory;
– ¬¬A is not equivalent to A; it is weaker than A; it means that it is not

effectively proven that A is contradictory (which does not imply that A is proven).

One main difference with classical logic is the “law of the excluded middle”:
A ∨ ¬A is not valid (when A is atomic, it corresponds to formula □A ∨ □¬A in S4).
A ∨ ¬A would mean that either A is proven or ¬A is proven. But there are
propositions for which this is not true. Similarly, ∃xA is stronger than ¬∀x¬A; ∃xA
means that a proof has effectively produced some x and it has shown that it satisfies
A; ¬∀x¬A only supposes that ∀x¬A leads to a contradiction.

The question for us is now: can we adopt intuitionistic instead of modal logic? It
amounts to: can each of our resolution rules be written in the form M(A) for some
formula A without modal operators? This raises the question of the intended
meaning of the resolution rules.

4.2.4. Resolution theories are intuitionistic

Anticipating on our resolution rules (which will not refer explicitly to resolution
states), in their naive formulations, their (non static) conditions will bear on the
presence of some candidates and on the absence of others and their conclusions will
always be the assertion of a value or the elimination of a candidate.

4.2.4.1. Analysing the intended meaning of resolution rules

Let us see how this can be used in the formulation of a CSP resolution theory:
– first, the entries of a CSP instance P, which are axioms, can be understood as

necessarily true (in a formal way by the Necessitation rule, or in a semantic way
because they will be present in all the resolution states): □value; this can be written
as M(value), because “value” is atomic; intuitionistically, this is merely the
tautology that axioms of T are effectively proven in T.

As for the resolution rules themselves:

4. CSP Resolution Theories 85

– as links are part of the CSP structural background, they are also axioms of any
Resolution Theory and a condition on the presence of a link between two labels can
be understood as necessarily true (by the Necessitation rule): □linked-by(l1, l2, c);
this can be written as M(linked-by(l1, l2, c)), because “linked-by” is atomic; using
Barcan formula, the same conclusion is valid for predicate “linked”;

– a negative condition on a candidate [i.e. a condition ¬candidate(l)] in a
resolution state RS implies that it is negated in any posterior resolution state;
semantically, it must therefore be interpreted as: □¬candidate(l); this can be written
as M(¬candidate(l)); intuitionistically, this means that this candidate has effectively
been proven to be contradictory;

– a positive condition on a candidate in a resolution state RS could be intended
to mean (in the modal sense) that “this label is still a possible value in RS”:
◊value(l); but one should here anticipate on the final intended intuitionistic meaning:
“this label l has not yet been effectively proven to be an impossible value”;
therefore, one should rather interpret such a condition in the sense of ¬¬value(l) (in
the intuitionistic meaning of it); in relation to the modal setting, this would appear to
have for M transform the stronger □¬□¬value(l) or □◊value(l); (see section 4.2.4.3
below for comments);

– any ∧ and ∨ combination of such conditions remains of the form M(some
formula with no □ symbol);

– a conclusion on the assertion of a value is intended to mean that the value
becomes necessarily true: □value; this can be written as M(value), because “value”
is atomic;

– a conclusion on the elimination of a candidate is intended to mean that this
candidate becomes necessarily contradictory: □¬candidate; this can be written as
M(¬candidate);

– any ∧ combination of such conclusions remains of the form M(some formula
with no □ symbol);

– again by the Necessitation rule, the implication sign appearing in a resolution
rule Cond ⇒ Act (which is an axiom in a Resolution Theory) can be understood as
necessary: □(Cond ⇒ Act); this can be written as M(Cond ⇒ Act).

– finally, if the whole resolution rule ∀xR is surrounded by ∀ quantifiers, where
R = M(A), it can be written as M(∀xA).

4.2.4.2. Resolution rules pertain to intuitionistic instead of classical logic

The above analysis shows that a resolution rule will always be of the form M(F)
with no □ symbol in F. The general conclusion of all this is that a resolution rule is
always the M transform of an MS-FOL formula and the MS-FOL formula can be
used instead of the modal form, provided that we consider that Resolution Theories
pertain to intuitionistic (or constructive) logic.

86 Pattern-Based Constraint Satisfaction and Logic Puzzles

4.2.4.3. The meaning of positive conditions on candidates in resolution rules

Our interpretation of a positive condition on a candidate in the condition part of
a resolution rule is worth some discussion. Our intuitionistic interpretation of
“candidate” as “¬¬value”, corresponding to the modal interpretation □◊value,
rather than adopting the seemingly more natural (from the modal point of view)
◊value, is consistent with our definition of the order relation on RS: once a
candidate has been eliminated, it can no longer re-appear in a posterior resolution
state. So that, for any label l and resolution state RS, one can have
RS |= ◊candidate(l) only if RS |= candidate(l), i.e. if l is effectively present in RS as
a candidate, which in turn implies that RS |= □◊candidate(l) .

Notice that the definition of RS and this interpretation together put a strong
restriction on how resolution rules can be applied in a resolution state RS: a pattern
mentioning non-negated candidates may only be instantiated if such candidates are
effectively present in this resolution state. The condition part of the rule thus means:
the pattern defined by this rule can be considered as present in RS only if the
following candidates are still present in RS (i.e. have not yet been proven to be
contradictory) and the other conditions of the rule are satisfied. From a
computational point of view, the positive aspect is that, as candidates are
progressively eliminated, it puts stronger and stronger conditions on patterns and it
makes their potential number decrease while the resolution process goes on.

4.3. The Basic Resolution Theory of a CSP: BRT(CSP)

We can now define formally the Basic Resolution Theory of any CSP:
BRT(CSP). Its logical language is an extension of the language defined in section
3.2 for the CSP Theory T(CSP). In addition to it, it has only:

– two 0-ary predicates: solution-found and contradiction-found,
– a unary predicate: candidate, with signature (Label).

As for the axioms of BRT(CSP), they include all (the implicit sort axioms and)
the background axioms of the CSP Theory defined in section(s) (3.2.2 and) 3.2.3.
They cannot include the CSP constraint axioms of section 3.2.4 because these do not
have the structure required of resolution rules: “meaning of links as constraints” is
of the condition-action type, but it has the negation of a value in its conclusion (in a
resolution rule, a value can never be negated); “completeness of solution” is not of
the condition-action type. Instead, they contain the following:

– ECP (Elementary Constraints Propagation): “if a value is asserted for a

CSP variable (as is initially the case for the givens), then remove any candidate that
is linked to this value by a direct contradiction”:

4. CSP Resolution Theories 87

ECP: ∀ l1 ∀ l2 {value(l1) ∧ linked(l1, l2) ⇒ ¬candidate(l2)};
this is very close to “meaning of links as constraints”, but the conclusion is about a
candidate instead of a value;

– S (Single): “if a CSP variable V has only one candidate <V, v> left, then assert
it as the value of this variable”:

S: ∀ l ∀V ∀v { [label(l, V, v) ∧ candidate(l)

 ∧ ∀v’≠v ∀ l’≠l (¬ label(l’, V, v’) ∨ ¬candidate(l’))] ⇒ value(l) };

this rule has no equivalent in the CSP Theory.

Axioms ECP and S together establish the correspondence between predicates
“value” and “candidate”. We define the set of value-candidate relationship axioms
as VCR = ECP ∪ S.

BRT(CSP) also has a few technical axioms:
– OOS (Only One Status): “when a label is asserted as a value, it is no longer a

candidate” (this rule has no equivalent in the CSP Theory):

OOS: ∀ l {value(l) ⇒ ¬candidate(l)};

– SD (Solution Detection): “if all the CSP variables have a unique decided
value, then the problem is solved”:

SD: ∀V ∃!v ∃ l {[label(l, V, v) ∧ value(l)] ⇒ solution-found()};

– CD (Contradiction Detection): “if there is a CSP variable with no decided
value and no candidate left, then the problem has no solution”:

CD: ∃V ∀v ∃ l {[label(l, V, v) ∧ ¬value(l) ∧ ¬candidate(l)]

⇒ contradiction-found()}.

Predicates “solution-found” and “contradiction-found” as well as rules SD and
CD are not strictly necessary, but they illustrate how such situations can be written
as resolution rules. They can be considered as hooks for external non-logical actions
(such as displaying the solution). ⊥ could be used instead of contradiction-found.

Finally, we define:

BRT(CSP) = {background axioms} ∪ ECP ∪ S ∪ {OOS, SD, CD}.

Two questions immediately come to mind. Can one solve all the instances of the
CSP with only BRT(CSP)? No. How powerful is this Basic Resolution Theory? Just
to give an idea, in Sudoku (with the strongest formulation including all the Xrc, Xrn,

88 Pattern-Based Constraint Satisfaction and Logic Puzzles

Xcn, Xbn variables), it allows to solve about 29% of the minimal puzzles; notice that,
if we considered only the Xrc variables, very few minimal puzzles could be solved.

4.4. Formalising the general concept of a Resolution Theory of a CSP

Let us now state our final formal definitions. Given a CSP:
– a formula in the language of the CSP Basic Resolution Theory defined above,

BRT(CSP), is said to be in the restricted condition-action form if it is written as
A ⇒ B, possibly surrounded with universal quantifiers, where formula A does not
contain the “⇒” sign and formula B is either value(z) or ¬candidate(z) for some
variable z of sort Label, called the target of the rule, that already appears in the
condition part (one can act only on what has been previously identified);

– a resolution rule is a formula written in the restricted condition-action form,
with no constant symbols other than those already present in the constraint axioms
of T(CSP), if any, and provable in the intuitionistic theory T(CSP) ∪ {ECP, S}, i.e.
the union of the CSP Theory (now considered as an intuitionistic theory) and the
axioms on the value-candidate relationship;

– a resolution rule is instantiated in some resolution state RS when a value has
been assigned to each of its variables in such a way that RS satisfies all the
conditions of this rule; the rule can thus be applied; after its action part has been
applied, another resolution state is reached in which its conclusion is valid;

– the condition part of a resolution rule is composed of two subparts: the pattern-
conditions and the target-conditions;

– the pattern-conditions describe (in terms of labels, of well defined links
between some of these labels and of value and candidate predicates for these labels)
a factual situation that may occur in a resolution state (some of these conditions may
depend on the target z);

– the target-conditions bear on label variable z; they always include the actual
presence of this candidate in the resolution state (one cannot assert or eliminate
something that is not present as a candidate; said otherwise, it is absurd to assert
something that has already been proven to be impossible and it is useless to negate
something that has already been negated); expressed in terms of its links with other
labels mentioned in the pattern, they specify the conditions under which, in the
action part of the rule, this candidate can be negated or asserted as a value;

– a Resolution Theory for a CSP is a specialisation of its Basic Resolution
Theory in which all the additional axioms are resolution rules; it must be understood
as a theory in intuitionistic logic.

In order to be concretely used to solve some instance of a CSP, a Resolution
Theory must be completed with the same instance axioms as the corresponding

4. CSP Resolution Theories 89

T(CSP) theory (see section 3.5). Nothing guarantees that a resolution theory can
solve all the instances of the CSP, not even those that have a unique solution.

One immediate consequence of this definition is that the general-purpose search
algorithms – depth-first seach (DFS), breadth-first search (BFS), etc. – which are
guaranteed to find a solution or to prove a contradiction, cannot in general be
replaced by any “equivalent” resolution theory, i.e. one that would always produce
the same results. The reason is obvious if one considers instances of the CSP that
have multiple solutions: DFS or BFS will always find a solution, whereas a logical
theory can only prove properties (here value assertions and candidate eliminations)
that are true in all its models and it cannot therefore find a solution.

4.5. The confluence property of resolution theories

The confluence property is one of the most useful properties a resolution theory
T can have. It justifies our principle according to which the instantiation of a rule in
some resolution state RS depends on the effective presence of some candidates in
RS (instead of depending only on relations between underlying labels); moreover, it
allows to superimpose on T different resolution strategies.

4.5.1. Definition of the confluence property

Given a resolution theory T, consider all the strategies that can be built on it, e.g.
by defining various implementations with different priorities on the rules in T.
Given an instance P of the CSP and starting from the corresponding resolution state
RSP, the resolution process associated with a strategy S built on T consists of
repeatedly applying resolution rules from T according to the additional conditions
(e.g. the priorities) introduced by S. Considering that, at any point in the resolution
process, different rules from T may be applicable (and different rules will be
applied) depending on the chosen strategy S, we may obtain different resolution
paths starting from RSP when we vary S.

Definition: a CSP Resolution Theory T has the confluence property if, for any
instance P of the CSP, any two resolution paths in T can be extended in T to meet in
a common resolution state.

When a resolution theory has the confluence property, all the resolution paths
starting from RSP and associated with all the strategies built on T will lead to the
same final state in RSP (all explicitly inconsistent states are considered as identical;
they mean contradictory constraints). If a resolution theory T does not have the
confluence property, one must be careful about the order in which they apply the
resolution rules (and they must try all the resolution paths if they want to find the
“simplest”). But if T has this property, one may choose any resolution strategy,

90 Pattern-Based Constraint Satisfaction and Logic Puzzles

which makes finding a solution much easier, and one can define “simplest first”
strategies if they want to find the simplest solution (see chapters 5 and 7).

Equivalent definitions:
– for any instance P of the CSP and any two resolution states RS1 and RS2 of P

reachable from RSP by resolution rules in T, there is a resolution state RS3 such that
RS3 is reachable independently from both RS1 and RS2 by resolution rules in T;

– for any instance P of the CSP, the subset of RSP consisting of the resolution
states for P reachable by resolution rules in T, ordered by the reachability relation
defined by T, is a DAG (Directed Acyclic Graph).

Consequence: if a resolution theory T has the confluence property, then for any
instance P of the CSP, there is a single final state reachable by rules in T and all the
resolution paths lead to this state. In particular, if T solves P, one cannot miss the
solution by choosing to apply the “wrong” rule at any time.

The following property, a priori stronger than confluence, will often be useful to
prove the confluence property of a resolution theory.

Definition: a CSP resolution theory T is stable for confluence if for any instance
P of the CSP, for any resolution state RS1 of P and for any resolution rule R in T
applicable in state RS1 for an elimination of a candidate Z, if any set Y of
consistency preserving assertions and/or eliminations is done before R is applied,
leading to a resolution state RS2, and if it destroys the pattern of R (R can therefore
no longer be applied to eliminate Z), then, there always exists a sequence of rules in
T that will eliminate Z starting from RS2 (if Z is still in RS2). (Remark: in this
definition, the assertions or eliminations in Y are not necessarily done by rules in T.)

It is obvious that: if T is stable for confluence, then T has the confluence
property. A result that will be useful in Part III is the following (obvious):

Lemma 4.1: Let T1 and T2 be two resolution theories. If T1 and T2 are stable
for confluence, then the union of T1 and T2 (considered as sets of rules) is stable
for confluence (and therefore it has the confluence property).

4.5.2. The confluence property of BRT(CSP)

The following obvious case will be useful in many places, e.g. for defining T&E
in section 5.5.

Theorem 4.1: The Basic Resolution Theory of any CSP, BRT(CSP), is stable
for confluence and it has the confluence property.

4. CSP Resolution Theories 91

4.5.3. Resolution strategies and the strategic level

There are the resolution theories defined above and there are the many ways one
can use them in practice to solve real instances of a CSP. From a strict logical
standpoint, all the rules in a resolution theory are on an equal footing, which leaves
no possibility for ordering them. But, when it comes to the practical exploitation of
resolution theories and in particular to their implementation, e.g. in an inference
engine (as in our general CSP-Rules solver) or in any procedural algorithm, one
question remains unanswered: can superimposing some ordering on the set of rules
(using priorities or “saliences”) prevent us from reaching a solution that the choice
of another ordering might have made accessible? With resolution theories that have
the confluence property, such problems cannot appear and one can take advantage
of this to define different resolution strategies.

Indeed, the confluence property allows to define a strategic level above the logic
level (the level of the resolution rules) – which is itself above the implementation
level in case the rules are implemented in a computer program of any kind.

Resolution strategies based on a resolution theory T can be defined in different
ways and may correspond to different goals:

– implementation efficiency (in terms of speed, memory, …);
– giving a preference to some patterns over other ones: preference for bivalue-

chains over whips, for whips over braids (see chapter 5 for the definitions);
– allowing the use of heuristics, such as focusing the attention on the elimination

of some candidates (e.g. because they correspond to a bivalue variable or because
they seem to be the key for further eliminations); but good heuristics are hard to
define (in particular, the popular, intuitively natural heuristics consisting of focusing
the attention on bivalue variables is blatantly unfit for hard Sudoku puzzles);

– finding the “simplest” resolution path and computing the rating of the instance
according to some rating system; this will be the justification for the “simplest-first”
resolution strategies we shall introduce later; notice that this goal will in general be
in strong opposition to a goal of pure implementation efficiency.

4.6. Example: the Basic Sudoku Resolution Theory (BSRT)

After all the above general considerations, time has come to turn to the concrete
Sudoku example and to its Basic Resolution Theory, hereafter named BSRT. It will
follow the general theory above, with the same adaptations as in ST for taking the
basic sorts and their symmetries into better account.

92 Pattern-Based Constraint Satisfaction and Logic Puzzles

4.6.1. Sorts, functions and predicates

As in the above general theory, the logical language of BSRT has the same sorts,
functions and predicates as ST. In addition, it has predicates “solution-found”,
“contradiction-found” and “candidate”. Indeed, as in the case of “value” in ST, we
introduce a predicate candidate with signature (Number, Row, Column) and an
auxiliary predicate candidate’ with signature (Number, Block, Square) defined by
the “change-of-coordinates axiom”:

CC’: ∀n∀b∀s [candidate’[n, b, s] ⇔ candidate(n, row(b,s), column(b,s))].

As can be seen from the signatures of predicates “value” and “candidate”, they
will be the basic support for the quasi-automatic expression of symmetry and super-
symmetry in the Sudoku Theory and in all the Sudoku Resolution Theories.

4.6.2. The axioms of Basic Sudoku Resolution Theory (BSRT)

BSRT is defined a priori as being composed of the axioms of SGT plus CC, CC’
and the following fourteen resolution rules.

The first group of four axioms expresses the mutual exclusion conditions on
cells, rows, columns and blocks. They correspond to the ECP rule of the general
theory (cut into four parts according to the type of constraint: rc, rn, cn or bn). These
four rules, the elementary constraints propagation rules, can be considered as the
direct operational transpositions of axioms ST-rc to ST-bn of ST. They can be used
in practice to eliminate candidates as soon as a value is asserted. In this respect, they
will be much more useful than rules such as ST-rc to ST-bn could be:

– ECP(cell): unique value in a cell: if a number is effectively proven to be the
value of a cell, then any other number is effectively proven to be excluded for this
cell:

∀r∀c∀n∀n’{value(n, r, c) ∧ n’≠n ⇒ ¬candidate(n’, r, c)};

– ECP(row): unique value in a row: if a number is effectively proven to be the
value of a cell, then it is effectively proven to be excluded for any other cell in this
row:

∀r∀n∀c∀c’{value(n, r, c) ∧ c’≠c ⇒ ¬candidate(n, r, c’)};

– ECP(col): unique value in a column: if a number is effectively proven to be
the value of a cell, then it effectively proven to be excluded for any other cell in this
column:

∀c∀n∀r∀r’{value(n, r, c) ∧ r’≠r ⇒ ¬candidate(n, r’, c)};

4. CSP Resolution Theories 93

– ECP(blk): unique value in a block: if a number is effectively proven to be the
value of a cell, then it is effectively proven to be excluded for any other cell in this
block:

∀b∀n∀s∀s’{value’[n, b, s] ∧ s’≠s ⇒ ¬candidate’[n, b, s’]}.

The second group of four axioms corresponds to the S rule of the general theory
(again cut into four parts according to the type of constraint: rc, rn, cn or bn):

– NS or Naked-Single: assert a value whenever there is a unique possibility in an
rc-cell:
∀r∀c∀n {[candidate(n, r, c) ∧ ∀n’≠n ¬candidate(n’, r, c)] ⇒ value(n, r, c)};

– HS(row) or Naked-Single-in-a-row: assert a value whenever there is a unique
possibility in an rn-cell:
∀r∀n∀c {[candidate(n, r, c) ∧ ∀c’≠c ¬candidate(n, r, c’)] ⇒ value(n, r, c)};

– HS(col) or Naked-Single-in-a-column: assert a value whenever there is a
unique possibility in a cn-cell:
∀c∀n∀r {[candidate(n, r, c) ∧ ∀r’≠r ¬candidate(n, r’, c)] ⇒ value(n, r, c)};

– HS(blk) or Naked-Single-in-a-block: assert a value whenever there is a unique
possibility in a bn-cell:
∀b∀n∀s {[candidate’[n, b, s] ∧ ∀s’≠s ¬candidate’[n, b, s’]] ⇒ value’[n, b, s]}.

The ninth axiom is the general axiom about uniqueness of status:
– OOS (Only One Status): “when a label is asserted as a value, it is no longer a

candidate”:
∀n∀r∀c {value(n, r, c)] ⇒ ¬candidate(n, r, c)};

The tenth axiom expresses solution detection (there could also be four axioms):
– SD: if every rc-cell has a value assigned, then the problem is solved:

∀r∀c∃n value(n, r, c) ⇒ solution-found();

The last group of four axioms expresses contradiction detection (these axioms
are redundant, but it is easier to have them all if we want to apply to Sudoku the
general correspondence between braids and T&E in section 5.7):

– CD-rc: if there is an rc-cell such that all the numbers are proven to be
excluded values for it, then the puzzle has no solution:
∃r∃c∀n [¬value(n, r, c) ∧ ¬candidate(n, r, c)] ⇒ contradiction-found();

94 Pattern-Based Constraint Satisfaction and Logic Puzzles

– CD-rn: if there is an rn-cell such that all the columns are proven to be
excluded values for it, then the puzzle has no solution:
∃r∃n∀c [¬value(n, r, c) ∧ ¬candidate(n, r, c)] ⇒ contradiction-found();

– CD-cn: if there is a cn-cell such that all the rows are proven to be excluded
values for it, then the puzzle has no solution:
∃c∃n∀r [¬value(n, r, c) ∧ ¬candidate(n, r, c)] ⇒ contradiction-found();

– CD-bn: if there is a bn-cell such that all the squares are proven to be excluded
values for it, then the puzzle has no solution:
∃b∃n∀s (¬value’[n, b, s] ∧ ¬candidate’[n, b, s)]) ⇒ contradiction-found().

Finally, we define the same sets of axioms as in the general theory (plus those
associated with the existence of a double coordinate system):
ECP = {ECP(cell), ECP(row), ECP(col), ECP(blk)},
S = {NS, HS(row), HS(col), HS(blk)},
CD = {CD-rc, CD-rn, CD-cn, CD-bn},
VCR = ECP ∪ S (the value-candidate relationship axioms),
BSRT = SGT ∪ {CC, CC’} ∪ ECP ∪ S ∪ CD ∪ {OOS, SD}.

4.6.3. The axiom associated with the entries of a puzzle

As was the case for Sudoku Theory ST, with any specific puzzle P we can
associate the axiom EP defined as the finite conjunction of all the formulæ of type
value(nk, ri, cj) corresponding to each entry of P. Then, when added to the axioms of
BSRT (or any extension of it), axiom EP defines a Sudoku Resolution Theory for the
specific puzzle P.

4.6.4. The Basic LatinSquare Resolution Theory: BLSRT

Let us define the following sets of block-free axioms:
B(ECP) = {ECP(cell), ECP(row), ECP(col)},
B(S) = {NS, HS(row), HS(col},
B(VCR) = B(ECP) ∪ B(S) (the block-free value-candidate relationship axioms),
BLSRT = LSGT ∪ B(ECP) ∪ B(S) ∪ {OOS, CD, SD}.

BLSRT is the Basic LatinSquare Resolution Theory: BRT(LatinSquare)

4.7. Sudoku symmetries and the three fundamental meta-theorems

Let us first extend the definition of the Src, Srn, Scn and Srcbs transforms to
predicate “candidate” and therefore to the whole language of BSRT:

4. CSP Resolution Theories 95

F Srcbs(F)
candidate(ni, rj, ck) candidate’[ni, bj, sk]

We now have all the technical tools necessary for stating and proving our three

fundamental meta-theorems.

4.7.1. Formal statement and proof of meta-theorem 2.1

Meta-theorem 4.1 (formal version of 2.1): if R is a resolution rule, then Src(F)
is a resolution rule (and it obviously has the same logical complexity as R). We
shall express this as: the set of resolution rules is closed under symmetry.

Proof: If R is a resolution rule, then (by definition) R has a formal proof in ST ∪
VCR. From such a proof of R, a proof of Src(R) in ST ∪ VCR can be obtained by
replacing successively each step in the first proof (axioms included) by its
transformation under Src. This is legitimate since:

– the set of axioms in ST ∪ VCR is invariant under Src symmetry;
– any application of a logical rule can be transposed.

The only technicality is that Src must be extended to non block-free formulæ.
This is easily done by letting unchanged anything that is not of sort Row or Column.

4.7.2. Formal statement and proof of meta-theorem 2.2

Meta-theorem 4.2 (formal version of 2.2): if R is a block-free resolution rule,
then Srn(R) and Scn(R) are resolution rules (and they obviously have the same
logical complexity as R). We shall express this as: the set of resolution rules is
closed under supersymmetry.

Proof: the proof (for Srn) is similar to that of meta-theorem 4.1. By definition, R
has a formal proof in ST ∪ VCR. Let T be the block-free theory consisting of the
axioms in B(ST ∪ VCR) = B(ST) ∪ B(VCR) = LST ∪ B(VCR). Following the
same lines as in the proof of theorem 3.2, there is a (second) proof of R, this time in
LST ∪ B(VCR). From such a proof, a proof of Srn(R) in LST ∪ B(VCR) can be

F Src(F) Srn(F) Scn(F)
candidate
(ni, rj, ck)

candidate
(ni, rk, cj)

candidate
(nj, ri, ck)

candidate
(nk, rj, ci)

96 Pattern-Based Constraint Satisfaction and Logic Puzzles

obtained by replacing successively each step in the second proof (axioms included)
by its transformation under Srn. This will also be a proof of Srn(R) in ST ∪ VCR.

4.7.3. Formal statement and proof of meta-theorem 2.3

Formally stating and proving meta-theorem 2.3 is done along the same lines as
we did for meta-theorems 2.1 and 2.2.

Meta-theorem 4.3 (formal version of 2.3): if a block-free resolution rule R can
be proved without using axiom ST-cn, then Srcbs(R) is a resolution rule (and it
obviously has the same logical complexity as R). We shall express this as: the set
of resolution rules is closed under analogy.

Proof: after the proof of theorem 4.2, there is a proof of R in LST ∪ B(VCR).
This is not enough for our purpose, but the proof of theorem 4.2 can be transposed
to show that there is a proof of R in LST ∪ B(VCR) that does not use axiom ST-cn
(the transposition done in the proof of theorem 4.2 does not introduce axiom ST-cn
if it was not used in the first proof); it is therefore a proof of R using only the
axioms in the set {ST-rc, ST-rn, ST-C} ∪ B(VCR). From this proof of R, a proof of
Srcbs(R) using only the axioms in the set {ST-rc, ST-bn, ST-C} ∪ B(VCR) is
obtained by replacing each step in the first proof by its transformation under Srcbs.

4.7.4. Symmetries, analogies and supersymmetries in BSRT

The above theorems are illustrated in Figure 4.2 with the various relationships
existing between Singles. Similar figures could be drawn for ECP or CD rules.

Figure 4.2. Symmetries, analogies and supersymmetries for Singles

NS

HS(row)
Scn

HS(col)

Srn

Src

HS(blk)

Srcbs

Scrbs

4. CSP Resolution Theories 97

4.7.5. Extension of meta-theorem 4.2

Finally, meta-theorem 4.2 can be modified and extended to a wider class of
resolution rules by defining the notion of a block-positive formula. For an easier
formulation, let us consider formulæ written without the logical symbol for
implication (“⇒”), i.e. written with only the following logical symbols: ∧, ∨, ¬, ∀,
∃. Remember that the condition part of any resolution rule satisfies this restriction.

Definitions: A formula F is block-positive if it does not contain the logical
symbol for implication (“⇒”) and if any of its non block-free primary predicates is
in the scope of an even number of negations (i.e. of “¬” symbols). A resolution rule
A⇒B is said to be block-positive if B is block-free and A is block-positive.

Theorem 4.4: if F is a block-positive formula, then the validity of BF(F)
entails the validity of F; in particular, if R is a block-positive resolution rule, then
BF(R) is a resolution rule.

The proof of the first part is obvious. Notice that BF(R) is weaker than R, since
it has stronger conditions; it might therefore be considered as totally uninteresting.
But BF(R) is block-free and it can be submitted to meta-theorem 4.3. This is the
way how, when we dealt with chains in HLS1, counterparts of all the chain rules in
natural rc-space could be defined in rn- and cn-spaces, leading to entirely new types
of chains (hidden xy-chains, hidden xyzt-chains, …).

Meta-theorem 4.5 (formal, extended version of 4.2): if R is a block-positive
resolution rule, then Srn•BF(R) and Scn•BF(R) are resolution rules.

Part Two

GENERAL CHAIN RULES

5. Bivalue-chains, whips and braids

Now that our logical framework is completely set, this chapter – the central one
of this book as for the types of resolution rules we shall meet – introduces very
general types of chain patterns (of increasing complexity) giving rise to resolution
rules for any CSP: bivalue chains and whips (together with a few intermediate
cases). Braids, a pattern more general than chains, are also defined. We review a few
properties of these patterns and of resolution theories based on them. All the
examples studied in this book will show that whips are very powerful.

In this chapter, we give only examples related to the subsumption relationships
between the whip and braid resolution theories. In the Sudoku case, many
specialisations of the patterns introduced here (such as 2D chains and hidden chains)
and many more examples can be found in HLS. In order not to overload the main
text with long resolution paths, these are all grouped in the final section.

Let us now introduce the basic definitions needed for all the rules of this chapter.

Definition: in a resolution state RS, a chain is a finite sequence of candidates (it
is thus linearly ordered) such that any two consecutive candidates in the sequence
are linked (we call this the “continuity condition” of chains; it implies that
consecutive candidates are different).

Remarks:
– non consecutive candidates are not a priori forbidden to be identical, so that a

chain may contain inner loops; for some specific types of chains, one can discard
such loops as being “unproductive”, an idea that will be explained in section 5.9;

– in case we need to specify the length of a chain, we shall speak of a chain[3], a
chain[4], a chain[5]…, according to half the number of candidates it contains; if the
number of candidates is odd, we round to the integer above (these conventions will
be justified later);

– sequentiality (or linearity) and continuity are the two characteristic properties
of all our types of chains; but chains must satisfy additional conditions in order to be
usable for eliminations, such as given by the following definition.

Definition: in a resolution state RS, a regular sequence of length n associated
with a sequence (V1, … Vn) of CSP variables is a sequence of 2n or 2n-1 candidates
(L1, R1, L2, R2, …. Ln, [Rn]) such that:

102 Pattern-Based Constraint Satisfaction and Logic Puzzles

– any two consecutive candidates in the sequence are different;
– Ln is a label for Vn: Ln = <Vn, ln>; if Rn is present in the sequence, it is also a

label for Vn: Rn = <Vn, rn>;
– for any 1≤k<n, both Lk and Rk are labels for Vk: <Vk, lk> and <Vk, rk>; this

condition, which we call “the strong Lk to Rk continuity condition”, implies the “Lk
to Rk continuity condition” of chains, i.e. that, for any 1≤k<n, Lk and Rk are linked.
The Lk’s are called the left-linking candidates and the Rk’s the right-linking
candidates.

Definition: in a resolution state RS, a regular chain is a regular sequence that
satisfies all the Rk-1 to Lk continuity conditions of chains (i.e. Lk is linked to Rk-1 for
all k). It is thus a particular kind of chain.

5.1 Bivalue chains

Bivalue chains are the most basic chains that can be defined for any CSP.

Definition: a CSP variable V is said to be bivalue in a resolution state RS if it
has exactly two candidates in RS. This could be formally defined by the auxiliary
predicate “bivalue”, with signature (CSP-Variable):
bivalue(V) ≡ ∃≠(v1, v2) ∃≠(l1, l2) { label(l1, V, v1) ∧ candidate(l1)

 ∧ label(l2, V, v2) ∧ candidate(l2)
 ∧ ∀v≠(v1,v2) ∀l ¬[label(l, V, v) ∧ candidate(l)]}.

Definition: in any CSP and resolution state RS, a bivalue-chain of length n
(n ≥ 1) is a regular chain (L1, R1, L2, R2, …. Ln, Rn) associated with CSP variables
(V1, … Vn) such that, for any 1 ≤ k ≤ n, Vk is bivalue in RS (Lk and Rk are thus the
only two candidates for Vk in RS).

Definition: in a resolution state RS, a target of a bivalue chain is a candidate Z
that does not belong to the chain and that is linked to both its endpoints (L1 and Rn).
Notice that these conditions imply that Z is a label for none of the CSP variables Vk.

Theorem 5.1 (bivalue-chain rule for a general CSP): in any resolution state of
any CSP, if Z is a target of a bivalue-chain, then it can be eliminated (formally,
this rule concludes ¬candidate(Z)).

Proof: the proof is short and obvious but it will be the basis for the proofs of all
our forthcoming chain, whip and braid rules.

If Z was True, then L1 would be eliminated by ECP; therefore R1 would be
asserted by S; but then L2 would be eliminated by ECP and R2 would be asserted by
S… ; finally Rn would be asserted by S; which would contradict the hypothesis that
Z was True. Therefore Z can only be False. qed.

5. Bivalue-chains, whips and braids 103

Notation: a bivalue-chain of length n, together with a potential target
elimination, is written symbolically as:
biv-chain[n]: {L1 R1} – {L2 R2} – …… – {Ln Rn} ⇒ ¬candidate(Z),
where the curly brackets recall that the two candidates inside have representatives
with the same CSP variable.

Re-writing the candidates as <variable, value> pairs and “factoring” the CSP
variables out of the pairs, a bivalue chain will also be written symbolically in either
of the more explicit forms:

biv-chain[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln rn} ⇒ ¬candidate(Z), or:
biv-chain[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln rn} ⇒ VZ ≠ vZ.

5.2 z-chains, t-whips and zt-whips (or whips)

5.2.1 Definitions

The definition of a bivalue-chain can be extended in different ways (z-extension,
t-extension and zt-extension), as follows. We first introduced the following
generalisations of bivalue-chains in HLS, in the Sudoku context. But everything
works similarly for any CSP (see [Berthier 2008b]). It is convenient to start with the

definitions: a label C is compatible with a set S of labels if it does not belong to
S and it is not linked to any element of S; notice that this is a structural property,
independent of any resolution state. In a resolution state RS, a candidate is
compatible with a set S of candidates if its underlying label is compatible with all
the underlying labels of the elements of S.

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a z-chain of length n (n ≥ 1) built on Z is a regular chain (L1, R1, L2, R2, ….
Ln, Rn) associated with a sequence (V1, … Vn) of CSP variables, such that:

– Z does not belong to {L1, R1, L2, R2, …. Ln, Rn};
– L1 is linked to Z;
– for any 1 ≤ k < n, Rk is the only candidate for Vk compatible with Z, apart

possibly for Lk;
– Z is not a label for Vn;
– Ln is the only candidate for Vn possibly compatible with Z (but Vn has more

than one candidate – this is a non-degeneracy condition); in particular Rn is linked to
Z.

Theorem 5.2 (z-chain rule for a general CSP [Berthier 2008b]): in any
resolution state of any CSP, any target of a z-chain can be eliminated (formally,
this rule concludes ¬candidate(Z)).

104 Pattern-Based Constraint Satisfaction and Logic Puzzles

For the following “t-extension” of bivalue chains, it is natural to introduce whips
instead of chains. Whips are also more general, because they are able to catch more
contradictions than chains. A target of a whip is required to be linked to its first
candidate, not necessarily to its last; the condition on the last variable is changed so
that the final contradiction can occur with previous right-linking candidates.

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a t-whip of length n (n ≥ 1) built on Z is a regular chain (L1, R1, L2, R2, ….
Ln) [notice there is no Rn] associated with a sequence (V1, … Vn) of CSP variables,
such that:

– Z does not belong to {L1, R1, L2, R2, …. Ln};
– L1 is linked to Z;
– for any 1 ≤ k < n, Rk is the only candidate for Vk compatible with all the

previous right-linking candidates (i.e. with all the Ri for i ≤ k), [in t-whips,
compatibility with Z does not have to be checked for intermediate candidates; it
allows to build t-whips before the target is fixed; this is a computational advantage
over the zt-whips defined below, but they have a weaker resolution power];

– Z is not a label for Vn;
– Vn has no candidate compatible with Z and with all the previous right-linking

candidates (but Vn has more than one candidate – this is a non-degeneracy
condition).

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a zt-whip (in short a whip) of length n (n ≥ 1) built on Z is a regular chain
(L1, R1, L2, R2, …. Ln) [notice there is no Rn] associated with a sequence (V1, … Vn)
of CSP variables, such that:

– Z does not belong to {L1, R1, L2, R2, …. Ln};
– L1 is linked to Z;
– for any 1 ≤ k < n, Rk is the only candidate for Vk compatible with Z and with

all the previous right-linking candidates (i.e. with Z and with all the Ri, 1 ≤ i < k);
– Z is not a label for Vn;
– Vn has no candidate compatible with Z and with all the previous right-linking

candidates (but Vn has more than one candidate – this is a non-degeneracy
condition).

Definition: in any of the above defined chains and whips (and in the forthcoming
braids), a candidate other than Lk or Rk for any of the CSP variables Vk is called a t-
candidate [respectively a z-candidate] if it is incompatible with a previous right-
linking candidate [resp. with the target]. Notice that a candidate can be z- and t- at
the same time and that the t- and z- candidates are not considered as being part of
the pattern.

5. Bivalue-chains, whips and braids 105

Theorem 5.3 (t- and zt-whip rules for a general CSP [Berthier 2008b]): in any
resolution state of any CSP, if Z is a target of a t- or a zt- whip, then it can be
eliminated (formally, this rule concludes ¬candidate(Z)).

Proof: the proof is a simple adaptation of that for bivalue-chains. If Z was True,
then all the z- candidates would be eliminated by ECP and, progressively: all the
left-linking candidates and all the t- candidates would be eliminated by ECP and all
the right-linking ones would be asserted by S. The end is slightly different: the last
condition on the whip entails that there would be no possible value for the last
variable Vn (because it is not a CSP-Variable for Z), a contradiction.

Although these new chains or whips seem to be straightforward generalisations
of bivalue-chains, their solving potential is much higher. In chapter 6, we shall give
detailed statistics illustrating this in the Sudoku case.

Notation:
– a z-chain is written symbolically in the same two ways as a bivalue chain, but

with prefix “z-chain” instead of “biv-chain”;
– (a t-whip or) a whip of length n, together with a potential target elimination, is

written symbolically as:
(t-)whip[n]: {L1 R1} – {L2 R2} – …… – {Ln .} ⇒ ¬candidate(Z),
where the curly brackets recall that the two candidates inside them are relative to the
same CSP variable; the dot inside the last curly brackets means the absence of a
compatible candidate; as in the bivalue chains case, and for the same reasons, we
shall also write whips in the form:

whip[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln .} ⇒ ¬candidate(Z), or:
whip[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln .} ⇒ VZ ≠ vZ.

Remarks:
– an alternative equivalent definition of a whip is available in section 11.1;
– as a consequence of the definition, Z is a label for none of the CSP variables in

the whip;
– another consequence is that all the CSP variables of the whip are different;
– particular attention should be given to the whip[1] case; a given CSP may have

whips of length 1 or not (without prejudice for longer ones – see section 5.11.7):
Sudoku, N-Queens, N-SudoQueens, Futoshiki and Kakuro have, LatinSquare does
not; having whips of length one has many consequences for the resolution theories
of the CSP; chapter 7 will be entirely dedicated to CSPs having such whips;

– very instructive whip[2] examples can be found in sections 8.7.1.1 and 8.8.1,
where it is shown that they cannot be considered as S2-subsets.

106 Pattern-Based Constraint Satisfaction and Logic Puzzles

5.2.2. Formal definitions

As a mere exercise in logic, let us write the formal definitions of whips. We
leave it as an exercise for the reader to write similar formulæ for all the other kinds
of chains introduced above (and for the forthcoming braids).

Let us first introduce two auxiliary predicates “Linked-by” and “Linked” (with
capital “L”), with respective signatures (Label, Label, Constraint) and (Label,
Label):
Linked-by(l1, l2, c) ≡ linked-by(l1, l2, c) ∧ candidate(l1) ∧ candidate(l2)
Linked(l1, l2) ≡ linked(l1, l2) ∧ candidate(l1) ∧ candidate(l2)

 ≡ ∃c Linked-by(l1, l2, c)

Recalling that CSP-Variable is a sub-sort of Constraint, we can now define a
whip of length 1 based on target z by predicate whip[1] with signature (Label,
Label, CSP-Variable):
whip[1](z, l1, V1) ≡ Linked(z, l1) ∧ ∀l ¬[Linked-by(l1, l, V1) ∧¬linked(z, l)].

Notice that the third argument of predicate whip[1] is restricted to be of sort
CSP-Variable in order to conform to our definition of whips.

The second condition above says that any candidate l linked to l1 by CSP
variable V1 (i.e. any candidate value l≠l1 for CSP variable V1) must be linked to z
(by some constraint); notice that this condition could not be written as
∀l [¬Linked-by(l1, l, V1) ∨ linked(z, l)], because negating Linked-by(l1, l, V1) may
negate a condition which is not the one we want, e.g. that l is a candidate.

For longer whips, we need auxiliary predicates whip[n] and partial-whip[n] with
signatures (Label, [Label, Label, CSP-Variable]n-1 times, Label, CSP-Variable) and
(Label, [Label, Label, CSP-Variable]n times) respectively; we define partial-whips and
whips by simultaneous induction on n:
partial-whip[1](z, l1, r1, V1) ≡
 Linked(z, l1) ∧ Linked-by(l1, r1, V1) ∧ r1≠z
 ∧ ¬whip[1](z, l1, V1)
 ∧ ∀l≠ r1 ¬[Linked-by(l1, l, V1) ∧¬linked(z, l)];

whip[n+1](z, l1, r1, V1, l2, r2, V2, …, ln, rn, Vn, ln+1, Vn+1) ≡
 partial-whip[n](z, l1, r1, V1, l2, r2, V2, …, ln, rn, Vn) ∧
 ∧ Linked(rn, ln+1) ∧ ln+1≠z
 ∧ ∀l ¬[Linked-by(ln+1, l, Vn+1)
 ∧¬linked(z, l) ∧¬ linked(z, r1) ∧¬ … ∧¬ linked(z, rn)];

partial-whip[n+1](z, l1, r1, V1, l2, r2, V2, …, ln, rn, Vn, ln+1, rn+1, Vn+1) ≡
 partial-whip[n](z, l1, r1, V1, l2, r2, V2, …, ln, rn, Vn)
 ∧ Linked(rn, ln+1) ∧ ln+1≠z ∧ Linked-by(ln+1, rn+1, Vn+1) ∧ rn+1≠z

5. Bivalue-chains, whips and braids 107

 ∧ ¬whip[n+1](z, l1, r1, V1, l2, r2, V2, …, ln, rn, Vn, ln+1, Vn+1)
 ∧ ∀l≠ rn+1 ¬[Linked-by(ln+1, l, Vn+1)
 ∧¬linked(z, l) ∧¬ linked(z, r1) ∧¬ … ∧¬ linked(z, rn)].

Notice that, in these definitions, a whip is minimal, i.e. no initial segment is a
shorter whip, due to the condition “¬whip[n+1](z, …” in partial-whip[n+1].

5.2.3. A typical moderately hard example with bivalue-chains and whips

The resolution path of the Sudoku puzzle in Figure 5.1 is typical of how the
above defined resolution rules allow to solve a moderately difficult instance.

 3 4 5 8 1 2 3 4 5 6 7 8 9
4 6 4 5 6 7 8 9 1 2 3
 1 6 5 7 8 9 1 2 3 4 6 5
 1 5 8 7 2 1 4 5 9 8 3 7 6
 3 9 1 5 6 7 3 4 2 8 9 1
9 9 3 8 6 7 1 5 4 2
 8 3 7 2 8 6 5 9 1 4

6 7 3 6 4 5 9 1 7 2 3 8
 1 3 5 7 8 9 1 2 3 4 6 5 7

Figure 5.1. A moderately difficult Sudoku puzzle (cb#7) and its solution

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 	 *****	
25	 givens,	 224	 candidates,	 1648	 csp-‐links	 and	 1648	 links.	 Initial	 density	 =	 1.65	
singles:	 r7c6	 =	 5,	 r5c1	 =	 5,	 r6c7	 =	 5,	 r8c3	 =	 5,	 r2c2	 =	 5,	 r2c5	 =	 8,	 r6c6	 =	 1,	 r4c5	 =	 9,	 r3c7	 =	 4,	
r3c6	 =	 3,	 r1c6	 =	 6,	 r1c1	 =	 1	
whip[1]:	 r4n6{c7	 .}	 ==>	 r6c9	 ≠	 6,	 r5c7	 ≠	 6	
whip[1]:	 r3n9{c3	 .}	 ==>	 r1c2	 ≠	 9	
whip[1]:	 r1n9{c9	 .}	 ==>	 r2c7	 ≠	 9,	 r2c9	 ≠	 9	
biv-‐chain[2]:	 r4n4{c3	 c9}	 -‐	 c8n4{r6	 r7}	 ==>	 r7c3	 ≠	 4	
whip[1]:	 b7n4{r9c2	 .}	 ==>	 r6c2	 ≠	 4,	 r5c2	 ≠	 4	
biv-‐chain[3]:	 b6n8{r5c7	 r6c9}	 –	 r6n3{c9	 c2}	 –	 c2n6{r6	 r5}	 ==>	 r5c2	 ≠	 8	
biv-‐chain[3]:	 r4c1{n2	 n3}	 –	 r6n3{c2	 c9}	 –	 r2c9{n3	 n2}	 ==>	 r4c9	 ≠	 2	
biv-‐chain[3]:	 r1c2{n2	 n7}	 –	 c1n7{r3	 r7}	 –	 r7n3{c1	 c2}	 ==>	 r7c2	 ≠	 2	
whip[3]:	 r6n3{c2	 c9}	 –	 r2c9{n3	 n2}	 –	 r1n2{c7	 .}	 ==>	 r6c2	 ≠	 2	
whip[4]:	 b3n7{r1c7	 r2c7}	 –	 c7n3{r2	 r4}	 –	 c1n3{r4	 r7}	 –	 c1n7{r7	 .}	 ==>	 r1c2	 ≠	 7	
singles	 ==>	 r1c2	 =	 2,	 r1c9	 =	 9,	 r1c7	 =	 7,	 r2c4	 =	 7,	 r3c5	 =	 2,	 r2c6	 =	 9	
whip[3]:	 b8n2{r9c6	 r8c4}	 –	 b8n9{r8c4	 r9c4}	 –	 r9n6{c4	 .}	 ==>	 r9c7	 ≠	 2	
whip[3]:	 r9c1{n8	 n2}	 –	 c6n2{r9	 r5}	 –	 r5c7{n2	 .}	 ==>	 r9c7	 ≠	 8	
whip[1]:	 b9n8{r8c7	 .}	 ==>	 r8c2	 ≠	 8	
biv-‐chain[3]:	 r8c2{n4	 n9}	 –	 r8c4{n9	 n2}	 –	 r9c6{n2	 n4}	 ==>	 r9c2	 ≠	 4	
singles:	 r9c6	 =	 4,	 r8c5	 =	 1,	 r7c5	 =	 6,	 r5c6	 =	 2,	 r6c4	 =	 6,	 r5c7	 =	 8,	 r8c9	 =	 8,	 r8c2	 =	 4,	 r5c2	 =	 6,	
r9c7	 =	 6,	 r4c9	 =	 6,	 r4c3	 =	 4,	 r5c3	 =	 7,	 r5c5	 =	 4,	 r6c5	 =	 7	

108 Pattern-Based Constraint Satisfaction and Logic Puzzles

biv-‐chain[2]:	 r7n3{c1	 c2}	 –	 r7n7{c2	 c1}	 ==>	 r7c1	 ≠	 2	
biv-‐chain[2]:	 b7n2{r7c3	 r9c1}	 –	 r4n2{c1	 c7}	 ==>	 r7c7	 ≠	 2	
whip[2]:	 b7n3{r7c2	 r7c1}	 –	 b7n7{r7c1	 .}	 ==>	 r7c2	 ≠	 9	
biv-‐chain[3]:	 r3c3{n8	 n9}	 –	 b7n9{r7c3	 r9c2}	 –	 r9n8{c2	 c1}	 ==>	 r3c1	 ≠	 8	
singles	 to	 the	 end	
GRID	 SOLVED.	 rating-‐type	 =	 W,	 MOST	 COMPLEX	 RULE	 =	 Whip[4]	

5.3 Braids

We now introduce braids, a further generalisation of whips. Whereas whips have
a sequential and continuous structure (a chain structure), braids still have a
sequential structure but it is discontinuous (in restricted ways). In any CSP, braids
are interesting for three reasons:

– they have an a priori greater solving potential than whips (at the cost of a
more complex logical structure and a priori higher computational complexity);

– resolution theories based on them can be proven to have the very important
confluence property, allowing to superimpose on them various resolution strategies
(see section 5.5);

– their scope can be defined very precisely by a simple procedure: they can
eliminate any candidate that can be eliminated by pure Trial-and-Error (T&E); they
can therefore solve any instance that can be solved by T&E (and conversely – see
section 5.6).

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a zt-braid (in short a braid) of length n (n ≥ 1) built on Z is a regular
sequence (L1, R1, L2, R2, …. Ln) [notice that there is no Rn] associated with a
sequence (V1, … Vn) of CSP variables, such that:

– Z does not belong to {L1, R1, L2, R2, …. Ln};
– L1 is linked to Z;
– for any 1 < k ≤ n, Lk is linked either to a previous right-linking candidate

(some Ri, i < k) or to the target; this is the only (but major) structural difference with
whips (for which the only linking possibility is Rk-1); the Rk-1 to Lk continuity
condition of chains is not satisfied by braids (a braid is defined as a regular
sequence, a whip as a regular chain);

– for any 1 ≤ k < n, Rk is the only candidate for Vk compatible with Z and with
all the previous right-linking candidates (i.e. with Z and with all the Ri, 1 ≤ i < k);

– Z is not a label for Vn;
– Vn has no candidate compatible with the target and with all the previous right-

linking candidates (but Vn has more than one candidate – this is a non-degeneracy
condition).

5. Bivalue-chains, whips and braids 109

Remarks:
– an alternative equivalent definition is available in section 11.1;
– as in the case of whips, the t- and z- candidates are not considered as being

part of the braid;
– in order to show the kind of restriction this definition implies on the nettish

structure of a braid, the first of the following two structures can be part of a braid
starting with{L1 R1} – {L2 R2} –… , whereas the second cannot:
{L1 R1} – {L2 R2 A2} – … where A2 is linked to R1 (or to Z);
{L1 R1 A1} – {L2 R2 A2} – … where A1 is linked to R2 and A2 is linked to R1 but
none of them is linked to Z. The only thing that could be concluded from this pattern
if Z was True is (R1 ∧ R2) ∨ (A1 ∧ A2), whereas a braid should allow to conclude
R1 ∧ R2.

The proof of the following theorem is almost the same as for whips, because the
condition replacing Rk-1 to Lk continuity still allows the elimination of Lk by ECP.

Theorem 5.4 (braid rule for a general CSP [Berthier 2008b]): in any
resolution state of any CSP, if Z is a target of a braid, then it can be eliminated
(formally, this rule concludes ¬candidate(Z)).

Notation: a braid is written symbolically in exactly the same ways as a whip,
with prefix “braid” instead of “whip”, but the “–” symbol must be interpreted
differently:

braid[n]: {L1 R1} – {L2 R2} – …… – {Ln .} ⇒ ¬candidate(Z), or
braid[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln .} ⇒ ¬candidate(Z), or:
braid[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln .} ⇒ VZ ≠ vZ.

Notice the double role played by the prefix in all of the above-defined notations:
– it indicates how the curly brackets must be understood (pure bivalue or bivalue

“modulo” the previous right-linking candidates and/or the target);
– it also indicates how the link symbol “–” must be understood.

The prefix of each resolution rule applied to solve any instance of the CSP
should therefore always appear explicitly in any resolution path.

5.4. Whip and braid resolution theories; the W and B ratings

5.4.1. Whip resolution theories in a general CSP; the W rating

We are now in a position to define an increasing sequence of resolution theories
based on whips. As there can be no confusion, we shall always use the same name

110 Pattern-Based Constraint Satisfaction and Logic Puzzles

for a resolution theory and for the set of instances it can solve. Recall that
BRT(CSP) is the Basic Resolution Theory of the CSP, as defined in section 4.3.

Definition: for any n ≥ 0, let Wn be the following resolution theory:
– W0 = BRT(CSP),
– W1 = W0 ∪ {rules for whips of length 1},
–
– Wn = Wn-1 ∪ {rules for whips of length n},
– W∞ = ∪n≥0 Wn.

Definition : the W-rating of an instance P of the CSP, noted W(P), is the
smallest n ≤ ∞ such that P can be solved within Wn. An instance P has W rating n
[i.e. W(P) = n] if it can be solved using only whips of length no more than n but it
cannot be solved using only whips of length strictly smaller than n. By convention,
W(P) = ∞ means that P cannot be solved by whips.

The W rating has some good properties one can expect of a rating:
– it is defined in a purely logical way, independent of any implementation; the

W rating of an instance P is an intrinsic property of P;
– in the Sudoku case, it is invariant under symmetry and supersymmetry ;

similar symmetry properties will be true for any CSP, if it has symmetries of any
kind and they are properly formalised in the definition of its CSP variables;

– in the Sudoku case, it is well correlated with familiar (though informal)
measures of complexity.

5.4.2. Braid resolution theories in a general CSP; the B rating

One can define a similar increasing sequence of resolution theories, now based
on braids.

Definition: for any n ≥ 0, let Bn be the following resolution theory:
– B0 = BRT(CSP) = W0,
– B1 = B0 ∪ {rules for braids of length 1} = W1 (obviously),
– B2 = B1 ∪ {rules for braids of length 2},
–
– Bn = Bn-1 ∪ {rules for braids of length n},
– B∞ = ∪n≥0 Bn.

Definition : the B-rating of an instance P of the CSP, noted B(P), is the smallest
n ≤ ∞ such that P can be solved within Bn. By convention, B(P) = ∞ means that P
cannot be solved by braids.

5. Bivalue-chains, whips and braids 111

The B rating has all the good properties one can expect of a rating:
– it is defined in a purely logical way, independent of any implementation; the B

rating of an instance P is an intrinsic property of P;
– as will be shown in the next section, it is based on an increasing sequence (Bn,

n≥0) of resolution theories with the confluence property; this ensures a priori better
computational properties; in particular, one can define a “simplest first” resolution
strategy able to find the B rating after following a single resolution path;

– in the Sudoku case, it is invariant under symmetry and supersymmetry ;
similar symmetry properties will be true for any CSP, if it has symmetries of any
kind and they are properly formalised in the definition of its CSP variables;

– in the Sudoku case, it is well correlated with familiar (though informal)
measures of complexity.

5.4.3. Comparison of whip and braid resolution theories (and ratings)

Notice first that both the W and B ratings are measures of the hardest step in the
simplest resolution paths, they do not take into account any combination of steps in
the whole path. An instance P with W(P) = 12 having a single step with such a long
whip may be simpler (in some different, intuitive sense) than an instance Q with
W(Q) = 11 but that has many steps with whips of length 11.

As a whip is a particular case of a braid, one has Wn ⊆ Bn and B(P) ≤ W(P) for
any CSP, any instance P and any n ≥ 1. Moreover, as braids have a much more
complex structure than whips, one may expect that the two ratings are very different
in general. However, in the Sudoku case, it will be shown in chapter 6 that (although
whip theories do not have the confluence property, they are not far from having it
and) the W rating, when it is finite, is an excellent approximation of the B rating
(fairly good approximations of W are easier to compute than the real value of B).

One has Wn ⊆ Bn for any n and any CSP, but the converse is not true in general,
except for B1 = W1 (obviously) and B2 = W2 (proof below): braids are a true
generalisation of whips. Firstly, there are Sudoku puzzles (e.g. the example in
section 5.10.1) with W(P) = 5 and B(P) = 4. Secondly, even in the Sudoku case (for
which whips solve almost any puzzle), examples can be given (see one in section
5.10.2) of puzzles that can be solved with braids but not with whips, i.e. W∞ is
strictly included in B∞.

The case n = 3 remains open for the general CSP. We have no example in
Sudoku with B(P) = 3 and W(P) > 3, although there exist braids[3] that are not
whips[3] (see an example in section 5.10.5). In section 7.4.2, we shall show that, for
any CSP, one has gW3 = gB3 and therefore W3 ⊆ B3 ⊆ gW3, where gWn
(respectively gBn) is the resolution theory for g-whips (resp. g-braids) of length ≤ n.

112 Pattern-Based Constraint Satisfaction and Logic Puzzles

Theorem 5.5: In any CSP, any elimination done by a braid of length 2 can be
done by a whip of same or shorter length; as a result, B2 = W2.

Proof: Let B = V1{l1 r1} – V2{l2 .} ⇒ Vz ≠ vz be a braid[2] with target Z =
<VZ, rZ> in some resolution state RS.

If variable V2 has a candidate <V2, v’> (it may be <V2, l2>) such that <V2, v’> is
linked to <V1, r1>, then V1{l1 r1} – V2{v’ .} ⇒ Vz ≠ vz is a whip[2] with target Z.
Otherwise, <V2, l2> can only be linked to <Vz, vz> and V2{l2 .} ⇒ Vz ≠ vz is a
shorter whip[1] with target Z.

5.5. Confluence of the Bn resolution theories; resolution strategies

We now consider the braid resolution theories Bn defined in section 5.4.2 and we
prove that they have the confluence property. As a result, we can define a “simplest
first strategy” allowing more efficient ways of computing the B rating of instances.

5.5.1. The confluence property of braid resolution theories

Theorem 5.6 [Berthier 2008b]: each of the Bn resolution theories, 0 ≤ n ≤ ∞ , is
stable for confluence; therefore it has the confluence property.

Before proving this theorem, we must recall a convention about candidates.
When one is asserted, its status changes: it becomes a value and it is “eliminated”
(i.e. negated) as a candidate (axiom OOS). (This convention is very important for
minimising the number of useless patterns, but the theorem does not really depend
on it; the proof would only have to be slightly modified with other conventions.)

Let n<∞ be fixed (the case n=∞ is a corollary to all the cases n<∞). We must
show that, if an elimination of a candidate Z could have been done in a resolution
state RS1 by a braid B of length m ≤ n and with target Z, it will always still be
possible, starting from any further state RS2 obtained from RS1 by consistency
preserving assertions and eliminations, if we use a sequence of rules from Bn. Let B
be: {L1 R1} – {L2 R2} – …. – {Lp Rp} – {Lp+1 Rp+1} – … – {Lm .}, with target Z.

Consider first the state RS3 obtained from RS2 by applying repeatedly the rules
in BRT until quiescence. As BRT has the confluence property (theorem 4.1), this
state is uniquely defined, independently of the way we apply the BRT rules.

If target Z has been eliminated in RS3, there remains nothing to prove. If target Z
has been asserted, then the instance of the CSP is contradictory; if not yet detected
in RS3, this contradiction can be detected by CD in a state posterior to RS3, reached
by a series of applications of rules from BRT, following the braid structure of B.

5. Bivalue-chains, whips and braids 113

Otherwise, we must consider all the elementary events related to B that can have
happened between RS1 and RS3 (all the possibilities are marked by a letter for
reference in further proofs). For this, we start from B’ = what remains of B in RS3.
At this point, B’ may not be a braid in RS3. We repeat the following procedure, for
p = 1 to p = m, producing in the end a new (possibly shorter) braid B’ in RS3 with
target Z. All the references below are to the current B’.

a) If, in RS3, the left-linking or any t- or z- candidate of CSP variable Vp has
been asserted, then Z and/or the previous Rk(’s) to which Lp is linked must have
been eliminated by ECP in the passage from RS2 to RS3 (if it was not yet eliminated
in RS2); if Z is among these eliminations, there remains nothing to prove; otherwise,
the procedure has already been successfully terminated by case f of the first such k.

b) If, in RS3, left-linking candidate Lp has been eliminated (but not asserted) (it
can therefore no longer be used as a left-linking candidate in a braid) and if CSP
variable Vp still has a z- or a t- candidate Cp, then replace Lp by Cp; now, up to Cp,
B’ is a partial braid in RS3 with target Z. Notice that, even if Lp was linked to Rp-1
(as it would if B was a whip), this may not be the case for Cp; therefore trying to
prove a similar theorem for whips would fail here (see section 5.10.3 for an example
of non-confluence of the Wn theories). [As it missed this point, the proof given for
zt-chains in HLS1 was not correct.]

c) If, in RS3, any t- or z- candidate of Vp has been eliminated (but not asserted),
this has not changed the basic structure of B (at stage p). Continue with the same B’.

d) If, in RS3, right-linking candidate Rp has been asserted (p can therefore not be
the last index of B’), it can no longer be used as an element of a braid, because it is
no longer a candidate. Notice that all the left-linking and t- candidates for CSP
variables of B after p that were incompatible in B with Rp, i.e. linked to it, if still
present in RS2, must have been eliminated by ECP somewhere between RS2 and
RS3. But, considering the braid structure of B upwards from p, more eliminations
and assertions must have been done by rules from BRT between RS2 and RS3.

Let q be the smallest number strictly greater than p such that, in RS3, CSP
variable Vq still has a (left-linking, t- or z-) candidate Cq that is not linked to any of
the Ri for p ≤ i < q (by definition of a braid, Cq is therefore linked to Z or to some Ri
with i < p). Between RS2 and RS3, the following rules from BRT must have been
applied for each of the CSP variables Vu of B with index u increasing from p+1 to
q-1 included: eliminate its left-linking candidate (Lu) by ECP, assert its right-linking
candidate (Ru) by S, eliminate by ECP all the left-linking and t-candidates for CSP
variables after u that were incompatible in B with the newly asserted candidate (Ru).

In RS3, excise from B’ the part related to CSP variables p to q-1 (included) and
(if Lq has been eliminated in the passage from RS1 to RS3) replace Lq by Cq; for each

114 Pattern-Based Constraint Satisfaction and Logic Puzzles

integer s ≥ p, decrease by q-p the index of CSP variable Vs and of its candidates in
B’; in RS3, B’ is now, up to p (the ex q), a partial braid in Bn with target Z.

e) If, in RS3, left-linking candidate Lp has been eliminated (but not asserted) and
if CSP variable Vp has no t- or z- candidate in RS3 (complementary to case b), then
Vp has only one possible value in RS3, namely Rp; Rp must therefore have been
asserted by S somewhere between RS1 and RS3; this case has therefore been dealt
with by case d (because the assertion of Rp also entails the elimination of Lp).

f) If, in RS3, right-linking candidate Rp of B has been eliminated (but not
asserted), in which case p cannot be the last index of B’, then replace B’ by its initial
part: {L1 R1} – {L2 R2} – …. – {Lp .}. At this stage, B’ is in RS3 a shorter braid with
target Z. Return B’ and stop.

Notice that this proof works only because the notion of being linked does not
depend on the resolution state.

Notice also that what we have proven is indeed the following: given RS1, B and
RS2 as above, if RS3 is the resolution state obtained from RS2 by the repeated
application of rules from BRT until quiescence, then:

– either a contradiction has been detected by CD somewhere between RS2 and
RS3 (and, due to consistency preservation between RS1 and RS2, it can only be
because a contradiction inherent in the givens of P has been made manifest by CD);

– or Z has been eliminated by ECP somewhere between RS2 and RS3;
– or Z can be eliminated in RS3 by a braid B’ possibly shorter than B, with target

Z, with CSP variables a sub-sequence W’ of those of B, with right-linking
candidates those of B belonging to the sub-sequence W’, with left-linking
candidates those of B belonging to the sub-sequence W’, each of them possibly
replaced by a t-candidate of B for the same CSP variable.

5.5.2. Braid resolution strategies consistent with the B rating

As explained in section 4.5.3, we can take advantage of the confluence property
of braid resolution theories to define a “simplest first” strategy that will always find
the simplest solution, in terms of the maximum length of the braids it will use. As a
result, it will also compute the B rating of an instance after following a single
resolution path. The following precedence order satisfies this requirement:
ECP > S > biv-chain[1] > z-chain[1] > t-whip[1] > whip[1] > braid[1] > … >
biv-chain[k] > z-chain[k] > t-whip[k] > whip[k] > braid[k] >
biv-chain[k+1] > z-chain[k+1] > t-whip[k+1] > whip[k+1] > braid[k+1] > …

Notice that bivalue-chains, z-chains, t-whips and whips being special cases of
braids of same length, their explicit presence in the set of rules does not change the
final result. We put them here because when we look at a resolution path, it may be

5. Bivalue-chains, whips and braids 115

nicer to see simple patterns appear instead of more complex ones (braids). Also, it
shows (in the Sudoku case) that braids that are not whips appear only rarely.

The above ordering defines a “simplest first” resolution strategy. It does not
completely define a deterministic procedure: it does not set any precedence between
different chains of same type and length. This could be done by using an ordering of
the candidates instantiating them, based e.g. on their lexicographic order. But one
can also decide that, for all practical purposes, which of these equally prioritised
rule instantiations should be “fired” first will be chosen randomly (as in CSP-Rules).

5.6. The “T&E vs braids” theorem

 For braids, the following “T&E vs braids” theorem is second in importance only
to the confluence property. As it is easy to program very fast implementations of the
T&E procedure, it allows to check quickly if a given instance P will be solvable by
braids. This may be very useful: in case the answer is negative, we may not want to
waste computation time on P. In case it is positive, it does not produce an explicit
resolution path with braids and, even if we build one from the trace of this
procedure, it will not be one with the shortest braids and it will not provide the B
rating; but the computations with braids will then be guaranteed to give a solution.

5.6.1. Definition of the Trial-and-Error procedure T&E(T, P)

The following definition of the Trial-and-Error (T&E) procedure is intimately
related to the informal idea that the solution should be obtained with “no guessing”.
Indeed, in our view, it is the only proper formalisation of the vague “no guessing”
requirement. In standard search algorithms (depth-first, beadth-first, …), if a path in
the search graph leads to a solution, this result is accepted. In T&E, this would be
considered as arbitrary, i.e. as “guessing”; it must be shown that there can be no
other solution (see section 5.6.3 for more detailed comments).

Definition: given a resolution theory T with the confluence property, a resolution
state RS and a candidate Z in RS, T&E(T, Z, RS) or Trial-and-Error based on T for
Z in RS, is the following procedure (notice: a procedure, not a resolution rule):
- make a copy RS’ of RS; in RS’, delete Z as a candidate and assert it as a value;
- in RS’, apply repeatedly all the rules in T until quiescence;
- if RS’ has become a contradictory state, then delete Z from RS (sic: RS, not RS’);
else do nothing (in particular if a solution is obtained in RS’, merely forget it);
- return the (possibly) modified RS state.

Notice that this definition is meaningful only if T has the confluence property:
otherwise, the result of “applying repeatedly in RS’ all the rules in T until
quiescence” may not be uniquely defined.

116 Pattern-Based Constraint Satisfaction and Logic Puzzles

Definition: given a resolution theory T with the confluence property and a
resolution state RS, we define the T&E(T, RS) procedure as follows:
a) in RS, apply the rules in T until quiescence; if the resulting RS is a solution or a
contradictory state, then return it and stop;
b) mark all the candidates remaining in RS as “not-tried”;
c) choose some “not-tried” candidate Z, un-mark it and apply T&E(T, Z, RS);
d) if Z has been eliminated from RS by step c,
 then goto a
 else if there remains at least one “not-tried” candidate in RS
 then goto c else return RS and stop.

Definition: given a resolution theory T with the confluence property and an
instance P with initial resolution state RSP, we define T&E(T, P) as T&E(T, RSP).

Notice that this procedure always stays at depth 1 (i.e. only one candidate is
tested at a time) but that a candidate Z may be tried several times for T&E(T, Z,
RSi) in different resolution states RSi. This is normal, because the result may be
different if other candidates have been eliminated in the meanwhile. This also
guarantees that the result of this procedure does not depend on the order in which
remaining candidates are “tried”.

We say that P can be solved by T&E(T), or that P is in T&E(T), if T&E(T, P)
produces a solution for P. When T is the Basic Resolution Theory of a CSP (which
is known to always have the confluence property), we simply write T&E instead of
T&E(BRT(CSP))).

5.6.2. The “T&E vs braids” theorem

Consider the simplest resolution theory T = BRT(CSP). It is obvious that any
elimination that can be done by a braid B can be done by T&E (by applying rules
from BRT following the structure of B). The converse is more interesting:

Theorem 5.7: for any instance of any CSP, any elimination that can be done
by T&E can be done by a braid. Any instance of a CSP that can be solved by T&E
can be solved by braids.

Proof: Let RS be a resolution state and let Z be a candidate eliminated by
T&E(BRT, Z, RS) using some auxiliary resolution state RS’. Following the steps of
BRT in RS’, we progressively build a braid in RS with target Z. First, remember that
BRT contains three types of rules: ECP (which eliminates candidates), S (which
asserts a value for a CSP variable) and CD (which detects a contradiction on a CSP
variable).

Consider the first step of BRT in RS’ that is an application of rule S, asserting
some label R1 as a value. As R1 was not a value in RS, there must have been in RS’

5. Bivalue-chains, whips and braids 117

some elimination of a candidate, say L1, for a CSP variable V1 of which R1 is a
candidate, and the elimination of L1 (which made the assertion of R1 by S possible
in RS’) can only have been made possible in RS’ by the assertion of Z. But if L1 has
been eliminated in RS’, it can only be by ECP and because it is linked to Z. Then
{L1 R1} is the first pair of candidates of our braid in RS and V1 is its first CSP
variable. (Notice that there may be other z-candidates for V1, but this is pointless,
we can choose any of them as L1 and consider the remaining ones as z-candidates).

The sequel is done by recursion. Suppose we have built a braid in RS
corresponding to the part of the BRT resolution in RS’ up to its k-th assertion step.
Let Rk+1 be the next candidate asserted by BRT in RS’. As Rk+1 was not a value in
RS, there must have been in RS’ some elimination of a candidate, say Lk+1, for a
CSP variable Vk+1 of which Rk+1 is a candidate, and the elimination of Lk+1 (which
made the assertion of Rk+1 possible in RS’) can only have been made possible in RS’
by the assertion of Z and/or of some of the previous Ri. But if Lk+1 has been
eliminated in RS’, it can only be by ECP and because it is linked to Z or to some of
the previous Ri, say C. Then our partial braid in RS can be extended to a longer one,
with {Lk+1 Rk+1} added to its candidates, Lk+1 linked to C, and Vk+1 added to its
sequence of CSP variables.

End of the procedure: as Z is supposed to be eliminated by T&E(Z, RS), a
contradiction must have been obtained by BRT in RS’. As, in BRT, only ECP can
eliminate a candidate, a contradiction is obtained if a value asserted in RS’, i.e. Z or
one of the Ri, i<n, eliminates in RS’ (via ECP) a candidate, say Ln, that was the last
one for a corresponding variable Vn and that is linked to Z or one of the Ri, i<n. Ln
and Vn are thus the last left-linking candidate and CSP variable of the braid we were
looking for in RS.

Here again (as in the proof of confluence), this proof works only because the
existence of a link between two candidates does not depend on the resolution state.
Finally, notice that it is very unlikely that the T&E procedure followed by the
construction in this proof would produce the shortest available braid in resolution
state RS (and this intuition is confirmed by experience).

5.6.3. Comments on T&E and on the “T&E vs braids” theorem

As using T&E(T) leads to examining arbitrary hypotheses for the creation of
auxiliary resolution states, it could be considered as blind search. Nevertheless, as T
has the confluence property, the final result of T&E(T) applied to any instance does
not depend in any way on the sequence of tested candidates.

5.6.3.1. T&E versus structured search: no-guessing

Moreover, it is essential for our purposes and for our vague initial “no guessing”
requirement to notice that, contrary to the usual structured search algorithms [e.g.

118 Pattern-Based Constraint Satisfaction and Logic Puzzles

depth-first or breadth-first search, with search paths pruned by the rules in T –
DFS(T) or BFS(T)], T&E(T) includes no “guessing”: if a solution is obtained in an
auxiliary state RS’, then it is not taken into account. This notion of “guessing” is
inherent to the DFS or BFS procedures. Closely related to it is the idea of a
“backdoor” of an instance (see section 11.5.3): a set of labels of minimal cardinality
such that adding them as values to the instance would give a solution within T, i.e.
with no search at all. But this idea is totally alien to T&E(T).

As a result of the “no guessing” and no recursion, there is a major difference
between T&E(T) and general DFS(T) and BFS(T): whereas, given any instance P,
the latter algorithms can always find a solution (if there is any) or prove that it has
none, T&E(T) cannot: if P has multiple solutions, T&E(T) can only find what is
common to all its solutions. Given the “T&E(T) vs T-braids” theorem (this theorem
will be proved for many resolution theories T) and the correspondence between a
solution of P in a resolution theory T’ and a model of T’ ∪ EP, this is just the basic
fact that what can be proved in a FOL theory (here T’ = T-braids) is (and can only
be) what is true in all the models of this theory. Notice that another consequence of
this basic property of FOL is that, given T, there cannot exist any resolution theory
TT such that one would get a “DFS(T) vs TT” or a “BFS(T) vs TT” theorem.

5.6.3.2. Comments on the “acceptability” of braids

In the Sudoku community, T&E (which had always been the topic of heated
debates, although it had never been precisely defined before HLS) is generally not
accepted by advocates of “pattern-based” solutions. But the above “T&E vs braids”
theorem shows that a solution based on T&E can always be replaced by a rule-based
solution, more precisely by a solution based on braids. The question naturally arises,
for any CSP: can one reject T&E and nevertheless accept solutions based on braids?
There are three main reasons for a positive answer, both related to the goals one
pursues.

Firstly, as shown in section 5.5, resolution theories based on braids have the
confluence property and many different resolution strategies can be super-imposed
on them. One may prefer a solution with the shortest braids and adopt the “simplest
first” strategy defined in section 5.5. The T&E procedure cannot provide this (unless
it is drastically modified, in ways that would make it computationally very
inefficient).

Secondly, in each of the Bn resolution theories based on braids, one can add rules
corresponding to special cases, such as whips or bivalue-chains of same length, and
one can decide to give a natural preference to such special cases. This is still a
“simplest first” principle. In Sudoku (and in most of the other examples we have
analysed), this entails that non-whip braids appear very rarely in the solution of
randomly generated puzzles; in a sense, this is a measure of how powerful whips
are: although they are structurally much more “beautiful” and simpler (they are

5. Bivalue-chains, whips and braids 119

continuous chains with no “branching”) and computationally much better than
braids, they can solve almost all the puzzles that can be solved by T&E (i.e. almost
all the randomly generated ones). One could say that the “T&E vs braids” theorem
(together with the statistical results of chapter 6 and the subsumption results of
chapter 8) is the best advertisement for whips.

Thirdly, in spite of what some Sudoku addicts would like to believe or make
believe, the reality is that most of the Sudoku players (and, more generally, players
of logic puzzles) heavily rely on T&E as their main and most natural resolution
strategy for the non-trivial instances. Trying to find a braid or a whip justifying an
elimination in a simpler way than what they have first found by T&E may thus be an
entertaining idea. The same remarks may be applied to any CSP.

5.7. The objective properties of chains and braids

Chains should not be confused with chain rules. A chain rule can only be valid
or not valid, which depends neither on the way it has been proven nor on any of the
properties defined below for the underlying chain. A non-valid chain rule is merely
useless. But a valid chain rule can be more a less general (giving rise to subsumption
relationships), more or less useful, easy to apply, acceptable. As (apart from the
first) these are purely subjective criteria, they can only lead to confusion if they
cannot be grounded in objective ones.

We have therefore devised a few, purely objective (or descriptive, or factual)
properties of chains that may be relevant to estimate their usefulness, desirability or
understandability. Even these objective properties can give rise to much debate
when it comes to subjectively evaluating their impact on usefulness or acceptability;
it all depends on which criteria of acceptability are adopted.

5.7.1. Linearity (sequentiality)

We use the words linearity or sequentiality as synonyms to mean that the
candidates composing the pattern are sequentially ordered; it is supposed that this
order is essential in the definition of the pattern (i.e. not arbitrarily super-imposed on
it) and in the proof of the associated resolution rule. Linearity is what makes the
difference with a net: a net has a DAG (directed acyclic graph) structure; in a net,
only a partial ordering of the candidates is required, while there may be branching
and merging of different paths. Both whips and braids are linear.

5.7.2. Continuity

Continuity supposes linearity and means that consecutive candidates are linked.
In this definition, possible additional t- or z- candidates of whips and braids, which

120 Pattern-Based Constraint Satisfaction and Logic Puzzles

are not considered as part of the pattern, do not alleviate in any way this requirement
(they are considered as inessential). Continuity is what distinguishes whips from
braids: braids satisfy linearity but not continuity.

5.7.3. Homogeneity

Homogeneous means that the pattern is a sequence of similar bricks. This vague
property is obvious for all the chains and braids introduced here.

5.7.4. Reversibility

Although it had never been defined before HLS2, the word “reversibility” has
been the pretext for the most poisonous debates on Sudoku Web forums. There is
nevertheless an obvious definition, valid for any CSP:

– given a sequential pattern, the reversed pattern is the sequential pattern
obtained by reversing the order of the candidates; in the process, when used in the
definition of some types of chains, left- [respectively right-] linking candidates
become right- [resp. left-] linking candidates;

– a given type of sequential pattern is called reversible if for any pattern of this
type, the reversed pattern is of this type.

These definitions will be extended in chapters 9 and 10 to sequential patterns
with more general right-linking objects.

Theorem 5.8: bivalue-chains and z-chains are reversible.

Proof: obvious (left and right-linking candidates are interchanged).

The advantage of reversibility is that, in general, one can find other chains by
“circulating along the chain” (i.e. making circular permutations of the candidates
and changing the endpoints accordingly); these often allow other eliminations.

Notice that chains (and braids) using the t-extension are not reversible. This is a
weak point for them. But the sequel will show that they satisfy properties (left-
extendibility and composability) that partially palliate this weakness.

5.7.5. Non anticipativeness (or no look-ahead)

Definition: a given type of sequential pattern is called non-anticipative or no
look-ahead if, when a pattern of this type is built from left to right, all that needs be
checked when the next candidate is added depends only on the previous candidates
(and not on the potential future ones) and possibly on the target (for patterns that
have to be built around a target, such as whips or braids). Notice that this does not
imply that adding a candidate will always allow to finally get a full pattern of this

5. Bivalue-chains, whips and braids 121

type, but it guarantees that, up to the new candidate added, the pattern satisfies the
conditions on patterns of this type whatever will be added to it later.

Comment: this seems to be a strong criterion for acceptability of sequential
patterns, from both points of view of human solvers and programmers, because it is
the practical condition necessary for being able to build the pattern progressively
from left to right, instead of having to spot it globally at once. It is a major
computational property, the opposite of which is look-ahead.

Theorem 5.9: a reversible chain is non-anticipative.

Theorem 5.10: all the sequential patterns defined in this chapter, from
bivalue-chains to whips and braids, are non-anticipative.

Proofs: obvious. Indeed, we had implicitly this condition in mind when we
introduced the first types of chains in HLS1.

5.7.6. Left-extendibility and composability

Definition: a given type of sequential pattern is called left-extendable if, when
given a partial pattern of this type, candidates can be added not only to its right but
also to its left (of course, respecting the linking conditions on left- and right- linking
candidates for patterns of this type at the junction and having the same target in case
they are built around a target).

Theorem 5.11: a reversible chain is left-extendable.

Theorem 5.12: a non-anticipative chain is left-extendable.

Theorem 5.13: all the sequential patterns defined in this chapter, from
bivalue-chains to whips and braids, are left-extendable.

Proof: obvious. The idea is that, when the presence of a t-candidate can be
justified by previous right-linking candidates in a partial chain, it will remain
justified by them if we add candidates to the left of this partial chain (and
justifications of z-candidates will not be changed). This notion and theorem 5.13
were first suggested by Mike Barker.

Definition: a given type of sequential pattern is called composable if, when two
partial patterns of this type are given, they can be combined into a single pattern of
this type (of course, respecting the linking conditions on left- and right- linking
candidates for chains of this type at the junction and having the same target in case
they are built around a target).

Theorem 5.14: all the sequential patterns defined in this chapter, from
bivalue-chains to whips and braids, are composable.

122 Pattern-Based Constraint Satisfaction and Logic Puzzles

The practical impact of this theorem is mainly for sequential patterns with the t-
extension (t-whips, zt-whips, t-braids and zt-braids): when t-candidates are justified
by previous right-linking candidates of a partial pattern, they will still be justified by
the same candidates if another partial pattern of the same type is added to its left. Of
course, not all the sequential patterns with the t-extension can be obtained by
combining shorter patterns of the same type, but looking first for combinations of
such shorter sub-patterns before patterns with longer distance t-interactions may be
a valuable strategy, different from the one described in section 5.5.2 (and it can also
be combined with it in order to keep taking advantage of the confluence property).

5.7.7. No OR-branching

All the chain/whip/braid patterns introduced in this chapter and all their
extensions that will appear later on in this book have two essential properties in
common:

– they involve no OR-branching,
– they involve only structured AND-branching.

5.7.7.1. How do you branch?: AND-branching vs OR-branching

Originating in the theorem proving literature and the associated backwards-
chaining view (and closely related to PROLOG-like languages), there is a classical
distinction in AI between AND-branching and OR-branching. Whereas the
conditions of only one of the branches are required to be satisfied at any OR-
branching point, AND-branching is much more complex because the conditions of
all the branches are required to be simultaneously satisfied at any AND-branching
point.

Transposed to the forward-chaining view that better applies to our approach,
OR-branching becomes the most complex of the two. OR-branching corresponds to
patterns where alternative possibilities would be allowed to appear, namely, instead
of having only one right-linking candidate (or, anticipating on later chapters, right-
linking pattern), one would have several. From the point of view of logic, OR-
branching in forward-chaining is equivalent to reasoning by cases, which is
perfectly valid in theory (even in intuitionistic logic): if one has A1 ⇒ B, A2 ⇒ B,
… and An ⇒ B, then one can conclude A1 ∨ A2 ∨ … ∨ An ⇒ B.

But, in practice, mathematicians do not like reasoning by cases very much and it
is relatively important for the current discussion to understand why. In addition to
the often invoked reason that it is inelegant, especially if it is repeated several times
in a proof (subcases of subcases of …), there is always the suspicion that it fails to
find deeper properties common to all the cases. This is true even without recursion,
as shown by the most famous example of an extensive use of reasoning by cases, the
proof of the four-colour theorem (“every planar graph is 4-colourable” or, more

5. Bivalue-chains, whips and braids 123

informally, “every map can be coloured by only four colours”). In 1976, Appel and
Haken proposed a proof reducing the theorem to 1,936 particular cases [twenty
years later, this number was brought down to “only” 633, but this is irrelevant here]
and they proved all these cases separately by a computer program. There have been
many arguments against this type of proof: 1) the final step (the 1,936 cases) was
done by a computer program, which could always be suspected of having bugs; 2)
there are so many cases (even in the improved version) that it is impossible for a
human being to check them all. But, in our view, the most powerful objection does
not bear on validity; it is that this final part of the proof is meaningless, it does not
teach us anything general, it involves no general mathematical knowledge – and this
objection would remain relevant even if there were only a dozen cases.

It should now be stressed that none of the patterns introduced in this book
involve OR-branching – except the forcing-whips and forcing-braids quickly
mentioned below in section 5.9. Even forcing-bi-braids (see chapter 12), if properly
construed as B*-braids[1], do not rely on OR-branching. g-candidates (chapter 7) or
inner Subsets (chapter 8) could be considered as involving a form of OR-branching,
but they are wrapped in such a way in the S-braids, S-whips, g-braids or g-whips
that this pseudo OR-branching is limited to one step and can only merge in
predefined labels.

5.7.7.2. Structured AND-branching vs free AND-branching

As for AND-branching, we said that all the patterns introduced in this book
involve only structured forms of it. There are actually only two forms:

– in both whips and braids: from the target or a right-linking candidate (or
object) to a left-linking candidate and to the associated z- and t- candidates;

– in braids: from a left-linking candidate to possibly several right-linking ones.

5.7.8. Complexity

As whips or braids are much more general than bivalue-chains, the search for
whips or braids in a real resolution state of a real instance of a CSP is likely to be
more difficult than the search for the simplest bivalue-chains of same length. The
counterpart is, the former can solve many more instances (see chapter 6).

Unfortunately, defining an objective complexity measure for the instances of a
CSP is a very difficult task. Whereas worst case analysis is not very meaningful,
mean case analysis is more meaningful but is very difficult in practice, as will be
illustrated by the Sudoku case in chapter 6, where the Wn and Bn ratings will be
shown to be reasonable measures of complexity.

124 Pattern-Based Constraint Satisfaction and Logic Puzzles

5.8. About loops in bivalue-chains, in whips and in braids

We say that there is a loop in a sequential pattern if it has two identical
candidates. In this section, we review the usefulness of accepting various kinds of
loops in the different chains or braids introduced in this chapter.

5.8.1 Global loops are useless in bivalue-chains

Define a global loop as a chain with same first and last candidates; this is the
broadest definition of a global loop one can give for a chain.

Consider a bivalue-chain C = {L1 R1} – {L2 R2} – … – {Ln Rn} with target Z
and with a global loop, i.e. Rn = L1. (Notice that this situation is globally
contradictory and that such a pattern could be used to detect contradictory instances
of a CSP, but this is not the question we want to deal with here.) We shall show that
Z can be eliminated by rules from BRT and by a shorter bivalue-chain with no loop.

The bivalue-chain obtained by excising the last pair of candidates from C, i.e.
{L1 R1} – {L2 R2} – … – {Ln-1 Rn-1}, admits Ln as a target: Ln is linked to its first
candidate (because L1 = Rn) and to its other endpoint (Rn-1). Ln can therefore be
eliminated by this shorter bivalue-chain with no global loop. After this, Rn can be
asserted by rule S (because the CSP variable Vn of {Ln Rn} in C was bivalue); and Z
can be deleted by rule ECP.

As a result, we have:

Theorem 5.15: Any elimination that could be done by a bivalue-chain with a
global loop can be done by BRT(CSP) and by a shorter bivalue-chain with no
global loop. Practical statement: global loops are useless in bivalue-chains.

5.8.2. Inner loops are useless in bivalue-chains

We say that a chain has an inner loop if it has two equal candidates, but at most
one of them is an endpoint.

Let {L1 R1} – {Lk Rk} – … – {Lp Rp} – … – {Ln Rn} be a bivalue-chain and
suppose it has an inner loop. Let Z be a target. There are two possibilities for an
inner loop.

The first possibility is the equality of two left-linking candidates or of two right-
linking candidates: Lk = Lp or Rk = Rp. Then, by excision of the inner loop, we get a
shorter bivalue-chain with Z as a target:
{L1 R1} – {Lk-1 Rk-1} – {Lp Rp} – … – {Ln Rn} or
{L1 R1} – {Lk Rk} – {Lp+1 Rp+1} – … – {Ln Rn}.

5. Bivalue-chains, whips and braids 125

The second possibility is the equality of a right-linking candidate with a
subsequent or a previous left-linking candidate, corresponding respectively to the
two cases Rk = Lp and Lk = Rp.

In the first case, by excision of the extremities, we get a shorter bivalue-chain:
{Lk+1 Rk+1} – … – {Lp-1 Rp-1} with Rk = Lp as a target. Once it has been used to
eliminate Lp, rules S and ECP from BRT(CSP) will progressively assert all the right-
linking candidates and eliminate all the left-linking candidates after p. After Rn has
been asserted by S, Z will be eliminated by ECP.

The second case can be dealt with in exactly the same way, after reversing the
original chain (which reverses the role of candidates: left-linking become right-
linking and conversely).

In case the original chain had several inner loops, all these reductions can be
applied iteratively to as many subparts of the chain as necessary; every iteration
eliminates one loop, until there remains none. Finally, we get:

Theorem 5.16: Any elimination that could be done by a bivalue-chain with
inner loops can be done by BRT(CSP) and by a shorter bivalue-chain with no
inner loop. Practical statement: inner loops are useless in bivalue-chains.

5.8.3. Bivalue-chains should have no loops

As a general conclusion of all the preceding cases, we have:

Theorem 5.17: resolution rules that might be obtained from bivalue-chains
with global or inner loops are subsumed by BRT(CSP) together with rules for
shorter bivalue-chains with no loops. Practical statement: bivalue-chains should
have no such loops.

5.8.4. Should one allow loops in whips and braids?

In whips or braids, equality of a left-linking and a right-linking candidate is the
closest notion we can have of a loop; but such equality would produce the final whip
contradiction. In particular, a z-chain with a global loop would merely be a z-whip.

As for other kinds of inner loops in whips (equality of two left-linking or of two
right-linking candidates), nothing allows to eliminate them. A priori, one can
consider that, as we go forward along a whip, we accumulate knowledge about the
consequences of assuming its target, which allows more possibilities of extending it;
allowing such inner loops could therefore lead to accumulate more knowledge and
to find more whips.

126 Pattern-Based Constraint Satisfaction and Logic Puzzles

However, although the general definition of a whip does not exclude loops,
experience with the Sudoku example shows that they do not bring much more
generality but they bring more computational complexity. Moreover, in any CSP,
whips with loops are subsumed by braids and it may be more interesting to use
braids than whips with inner loops. Therefore, we do not add any a priori no-loop
condition in the general definition of a whip, but, unless otherwise stated, all the
whips we shall consider will be loopless. In particular, the statistical results for
Sudoku in chapter 6 are about loopless whips.

As for braids, the notion of an inner loop is pointless: the same left-linking or
right-linking candidate can be used several times for sprouting new branches, which
has the same “accumulation” result as loops, but without the useless parts that may
be needed to join the endpoints of a loop; i.e. for any possible inner loop, there is
always, obviously, a shorter braid without this loop.

5.9. Forcing whips and braids, a bad idea?

Consider a bivalue variable (in any resolution state), with its two possible values
x1 and x2 corresponding to candidates Z1 and Z2. Suppose there are two partial
whips/braids, say W1 and W2, one with target Z1, the other with target Z2. In case
W1 and W2 share a left-linking candidate L [respectively a right-linking candidate
R], L can be deleted [resp. R can be asserted]: this is reasoning by cases, which is
perfectly valid in intuitionistic logic. Do we get interesting new patterns this way (to
be called forcing whips / forcing braids because they force a conclusion that could
not be obtained by a single whip/braid pattern)? Obviously, the answer would be
negative for reversible chains: it would suffice to reverse one of the chains and to
link the two by the bivalue variable in order to obtain a single chain of same type as
the two given ones. Notice that in this process the chain thus obtained should be
assigned length n1+n2+1, where the ni are the lengths of the two chains.

But as whips and braids are not reversible, it seems one could get new patterns,
more general than whips and braids. What is the resolution power of such patterns?
We have no general answer. But, in the Sudoku case, if these patterns are assigned
length n1+n2+1 and given smaller priority than whips/braids of same length, we have
found no occurrence in a random sample of 1,300 puzzles. As the memory
requirements for such combinations are very high, we did not try on larger samples.

There is still the possibility of starting from trivalue variables and considering
three whips/braids instead of two, but the complexity increases accordingly.

See chapter 12 for the definition of a much broader type of patterns based on
similar ideas, but with drastically increased resolution power.

5. Bivalue-chains, whips and braids 127

5.10. Exceptional examples

All the resolution rules defined in this chapter have been implemented in our
CSP-Rules solver in a way valid for any CSP. Each of them can be activated or de-
activated independently. Different strategies can be chosen. In the examples below,
we systematically apply the “simplest first” resolution strategy defined in section
5.5.2, with whips [respectively whips and braids] activated, in order to get the W
[respectively the B] rating.

The longest whip(s) or braid(s) of each resolution path appears in bold
characters. As for the notation (the “nrc notation”), it is self explaining and
consistent with the general representation for whips and braids introduced in
sections 5.2 and 5.3; the only adaptations are: 1) outside curly brackets, CSP
Variables Xrc, Xrn, … are merely written as rc, rn, …; 2) within curly brackets, the s
value of an Xbn variable is replaced by its equivalent in rc-coordinates; the reason is
better readability on the standard rc-grid. Apart from some hand editing, the
following is the raw output from SudoRules. Handmade changes (in addition to
those mentioned in the Introduction) have the only purpose of using less paper; they
consist mainly of writing several whips in the same line (even if, because they have
different targets, the justifications of their z-candidates may be different).

A general warning is in order about our Sudoku examples: because they are
intended to illustrate exceptional properties, most of them are much more difficult
than the vast majority of puzzles (see the classification results in chapter 6); as a
result, they have exceptionally long resolution paths with exceptionally long
whips/braids and they may give a very wrong idea of the much simpler typical
resolution paths. A “normal” puzzle can be solved with only a few rule applications
(not counting ECP), often even less than in the example of Figure 5.1.

5.10.1. Proof of B4 ≠ W4: an instance with W(P) = 5 and B(P) = 4

 2 4 7 1 2 3 4 5 6 7 8 9
 8 9 1 4 5 6 7 8 9 1 2 3
 6 5 7 8 9 1 2 3 4 6 5
 4 8 2 1 4 8 7 5 3 9 6
3 9 1 3 6 7 9 4 2 8 5 1
 9 5 1 7 8 9 5 6 3 1 2 7 4
 7 3 1 2 5 7 8 3 6 4 9 1 2

6 3 6 3 1 2 9 8 5 4 7
 2 1 8 9 4 2 5 1 7 6 3 8

 Figure 5.2. A puzzle P with B(P) = 4 and W(P) = 5

128 Pattern-Based Constraint Satisfaction and Logic Puzzles

The example in Figure 5.2 is one of the rare (in percentage) puzzles with a B
rating smaller than its W rating.

1) The resolution path with whips shows that W(P) = 5:

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 *****	
26	 givens,	 196	 candidates,	 1151	 csp-‐links	 and	 1151	 links.	 Initial	 density	 =	 1.51	
singles	 ==>	 r8c9	 =	 7,	 r8c3	 =	 1,	 r1c1	 =	 1,	 r4c2	 =	 1,	 r3c4	 =	 1,	 r8c6	 =	 8	
whip[1]:	 c9n6{r6	 .}	 ==>	 r4c7	 ≠	 6,	 r5c7	 ≠	 6,	 r6c7	 ≠	 6	
whip[1]:	 r1n5{c5	 .}	 ==>	 r2c4	 ≠	 5	
whip[1]:	 c4n5{r9	 .}	 ==>	 r8c5	 ≠	 5,	 r7c6	 ≠	 5,	 r7c5	 ≠	 5,	 r9c6	 ≠	 5	
whip[1]:	 b4n6{r5c2	 .}	 ==>	 r5c6	 ≠	 6,	 r5c5	 ≠	 6	
whip[2]:	 c8n8{r1	 r5}	 –	 c2n8{r5	 .}	 ==>	 r1c3	 ≠	 8	
hidden-‐single-‐in-‐a-‐row	 ==>	 r1c8	 =	 8	
whip[3]:	 r9c2{n4	 n5	 	 r7n5{c1	 c7}	 –	 b9n6{r7c7	 .}	 ==>	 r9c7	 ≠	 4	
whip[4]:	 r6c1{n2	 n8}	 –	 r5n8{c3	 c7}	 –	 r5n2{c7	 c8}	 –	 r2n2{c8	 .}	 ==>	 r6c4	 ≠	 2	
singles	 ==>	 r6c4	 =	 6,	 r4c9	 =	 6,	 r1c9	 =	 9	
whip[1]:	 r2n6{c2	 .}	 ==>	 r1c3	 ≠	 6	
naked-‐single	 ==>	 r1c3	 =	 3	
whip[1]:	 r2n3{c9	 .}	 ==>	 r3c7	 ≠	 3	
whip[4]:	 r6n8{c7	 c1}	 –	 r6n2{c1	 c5}	 –	 c6n2{r4	 r3}	 –	 r3c7{n2	 .}	 ==>	 r6c7	 ≠	 4	
whip[4]:	 b9n3{r9c8	 r9c7}	 –	 r9n6{c7	 c6}	 –	 r7c6{n6	 n4}	 –	 r8n4{c5	 .}	 ==>	 r9c8	 ≠	 4	
whip[4]:	 r6n4{c5	 c9}	 –	 c8n4{r5	 r2}	 –	 r2n2{c8	 c4}	 –	 b8n2{r8c4	 .}	 ==>	 r8c5	 ≠	 4	
whip[1]:	 r8n4{c8	 .}	 ==>	 r7c7	 ≠	 4	
whip[4]:	 b9n4{r8c8	 r8c7}	 –	 r3c7{n4	 n2}	 –	 r2n2{c8	 c4}	 –	 r8c4{n2	 .}	 ==>	 r8c8	 ≠	 5	
whip[4]:	 b8n9{r7c5	 r8c5}	 –	 r8c8{n9	 n4}	 –	 r8c7{n4	 n5}	 –	 r7n5{c7	 .}	 ==>	 r7c1	 ≠	 9	
whip[4]:	 b7n9{r9c1	 r7c3}	 –	 b7n8{r7c3	 r7c1}	 –	 r7n5{c1	 c7}	 –	 b9n6{r7c7	 .}	 ==>	 r9c7	 ≠	 9	
whip[4]:	 r9n9{c1	 c8}	 –	 b9n3{r9c8	 r9c7}	 –	 b9n6{r9c7	 r7c7}	 –	 r7n5{c7	 .}	 ==>	 r9c1	 ≠	 5	
;;; Resolution state RS1

whip[5]:	 c2n5{r2	 r9}	 –	 r9c4{n5	 n7}	 –	 r2c4{n7	 n2}	 –	 b3n2{r2c8	 r3c7}	 –	 b3n4{r3c7	 .}	 ==>	
r2c2	 ≠	 4	
whip[4]:	 c2n8{r5	 r3}	 –	 c1n8{r3	 r7}	 –	 b7n5{r7c1	 r9c2}	 –	 c2n4{r9	 .}	 ==>	 r5c3	 ≠	 8	
whip[2]:	 c3n9{r3	 r7}	 –	 c3n8{r7	 .}	 ==>	 r3c3	 ≠	 7	
whip[3]:	 r3c7{n2	 n4}	 –	 r3c2{n4	 n8}	 –	 r5n8{c2	 .}	 ==>	 r5c7	 ≠	 2	
whip[3]:	 c6n2{r4	 r3}	 –	 r2n2{c4	 c8}	 –	 r5n2{c8	 .}	 ==>	 r4c5	 ≠	 2	
whip[3]:	 c6n2{r5	 r3}	 –	 r2n2{c4	 c8}	 –	 r5n2{c8	 .}	 ==>	 r6c5	 ≠	 2	
whip[2]:	 r6c9{n3	 n4}	 –	 r6c5{n4	 .}	 ==>	 r6c7	 ≠	 3	
whip[4]:	 b6n9{r4c7	 r4c8}	 –	 c8n2{r4	 r2}	 –	 c8n3{r2	 r9}	 –	 c7n3{r9	 .}	 ==>	 r4c7	 ≠	 2	
whip[4]:	 b9n5{r9c7	 r9c8}	 –	 r9c2{n5	 n4}	 –	 r3c2{n4	 n8}	 –	 r5n8{c2	 .}	 ==>	 r5c7	 ≠	 5	
whip[3]:	 r3c7{n4	 n2}	 –	 r6c7{n2	 n8}	 –	 r5c7{n8	 .}	 ==>	 r8c7	 ≠	 4	
hidden-‐single-‐in-‐a-‐block	 ==>	 r8c8	 =	 4	
whip[3]:	 r3c2{n4	 n8}	 –	 r5n8{c2	 c7}	 –	 c7n4{r5	 .}	 ==>	 r3c1	 ≠	 4	
whip[3]:	 b1n5{r2c1	 r2c2}	 –	 r9c2{n5	 n4}	 –	 c1n4{r9	 .}	 ==>	 r2c1	 ≠	 7	
whip[2]:	 c5n7{r4	 r3}	 –	 c1n7{r3	 .}	 ==>	 r4c6	 ≠	 7	
whip[4]:	 b7n9{r9c1	 r7c3}	 –	 b7n8{r7c3	 r7c1}	 –	 r7n5{c1	 c7}	 –	 r8c7{n5	 .}	 ==>	 r9c8	 ≠	 9	
singles	 ==>	 r4c8	 =	 9,	 r9c1	 =	 9,	 r7c3	 =	 8,	 r3c3	 =	 9	

5. Bivalue-chains, whips and braids 129

whip[3]:	 r4c7{n3	 n5}	 –	 r5c8{n5	 n2}	 –	 b5n2{r5c5	 .}	 ==>	 r4c6	 ≠	 3	
hidden-‐single-‐in-‐a-‐column	 ==>	 r3c6	 =	 3	
whip[1]:	 c6n2{r5	 .}	 ==>	 r5c5	 ≠	 2	
whip[2]:	 c3n7{r5	 r2}	 –	 b2n7{r2c4	 .}	 ==>	 r5c5	 ≠	 7	
whip[3]:	 c7n4{r5	 r3}	 –	 c7n2{r3	 r6}	 –	 r5n2{c8	 .}	 ==>	 r5c6	 ≠	 4	
whip[1]:	 c6n4{r9	 .}	 ==>	 r7c5	 ≠	 4	
whip[3]:	 c8n5{r5	 r9}	 –	 r9c4{n5	 n7}	 –	 c6n7{r9	 .}	 ==>	 r5c6	 ≠	 5	
whip[3]:	 r4c6{n5	 n2}	 –	 r5n2{c6	 c8}	 –	 b6n5{r5c8	 .}	 ==>	 r4c5	 ≠	 5	
whip[3]:	 r9n6{c7	 c6}	 –	 r1c6{n6	 n5}	 –	 r4n5{c6	 .}	 ==>	 r9c7	 ≠	 5	
whip[4]:	 r9c2{n4	 n5}	 –	 r9c8{n5	 n3}	 –	 b3n3{r2c8	 r2c9}	 –	 b3n4{r2c9	 .}	 ==>	 r3c2	 ≠	 4	
singles	 to	 the	 end	

2) The resolution path with braids shows that B(P) = 4:

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B	 	 *****	
;;; same path up to RS1 (no braid appears before); after, the two paths diverge:
braid[4]:	 r2c4{n7	 n2}	 –	 r4c1{n7	 n2}	 –	 c8n2{r2	 r5}	 –	 c6n2{r5	 .}	 ==>	 r2c1	 ≠	 7	
whip[2]:	 c5n7{r4	 r3}	 –	 c1n7{r3	 .}	 ==>	 r4c6	 ≠	 7	
whip[3]:	 c2n4{r2	 r9}	 –	 c2n5{r9	 r2}	 –	 r2c1{n5	 .}	 ==>	 r3c1	 ≠	 4	
whip[4]:	 b1n6{r2c2	 r2c3}	 –	 r2n7{c3	 c4}	 –	 r9c4{n7	 n5}	 –	 c2n5{r9	 .}	 ==>	 r2c2	 ≠	 4	
whip[4]:	 c2n8{r5	 r3}	 –	 c1n8{r3	 r7}	 –	 b7n5{r7c1	 r9c2}	 –	 c2n4{r9	 .}	 ==>	 r5c3	 ≠	 8	
whip[2]:	 c3n9{r3	 r7}	 –	 c3n8{r7	 .}	 ==>	 r3c3	 ≠	 7	
whip[3]:	 r3c7{n2	 n4}	 –	 r3c2{n4	 n8}	 –	 r5n8{c2	 .}	 ==>	 r5c7	 ≠	 2	
whip[3]:	 c6n2{r4	 r3}	 –	 r2n2{c4	 c8}	 –	 r5n2{c8	 .}	 ==>	 r4c5	 ≠	 2	
whip[3]:	 c6n2{r5	 r3}	 –	 r2n2{c4	 c8}	 –	 r5n2{c8	 .}	 ==>	 r6c5	 ≠	 2	
whip[2]:	 r6c9{n3	 n4}	 –	 r6c5{n4	 .}	 ==>	 r6c7	 ≠	 3	
whip[4]:	 b6n9{r4c7	 r4c8}	 –	 c8n2{r4	 r2}	 –	 c8n3{r2	 r9}	 –	 c7n3{r9	 .}	 ==>	 r4c7	 ≠	 2	
whip[4]:	 b9n5{r9c7	 r9c8}	 –	 r9c2{n5	 n4}	 –	 r3c2{n4	 n8}	 –	 r5n8{c2	 .}	 ==>	 r5c7	 ≠	 5	
whip[3]:	 r3n4{c7	 c2}	 –	 c2n8{r3	 r5}	 –	 r5c7{n8	 .}	 ==>	 r8c7	 ≠	 4	
hidden-‐single-‐in-‐a-‐block	 ==>	 r8c8	 =	 4	
whip[4]:	 b7n9{r9c1	 r7c3}	 –	 b7n8{r7c3	 r7c1}	 –	 r7n5{c1	 c7}	 –	 r8c7{n5	 .}	 ==>	 r9c8	 ≠	 9	
singles	 ==>	 r4c8	 =	 9,	 r9c1	 =	 9,	 r7c3	 =	 8,	 r3c3	 =	 9	
whip[3]:	 r4c7{n3	 n5}	 –	 r5c8{n5	 n2}	 –	 b5n2{r5c5	 .}	 ==>	 r4c6	 ≠	 3	
hidden-‐single-‐in-‐a-‐column	 ==>	 r3c6	 =	 3	
whip[1]:	 c6n2{r5	 .}	 ==>	 r5c5	 ≠	 2	
whip[2]:	 c3n7{r5	 r2}	 –	 b2n7{r2c4	 .}	 ==>	 r5c5	 ≠	 7	
whip[3]:	 c7n4{r5	 r3}	 –	 c7n2{r3	 r6}	 –	 r5n2{c8	 .}	 ==>	 r5c6	 ≠	 4	
whip[1]:	 c6n4{r9	 .}	 ==>	 r7c5	 ≠	 4	
whip[3]:	 c8n5{r5	 r9}	 –	 r9c4{n5	 n7}	 –	 c6n7{r9	 .}	 ==>	 r5c6	 ≠	 5	
whip[3]:	 r4c6{n5	 n2}	 –	 r5n2{c6	 c8}	 –	 b6n5{r5c8	 .}	 ==>	 r4c5	 ≠	 5	
whip[3]:	 r9n6{c7	 c6}	 –	 r1c6{n6	 n5}	 –	 r4n5{c6	 .}	 ==>	 r9c7	 ≠	 5	
whip[4]:	 r2c9{n3	 n4}	 –	 r2c1{n4	 n5}	 –	 r7n5{c1	 c7}	 –	 r4c7{n5	 .}	 ==>	 r6c9	 ≠	 3	
singles	 to	 the	 end	

130 Pattern-Based Constraint Satisfaction and Logic Puzzles

5.10.2. Proof of B∞ ≠ W∞ : an instance with W(P) = ∞ and B(P) = 12

After the previous example, one may still wonder: if a puzzle can be solved by
braids, cannot one always find whips, though longer than the braids, such that they
will also solve it? Said otherwise, is not B∞ equal to W∞? The answer is negative;
there are puzzles that can be solved by braids but not by whips of any length. The
example in Figure 5.3 is one of the exceptional (in percentage) puzzles in this case
(see statistics in chapter 6); it is the only one in the whole “Magictour top 1465”
collection; its B rating is 12 but its W rating is ∞.

 3 5 9 1 4 3 7 8 5 2 6
 5 1 3 6 5 8 9 1 2 7 3 4
 7 4 1 3 2 7 5 6 4 9 8 1
2 4 2 8 9 1 3 7 4 6 5
 6 9 4 6 3 2 9 5 1 7 8
 1 6 2 5 7 1 8 4 6 3 9 2

8 7 2 8 4 6 7 5 3 2 1 9
 9 8 5 7 9 2 4 8 1 6 5 3
 5 9 7 1 3 5 6 2 9 8 4 7

Figure 5.3. Puzzle Magictour top 1465 #89 and its solution; W = ∞ and B = 12

Although the following resolution paths are exceptionally long, they have a
feature typical of what one gets with the “simplest first” strategy: braids that are not
whips appear much less often than whips. For puzzles P solvable by whips, if both
whips and braids are activated, braids appear even more rarely – and they very
rarely change the rating, i.e. W(P) = B(P) most of the time. In both resolution paths
below, one can also notice the long streaks of eliminations necessary before a new
value can be asserted.

1) The resolution path with whips shows that W(P) = ∞ ; it also gives an
example of a very long whip[18] (but there are much longer ones in other puzzles):

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 *****	
24	 givens,	 218	 candidates,	 1379	 csp-‐links	 and	 1379	 links.	 Initial	 density	 =	 1.46	
hidden-‐single-‐in-‐a-‐row	 ==>	 r8c1	 =	 7	
whip[2]:	 r5n7{c8	 c6}	 –	 r2n7{c6	 .}	 ==>	 r6c7	 ≠	 7	
whip[3]:	 c2n2{r1	 r9}	 –	 c5n2{r9	 r3}	 –	 b3n2{r3c8	 .}	 ==>	 r1c3	 ≠	 2	
whip[3]:	 c5n2{r1	 r9}	 –	 c2n2{r9	 r3}	 –	 b3n2{r3c8	 .}	 ==>	 r1c6	 ≠	 2	
whip[3]:	 c1n9{r2	 r6}	 –	 c7n9{r6	 r3}	 –	 r1n9{c8	 .}	 ==>	 r2c3	 ≠	 9	
whip[3]:	 r2n2{c6	 c3}	 –	 c2n2{r1	 r9}	 –	 c5n2{r9	 .}	 ==>	 r3c4	 ≠	 2	
whip[3]:	 b6n5{r4c9	 r5c9}	 –	 b4n5{r5c1	 r6c1}	 –	 b4n9{r6c1	 .}	 ==>	 r4c9	 ≠	 9	
whip[3]:	 b7n2{r9c2	 r8c3}	 –	 r2n2{c3	 c6}	 –	 b5n2{r5c6	 .}	 ==>	 r9c4	 ≠	 2	
whip[4]:	 b6n6{r4c8	 r4c9}	 –	 b6n5{r4c9	 r5c9}	 –	 b4n5{r5c1	 r6c1}	 –	 b4n9{r6c1	 .}	 ==>	 r4c8	 ≠	 9	

5. Bivalue-chains, whips and braids 131

hidden-‐single-‐in-‐a-‐row	 ==>	 r4c3	 =	 9	
whip[7]:	 b9n9{r7c9	 r7c8}	 –	 r1n9{c8	 c1}	 –	 r3n9{c1	 c4}	 –	 b2n5{r3c4	 r3c5}	 –	 b8n5{r7c5	 r7c6}	 –	
r7n1{c6	 c2}	 –	 c1n1{r9	 .}	 ==>	 r2c9	 ≠	 9	
;;; Resolution state RS1
whip[9]:	 c7n7{r2	 r5}	 –	 c8n7{r4	 r1}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 c7n1{r9	 r8}	 –	 b8n1{r8c6	 r7c6}	 –	
b8n5{r7c6	 r7c5}	 –	 b2n5{r3c5	 r3c4}	 –	 b2n9{r3c4	 .}	 ==>	 r2c7	 ≠	 9	
whip[11]:	 b3n7{r2c7	 r1c8}	 –	 r1c6{n7	 n8}	 –	 c3n8{r1	 r5}	 –	 c9n8{r5	 r4}	 –	 c8n8{r4	 r9}	 –	 c8n4{r9	 r7}	 –	
b9n9{r7c8	 r7c9}	 –	 r1n9{c9	 c1}	 –	 c1n1{r1	 r9}	 –	 r7c2{n1	 n3}	 –	 c3n3{r8	 .}	 ==>	 r2c7	 ≠	 8	
whip[18]:	 r1c6{n8	 n7}	 –	 r2n7{c6	 c7}	 –	 r5n7{c7	 c8}	 –	 r6c8{n7	 n9}	 –	 c7n9{r6	 r3}	 –	 r1n9{c9	 c1}	
–	 c1n1{r1	 r9}	 –	 c2n1{r7	 r1}	 –	 r1n2{c2	 c5}	 –	 r2n2{c4	 c3}	 –	 c3n8{r2	 r5}	 –	 c9n8{r5	 r4}	 –	
c7n8{r5	 r9}	 –	 c7n6{r9	 r8}	 –	 b7n6{r8c3	 r7c3}	 –	 c3n3{r7	 r8}	 –	 b9n3{r8c7	 r7c9}	 –	 b9n9{r7c9	 .}	
==>	 r1c8	 ≠	 8	

After this very long whip, there is no more elimination. (Whips are programmed
up to length 36 in CSP-Rules and there is a mechanism for detecting the need for
longer ones – it never fired! The same programmed maximum length is true of the
braids and of the g-whips and g-braids to be introduced in chapter 7.)

2) The resolution path with braids shows that B(P) = 12:

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B	 	 *****	
;;; same path up to resolution state RS1
;;; the next two eliminations were done by slightly longer whips (length +1) in the
previous path
braid[8]:	 r1n9{c9	 c1}	 –	 r3n9{c1	 c4}	 –	 b2n5{r3c4	 r3c5}	 –	 b8n5{r7c5	 r7c6}	 –	 c1n1{r1	 r9}	 –	
c7n7{r2	 r5}	 –	 c7n1{r5	 r8}	 –	 b8n1{r9c4	 .}	 ==>	 r2c7	 ≠	 9	
braid[10]:	 b3n7{r2c7	 r1c8}	 –	 r1c6{n7	 n8}	 –	 c3n8{r1	 r5}	 –	 b9n8{r9c7	 r9c8}	 –	 c8n4{r1	 r7}	 –	
b9n9{r7c8	 r7c9}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 r7c2{n1	 n3}	 –	 c3n3{r8	 .}	 ==>	 r2c7	 ≠	 8	
;;; now the two paths diverge completely
braid[11]:	 c9n9{r7	 r1}	 –	 c7n9{r3	 r6}	 –	 b6n3{r6c7	 r5c7}	 –	 c3n3{r5	 r8}	 –	 c3n2{r8	 r2}	 –	 c7n7{r5	 r2}	 –	
r2c6{n2	 n8}	 –	 r1c6{n8	 n7}	 –	 r5n7{c6	 c8}	 –	 r6c8{n7	 n8}	 –	 c9n8{r5	 .}	 ==>	 r7c9	 ≠	 3	
braid[10]:	 b6n6{r4c8	 r4c9}	 –	 b6n5{r4c9	 r5c9}	 –	 c9n3{r5	 r8}	 –	 r5n7{c8	 c6}	 –	 r1c6{n7	 n8}	 –	
c9n8{r5	 r2}	 –	 r3n8{c8	 c2}	 –	 r4c2{n8	 n3}	 –	 c6n3{r8	 r7}	 –	 c3n3{r8	 .}	 ==>	 r4c8	 ≠	 7	
braid[12]:	 c7n9{r3	 r6}	 –	 b9n8{r9c7	 r9c8}	 –	 r6c8{n9	 n7}	 –	 r5c8{n8	 n1}	 –	 r5c7{n8	 n3}	 –	
b9n3{r9c7	 r8c9}	 –	 r5n7{c8	 c6}	 –	 r1c6{n7	 n8}	 –	 r2c6{n8	 n2}	 –	 c3n3{r8	 r7}	 –	 c5n2{r1	 r9}	 –	
r9n3{c7	 .}	 ==>	 r3c7	 ≠	 8	
whip[8]:	 r2c7{n7	 n6}	 –	 r3c7{n6	 n9}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 c1n6{r9	 r3}	 –	 r2c1{n6	 n4}	 –	
r1c3{n4	 n8}	 –	 r1c6{n8	 .}	 ==>	 r2c6	 ≠	 7	
hidden-‐single-‐in-‐a-‐row	 ==>	 r2c7	 =	 7	
whip[4]:	 r5n7{c8	 c6}	 –	 r1c6{n7	 n8}	 –	 r3n8{c4	 c2}	 –	 b4n8{r6c2	 .}	 ==>	 r5c8	 ≠	 8	
braid[9]:	 b2n9{r2c4	 r3c4}	 –	 r3c7{n9	 n6}	 –	 r2n9{c4	 c1}	 –	 r2n6{c9	 c3}	 –	 c3n2{r2	 r8}	 –	 r2n4{c3	 c9}	 –	
r8n4{c9	 c4}	 –	 c4n6{r8	 r9}	 –	 b7n6{r9c1	 .}	 ==>	 r2c4	 ≠	 2	
braid[9]:	 b2n9{r2c4	 r3c4}	 –	 r3c7{n9	 n6}	 –	 r2n9{c4	 c1}	 –	 r2n6{c9	 c3}	 –	 c3n2{r2	 r8}	 –	 r2c9{n8	 n4}	 –	
r8n4{c9	 c4}	 –	 c4n6{r8	 r9}	 –	 b7n6{r9c1	 .}	 ==>	 r2c4	 ≠	 8	
braid[11]:	 c4n2{r5	 r8}	 –	 b6n1{r5c8	 r4c8}	 –	 b6n6{r4c8	 r4c9}	 –	 b6n5{r4c9	 r5c9}	 –	 c9n3{r5	 r8}	 –	
r8n4{c9	 c3}	 –	 r8n6{c9	 c7}	 –	 b9n1{r9c8	 r9c7}	 –	 c1n1{r9	 r1}	 –	 r3c7{n6	 n9}	 –	 r1n9{c9	 .}	 ==>	 r5c4	 ≠	 1	

132 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[8]:	 r8n1{c4	 c7}	 –	 r5n1{c7	 c8}	 –	 r5n7{c8	 c6}	 –	 c6n5{r5	 r4}	 –	 r4c5{n5	 n3}	 –	 b8n3{r9c5	 r8c6}	 –	
c9n3{r8	 r5}	 –	 b6n5{r5c9	 .}	 ==>	 r7c6	 ≠	 1	
whip[8]:	 c1n1{r1	 r9}	 –	 r7n1{c2	 c8}	 –	 b9n9{r7c8	 r7c9}	 –	 r1n9{c9	 c8}	 –	 r3c7{n9	 n6}	 –	 c1n6{r3	 r2}	 –	
r1c3{n6	 n8}	 –	 r1c9{n8	 .}	 ==>	 r1c1	 ≠	 4	
whip[8]:	 c1n1{r1	 r9}	 –	 r7n1{c2	 c8}	 –	 b9n9{r7c8	 r7c9}	 –	 r1n9{c9	 c8}	 –	 r3c7{n9	 n6}	 –	 r2n6{c9	 c4}	 –	
r9c4{n6	 n4}	 –	 c8n4{r9	 .}	 ==>	 r1c1	 ≠	 6	
whip[10]:	 b6n6{r4c8	 r4c9}	 –	 b6n5{r4c9	 r5c9}	 –	 c9n3{r5	 r8}	 –	 r8c7{n3	 n1}	 –	 r9c7{n1	 n8}	 –	
r5c7{n8	 n3}	 –	 c3n3{r5	 r7}	 –	 b7n6{r7c3	 r8c3}	 –	 b8n6{r8c4	 r7c5}	 –	 r1n6{c5	 .}	 ==>	 r9c8	 ≠	 6	
braid[10]:	 r3c7{n6	 n9}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 r9c4{n1	 n4}	 –	 r9c8{n4	 n8}	 –	 r3n8{c8	 c2}	 –	
c1n6{r9	 r2}	 –	 r1c3{n8	 n4}	 –	 c8n4{r9	 r7}	 –	 b7n4{r9c2	 .}	 ==>	 r3c4	 ≠	 6	
whip[4]:	 c4n6{r9	 r2}	 –	 c1n6{r2	 r3}	 –	 r3c7{n6	 n9}	 –	 b2n9{r3c4	 .}	 ==>	 r9c5	 ≠	 6	
whip[10]:	 b6n6{r4c8	 r4c9}	 –	 b6n5{r4c9	 r5c9}	 –	 c9n3{r5	 r8}	 –	 r8c7{n3	 n1}	 –	 b8n1{r8c6	 r9c4}	 –	
r9n6{c4	 c1}	 –	 r8n6{c3	 c4}	 –	 r8n4{c4	 c3}	 –	 c3n2{r8	 r2}	 –	 r2n6{c3	 .}	 ==>	 r7c8	 ≠	 6	
whip[11]:	 r3c7{n6	 n9}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 c2n1{r9	 r1}	 –	 r1n2{c2	 c5}	 –	 r2c6{n2	 n8}	 –	
r2c9{n8	 n4}	 –	 r1n4{c8	 c3}	 –	 r8n4{c3	 c4}	 –	 b8n2{r8c4	 r8c6}	 –	 b8n1{r8c6	 .}	 ==>	 r1c8	 ≠	 6	
whip[5]:	 c8n6{r4	 r3}	 –	 r3c7{n6	 n9}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 r7n1{c2	 .}	 ==>	 r4c8	 ≠	 1	
whip[1]:	 r4n1{c4	 .}	 ==>	 r5c6	 ≠	 1	
whip[5]:	 r5n1{c7	 c8}	 –	 r5n7{c8	 c6}	 –	 r1c6{n7	 n8}	 –	 c9n8{r1	 r2}	 –	 c3n8{r2	 .}	 ==>	 r5c7	 ≠	 8	
whip[4]:	 r5n1{c7	 c8}	 –	 b6n7{r5c8	 r6c8}	 –	 b6n9{r6c8	 r6c7}	 –	 c7n8{r6	 .}	 ==>	 r9c7	 ≠	 1	
whip[5]:	 r5c7{n1	 n3}	 –	 b9n3{r9c7	 r8c9}	 –	 c3n3{r8	 r7}	 –	 c6n3{r7	 r4}	 –	 c6n1{r4	 .}	 ==>	 r8c7	 ≠	 1	
singles	 ==>	 r5c7	 =	 1,	 r5c8	 =	 7	
whip[1]:	 r8n1{c4	 .}	 ==>	 r9c4	 ≠	 1	 	
braid[7]:	 r8c7{n6	 n3}	 –	 c3n2{r8	 r2}	 –	 r2c6{n2	 n8}	 –	 r8c9{n6	 n4}	 –	 r2c9{n8	 n6}	 –	 b9n6{r8c9	 r9c7}	 –	
c4n6{r9	 .}	 ==>	 r8c3	 ≠	 6	
whip[5]:	 b7n6{r7c3	 r9c1}	 –	 r9c4{n6	 n4}	 –	 r5n4{c4	 c1}	 –	 c2n4{r6	 r1}	 –	 c8n4{r1	 .}	 ==>	 r7c3	 ≠	 4	
whip[5]:	 b9n9{r7c9	 r7c8}	 –	 r7n1{c8	 c2}	 –	 r7n4{c2	 c5}	 –	 r9c4{n4	 n6}	 –	 r8n6{c4	 .}	 ==>	 r7c9	 ≠	 6	
whip[2]:	 r7n6{c3	 c5}	 –	 c4n6{r9	 .}	 ==>	 r2c3	 ≠	 6	
braid[6]:	 b7n6{r9c1	 r7c3}	 –	 r8c7{n6	 n3}	 –	 c3n3{r8	 r5}	 –	 r6n3{c7	 c5}	 –	 r9c4{n6	 n4}	 –	 c5n4{r9	 .}	
==>	 r9c7	 ≠	 6	
whip[1]:	 b9n6{r8c7	 .}	 ==>	 r8c4	 ≠	 6	 	
whip[8]:	 b4n7{r6c2	 r4c2}	 –	 b4n8{r4c2	 r5c3}	 –	 r5n4{c3	 c4}	 –	 r9c4{n4	 n6}	 –	 r7n6{c5	 c3}	 –	
r1c3{n6	 n4}	 –	 r2n4{c3	 c9}	 –	 r8n4{c9	 .}	 ==>	 r6c2	 ≠	 4	
braid[6]:	 b4n4{r5c1	 r5c3}	 –	 b7n6{r9c1	 r7c3}	 –	 c3n3{r7	 r8}	 –	 b7n2{r8c3	 r9c2}	 –	 r9c5{n4	 n3}	 –	
b9n3{r9c7	 .}	 ==>	 r9c1	 ≠	 4	
whip[8]:	 r7c3{n3	 n6}	 –	 r9c1{n6	 n1}	 –	 b9n1{r9c8	 r7c8}	 –	 c2n1{r7	 r1}	 –	 c2n4{r1	 r9}	 –	 c2n2{r9	 r3}	 –	
b3n2{r3c8	 r1c8}	 –	 c8n4{r1	 .}	 ==>	 r7c2	 ≠	 3	
whip[3]:	 r7c9{n4	 n9}	 –	 r7c8{n9	 n1}	 –	 r7c2{n1	 .}	 ==>	 r7c5	 ≠	 4	
whip[6]:	 r8c7{n3	 n6}	 –	 r3c7{n6	 n9}	 –	 r1n9{c8	 c1}	 –	 c1n1{r1	 r9}	 –	 b7n6{r9c1	 r7c3}	 –	 r7n3{c3	 .}	 ==>	
r8c6	 ≠	 3	
whip[7]:	 r2c6{n8	 n2}	 –	 c5n2{r3	 r9}	 –	 c5n4{r9	 r6}	 –	 b5n7{r6c5	 r4c5}	 –	 r4c2{n7	 n3}	 –	 r6c1{n3	 n5}	 –	
r6c4{n5	 .}	 ==>	 r4c6	 ≠	 8	
whip[6]:	 b4n8{r6c2	 r5c3}	 –	 c6n8{r5	 r2}	 –	 r2n2{c6	 c3}	 –	 r3c2{n2	 n3}	 –	 r6c2{n3	 n7}	 –	 r4c2{n7	 .}	 ==>	
r1c2	 ≠	 8	
whip[7]:	 b5n2{r5c4	 r5c6}	 –	 r8c6{n2	 n1}	 –	 b5n1{r4c6	 r4c4}	 –	 b5n8{r4c4	 r6c4}	 –	 r3c4{n8	 n9}	 –	
c7n9{r3	 r6}	 –	 r6c8{n9	 .}	 ==>	 r5c4	 ≠	 5	
whip[8]:	 c4n1{r4	 r8}	 –	 r8c6{n1	 n2}	 –	 r2c6{n2	 n8}	 –	 r3c4{n8	 n9}	 –	 c7n9{r3	 r6}	 –	 r6c8{n9	 n8}	 –	
b5n8{r6c4	 r5c4}	 –	 b5n2{r5c4	 .}	 ==>	 r4c4	 ≠	 5	

5. Bivalue-chains, whips and braids 133

whip[7]:	 c4n6{r9	 r2}	 –	 b2n9{r2c4	 r3c4}	 –	 c4n5{r3	 r6}	 –	 b4n5{r6c1	 r5c1}	 –	 r5n4{c1	 c3}	 –	
c1n4{r6	 r2}	 –	 r2n9{c1	 .}	 ==>	 r9c4	 ≠	 4	
singles	 ==>	 r9c4	 =	 6,	 r2c4	 =	 9,	 r7c3	 =	 6	
whip[1]:	 r7n3{c6	 .}	 ==>	 r9c5	 ≠	 3	 	
whip[5]:	 c3n3{r5	 r8}	 –	 r8c7{n3	 n6}	 –	 r8c9{n6	 n4}	 –	 c8n4{r9	 r1}	 –	 r1c3{n4	 .}	 ==>	 r5c3	 ≠	 8	
whip[1]:	 c3n8{r1	 .}	 ==>	 r3c2	 ≠	 8	 	
whip[2]:	 b4n7{r4c2	 r6c2}	 –	 c2n8{r6	 .}	 ==>	 r4c2	 ≠	 3	
whip[2]:	 b4n7{r6c2	 r4c2}	 –	 c2n8{r4	 .}	 ==>	 r6c2	 ≠	 3	
whip[3]:	 b3n2{r1c8	 r3c8}	 –	 r3n8{c8	 c4}	 –	 r2c6{n8	 .}	 ==>	 r1c5	 ≠	 2	
whip[4]:	 b8n4{r8c4	 r9c5}	 –	 c8n4{r9	 r1}	 –	 b3n2{r1c8	 r3c8}	 –	 c5n2{r3	 .}	 ==>	 r8c9	 ≠	 4	
whip[2]:	 r8c7{n3	 n6}	 –	 r8c9{n6	 .}	 ==>	 r9c7	 ≠	 3	
naked-‐single	 ==>	 r9c7	 =	 8	
r9n3{c1	 .}	 ==>	 r8c3	 ≠	 3	 	
hidden-‐single-‐in-‐a-‐column	 ==>	 r5c3	 =	 3	
b4n4{r6c1	 .}	 ==>	 r2c1	 ≠	 4	 	
naked-‐single	 ==>	 r2c1	 =	 6	
whip[4]:	 c4n8{r6	 r3}	 –	 c4n5{r3	 r6}	 –	 r4n5{c5	 c9}	 –	 r5c9{n5	 .}	 ==>	 r5c6	 ≠	 8	
whip[1]:	 c6n8{r1	 .}	 ==>	 r3c4	 ≠	 8	
singles	 to	 the	 end	

5.10.3. An example of non-confluence for the W4 whip resolution theory

As mentioned in the proof of the confluence property for the Bn resolution
theories (section 5.5), there is one step in this proof (step b) that would not work for
the Wn theories. But this did not prove that the Wn theories do not have the
confluence property. The puzzle in Figure 5.4 (Sudogen0_1M #279845) provides
the missing proof, for the Sudoku CSP. n = 4 is the smallest n we could find with a
counter-example to confluence.

9 8 1 7 3 2 5 9 8 1 7 6 3 2 5 4
7 5 2 1 9 7 5 2 4 8 1 9 3 6
3 6 4 9 8 3 6 4 5 9 2 1 7 8
 1 7 3 9 2 8 1 7 3 5 6 4 9 2
 4 3 9 6 2 4 3 8 1 9 7 6 5
 9 7 6 9 5 2 4 7 8 1 3

4 1 2 9 4 7 8 1 3 5 6 2 9
 2 9 8 5 2 9 6 7 8 3 4 1
 9 5 1 3 6 9 2 4 5 8 7

Figure 5.4. An example of non confluence of W4: puzzle Sudogen0_1M #279845

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 *****	
37	 givens,	 146	 candidates,	 792	 csp-‐links	 and	 792	 links.	 Initial	 density	 =	 1.97.	
whip[1]:	 c7n6{r7	 .}	 ==>	 r9c9	 ≠	 6,	 r8c9	 ≠	 6	

134 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[2]:	 c1n8{r6	 r9}	 –	 c8n8{r9	 .}	 ==>	 r6c3	 ≠	 8	
whip[1]:	 c3n8{r9	 .}	 ==>	 r9c1	 ≠	 8	
whip[3]:	 c7n4{r6	 r8}	 –	 c4n4{r8	 r2}	 –	 b3n4{r2c9	 .}	 ==>	 r6c9	 ≠	 4	
whip[3]:	 b7n5{r8c1	 r7c3}	 –	 r7n8{c3	 c7}	 –	 b9n6{r7c7	 .}	 ==>	 r8c1	 ≠	 6	
whip[3]:	 b8n2{r9c5	 r9c6}	 –	 r3c6{n2	 n5}	 –	 r7c6{n5	 .}	 ==>	 r9c5	 ≠	 6	
whip[3]:	 c6n4{r9	 r4}	 –	 r4c7{n4	 n8}	 –	 b9n8{r7c7	 .}	 ==>	 r9c8	 ≠	 4	
whip[2]:	 r1n4{c5	 c9}	 –	 b9n4{r9c9	 .}	 ==>	 r8c5	 ≠	 4	 	

The resolution state RS1 at this point is shown in Figure 5.5.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 9 8 1 7

n4 n6

3 2 5

n4 n6

r1

r2 7 5 2

n4 n6
n8

n4 n6

n8
1 9

 n3
 n4

 n3
n4 n6

r2

r3 3 6 4
n2
n5

9
n2
n5

 n1

 n7

 n1

 n7
8 r3

r4

 n5 n6
n8

1 7 3

n4 n5 n6
n8

n4 n5 n6

n4
n8

9 2 r4

r5
n2
n5
n8

4 3
n2
n5
n8

n1 n2
n5
n8

9
 n1

 n7 n8

6
 n1

n5
 n7

r5

r6
n2

 n5 n6
n8

9

 n5 n6

n2
n4 n5 n6

n8

 n1 n2
n4 n5 n6

n8
7

n1 n3
n4
n8

n1 n3
n4
n8

n1 n3
n5

r6

r7 4
n3

n7

 n5 n6

n8
1

 n3
 n5 n6
 n7

 n5 n6

 n3
 n6
 n7 n8

2 9 r7

r8
 n1

n5

2 9

n4 n5 n6

 n3
 n5 n6
 n7

8
n1 n3
n4 n6
 n7

n1 n3
 n4
 n7

n1 n3
 n4
 n7

r8

r9
 n1

n6

n3

n7

 n6

n8
9

 n2 n3
 n4
 n7

n2
n4 n6

5

n1 n3

 n7 n8

n1 n3
 n4
 n7

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 5.5. Resolution state RS1 of puzzle Sudogen0_1M #279845

After RS1 has been reached, there are (at least) the following two resolution
paths.

1) The first path starts with a general whip:

whip[4]:	 c6n4{r4	 r9}	 –	 c6n6{r9	 r7}	 –	 r8c4{n6	 n5}	 –	 c5n5{r8	 .}	 ==>	 r4c6	 ≠	 5	 	

It is worth analysing this whip by adding it a few details:

whip[4]:	 c6n4{r4	 r9(1)}	 –	 c6n6{r9	 r7(2)	 r4*}	 –	 r8c4{n6	 n5(3)	 n4#1}	 –	 c5n5{r8	 .	 r4*	 r5*	 r6*	 r7#3}	 ==>	
r4c6≠5	 	

5. Bivalue-chains, whips and braids 135

The * sign corresponds to z-candidates, the # sign corresponds to t-candidates
and the number following this # sign is the number of the right-linking candidate
linked to this t-candidate (remember however that, by definition, these z- and t-
candidates do not belong to the whip; we display them here for the only sake of
illustrating how a whip deals with these additional candidates).

Notice that there is an alternative whip, for the same target, with the same first
two cells and the last cell replaced by the slightly simpler: r3n5{c4 . c6*}. Using it
instead would not change the sequel.

The end of this first resolution path has nothing noticeable:

whip[2]:	 b7n5{r7c3	 r8c1}	 –	 r4n5{c1	 .}	 ==>	 r7c5	 ≠	 5	
whip[4]:	 r7c6{n5	 n6}	 –	 r4c6{n6	 n4}	 –	 r4c7{n4	 n8}	 –	 r7n8{c7	 .}	 ==>	 r7c3	 ≠	 5	
singles	 ==>	 r8c1	 =	 5,	 r6c3	 =	 5,	 r5c9	 =	 5,	 r4c5	 =	 5,	 r3c4	 =	 5,	 r3c6	 =	 2,	 r9c5	 =	 2,	 r7c6	 =	 5,	 r5c7	 =	 7,	
r3c7	 =	 1,	 r3c8	 =	 7,	 r5c5	 =	 1,	 r9c1	 =	 1	
whip[2]:	 b8n3{r7c5	 r8c5}	 –	 b8n7{r8c5	 .}	 ==>	 r7c5	 ≠	 6	
whip[2]:	 r7c2{n3	 n7}	 –	 r7c5{n7	 .}	 ==>	 r7c7	 ≠	 3	
whip[2]:	 b8n3{r8c5	 r7c5}	 –	 b8n7{r7c5	 .}	 ==>	 r8c5	 ≠	 6	
whip[2]:	 r9n4{c9	 c6}	 –	 r4n4{c6	 .}	 ==>	 r8c7	 ≠	 4	
whip[1]:	 c7n4{r4	 .}	 ==>	 r6c8	 ≠	 4	
whip[3]:	 r9n4{c9	 c6}	 –	 b8n6{r9c6	 r8c4}	 –	 r8c7{n6	 .}	 ==>	 r9c9	 ≠	 3	
whip[3]:	 r8c7{n3	 n6}	 –	 r7c7{n6	 n8}	 –	 r9c8{n8	 .}	 ==>	 r8c9	 ≠	 3,	 r8c8	 ≠	 3	
whip[3]:	 r6n2{c4	 c1}	 –	 r6n6{c1	 c5}	 –	 r4c6{n6	 .}	 ==>	 r6c4	 ≠	 4	
whip[2]:	 c8n4{r2	 r8}	 –	 c4n4{r8	 .}	 ==>	 r2c9	 ≠	 4,	 r2c5	 ≠	 4	
whip[2]:	 r1n4{c9	 c5}	 –	 c4n4{r2	 .}	 ==>	 r8c9	 ≠	 4	
whip[4]:	 b9n6{r7c7	 r8c7}	 –	 r8c4{n6	 n4}	 –	 c6n4{r9	 r4}	 –	 r4c7{n4	 .}	 ==>	 r7c7	 ≠	 8	
singles	 to	 the	 end	

Now, if we activate braids and we re-start with our usual “simplest first”
strategy, we get exactly the same path (there appears no non-whip braid). Thanks to
the confluence property of B4, we do not have to consider any other resolution path
to claim that the correct B rating is B = 4. As W(P) ≤ B(P) for any P and we have
found a resolution path for P with whips of lengths no more than 4, we can also
claim that W(P) = 4.

2) Let us now consider what would have happened if we had followed an
alternative resolution path. In state RS1, before using the first whip[4] above, we
could have chosen a whole sequence of simpler whips – “simpler” in the sense that
they are special subtypes of whips, not in the sense of being shorter (these subtypes
were introduced in HLS, but it is not necessary here to know their precise
definitions, they are whips anyway, with the lengths indicated in square brackets):

*****	 	 SudoRules	 13.7wter2	 	 *****	
;;; same path up to resolution stateRS1
xyzt-‐chain[4]:	 	 r7c6{n6	 n5}	 –	 r3c6{n5	 n2}	 –	 r9c6{n2	 n4}	 –	 r8c4{n4	 n6}	 ==>	 r8c5	 ≠	 6,	 r7c5	 ≠	 6	

136 Pattern-Based Constraint Satisfaction and Logic Puzzles

nrc-‐chain[4]:	 	 b6n7{r5c7	 r5c9}	 –	 b6n5{r5c9	 r6c9}	 –	 c3n5{r6	 r7}	 –	 r7n8{c3	 c7}	 ==>	 r7c7	 ≠	 7,	
r5c7	 ≠	 8	
naked-‐pairs-‐in-‐a-‐column	 c7{r3	 r5}{n1	 n7}	 ==>	 r8c7	 ≠	 7,	 r8c7	 ≠	 1,	 r6c7	 ≠	 1	
;;; Resolution state RS2
nrc-‐chain[4]:	 	 r9c3{n6	 n8}	 –	 b9n8{r9c8	 r7c7}	 –	 r4c7{n8	 n4}	 –	 c6n4{r4	 r9}	 ==>	 r9c6	 ≠	 6	
;;; Resolution state RS3
interaction	 row	 r9	 with	 block	 b7	 ==>	 r7c3	 ≠	 6	
nrct-‐chain[5]:	 	 c6n4{r4	 r9}	 –	 c6n2{r9	 r3}	 –	 r3n5{c6	 c4}	 –	 r8c4{n5	 n6}	 –	 r7c6{n6	 n5}	 ==>	
r4c6≠5	
nrc-‐chain[2]:	 	 r4n5{c5	 c1}	 –	 b7n5{r8c1	 r7c3}	 ==>	 r7c5	 ≠	 5	
naked-‐pairs-‐in-‐a-‐row:	 r7{c2	 c5}{n3	 n7}	 ==>	 r7c7	 ≠	 3	
xy-‐chain[3]:	 	 r7c7{n6	 n8}	 –	 r4c7{n8	 n4}	 –	 r4c6{n4	 n6}	 ==>	 r7c6	 ≠	 6	
singles	 to	 the	 end	

Until we reach resolution state RS2, the whip[4] of the first path is still available;
but if we apply the nrc-chain[4] rule before this whip[4], it deletes the left-linking
candidate n6r9c6 for its second CSP variable. Then, in the resulting state RS3, there
remains no whip[4]; the simplest whip available is a slightly longer nrct-chain[5]; it
makes the same r4c6 ≠ 5 elimination.

Conclusion: if we considered only this second resolution path, we would find,
erroneously, that the W rating of this puzzle is 5. This example is thus not only a
clear case of non-confluence for whip theories, it is also a case in which this non-
confluence leads to a bad evaluation of the W rating if we do not try all the paths.
This is a very rare case.

Final remark: if we allow braids, even after the nrc-chain[4] is applied, there is a
replacement braid for the missing whip[4] (and it is as provided in section 5.5.1 by
the general proof of confluence for braid resolution theories):
braid[4]:	 	 c6n4{r4	 r9}	 –	 c6n6{r4	 r7}	 –	 r8c4{n6	 n5	 n4#1}	 –	 c5n5{r8	 .	 r4*	 r5*	 r6*	 r7#3}	 ==>	
r4c6	 ≠	 5	

The z-candidate n6r4c6 in cell 2 of the whip[4] is now used as a left-linking
candidate in the braid, in which it is linked to the target.

5.10.4. A puzzle P with a whip of length 31 and B(P) = 19 [and gW(P) = 12]

What is the largest whip one can find? This is a very difficult question. The
largest W rating we could obtain with random generators is 16 (and we could find
only one puzzle with W=16 in more than 10,000,000). In Figure 5.5 of CRT, we
gave an example of a puzzle (of unknown origin) with a whip of length 24. Since
then, Mauricio, on the Player’s Forum, has found one (Figure 5.6 below) with length
31. It does not prove that W(P) = 31, but after trying several resolution paths, we
found none without a whip of length 31. Most interestingly, the B rating is
B(P) = 19 only, suggesting that, in extremely rare cases, the gap between the W and

5. Bivalue-chains, whips and braids 137

B ratings, even when they are both finite, can be very large. Moreover, in chapter 7,
it will be shown that the gW rating is only 12.

 1 2 6 9 4 7 5 1 8 3 2
 3 4 1 7 2 8 3 9 5 4 6
 5 2 1 8 3 5 2 6 4 1 7 9
 3 6 1 7 4 3 6 9 8 2 1 5
 2 7 8 5 2 6 1 7 3 4 9 8
9 5 7 9 1 8 4 2 5 7 6 3
 9 7 4 5 9 3 8 7 6 2 1
 8 9 4 2 8 7 9 1 6 3 5 4
3 4 8 3 6 1 4 4 2 9 8 7

Figure 5.6. A puzzle P with W(P) = 31

The path with whips provides a whip of length 31.

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 *****	
24	 givens,	 220	 candidates,	 1433	 csp-‐links	 and	 1433	 links.	 Initial	 density	 =	 1.49	
whip[11]:	 c8n9{r1	 r5}	 –	 r4c9{n9	 n5}	 –	 r2n5{c9	 c4}	 –	 b2n7{r2c4	 r1c4}	 –	 b2n4{r1c4	 r3c6}	 –	
c6n9{r3	 r4}	 –	 r5c6{n9	 n3}	 –	 c4n3{r5	 r7}	 –	 b8n8{r7c4	 r7c5}	 –	 r4n8{c5	 c1}	 –	 r3n8{c1	 .}	 ==>	 r2c7	 ≠	 9	
whip[11]:	 r8n1{c1	 c5}	 –	 r9c4{n1	 n5}	 –	 c2n5{r9	 r4}	 –	 b4n7{r4c2	 r4c1}	 –	 b4n8{r4c1	 r6c3}	 –	
r6n1{c3	 c4}	 –	 r6c5{n1	 n2}	 –	 r4n2{c6	 c7}	 –	 b6n4{r4c7	 r5c7}	 –	 c4n4{r5	 r1}	 –	 c3n4{r1	 .}	 ==>	 r7c2	 ≠	 1	
whip[12]:	 b9n1{r7c9	 r9c9}	 –	 r9c4{n1	 n5}	 –	 c2n5{r9	 r4}	 –	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	
r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 b5n1{r6c5	 r5c4}	 –	 b5n3{r5c4	 r6c4}	 –	 r6n4{c4	 c3}	 –	 r5c3{n4	 n6}	 –	
r5c1{n6	 .}	 ==>	 r7c9	 ≠	 5	
whip[12]:	 b9n9{r9c7	 r9c9}	 –	 r4c9{n9	 n5}	 –	 r2n5{c9	 c4}	 –	 r9c4{n5	 n1}	 –	 c5n1{r8	 r6}	 –	 c2n1{r6	 r2}	
–	 r2n9{c2	 c6}	 –	 b5n9{r5c6	 r4c5}	 –	 b5n2{r4c5	 r4c6}	 –	 c6n8{r4	 r3}	 –	 b2n4{r3c6	 r1c4}	 –	 b2n7{r1c4	 .}	
==>	 r9c7	 ≠	 5	
whip[14]:	 b3n8{r1c7	 r2c7}	 –	 r2n5{c7	 c4}	 –	 b2n7{r2c4	 r1c4}	 –	 b2n4{r1c4	 r3c6}	 –	 c6n8{r3	 r4}	 –	
c4n8{r6	 r7}	 –	 b8n3{r7c4	 r8c6}	 –	 r5c6{n3	 n9}	 –	 r4c5{n9	 n2}	 –	 r6c5{n2	 n1}	 –	 c4n1{r6	 r9}	 –	
c2n1{r9	 r2}	 –	 r2n9{c2	 c9}	 –	 c8n9{r3	 .}	 ==>	 r1c7	 ≠	 5	
whip[14]:	 b7n4{r7c1	 r7c2}	 –	 c2n5{r7	 r4}	 –	 b4n7{r4c2	 r4c1}	 –	 b4n8{r4c1	 r6c3}	 –	 r6n4{c3	 c4}	 –	
r4n4{c6	 c7}	 –	 b6n2{r4c7	 r6c8}	 –	 r6c5{n2	 n1}	 –	 r5c4{n1	 n3}	 –	 r5c6{n3	 n9}	 –	 r4n9{c6	 c9}	 –	
r2n9{c9	 c2}	 –	 c2n1{r2	 r9}	 –	 r8n1{c1	 .}	 ==>	 r7c1	 ≠	 5	
whip[17]:	 b2n4{r3c6	 r1c4}	 –	 b2n7{r1c4	 r2c4}	 –	 b2n5{r2c4	 r1c5}	 –	 c5n9{r1	 r4}	 –	 r4c9{n9	 n5}	 –	
b3n5{r2c9	 r2c7}	 –	 r5n5{c7	 c1}	 –	 r8n5{c1	 c8}	 –	 b9n7{r8c8	 r9c9}	 –	 c9n9{r9	 r2}	 –	 b1n9{r2c2	 r1c2}	 –	
b1n3{r1c2	 r3c2}	 –	 b1n4{r3c2	 r3c1}	 –	 r3n8{c1	 c5}	 –	 c6n8{r2	 r4}	 –	 r4c1{n8	 n7}	 –	 c2n7{r4	 .}	 ==>	
r3c6	 ≠	 9	
whip[17]:	 b4n8{r6c3	 r4c1}	 –	 b4n7{r4c1	 r4c2}	 –	 b4n5{r4c2	 r5c1}	 –	 r5n1{c1	 c4}	 –	 r9c4{n1	 n5}	 –	
b7n5{r9c2	 r7c2}	 –	 c5n5{r7	 r1}	 –	 c8n5{r1	 r8}	 –	 b9n7{r8c8	 r9c9}	 –	 r9n1{c9	 c2}	 –	 c1n1{r8	 r2}	 –	
b1n2{r2c1	 r2c3}	 –	 b1n8{r2c3	 r1c3}	 –	 c3n4{r1	 r5}	 –	 b6n4{r5c7	 r4c7}	 –	 c7n5{r4	 r2}	 –	 b3n8{r2c7	 .}	
==>	 r6c3	 ≠	 1	
whip[31]:	 b3n8{r1c7	 r2c7}	 –	 c1n8{r2	 r4}	 –	 c6n8{r4	 r3}	 –	 b2n4{r3c6	 r1c4}	 –	 b2n7{r1c4	 r2c4}	
–	 b2n5{r2c4	 r1c5}	 –	 b3n5{r1c8	 r2c9}	 –	 r4c9{n5	 n9}	 –	 r4c5{n9	 n2}	 –	 r4c6{n2	 n4}	 –	

138 Pattern-Based Constraint Satisfaction and Logic Puzzles

b5n9{r4c6	 r5c6}	 –	 c6n3{r5	 r8}	 –	 b8n2{r8c6	 r9c6}	 –	 c6n6{r9	 r2}	 –	 b2n9{r2c6	 r3c5}	 –	
c8n9{r3	 r1}	 –	 c7n9{r1	 r9}	 –	 r4c7{n9	 n5}	 –	 b4n5{r4c2	 r5c1}	 –	 r8n5{c1	 c8}	 –	 c8n7{r8	 r3}	 –	
c9n7{r2	 r9}	 –	 c3n7{r9	 r8}	 –	 c3n2{r8	 r2}	 –	 r2c1{n2	 n1}	 –	 r8n1{c1	 c5}	 –	 b8n6{r8c5	 r7c5}	 –	
b9n6{r7c7	 r8c7}	 –	 b3n6{r2c7	 r3c9}	 –	 c1n6{r3	 r1}	 –	 c1n7{r1	 .}	 ==>	 r1c3	 ≠	 8	
whip[6]:	 b4n8{r6c3	 r4c1}	 –	 b1n8{r3c1	 r2c3}	 –	 c6n8{r2	 r3}	 –	 b2n4{r3c6	 r1c4}	 –	 r6n4{c4	 c2}	 –	
c3n4{r6	 .}	 ==>	 r6c3	 ≠	 6	
whip[7]:	 r1n4{c3	 c4}	 –	 r6n4{c4	 c3}	 –	 c3n8{r6	 r2}	 –	 b1n2{r2c3	 r2c1}	 –	 b1n1{r2c1	 r2c2}	 –	
b1n9{r2c2	 r1c2}	 –	 b1n3{r1c2	 .}	 ==>	 r3c2	 ≠	 4	
whip[6]:	 r3n4{c6	 c1}	 –	 r3n8{c1	 c5}	 –	 c6n8{r3	 r4}	 –	 c6n4{r4	 r5}	 –	 c3n4{r5	 r6}	 –	 b4n8{r6c3	 .}	 ==>	
r3c6	 ≠	 6	
whip[10]:	 b4n8{r6c3	 r4c1}	 –	 r3n8{c1	 c6}	 –	 r3n4{c6	 c1}	 –	 b7n4{r7c1	 r7c2}	 –	 r1n4{c2	 c4}	 –	
b2n7{r1c4	 r2c4}	 –	 c4n8{r2	 r7}	 –	 c4n5{r7	 r9}	 –	 c2n5{r9	 r4}	 –	 b4n7{r4c2	 .}	 ==>	 r6c5	 ≠	 8	
whip[6]:	 r6c5{n1	 n2}	 –	 b6n2{r6c8	 r4c7}	 –	 b6n4{r4c7	 r5c7}	 –	 c4n4{r5	 r1}	 –	 c3n4{r1	 r6}	 –	 r6n8{c3	 .}	
==>	 r6c4	 ≠	 1	
whip[2]:	 r8n1{c3	 c5}	 –	 r6n1{c5	 .}	 ==>	 r9c2	 ≠	 1	
whip[6]:	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 b5n1{r6c5	 r5c4}	 –	 r9c4{n1	 .}	
==>	 r9c9	 ≠	 5	
whip[6]:	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 r6c5{n1	 n2}	 –	 b6n2{r6c8	 .}	
==>	 r4c7	 ≠	 5	
whip[6]:	 b8n8{r7c5	 r7c4}	 –	 c4n1{r7	 r5}	 –	 c4n3{r5	 r6}	 –	 r6n8{c4	 c3}	 –	 r6n4{c3	 c2}	 –	 b4n1{r6c2	 .}	
==>	 r7c5	 ≠	 1	
whip[7]:	 b5n9{r4c6	 r5c6}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 b5n1{r6c5	 r5c4}	 –	 b5n3{r5c4	 r6c4}	 –	
r6n8{c4	 c3}	 –	 r6n4{c3	 .}	 ==>	 r4c9	 ≠	 9	
singles	 ==>	 r4c9	 =	 5,	 r5c1	 =	 5	
biv-‐chain[2]:	 b4n1{r5c3	 r6c2}	 –	 b4n6{r6c2	 r5c3}	 ==>	 r5c3	 ≠	 4	
biv-‐chain[2]:	 r5n1{c3	 c4}	 –	 c5n1{r6	 r8}	 ==>	 r8c3	 ≠	 1	
whip[2]:	 b4n1{r6c2	 r5c3}	 –	 b4n6{r5c3	 .}	 ==>	 r6c2	 ≠	 4	
whip[2]:	 r6n8{c4	 c3}	 –	 r6n4{c3	 .}	 ==>	 r6c4	 ≠	 3	
whip[1]:	 r6n3{c9	 .}	 ==>	 r5c8	 ≠	 3,	 r5c7	 ≠	 3	
biv-‐chain[3]:	 b2n7{r1c4	 r2c4}	 –	 r2n5{c4	 c7}	 –	 c7n8{r2	 r1}	 ==>	 r1c4	 ≠	 8	
whip[4]:	 r9n5{c2	 c4}	 –	 r2n5{c4	 c7}	 –	 r8n5{c7	 c8}	 –	 b9n7{r8c8	 .}	 ==>	 r9c2	 ≠	 7	
biv-‐chain[3]:	 r8n1{c1	 c5}	 –	 r9c4{n1	 n5}	 –	 r9c2{n5	 n6}	 ==>	 r8c1	 ≠	 6	
whip[4]:	 c2n1{r2	 r6}	 –	 b5n1{r6c5	 r5c4}	 –	 r9c4{n1	 n5}	 –	 r9c2{n5	 .}	 ==>	 r2c2	 ≠	 6	
whip[4]:	 r9c4{n1	 n5}	 –	 r9c2{n5	 n6}	 –	 b4n6{r6c2	 r5c3}	 –	 r5n1{c3	 .}	 ==>	 r7c4	 ≠	 1	
biv-‐chain[3]:	 b9n1{r7c9	 r9c9}	 –	 c4n1{r9	 r5}	 –	 c4n3{r5	 r7}	 ==>	 r7c9	 ≠	 3	
whip[4]:	 r7n1{c9	 c1}	 –	 b7n4{r7c1	 r7c2}	 –	 b7n5{r7c2	 r9c2}	 –	 r9c4{n5	 .}	 ==>	 r9c9	 ≠	 1	
hidden-‐single-‐in-‐a-‐block	 ==>	 r7c9	 =	 1	
biv-‐chain[2]:	 r5n1{c3	 c4}	 –	 r9n1{c4	 c3}	 ==>	 r2c3	 ≠	 1	
whip[3]:	 b7n7{r9c3	 r8c1}	 –	 c1n1{r8	 r2}	 –	 b1n2{r2c1	 .}	 ==>	 r2c3	 ≠	 7	
whip[4]:	 b4n6{r6c2	 r5c3}	 –	 c3n1{r5	 r9}	 –	 r9c4{n1	 n5}	 –	 r9c2{n5	 .}	 ==>	 r3c2	 ≠	 6,	 r1c2	 ≠	 6	
whip[4]:	 b4n6{r6c2	 r5c3}	 –	 c3n1{r5	 r9}	 –	 r9c4{n1	 n5}	 –	 b7n5{r9c2	 .}	 ==>	 r7c2	 ≠	 6	
whip[4]:	 r6c4{n4	 n8}	 –	 c3n8{r6	 r2}	 –	 c6n8{r2	 r3}	 –	 b2n4{r3c6	 .}	 ==>	 r5c4	 ≠	 4	
biv-‐chain[2]:	 c3n4{r1	 r6}	 –	 c4n4{r6	 r1}	 ==>	 r1c2	 ≠	 4,	 r1c1	 ≠	 4	
biv-‐chain[5]:	 r9c6{n2	 n6}	 –	 c2n6{r9	 r6}	 –	 r6n1{c2	 c5}	 –	 r5c4{n1	 n3}	 –	 b8n3{r7c4	 r8c6}	 ==>	
r8c6	 ≠	 2	
biv-‐chain[5]:	 b7n1{r8c1	 r9c3}	 –	 r9c4{n1	 n5}	 –	 b7n5{r9c2	 r7c2}	 –	 c2n4{r7	 r4}	 –	 r4n7{c2	 c1}	 ==>	
r8c1	 ≠	 7	

5. Bivalue-chains, whips and braids 139

whip[1]:	 b7n7{r9c3	 .}	 ==>	 r1c3	 ≠	 7	
whip[3]:	 r6n2{c8	 c5}	 –	 c5n1{r6	 r8}	 –	 r8c1{n1	 .}	 ==>	 r8c8	 ≠	 2	
whip[5]:	 r4c2{n7	 n4}	 –	 r6n4{c3	 c4}	 –	 r1c4{n4	 n5}	 –	 r9n5{c4	 c2}	 –	 r7c2{n5	 .}	 ==>	 r1c2	 ≠	 7	
whip[5]:	 b8n3{r8c6	 r7c4}	 –	 r5c4{n3	 n1}	 –	 r9c4{n1	 n5}	 –	 r2n5{c4	 c7}	 –	 r8n5{c7	 .}	 ==>	 r8c8	 ≠	 3	
whip[5]:	 r5c8{n9	 n6}	 –	 r6n6{c9	 c2}	 –	 c2n1{r6	 r2}	 –	 r2n9{c2	 c9}	 –	 c8n9{r3	 .}	 ==>	 r5c6	 ≠	 9	
whip[1]:	 r5n9{c8	 .}	 ==>	 r4c7	 ≠	 9	
biv-‐chain[3]:	 b8n3{r7c4	 r8c6}	 –	 r5c6{n3	 n4}	 –	 r6c4{n4	 n8}	 ==>	 r7c4	 ≠	 8	
hidden-‐single-‐in-‐a-‐block	 ==>	 r7c5	 =	 8	
biv-‐chain[2]:	 b4n8{r4c1	 r6c3}	 –	 c4n8{r6	 r2}	 ==>	 r2c1	 ≠	 8	
biv-‐chain[2]:	 c3n8{r2	 r6}	 –	 c4n8{r6	 r2}	 ==>	 r2c7	 ≠	 8	
hidden-‐single-‐in-‐a-‐block	 ==>	 r1c7	 =	 8	
whip[1]:	 c7n3{r8	 .}	 ==>	 r7c8	 ≠	 3	
biv-‐chain[2]:	 c3n8{r2	 r6}	 –	 c4n8{r6	 r2}	 ==>	 r2c6	 ≠	 8	
biv-‐chain[2]:	 r3c5{n6	 n9}	 –	 r2c6{n9	 n6}	 ==>	 r1c5	 ≠	 6	
biv-‐chain[2]:	 r3n4{c1	 c6}	 –	 r3n8{c6	 c1}	 ==>	 r3c1	 ≠	 7,	 r3c1	 ≠	 6	
whip[2]:	 r2n5{c7	 c4}	 –	 b8n5{r9c4	 .}	 ==>	 r8c7	 ≠	 5	
whip[2]:	 r2c6{n9	 n6}	 –	 r3c5{n6	 .}	 ==>	 r1c5	 ≠	 9	
singles	 ==>	 r1c5	 =	 5,	 r2c7	 =	 5,	 r8c8	 =	 5,	 r9c9	 =	 7,	 r8c3	 =	 7,	 r9c7	 =	 9,	 r5c8	 =	 9,	 r1c2	 =	 9,	 r3c2	 =	 3,	
r1c8	 =	 3,	 r6c9	 =	 3,	 r3c8	 =	 7	
whip[1]:	 r1n6{c1	 .}	 ==>	 r2c3	 ≠	 6,	 r2c1	 ≠	 6	
whip[2]:	 c2n6{r9	 r6}	 –	 c8n6{r6	 .}	 ==>	 r7c1	 ≠	 6	 ;	 singles	 to	 the	 end	

Radically different from the start, the path with braids shows that B(P) = 19.

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B	 	 *****	
24	 givens,	 220	 candidates,	 1433	 csp-‐links	 and	 1433	 links.	 Initial	 density	 =	 1.49	
braid[8]:	 r9c4{n5	 n1}	 –	 b9n1{r9c9	 r7c9}	 –	 c5n1{r7	 r6}	 –	 c2n1{r6	 r2}	 –	 r4c9{n5	 n9}	 –	
b5n9{r4c5	 r5c6}	 –	 r2n9{c2	 c7}	 –	 b9n9{r9c9	 .}	 ==>	 r9c9	 ≠	 5	
braid[10]:	 c8n9{r1	 r5}	 –	 r4c9{n9	 n5}	 –	 b3n8{r1c7	 r2c7}	 –	 r2n5{c7	 c4}	 –	 b2n7{r2c4	 r1c4}	 –	
b2n4{r1c4	 r3c6}	 –	 c6n8{r2	 r4}	 –	 c4n8{r1	 r7}	 –	 r5c6{n4	 n3}	 –	 b8n3{r8c6	 .}	 ==>	 r1c7	 ≠	 9	
braid[10]:	 r8n1{c1	 c5}	 –	 r9c4{n1	 n5}	 –	 b7n4{r7c1	 r7c2}	 –	 c2n5{r7	 r4}	 –	 b4n7{r4c2	 r4c1}	 –	
b4n8{r4c1	 r6c3}	 –	 r6n4{c2	 c4}	 –	 r4n4{c1	 c7}	 –	 b6n2{r4c7	 r6c8}	 –	 r6c5{n8	 .}	 ==>	 r7c1	 ≠	 1	
whip[11]:	 c8n9{r1	 r5}	 –	 r4c9{n9	 n5}	 –	 r2n5{c9	 c4}	 –	 b2n7{r2c4	 r1c4}	 –	 b2n4{r1c4	 r3c6}	 –	
c6n9{r3	 r4}	 –	 r5c6{n9	 n3}	 –	 c4n3{r5	 r7}	 –	 b8n8{r7c4	 r7c5}	 –	 r4n8{c5	 c1}	 –	 r3n8{c1	 .}	 ==>	 r2c7	 ≠	 9	
whip[11]:	 r8n1{c1	 c5}	 –	 r9c4{n1	 n5}	 –	 c2n5{r9	 r4}	 –	 b4n7{r4c2	 r4c1}	 –	 b4n8{r4c1	 r6c3}	 –	
r6n1{c3	 c4}	 –	 r6c5{n1	 n2}	 –	 r4n2{c6	 c7}	 –	 b6n4{r4c7	 r5c7}	 –	 c4n4{r5	 r1}	 –	 c3n4{r1	 .}	 ==>	 r7c2	 ≠	 1	
braid[11]:	 b3n8{r1c7	 r2c7}	 –	 c6n8{r2	 r4}	 –	 b2n7{r1c4	 r2c4}	 –	 r2n5{c4	 c9}	 –	 r4c9{n5	 n9}	 –	
r4c5{n8	 n2}	 –	 b5n9{r4c5	 r5c6}	 –	 r2n9{c6	 c2}	 –	 r6c5{n2	 n1}	 –	 c2n1{r2	 r9}	 –	 r8n1{c5	 .}	 ==>	 r1c4	 ≠	 8	
whip[11]:	 c6n3{r8	 r5}	 –	 c4n3{r5	 r7}	 –	 c7n3{r7	 r1}	 –	 b3n8{r1c7	 r2c7}	 –	 c4n8{r2	 r6}	 –	 c6n8{r4	 r3}	 –	
b2n4{r3c6	 r1c4}	 –	 b2n7{r1c4	 r2c4}	 –	 r2n5{c4	 c9}	 –	 r4c9{n5	 n9}	 –	 r5n9{c8	 .}	 ==>	 r8c8	 ≠	 3	
braid[11]:	 b7n4{r7c1	 r7c2}	 –	 r6n4{c2	 c4}	 –	 b4n7{r4c1	 r4c2}	 –	 c2n5{r4	 r9}	 –	 r9c4{n5	 n1}	 –	
b5n1{r5c4	 r6c5}	 –	 r5c4{n1	 n3}	 –	 r5c6{n3	 n9}	 –	 c2n1{r6	 r2}	 –	 r2n9{c2	 c9}	 –	 c8n9{r5	 .}	 ==>	 r4c1	 ≠	 4	
whip[11]:	 c7n2{r8	 r4}	 –	 b5n2{r4c6	 r6c5}	 –	 r7n2{c5	 c1}	 –	 b7n4{r7c1	 r7c2}	 –	 r4n4{c2	 c6}	 –	
r6n4{c4	 c3}	 –	 b4n8{r6c3	 r4c1}	 –	 b4n7{r4c1	 r4c2}	 –	 c2n5{r4	 r9}	 –	 r9c4{n5	 n1}	 –	 b5n1{r5c4	 .}	 ==>	
r8c8	 ≠	 2	

140 Pattern-Based Constraint Satisfaction and Logic Puzzles

braid[11]:	 r9c4{n5	 n1}	 –	 c5n1{r8	 r6}	 –	 c2n1{r6	 r2}	 –	 b9n9{r9c7	 r9c9}	 –	 r2n9{c9	 c6}	 –	
b5n9{r5c6	 r4c5}	 –	 b5n2{r6c5	 r4c6}	 –	 r4n8{c6	 c1}	 –	 r9n2{c7	 c3}	 –	 b4n7{r4c1	 r4c2}	 –	 r9n7{c9	 .}	 ==>	
r9c7	 ≠	 5	
braid[11]:	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	 r2n9{c6	 c2}	 –	 b9n1{r7c9	 r9c9}	 –	 c2n1{r9	 r6}	 –	
b5n1{r6c5	 r5c4}	 –	 b5n3{r5c6	 r6c4}	 –	 c4n4{r6	 r1}	 –	 c9n3{r7	 r3}	 –	 b2n7{r1c4	 r2c4}	 –	 c9n7{r9	 .}	 ==>	
r7c9	 ≠	 5	
braid[12]:	 b3n8{r1c7	 r2c7}	 –	 r2n5{c7	 c4}	 –	 b2n7{r2c4	 r1c4}	 –	 b2n4{r1c4	 r3c6}	 –	 c6n8{r3	 r4}	 –	
r9c4{n5	 n1}	 –	 b5n1{r5c4	 r6c5}	 –	 b5n2{r4c6	 r4c5}	 –	 b5n9{r4c5	 r5c6}	 –	 c2n1{r6	 r2}	 –	 r2n9{c2	 c9}	 –	
c8n9{r5	 .}	 ==>	 r1c7	 ≠	 5	
braid[12]:	 b7n4{r7c1	 r7c2}	 –	 c2n5{r7	 r4}	 –	 b4n7{r4c2	 r4c1}	 –	 b4n8{r4c1	 r6c3}	 –	 r6n4{c3	 c4}	 –	
r4c9{n5	 n9}	 –	 b5n9{r4c5	 r5c6}	 –	 b5n3{r5c6	 r5c4}	 –	 b5n1{r5c4	 r6c5}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r9}	 –	
r8n1{c5	 .}	 ==>	 r7c1	 ≠	 5	
whip[16]:	 b2n4{r3c6	 r1c4}	 –	 b2n7{r1c4	 r2c4}	 –	 b2n5{r2c4	 r1c5}	 –	 c5n9{r1	 r4}	 –	 r4c9{n9	 n5}	 –	
b3n5{r2c9	 r2c7}	 –	 r5n5{c7	 c1}	 –	 r8n5{c1	 c8}	 –	 b9n7{r8c8	 r9c9}	 –	 c9n9{r9	 r2}	 –	 b1n9{r2c2	 r1c2}	 –	
b1n3{r1c2	 r3c2}	 –	 c2n7{r3	 r4}	 –	 r4c1{n7	 n8}	 –	 r3n8{c1	 c5}	 –	 c6n8{r3	 .}	 ==>	 r3c6	 ≠	 9	
whip[16]:	 b4n8{r6c3	 r4c1}	 –	 b4n7{r4c1	 r4c2}	 –	 b4n5{r4c2	 r5c1}	 –	 r5n1{c1	 c4}	 –	 r9c4{n1	 n5}	 –	
b7n5{r9c2	 r7c2}	 –	 c5n5{r7	 r1}	 –	 c8n5{r1	 r8}	 –	 b9n7{r8c8	 r9c9}	 –	 r9n1{c9	 c2}	 –	 c1n1{r8	 r2}	 –	
b1n2{r2c1	 r2c3}	 –	 r2n7{c3	 c4}	 –	 r1c4{n7	 n4}	 –	 c3n4{r1	 r5}	 –	 r6n4{c3	 .}	 ==>	 r6c3	 ≠	 1	
braid[19]:	 b1n3{r3c2	 r1c2}	 –	 r1n4{c2	 c4}	 –	 b2n7{r1c4	 r2c4}	 –	 b2n5{r2c4	 r1c5}	 –	 r1n9{c5	 c8}	
–	 r3n9{c9	 c5}	 –	 r6n4{c4	 c3}	 –	 b4n8{r6c3	 r4c1}	 –	 r3n8{c5	 c6}	 –	 b2n6{r3c6	 r2c6}	 –	 r4c5{n9	 n2}	
–	 r6n2{c5	 c8}	 –	 r9c6{n6	 n2}	 –	 r8c6{n6	 n3}	 –	 c1n4{r1	 r7}	 –	 r7n2{c1	 c7}	 –	 c7n3{r1	 r5}	 –	
r5n4{c1	 c6}	 –	 r5n9{c8	 .}	 ==>	 r3c2	 ≠	 4	
whip[6]:	 r3n4{c6	 c1}	 –	 r3n8{c1	 c5}	 –	 c6n8{r3	 r4}	 –	 c6n4{r4	 r5}	 –	 c3n4{r5	 r6}	 –	 b4n8{r6c3	 .}	 ==>	
r3c6	 ≠	 6	
braid[8]:	 b4n8{r6c3	 r4c1}	 –	 r3n8{c1	 c6}	 –	 r3n4{c6	 c1}	 –	 b4n7{r4c1	 r4c2}	 –	 b7n4{r7c1	 r7c2}	 –	
c2n5{r7	 r9}	 –	 r9c4{n5	 n1}	 –	 c5n1{r8	 .}	 ==>	 r6c5	 ≠	 8	
whip[6]:	 r6n8{c3	 c4}	 –	 r6n4{c4	 c2}	 –	 c3n4{r6	 r1}	 –	 c3n8{r1	 r2}	 –	 c6n8{r2	 r3}	 –	 b2n4{r3c6	 .}	 ==>	
r6c3	 ≠	 6	
whip[6]:	 r6c5{n1	 n2}	 –	 b6n2{r6c8	 r4c7}	 –	 b6n4{r4c7	 r5c7}	 –	 c4n4{r5	 r1}	 –	 c3n4{r1	 r6}	 –	 r6n8{c3	 .}	
==>	 r6c4	 ≠	 1	
whip[2]:	 r8n1{c3	 c5}	 –	 r6n1{c5	 .}	 ==>	 r9c2	 ≠	 1	
whip[6]:	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 r6c5{n1	 n2}	 –	 b6n2{r6c8	 .}	
==>	 r4c7	 ≠	 5	
whip[6]:	 b8n8{r7c5	 r7c4}	 –	 c4n1{r7	 r5}	 –	 c4n3{r5	 r6}	 –	 r6n8{c4	 c3}	 –	 r6n4{c3	 c2}	 –	 b4n1{r6c2	 .}	
==>	 r7c5	 ≠	 1	
whip[3]:	 b7n1{r9c3	 r8c1}	 –	 r5n1{c1	 c4}	 –	 b8n1{r9c4	 .}	 ==>	 r2c3	 ≠	 1	
braid[6]:	 b5n9{r4c6	 r5c6}	 –	 b9n9{r9c7	 r9c9}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 r6c5{n1	 n2}	 –	
b6n2{r6c8	 .}	 ==>	 r4c7	 ≠	 9	
whip[7]:	 b6n9{r5c8	 r4c9}	 –	 r2n9{c9	 c2}	 –	 c2n1{r2	 r6}	 –	 b5n1{r6c5	 r5c4}	 –	 b5n3{r5c4	 r6c4}	 –	
r6n8{c4	 c3}	 –	 r6n4{c3	 .}	 ==>	 r5c6	 ≠	 9	
whip[1]:	 r5n9{c8	 .}	 ==>	 r4c9	 ≠	 9	
singles	 ==>	 r4c9	 =	 5,	 r5c1	 =	 5	
biv-‐chain[2]:	 b4n1{r5c3	 r6c2}	 –	 b4n6{r6c2	 r5c3}	 ==>	 r5c3	 ≠	 4	
biv-‐chain[2]:	 r5n1{c3	 c4}	 –	 c5n1{r6	 r8}	 ==>	 r8c3	 ≠	 1	
whip[2]:	 b4n1{r6c2	 r5c3}	 –	 b4n6{r5c3	 .}	 ==>	 r6c2	 ≠	 4	
whip[2]:	 r6n8{c4	 c3}	 –	 r6n4{c3	 .}	 ==>	 r6c4	 ≠	 3	
whip[1]:	 r6n3{c9	 .}	 ==>	 r5c8	 ≠	 3,	 r5c7	 ≠	 3	

5. Bivalue-chains, whips and braids 141

biv-‐chain[3]:	 b8n3{r7c4	 r8c6}	 –	 r5c6{n3	 n4}	 –	 r6c4{n4	 n8}	 ==>	 r7c4	 ≠	 8	
hidden-‐single-‐in-‐a-‐block	 ==>	 r7c5	 =	 8	
biv-‐chain[2]:	 b4n8{r4c1	 r6c3}	 –	 c4n8{r6	 r2}	 ==>	 r2c1	 ≠	 8	
biv-‐chain[2]:	 r3n8{c1	 c6}	 –	 r4n8{c6	 c1}	 ==>	 r1c1	 ≠	 8	
biv-‐chain[2]:	 r3n4{c1	 c6}	 –	 r3n8{c6	 c1}	 ==>	 r3c1	 ≠	 7,	 r3c1	 ≠	 6	
whip[2]:	 r2n5{c7	 c4}	 –	 b8n5{r9c4	 .}	 ==>	 r8c7	 ≠	 5	
whip[2]:	 r3n8{c6	 c1}	 –	 r4n8{c1	 .}	 ==>	 r2c6	 ≠	 8	
biv-‐chain[2]:	 r3c5{n6	 n9}	 –	 r2c6{n9	 n6}	 ==>	 r1c5	 ≠	 6	
whip[2]:	 r3c5{n9	 n6}	 –	 r2c6{n6	 .}	 ==>	 r1c5	 ≠	 9	
singles	 ==>	 r1c5	 =	 5,	 r2c7	 =	 5,	 r1c7	 =	 8,	 r8c8	 =	 5,	 r9c9	 =	 7,	 r7c9	 =	 1,	 r9c7	 =	 9,	 r5c8	 =	 9,	 r1c2	 =	 9,	
r3c2	 =	 3,	 r1c8	 =	 3,	 r6c9	 =	 3,	 r3c8	 =	 7	
whip[1]:	 r1n6{c1	 .}	 ==>	 r2c1	 ≠	 6,	 r2c2	 ≠	 6,	 r2c3	 ≠	 6	
whip[2]:	 c2n6{r9	 r6}	 –	 c8n6{r6	 .}	 ==>	 r7c1	 ≠	 6	
biv-‐chain[3]:	 c1n6{r1	 r8}	 –	 c1n1{r8	 r2}	 –	 r2c2{n1	 n7}	 ==>	 r1c1	 ≠	 7	
biv-‐chain[3]:	 c1n6{r1	 r8}	 –	 b7n1{r8c1	 r9c3}	 –	 r5c3{n1	 n6}	 ==>	 r1c3	 ≠	 6	
hidden-‐single-‐in-‐a-‐block	 ==>	 r1c1	 =	 6	
whip[2]:	 r6n4{c4	 c3}	 –	 r1n4{c3	 .}	 ==>	 r5c4	 ≠	 4	
biv-‐chain[3]:	 r4c1{n7	 n8}	 –	 r6c3{n8	 n4}	 –	 r1c3{n4	 n7}	 ==>	 r2c1	 ≠	 7	
biv-‐chain[3]:	 c2n7{r2	 r4}	 –	 c1n7{r4	 r8}	 –	 c1n1{r8	 r2}	 ==>	 r2c2	 ≠	 1	
singles	 to	 the	 end	

Considering such exceptional puzzles, it appears that the notion of simplicity of
a resolution path can only be (very) relative.

5.10.5. A braid[3] that is not a whip[3]; also a proof that a puzzle has no solution

We shall use the puzzle in Figure 5.7 for two different purposes at the same
time: giving an example of a braid[3] that is not a whip[3] and showing how our
resolution rules can be used to prove that an instance has no solution (the steps of
such a proof are exactly the same as those used to find a solution) .

 3 6
 5 1

6 2 3 4
 7 5
 9 7
 6 4 3 8
 4 9 1
 2 8 3

Figure 5.7. A puzzle P with a non-whip braid[3]

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B	 *****	
22	 givens,	 242	 candidates	 1692	 csp-‐links	 and	 1692	 links.	 Initial	 density	 =	 1.45	

142 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[1]:	 r7n8{c1	 .}	 ==>	 r9c3	 ≠	 8,	 r9c2	 ≠	 8,	 r9c1	 ≠	 8	
whip[2]:	 r3n9{c2	 c9}	 –	 r6n9{c9	 .}	 ==>	 r2c1	 ≠	 9,	 r1c1	 ≠	 9	
whip[2]:	 b6n3{r4c9	 r5c8}	 –	 b6n4{r5c8	 .}	 ==>	 r4c9	 ≠	 2	
whip[2]:	 b6n4{r4c9	 r5c8}	 –	 b6n3{r5c8	 .}	 ==>	 r4c9	 ≠	 6,	 r4c9	 ≠	 9	
whip[2]:	 b6n3{r5c8	 r4c9}	 –	 b6n4{r4c9	 .}	 ==>	 r5c8	 ≠	 2,	 r5c8	 ≠	 1	
whip[2]:	 b6n4{r5c8	 r4c9}	 –	 b6n3{r4c9	 .}	 ==>	 r5c8	 ≠	 6	
whip[1]:	 b6n6{r4c7	 .}	 ==>	 r9c7	 ≠	 6,	 r7c7	 ≠	 6,	 r2c7	 ≠	 6	
whip[2]:	 b3n3{r2c8	 r2c9}	 –	 b3n6{r2c9	 .}	 ==>	 r2c8	 ≠	 2,	 r2c8	 ≠	 7,	 r2c8	 ≠	 8	
whip[2]:	 b3n3{r2c9	 r2c8}	 –	 b3n6{r2c8	 .}	 ==>	 r2c9	 ≠	 2	
whip[2]:	 c2n2{r5	 r1}	 –	 b3n2{r1c7	 .}	 ==>	 r5c7	 ≠	 2	
whip[2]:	 b3n3{r2c9	 r2c8}	 –	 b3n6{r2c8	 .}	 ==>	 r2c9	 ≠	 8,	 r2c9	 ≠	 9	
whip[2]:	 b6n2{r6c9	 r4c7}	 –	 r2n2{c7	 .}	 ==>	 r6c1	 ≠	 2	
whip[3]:	 b5n8{r4c4	 r5c5}	 –	 r2n8{c5	 c1}	 –	 b7n8{r7c1	 .}	 ==>	 r4c3	 ≠	 8	
whip[3]:	 b4n8{r5c3	 r4c1}	 –	 b7n8{r7c1	 r7c3}	 –	 r2n8{c3	 .}	 ==>	 r5c5	 ≠	 8	
whip[1]:	 b5n8{r4c4	 .}	 ==>	 r4c1	 ≠	 8	
;;; Resolution state RS1, displayed in Figure 5.8.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
n1 n2
n4
n7 n8

n1 n2

 n8 n9
n3

n4 n5
n7 n8

n4 n5
n7 n8 n9

n6
n1 n2

 n5
n7 n9

n1 n2

n7 n8

 n2
 n5

 n8 n9
r1

r2
 n2

n4
n7 n8

n5

n7 n8 n9
n1

n4
n7 n8 n9

n4
n7 n9

 n2

n7 n9

 n3
 n6

 n3
 n6

r2

r3 n6
n1

 n8 n9

n1

n7 n8 n9

 n5

n7 n8
n2 n3 n4

n1

n7 n8

 n5

 n8 n9
r3

r4
n1 n2 n3

 n9

n7
n1

 n9

 n2
n4 n6

 n8

n1
n4 n6

 n8

n1 n2
n4

n1 n2
 n6
 n9

n5
 n3
n4

r4

r5
n1 n2 n3

 n5
 n8

n1 n2 n3

 n8

n1
 n5
 n8

n9
n1
n4 n6

 n8

n1 n2
n4 n5

n1
 n6

 n3
n4

n7 r5

r6
n1

 n5
 n9

n6 n4
 n2
 n5

n7
n3

n1 n2
 n5

n7
n8

n1 n2

 n2

 n9
r6

r7
 n3

 n5
n7 n8

n4

 n5 n6
n7 n8

 n2 n3
 n5 n6
n7

 n5 n6
n7

 n2
 n5

n7

 n2
 n5

n7
n9 n1 r7

r8
n1

 n5
n7 n9

n1

 n9
n2

n4 n5 n6
n7

n1
n4 n5 n6
n7 n9

n8 n3

n4 n6
n7

n4 n5 n6

r8

r9
n1 n3

 n5
n7 n9

n1 n3

 n9

n1
 n5 n6
n7 n9

 n2 n3
n4 n5 n6
n7

n1
n4 n5 n6
n7 n9

n1 n2
n4 n5
n7 n9

 n2
 n5

n7

 n2
n4 n6
n7 n8

 n2
n4 n5 n6

 n8
r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 5.8. Resolution state RS1 for puzzle in Figure 5.7

At this point, there is no whip[3] but we find two braids[3]:

braid[3]:	 r8c2{n1	 n9}	 –	 r4c3{n1	 n9}	 –	 c1n9{r4	 .}	 ==>	 r5c2	 ≠	 1	

5. Bivalue-chains, whips and braids 143

braid[3]:	 r8c2{n1	 n9}	 –	 r4c3{n1	 n9}	 –	 c1n9{r9	 .}	 ==>	 r9c3	 ≠	 1	

Anticipating on the definitions in chapter 7 and as an illustration of theorem 7.6,
these eliminations could also be done respectively by the following g-whips[3] :
g-‐whip[3]:	 r8c2{n1	 n9}	 –	 c1n9{r8	 r456}	 –	 r4c3{n9	 .}	 ==>	 r5c2	 ≠	 1	
g-‐whip[3]:	 r8c2{n1	 n9}	 –	 c1n9{r8	 r456}	 –	 r4c3{n9	 .}	 ==>	 r9c3	 ≠	 1	

Let us now see the rest of the proof (in resolution theory B7) that this puzzle has
no solution:
whip[6]:	 b6n2{r6c9	 r4c7}	 –	 r2n2{c7	 c1}	 –	 c2n2{r1	 r5}	 –	 c2n3{r5	 r9}	 –	 r7n3{c1	 c4}	 –	 r7n2{c4	 .}	 ==>	
r6c6	 ≠	 2	
whip[7]:	 c2n2{r1	 r5}	 –	 c2n8{r5	 r3}	 –	 r2c3{n8	 n7}	 –	 r3c3{n7	 n1}	 –	 r3n9{c3	 c9}	 –	 c7n9{r2	 r4}	 –	
r4c3{n9	 .}	 ==>	 r1c2	 ≠	 9	
whip[7]:	 b8n3{r7c4	 r9c4}	 –	 c2n3{r9	 r5}	 –	 c1n3{r5	 r7}	 –	 b7n8{r7c1	 r7c3}	 –	 b4n8{r5c3	 r5c1}	 –	
r5n2{c1	 c6}	 –	 b8n2{r9c6	 .}	 ==>	 r7c4	 ≠	 5,	 r7c4	 ≠	 6	
whip[5]:	 b7n8{r7c1	 r7c3}	 –	 r7n6{c3	 c5}	 –	 c4n6{r9	 r4}	 –	 b5n8{r4c4	 r4c5}	 –	 r2n8{c5	 .}	 ==>	 r1c1	 ≠	 8,	
r5c1	 ≠	 8	
whip[3]:	 c1n8{r7	 r2}	 –	 c2n8{r3	 r5}	 –	 b4n3{r5c2	 .}	 ==>	 r7c1	 ≠	 3	
hidden-‐single-‐in-‐a-‐row	 ==>	 r7c4	 =	 3	
whip[3]:	 c2n2{r5	 r1}	 –	 b3n2{r1c7	 r2c7}	 –	 r7n2{c7	 .}	 ==>	 r5c6	 ≠	 2	
whip[1]:	 r5n2{c1	 .}	 ==>	 r4c1	 ≠	 2	
braid[6]:	 b7n8{r7c1	 r7c3}	 –	 r7n6{c3	 c5}	 –	 r2n2{c1	 c7}	 –	 c4n6{r9	 r4}	 –	 r7n2{c7	 c6}	 –	 r4n2{c7	 .}	 ==>	
r2c1	 ≠	 8	
hidden-‐single-‐in-‐a-‐column	 ==>	 r7c1	 =	 8	
whip[6]:	 r4n8{c4	 c5}	 –	 b5n6{r4c5	 r5c5}	 –	 r5c7{n6	 n1}	 –	 r5c6{n1	 n5}	 –	 r5c3{n5	 n8}	 –	 r2n8{c3	 .}	
==>	 r4c4	 ≠	 4	
whip[6]:	 r7n2{c7	 c6}	 –	 r4n2{c6	 c4}	 –	 b5n8{r4c4	 r4c5}	 –	 r2n8{c5	 c3}	 –	 b4n8{r5c3	 r5c2}	 –	 c2n2{r5	 .}	
==>	 r1c7	 ≠	 2	
whip[7]:	 r2n8{c5	 c3}	 –	 b4n8{r5c3	 r5c2}	 –	 b4n2{r5c2	 r5c1}	 –	 r2n2{c1	 c7}	 –	 r7n2{c7	 c6}	 –	
r4n2{c6	 c4}	 –	 b5n8{r4c4	 .}	 ==>	 r1c5	 ≠	 8	
whip[7]:	 r4n8{c4	 c5}	 –	 r2n8{c5	 c3}	 –	 b4n8{r5c3	 r5c2}	 –	 c2n2{r5	 r1}	 –	 r2n2{c1	 c7}	 –	 r7n2{c7	 c6}	 –	
r4n2{c6	 .}	 ==>	 r4c4	 ≠	 6	
whip[1]:	 c4n6{r9	 .}	 ==>	 r8c5	 ≠	 6,	 r7c5	 ≠	 6	
hidden-‐single-‐in-‐a-‐row	 ==>	 r7c3	 =	 6	
whip[1]:	 c4n6{r9	 .}	 ==>	 r9c5	 ≠	 6	
whip[5]:	 r7n2{c6	 c7}	 –	 r2n2{c7	 c1}	 –	 b1n4{r2c1	 r1c1}	 –	 c4n4{r1	 r8}	 –	 b8n6{r8c4	 .}	 ==>	 r9c4	 ≠	 2	
whip[1]:	 b8n2{r9c6	 .}	 ==>	 r4c6	 ≠	 2	
whip[3]:	 r4n6{c7	 c5}	 –	 b5n8{r4c5	 r4c4}	 –	 r4n2{c4	 .}	 ==>	 r4c7	 ≠	 1,	 r4c7	 ≠	 9	
hidden-‐single-‐in-‐a-‐block	 ==>	 r6c9	 =	 9	
whip[1]:	 r3n9{c2	 .}	 ==>	 r2c3	 ≠	 9	
whip[3]:	 r4c3{n9	 n1}	 –	 r6c1{n1	 n5}	 –	 b7n5{r9c1	 .}	 ==>	 r9c3	 ≠	 9	
whip[3]:	 r4n6{c5	 c7}	 –	 r4n2{c7	 c4}	 –	 b5n8{r4c4	 .}	 ==>	 r4c5	 ≠	 1,	 r4c5	 ≠	 4	
whip[4]:	 r2n2{c7	 c1}	 –	 c2n2{r1	 r5}	 –	 b4n8{r5c2	 r5c3}	 –	 r2c3{n8	 .}	 ==>	 r2c7	 ≠	 7	
whip[3]:	 c6n2{r7	 r9}	 –	 c6n9{r9	 r2}	 –	 r2c7{n9	 .}	 ==>	 r7c7	 ≠	 2	
hidden-‐single-‐in-‐a-‐row	 ==>	 r7c6	 =	 2	
whip[2]:	 c3n5{r5	 r9}	 –	 c6n5{r9	 .}	 ==>	 r5c5	 ≠	 5	
whip[3]:	 b6n1{r5c7	 r6c8}	 –	 r6c1{n1	 n5}	 –	 b5n5{r6c6	 .}	 ==>	 r5c6	 ≠	 1	

144 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[4]:	 c3n5{r9	 r5}	 –	 b4n8{r5c3	 r5c2}	 –	 c2n2{r5	 r1}	 –	 c9n2{r1	 .}	 ==>	 r9c9	 ≠	 5	
whip[4]:	 r4c3{n1	 n9}	 –	 b1n9{r3c3	 r3c2}	 –	 r3n1{c2	 c8}	 –	 b6n1{r6c8	 .}	 ==>	 r5c3	 ≠	 1	
whip[2]:	 c3n9{r3	 r4}	 –	 c3n1{r4	 .}	 ==>	 r3c3	 ≠	 8,	 r3c3	 ≠	 7	
whip[4]:	 b3n1{r1c7	 r3c8}	 –	 r6n1{c8	 c6}	 –	 b5n7{r6c6	 r6c4}	 –	 r3n7{c4	 .}	 ==>	 r1c1	 ≠	 1	
whip[3]:	 r8c2{n1	 n9}	 –	 b1n9{r3c2	 r3c3}	 –	 b1n1{r3c3	 .}	 ==>	 r9c2	 ≠	 1	
whip[3]:	 r8c2{n9	 n1}	 –	 b1n1{r3c2	 r3c3}	 –	 b1n9{r3c3	 .}	 ==>	 r9c2	 ≠	 9	
naked-‐single	 ==>	 r9c2	 =	 3	
whip[4]:	 b7n5{r9c3	 r8c1}	 –	 r6c1{n5	 n1}	 –	 r9n1{c1	 c6}	 –	 r4n1{c6	 .}	 ==>	 r9c5	 ≠	 5	
whip[4]:	 r3n7{c8	 c4}	 –	 b5n7{r6c4	 r6c6}	 –	 r6n1{c6	 c1}	 –	 c3n1{r4	 .}	 ==>	 r3c8	 ≠	 1	
whip[1]:	 b3n1{r1c7	 .}	 ==>	 r1c2	 ≠	 1	
whip[2]:	 c2n9{r3	 r8}	 –	 c2n1{r8	 .}	 ==>	 r3c2	 ≠	 8	
whip[3]:	 r3c9{n8	 n5}	 –	 r1c9{n5	 n2}	 –	 r1c2{n2	 .}	 ==>	 r1c8	 ≠	 8	
whip[4]:	 c6n9{r9	 r2}	 –	 r2c7{n9	 n2}	 –	 r9c7{n2	 n5}	 –	 r9c3{n5	 .}	 ==>	 r9c6	 ≠	 7	
whip[4]:	 r6c1{n1	 n5}	 –	 r5c3{n5	 n8}	 –	 r2c3{n8	 n7}	 –	 c6n7{r2	 .}	 ==>	 r6c6	 ≠	 1	
whip[2]:	 b4n1{r6c1	 r4c3}	 –	 c6n1{r4	 .}	 ==>	 r9c1	 ≠	 1	
whip[1]:	 r9n1{c6	 .}	 ==>	 r8c5	 ≠	 1	
whip[3]:	 r1n9{c5	 c7}	 –	 c7n1{r1	 r5}	 –	 c5n1{r5	 .}	 ==>	 r9c5	 ≠	 9	
whip[3]:	 r9n9{c1	 c6}	 –	 c6n1{r9	 r4}	 –	 r4c3{n1	 .}	 ==>	 r4c1	 ≠	 9	
singles	 ==>	 r4c3	 =	 9,	 r3c3	 =	 1,	 r3c2	 =	 9,	 r8c2	 =	 1	
whip[4]:	 c6n1{r4	 r9}	 –	 b8n9{r9c6	 r8c5}	 –	 r1n9{c5	 c7}	 –	 c7n1{r1	 .}	 ==>	 r5c5	 ≠	 1	
singles	 ==>	 r4c6	 =	 1,	 r4c1	 =	 3,	 r4c9	 =	 4,	 r5c8	 =	 3,	 r2c8	 =	 6,	 r2c9	 =	 3,	 r9c5	 =	 1	
whip[3]:	 r9n6{c4	 c9}	 –	 r8c9{n6	 n5}	 –	 r3n5{c9	 .}	 ==>	 r9c4	 ≠	 5	
whip[4]:	 b7n7{r9c3	 r8c1}	 –	 r8n9{c1	 c5}	 –	 r1n9{c5	 c7}	 –	 b3n7{r1c7	 .}	 ==>	 r9c8	 ≠	 7	
whip[4]:	 b7n5{r9c1	 r9c3}	 –	 c3n7{r9	 r2}	 –	 c6n7{r2	 r6}	 –	 c6n5{r6	 .}	 ==>	 r5c1	 ≠	 5	
whip[4]:	 c9n2{r1	 r9}	 –	 c8n2{r9	 r6}	 –	 r6n1{c8	 c1}	 –	 r5c1{n1	 .}	 ==>	 r1c1	 ≠	 2	
whip[4]:	 b7n7{r9c3	 r8c1}	 –	 r8c8{n7	 n4}	 –	 c4n4{r8	 r1}	 –	 r1c1{n4	 .}	 ==>	 r9c4	 ≠	 7	
whip[4]:	 b8n7{r7c5	 r8c4}	 –	 b8n6{r8c4	 r9c4}	 –	 c4n4{r9	 r1}	 –	 r1c1{n4	 .}	 ==>	 r1c5	 ≠	 7	
whip[4]:	 c4n4{r9	 r1}	 –	 r1c1{n4	 n7}	 –	 b3n7{r1c8	 r3c8}	 –	 r8c8{n7	 .}	 ==>	 r8c5	 ≠	 4	
whip[4]:	 r2n2{c7	 c1}	 –	 r5c1{n2	 n1}	 –	 r6n1{c1	 c8}	 –	 b6n2{r6c8	 .}	 ==>	 r9c7	 ≠	 2	
whip[2]:	 b9n8{r9c8	 r9c9}	 –	 b9n2{r9c9	 .}	 ==>	 r9c8	 ≠	 4	
hidden-‐single-‐in-‐a-‐block	 ==>	 r8c8	 =	 4	
whip[1]:	 b9n7{r9c7	 .}	 ==>	 r1c7	 ≠	 7	
whip[2]:	 b9n8{r9c9	 r9c8}	 –	 b9n2{r9c8	 .}	 ==>	 r9c9	 ≠	 6	
singles	 ==>	 r8c9	 =	 6,	 r9c4	 =	 6,	 r9c6	 =	 4,	 r5c6	 =	 5,	 r6c6	 =	 7,	 r2c6	 =	 9,	 r2c7	 =	 2,	 r4c7	 =	 6,	 r5c7	 =	 1,	
r6c8	 =	 2	
NO	 SOLUTION:	 NO	 CANDIDATE	 FOR	 RC-‐CELL	 r6c4.	 	

5.11. Whips in N-Queens and Latin Squares; definition of SudoQueens

In this final section, mainly about the N-Queens problem, we show that the rules
introduced in this chapter work concretely for other CSPs than Sudoku or
LatinSquare. We also show that N-Queens has whips of length 1 and how they look
like. More examples will appear (with more detail) in chapters 14 to 16. Using the
LatinSquare CSP, we also show that a CSP with no whips of length 1 can
nevertheless have longer ones. Finally, we introduce the N-SudoQueens CSP.

5. Bivalue-chains, whips and braids 145

5.11.1. The N-Queens CSP

Given an n×n chessboard, the n-Queens CSP consists of placing n queens on it in
such a way that no two queens appear in the same row, column or diagonal.

Here again, as in the Sudoku case, we introduce redundant sets of CSP variables:
- for each r° in {r1, r2, …, rn}, CSP variable Xr° with values in {c1, c2, …, cn};
- for each c° in {c1, c2, …, cn}, CSP variable Xc° with values in {r1, r2, …, rn}.

We define CSP-Variable-Type as the sort with domain {r, c} and Constraint-
Type as the super-sort of CSP-Variable-Type with domain {r, c, f, s} corresponding
to the four types of constraints: along a row, a column, parallel to the first diagonal
and parallel to the second diagonal. Notice that there are now other constraints (f
and s) than those taken care of by the CSP variables (corresponding to the r and c in
Constraint-Type). And there is no possibility of adding CSP variables for the
constraints along these diagonals: although no two queens may appear in the same
diagonal, there are diagonals with no queen (there are 2n-1 diagonals of each kind);
if we tried to define them as CSP variables, some of them would have no value.

For each r° in {r1, r2, …, rn} and each c° in {c1, c2, …, cn}, we define label
(r°, c°) or r°c° as corresponding to the two <variable, value> pairs <Xr°, c°> and
<Xc°, r°> (which is equivalent to the implicit axiom: Xr° = c° ⇔ Xc°= r°). A label
can be assimilated with a cell in the grid.

Easy details of the model (in particular the writing of the constraints along rows,
columns and diagonals) are left as an exercise for the reader. Similarly, the explicit
writing of the Basic Resolution Theory BRT(n-Queens) is considered as obvious. As
for whips, they need no specific definition; they are part of our general theory.

In all the forthcoming figures for n-Queens, the * signs represent the given
queens; the small ° signs represent the candidates eliminated by ECP at the start of
the resolution process; the A, B, C, … letters represent the candidates eliminated by
resolution rules after the first ECP, in this order; the + signs represent the queens
placed by the Single rule (at any time in the resolution process).

Notice that all our solutions for n-Queens were obtained manually; therefore, the
resolution path for some of them may not be the shortest possible and the resolution
theory in which the solution is obtained may not be the weakest possible. For lack of
a generator of minimal instances, all our examples were built manually and they
remain elementary. Our only ambition with respect to the n-Queens CSP is to
illustrate how our general concepts can be applied and how our patterns look in
them; contrary to Sudoku, it is not to produce any classification results.

146 Pattern-Based Constraint Satisfaction and Logic Puzzles

5.11.2. Simple whips of length 1 and 2 in 8-Queens

 c1 c2 c3 c4 c5 c6 c7 c8

r1
° * ° ° ° ° ° °

r2 ° ° ° ° ° ° * °

r3 ° ° ° ° * ° ° °

r4 ° ° ° ° °
+

r5 + ° ° ° ° ° °
r6 ° ° °

+
° ° °

r7 °
B C °

+
° °

r8 ° °
+ A ° °

Figure 5.9. An 8-Queens instance solved by whips

For the 8-Queens CSP, consider the instance described in Figure 5.9, with 3
queens already given (in positions r1c2, r2c7 and r3c5). After the first obvious ECP
eliminations, the Single rule cannot be applied. But we have the following resolution
path with whips of lengths 1 and 2.

*****	 Manual	 solution	 *****	
whip[1]:	 r6{c4	 .}	 	 ⇒	 ¬r8c4	 (A	 eliminated)	
whip[2]:	 r6{c4	 c6}	 –	 r8{c6	 .}	 	 ⇒	 ¬r7c3,	 ¬r7c4	 (B	 and	 C	 eliminated)	
single	 in	 c4:	 r6c4;	 single	 in	 c6:	 r7c6;	 single	 in	 r5:	 r5c1;	 single	 in	 r4:	 r4c8;	 single	 in	 r8:	 r8c3	
Solution	 found	 in	 W2.	

Notice the first whip[1], in the grey cells, with an interaction of a column and a
diagonal occurring in a row at a relatively small distance from the target; it proves
that there are whips of length 1 in n-Queens and it shows how some of them can
look.

5.11.3. Whips[1] in 10-Queens with long distance interactions

The instance of 10-Queens in Figure 5.10 shows that whip[1] interactions can
happen on much longer distances than in the previous example. They can also
happen at distance 0, i.e. in the row or column adjacent to the target (as in section
5.11.5 below), or at still much longer distances in n-Queens for very large n.

5. Bivalue-chains, whips and braids 147

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1
° ° ° ° ° ° * ° ° °

r2
° ° ° ° ° ° ° ° ° *

r3 ° ° ° °
+ ° ° ° °

r4 ° ° * ° ° ° ° ° ° °

r5 + ° ° ° ° ° ° ° °

r6
° ° ° ° ° ° ° * ° °

r7
° °

+ ° ° ° ° ° °

r8 C + ° ° ° ° ° ° °

r9
° ° ° ° ° ° ° ° * °

r10 B ° ° °
+ A ° ° ° °

Figure 5.10. A 10-Queens instance, with 3 whips[1] based on long distance interactions

This puzzle has five queens already given (in r1c7, r2c10, r4c3, r6c8 and r9c9).
Its first three whips[1] have interactions of a column and a diagonal in rows at long
distances from their targets. After them, it can be solved by Singles.

*****	 Manual	 solution	 *****	
whip[1]:	 r5{c6	 .}	 ⇒	 ¬r10c6	 (A	 eliminated);	 whip	 in	 light	 grey	 cells	 with	 target	 A	
whip[1]:	 r5{c6	 .}	 ⇒	 ¬r10c1	 (B	 eliminated);	 “same”	 whip	 in	 light	 grey	 cells,	 but	 with	 target	 B	
whip[1]:	 r3{c1	 .}	 ⇒	 ¬r8c1	 (C	 eliminated);	 whip	 in	 dark	 grey	 cells	 with	 target	 C	
single	 in	 r10:	 r10c5;	 single	 in	 r8:	 r8c2;	 single	 in	 r7:	 r7c4;	 single	 in	 r5:	 r5c1;	 single	 in	 r3:	 r3c6	
Solution	 found	 in	 W1.	

5.11.4. Another kind of whip[1] in N-Queens

The instance of 9-Queens in Figure 5.11, with three queens already given (in
r3c3, r6c2 and r9c7) has three whips[1] of another kind, relying on the interaction of
three different constraints in a row or a column at a medium distance from the
target. It can be solved in W4.

*****	 Manual	 solution	 *****	
whip[1]:	 r7{c6	 .}	 ⇒	 ¬r5c6	 (A	 eliminated,	 whip	 on	 light	 grey	 cells)	
whip[1]:	 r8{c5	 .}	 ⇒	 ¬r4c5	 (B	 eliminated,	 whip	 on	 medium	 grey	 cells	 and	 r8c5)	
whip[1]:	 c5{r2	 .}	 ⇒	 ¬r5c8	 (C	 eliminated,	 whip	 on	 dark	 grey	 cells)	

148 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[1]:	 c6{r4	 .}	 ⇒	 ¬r4c9	 (D	 eliminated)	
whip[2]:	 r5{c9	 c4}	 –	 r7{c4	 .}	 ⇒	 ¬r8c9	 (E	 eliminated)	
whip[3]:	 r5{c9	 c4}	 –	 r2{c1	 c5}	 –	 r8{c5	 .}	 ⇒	 ¬r1c9	 (F	 eliminated)	
whip[4]:	 r5{c9	 c4}	 –	 r4{c8	 c6}	 –	 r1{c6	 c8}	 –	 r8{c1	 .}	 ⇒	 ¬r2c9	 (G	 eliminated)	
whip[4]:	 r5{c9	 c4}	 –	 r1{c4	 c6}	 –	 r4{c6	 c8}	 –	 r7{c8	 .}	 ⇒	 ¬r2c9	 (H	 eliminated)	
single	 in	 c9:	 r5c9;	 single	 in	 c4:	 r1c4;	 single	 in	 r4:	 r4c6;	 single	 in	 r2:	 r2c1;	 single	 in	 r8:	 r8c5;	 single	 in	
r7:	 r7c8.	 	
Solution	 found	 in	 W4	 or	 gW3.	

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 ° ° ° + ° ° F
r2 + ° ° ° ° ° H

r3 ° ° * ° ° ° ° ° °

r4 ° ° ° B + ° D
r5 ° ° ° ° A ° C +

r6 ° * ° ° ° ° ° ° °

r7 ° ° ° G ° ° + °

r8 ° ° ° + ° ° ° E

r9 ° ° ° ° ° ° * ° °

Figure 5.11. A 9-Queens instance, with another kind of whip[1]

5.11.5. An instance of 8-Queens with two solutions

Whips can also be used to produce a readable proof that an instance has two (or
more) solutions. For the 8-Queens CSP, consider the instance displayed in Figure
5.12, with 3 queens already given (in positions r2c7, r3c5 and r4c8). Although it has
the same solution as the example in section 5.11.2, we shall prove that it has two
solutions.

*****	 Manual	 solution	 *****	
;;; The first two whips[1] display an interaction of a row and a diagonal in a column
at the shortest possible distance from the target:
whip[1]:	 c3{r7	 .}	 ⇒	 ¬r7c4	 (A	 eliminated)	
whip[1]:	 c3{r8	 .}	 ⇒	 ¬r8c2	 (B	 eliminated)	

5. Bivalue-chains, whips and braids 149

 c1 c2 c3 c4 c5 c6 c7 c8
r1 °

E ° ° ° °

r2 ° ° ° ° ° ° * °

r3 ° ° ° ° * ° ° °

r4 ° ° ° ° ° ° ° *
r5

° ° °
C ° °

r6 D ° °
+

° ° ° °

r7 ° ° A °
+

° °

r8 °
B +

° ° ° °

Figure 5.12. An instance of 8-Queens with two solutions, partially solved by whips

;;; The third whip[1], in the grey cells, appearing after B has been eliminated, has an
interaction of a column and a diagonal in a row at a longer distance from the target:
whip[1]:	 r8{c6	 .}	 ⇒	 ¬r5c6	 (C	 eliminated)	

;;; The fourth whip[1], appearing after C has been eliminated, has an interaction of a
column and a diagonal in a row, again at the shortest possible distance from the
target:
whip[1]:	 r5{c1	 .}	 ⇒	 ¬r6c1	 (D	 eliminated)	
whip[2]:	 c1{r1	 r5}	 –	 c2{r5	 .}	 ⇒	 ¬r1c4	 (E	 eliminated)	
single	 in	 r6	 ⇒	 r6c4	 ;	 single	 in	 c3	 ⇒	 r8c3	 ;	 single	 in	 r7	 ⇒	 r7c6	 	

At this point, the resolution path cannot go further because there appears to be
two obvious solutions: r1c2+r5c1 (as in section 5.11.1) and r1c1+r5c2; but we have
shown that whips can be used to lead from a situation where this was not obvious to
one where it is.

5.11.6. An instance of 6-Queens with no solution

As shown in section 5.10.5, whips or braids can also provide a readable proof
that an instance has no solution. Of course, this is not specific to Sudoku but it is
true for any CSP. And the proof that an instance has no solution can be as hard as
finding a solution when there is one. It can also be very simple, as shown below.

Consider Figure 5.13, an instance of 6-Queens, with only two queens given in
cells r4c5 and r5c2. Although these data show no direct contradiction with the

150 Pattern-Based Constraint Satisfaction and Logic Puzzles

constraints, a unique elimination by a whip[3] and two Singles are enough to make
it obvious, without trying all the remaining possibilities, that there can be no
solution.

 c1 c2 c3 c4 c5 c6
r1

° + ° °

r2 ° ° °
r3 A °

+ ° ° °

r4 ° ° ° ° * °

r5 ° * ° ° ° °

r6 ° ° ° °
Figure 5.13. An instance of 6-Queens with no solution; proven by a whip[3]

*****	 Manual	 solution	 	 *****	
whip[3]:	 r6{c4	 c6}	 –	 r2{c6	 c4}	 –	 r1{c4	 .}	 ⇒	 ¬r3c1	 (A	 eliminated)	
single	 in	 r3	 ⇒	 r3c3	
single	 in	 r1	 ⇒	 r1c4	
This	 puzzle	 has	 no	 solution:	 no	 value	 for	 Xr6	

5.11.7. The absence of whip[1] does not preclude the existence of longer whips

The non-existence of whips of length 1 in a CSP does not preclude the existence
of longer whips. Figure 5.14 gives an example of a partial whip[3] in LatinSquare.

In this Figure, black horizontal lines represent CSP variables (V1, V2, V3); they
are supposed to have candidates only at their extremities (Lk and Rk candidates) or at
their meeting points with arrows (z- and t- candidates). Dark grey vertical arrows
represent links from Z to L1 or from Rk to Lk+1. Light grey arrows represent links to
z- or t- candidates. Here, arrows represent only the flow of reasoning in the proof of
the whip rule (by themselves, links are not orientated).

A particular interpretation of Figure 5.14 can be obtained by considering only
labels (n, r, c) with a fixed Number n and by interpreting horizontal lines as rows
and vertical lines as columns. Similarly, one can fix Row r or Column c. But these
restricted visions of the symbolic representation, limited to rc-space (or cn-space, or
rn-space), do not take into account the 3D symmetries of this CSP.

5. Bivalue-chains, whips and braids 151

Figure 5.14. A symbolic representation of a partial whip[3] in LatinSquare.

Similar symbolic representations, for whips in a general CSP (Figure 11.1) and
for generalised whips (Figures 9.1 and 11.2) can be seen in chapters 9 and 11.

5.11.8. Defining SudoQueens

Given an integer n that is a square (n = m2) and starting from the n-Queens CSP,
one can define the n-SudoQueens CSP by the additional constraint that there should
not be two queens in the same m×m block, where blocks are defined as in Sudoku.

In this new CSP, we can use the same two coordinate systems as in Sudoku, with
the same relations between them. Because it implies that there must be one queen in
each square, the new constraint can be taken care of by n new CSP-Variables Xb1,
…, Xbn, all with domain {s1, …., sn} and/or by a new CSP-Variable-Type: b.

It is easy to check that n-SudoQueens has no instances for n=2 or n=4 (i.e. m=1
or m=2). But, as shown by the example in Figure 5.15, it has for n ≥ 9 (m ≥ 3).

In n-SudoQueens, one can find two types of whips[1]: the same as in n-Queens
and the same as in Sudoku[n].

V1
L1 R1

Z

L2 R2
V2

L3 R3
V3

152 Pattern-Based Constraint Satisfaction and Logic Puzzles

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 * ° ° ° ° ° ° ° °

r2 ° ° ° ° ° ° ° * °

r3 ° ° ° ° * ° ° ° °

r4 ° ° * ° ° ° ° ° °

r5 ° ° ° ° ° * ° ° °

r6 ° ° ° ° ° ° ° ° *

r7 ° * ° ° ° ° ° ° °

r8 ° ° ° * ° ° ° ° °

r9 ° ° ° ° ° ° * ° °

Figure 5.15. A complete grid for 9-SudoQueens

6. Unbiased statistics and whip classification results

In the previous chapter, we gave a pure logic definition of the W and B ratings of
an instance P, as the smallest n (0≤n≤∞) such that P can be solved by resolution
theory Wn [respectively Bn]. Because these theories involve longer and longer whips
[resp. braids] as n increases, it is a priori meaningful for any CSP to chose W(P)
[resp. B(P)] as a measure of complexity for P. In the Sudoku case, there are
additional justifications, based on results2 obtained with our SudoRules solver:

– W [resp. B] is strongly correlated with the logarithm of the number3 of partial
whips [resp. braids] one must check before finding the solution when the “simplest
first” strategy is adopted4;

– for W ≤ 9,5 W [resp. B] is strongly correlated with SER, the Sudoku Explainer
rating [Juillerat www]; this rating (version 1.2.1) is widely used in the Sudoku
community in spite of its many shortcomings6; it often gives some rough idea of the
difficulty of a puzzle for a human player (at least for SER ≤ 9.3);

– W is also well correlated with less popular ratings (see our website).

It should however be noted that a rating based on the hardest step (instead of e.g.

the whole resolution path) can only be meaningful statistically. (This applies also to
SER.) In particular, there remains much variance in the number of partial chains

2 Details and additional correlation results can be found on our website.
3 Although this number is not completely independent of implementation (it depends in part
on the resolution path chosen), it is statistically meaningful.
4 In this situation, W is also strongly correlated with the logarithm of the resolution time, but
this is mainly a consequence of the previous correlation (and computation times are too
implementation-dependent to be good indicators).
5 For larger values of W, the number of available instances in our unbiased samples is too
small to compute meaningful correlations.
6 SER is defined only by non-documented Java code, it is not invariant under logical
symmetries and it is based neither on any general theory nor (for the most part of it) on any
popular application-specific resolution techniques. Indeed, the main part of SER is based on
the number of inference steps (which is implementation dependent) in a resolution procedure
more or less equivalent to T&E(1) complemented by T&E(2) when T&E(1) is not enough; it
is easy to see that this cannot be given by a purely logical definition (because a logical theory
can put no limit on how many applications of its axioms may be used to prove a theorem).
But it is free and it is the “less worse” of the currently available ratings.

154 Pattern-Based Constraint Satisfaction and Logic Puzzles

needed to solve Sudoku puzzles with W(P) = n, n fixed. Based on the thousands of
resolution paths we observed in detail, one explanation is that a puzzle P with
W(P) = n can be hard to solve with whips [or any other type of pattern: braids, g-
whips, …] for two opposed reasons: either because it does not have enough smaller
whips [patterns of this type] or because it has too many useless ones.

The results7 reported in this chapter required several months of (2.66 GHz) CPU
time (for the generation of unbiased samples and for the computation of ratings).
They will show that:

– building unbiased uncorrelated samples of minimal instances of a (fixed size)
CSP and obtaining unbiased statistics can be very hard;

– (loopless) whips have a very strong resolution power, at least for Sudoku; the
ten million puzzles we have produced using different kinds of random generators
could all be solved by whips of relatively short length: 93.9% by whips of length no
more than 4, 99.9% by whips of length no more than 7 and 99.99% by whips of
length no more than 9 – see Table 6.4.

Only the main results of direct relevance to the topic of this book are provided
here; many additional statistical results for Sudoku can be found on our website.

Although we can only present such results in the specific context of the Sudoku
CSP, the sample generation methods described here (bottom-up, top-down and
controlled-bias) could be extended to many CSPs. The specific P(n+1)/P(n) formula
proven in section 6.2.2 for the controlled-bias generator will not hold in any CSP,
but the same approach can in many cases help understand the existence of a very
strong bias in the samples with respect to the number of clues (see the end of chapter
14 for an adaptation to the Futoshiki CSP). Probably, it can also help explain the
well-known fact that, for many CSPs, it is very difficult to generate the hardest
instances.

The number of clues may not be a criterion of much interest in itself, but the
existence of such a strong bias in it suggests the possibility of a bias with respect to
many other different classification criteria, even if they are weakly correlated with
the number of clues: in the Sudoku case, preliminary analyses showed that the
correlation coefficient between the W rating and the number of clues is only 0.12,
but Tables 6.3 and 6.4 below show that the bias in the generators has nevertheless a
very noticeable impact on the classification of instances according to the W rating.

Even in the very structured and apparently simple Sudoku domain, none of this
was clear before the present analysis. In particular, as the results in HLS were based
on a top-down generator, they were biased.

7 We first published them on the late Sudoku Player’s Forum (July to October 2009) and then
in [Berthier 2009].

6. Unbiased statistics and whip classification results 155

Acknowledgements: Thanks are due to “Eleven” for implementing the first
modification (suexg-cb) of a well-known top-down generator (suexg, written in C)
to make it compliant with the specification of controlled-bias defined below, and
then several faster versions of it; this allowed to turn the whole idea into reality.
Thanks to Paul Isaacson for adapting Brian Turner’s fast solver so that it could be
used instead of that of suexg. Thanks to Glenn Fowler (alias gsf) for providing an a
priori unbiased source of complete grids: the full (compressed) collection of their
equivalence classes together with a fast decompressor. Thanks also, for discussions
and/or various contributions, to Allan Barker, Coloin, David P. Bird, Mike Metcalf,
Red Ed (who was first to suggest the existence of a bias in the current generators).
The informal collaboration that the controlled-bias idea sprouted on the late Sudoku
Player's Forum was very productive: due to several independent optimisations, the
last version of suexg-cb (which does not retain much of the original suexg code) is
200 times faster than the first.

All the generators mentioned below are available on our website.

6.1 Classical top-down and bottom-up generators

There is a very simple procedure for generating an unbiased sample of n
uncorrelated minimal Sudoku puzzles:

1) set p = 0 and list = ();
2) if p = n then return list;
3) randomly choose a complete grid P;
4) for each cell in P, delete its value with probability 0.5, thus
obtaining a puzzle Q;
5) if Q is minimal then add Q to list, set p = p+1 and goto 2 else
goto 3.

Unfortunately, the probability of getting a valid puzzle this way is infinitesimal
for each complete grid tried as a starting point (see last column of Table 6.2, which
should be combined for each n with the probability of obtaining 81-n deletions).
One has no choice but rely on more efficient generators. Before going further, let us
introduce the two classical algorithms that have been widely used in the Sudoku
community for generating minimal puzzles: bottom-up and top-down.

A standard bottom-up generator works as follows to produce n minimal puzzles:

1) set p = 0 and list = ();
2) if p = n then return list;
3a) set p = p+1 and start from an empty grid P;
3b) in P, randomly choose an undecided cell and a value for it, thus
getting a puzzle Q with one more clue than P;
3c) if Q is minimal, then add it to list and goto 2;
3d) if Q has several solutions, then set P = Q and goto 3b;

156 Pattern-Based Constraint Satisfaction and Logic Puzzles

3e) if Q has no solution, then goto 3b (i.e. backtrack: forget Q and
try another cell from P).

A standard top-down generator works as follows to produce n minimal puzzles:

1) set p = 0 and list = ();
2) if p = n then return list;
3a) set p = p+1 and randomly choose a complete grid P;
3b) randomly choose one clue from P and delete it, thus obtaining a
puzzle Q;
3c) if Q still has only one solution but is not minimal, set P=Q and
goto 3b (for trying to delete one more clue);
3d) if Q is minimal, then add it to list and goto 2;
3e) otherwise, i.e. if Q has several solutions, then goto 3b (i.e.
reinsert the clue just deleted and try deleting another clue from P).

Notice that, in both cases, a minimal puzzle is produced from each complete
random grid. Backtracking (i.e. clause 3e in both cases) makes any formal analysis
of these algorithms very difficult. However, at first sight, it seems that it causes the
generator to look for puzzles with fewer clues (this intuition will be confirmed in
section 6.3). It may thus be suspected of introducing a strong, uncontrolled bias with
respect to the number of clues, which, in turn, may induce a bias with respect to
other properties of the collection of puzzles generated.

6.2 A controlled-bias generator

No unbiased generator of uncorrelated minimal puzzles is currently known and
building such a generator with reasonable computation times seems out of reach.
We therefore decided to proceed differently: taking the generators (more or less) as
they are and applying corrections for the bias, if we can estimate it.

This idea was inspired by an article we read in a newspaper about what is done
in digital cameras: instead of complex optimisations of the lenses to reduce typical
anomalies (such as chromatic aberration, purple fringing, barrel or pincushion
distortion…) – optimisations that lead to large and expensive lenses –, some camera
makers now accept a small amount of these in the lenses and they take advantage of
the huge computational power available in the processors to correct the result in real
time with dedicated software before recording the photo.

The main question was then: can we determine the bias of the classical top-down
or bottom-up generators? The answer was negative. But there appeared to be a
medium way between “improving the lens to make it perfect” and “correcting its
small defects by software”: we devised a modification of the top-down generator
that allows a precise mathematical computation of the bias.

6. Unbiased statistics and whip classification results 157

6.2.1. Definition of the controlled-bias generator

Consider the following, modified top-down generator, the controlled-bias
generator for producing n minimal uncorrelated puzzles:

1) set p = 0 and list = ();
2) if p = n then return list;
3a) randomly choose a complete grid P;
3b) randomly choose one clue from P and delete it, thus obtaining a
puzzle Q;
3c) if Q still has only one solution but is not minimal, set P=Q and
goto 3b (for trying to delete one more clue);
3d) if Q is minimal, then add it to list, set p = p+1 and goto 2;
3e) otherwise, i.e. if Q has several solutions, then goto 3a (i.e.
forget everything about P and restart with another complete grid).

The only difference with the top-down algorithm is in clause 3e: if a multi-
solution puzzle is encountered, instead of backtracking to the previous state, the
current complete grid is merely discarded and the search for a minimal puzzle is
restarted with another complete grid.

Notice that, contrary to the standard bottom-up or top-down generators, which
produce one minimal puzzle per complete grid, the controlled-bias generator will
generally use several complete grids before it outputs a minimal puzzle. The
efficiency question is: how many? Experimentations show that many complete grids
(approximately 257,514 in the mean) are necessary before a minimal puzzle is
reached. But this question is about the efficiency of the generator, it is not a
conceptual problem.

The controlled-bias generator has the same output and will therefore produce
minimal puzzles according to the same probability distribution as its following
“virtual” counterpart:

1) set p = 0 and list = ();
2) if p = n then return list;
3a) randomly choose a complete grid P;
3b) if P has no more clue, then goto 2 else randomly choose one clue
from P and delete it, thus obtaining a puzzle Q;
3c) if Q is minimal, add Q to list, set P=Q, set p=p+1 and goto 3b;
3d) otherwise, set P=Q and goto 3b.

The only difference with the controlled-bias generator is that, once it has found a
minimal or a multi-solution puzzle, instead of exiting, this virtual generator
continues along a useless path until it reaches the empty grid.

But this virtual generator is interesting theoretically because it works similarly to
the random uniform search defined in the next section and according to the same

158 Pattern-Based Constraint Satisfaction and Logic Puzzles

transition probabilities; and it outputs minimal puzzles according to the probability
Pr on the set B of minimal puzzles defined below.

6.2.2. Analysis of the controlled-bias generator

We now build our formal probabilistic model of the controlled-bias generator.

Let us first introduce the notion of a doubly indexed puzzle. We consider only
(single or multi solution) consistent puzzles P. The double index of a doubly
indexed puzzle P has a clear intuitive meaning: the first index is one of its solution
grids and the second index is a sequence (notice: not a set, but a sequence, i.e. an
ordered set) of clue deletions leading from this complete grid to P. In a sense, the
double index keeps track of the full generation process.

Given a doubly indexed puzzle Q, there is an underlying singly-indexed puzzle:
the ordinary puzzle obtained by forgetting the second index of Q, i.e. by
remembering the solution grid from which it came and by forgetting the order of the
deletions leading from this solution to Q. Given a doubly indexed puzzle Q, there is
also a non indexed puzzle, obtained by forgetting the two indices.

For a single solution doubly indexed puzzle, the first index is useless as it can be
computed from the puzzle; in this case singly indexed and non-indexed are
equivalent. This is true in particular for minimal puzzles. In terms of the generator,
it could equivalently output minimal puzzles or couples (minimal-puzzle, solution).

Consider now the following layered structure (a forest, in the graph-theoretic
sense, i.e. a set of disjoint trees, with branches pointing downwards), the nodes
being (single or multi solution) doubly indexed puzzles:

– floor 81 : the N different complete solution grids (considered as puzzles), each
indexed by itself and by the empty sequence; notice that all the puzzles at floor 81
have 81 clues;

– recursive step: given floor n+1, where each doubly indexed puzzle has n+1
clues and is indexed by a complete grid that solves it and by a sequence of length
81-(n+1), build floor n as follows:
each doubly indexed puzzle Q at floor n+1 sprouts n+1 branches; for each clue C in
Q, there is a branch leading to a doubly indexed puzzle R at floor n: R is obtained
from Q by removing clue C; its first index is identical to that of Q and its second
index is the (81-n)-element sequence obtained by appending C to the end of the
second index of Q; notice that all the doubly indexed puzzles at floor n have n clues
and the length of their second index is equal to 1 + (81-(n+1)) = 81-n.

It is easy to see that, at floor n, each doubly indexed puzzle has an underlying
singly indexed puzzle identical to that of (81 - n)! doubly indexed puzzles with the
same first index (i.e. the same solution grid) at the same floor (including itself).

6. Unbiased statistics and whip classification results 159

This is equivalent to saying that, at any floor n < 81, any singly indexed puzzle
Q can be reached by exactly (81 - n)! different paths from the top (all of which start
necessarily from the complete grid defined as the first index of Q). These paths are
the (81 - n)! different ways of deleting one by one its missing 81-n clues from its
solution grid.

Notice that this would not be true for non-indexed puzzles that have multiple
solutions. This is where the first index is useful.

Let N be the number of complete grids (N is known to be close to 6.67x1021, but
this is pointless here). At each floor n, there are N × 81! / n! doubly indexed puzzles
and N × 81! / (81-n)! / n! singly indexed puzzles. For each n, there is therefore a
uniform probability P(n) = 1/N × 1/81! × (81-n)! × n! that a singly indexed puzzle Q
at floor n is reached by a random (uniform) search starting from one of the complete
grids. What is important here is the ratio: P(n+1) / P(n) = (n + 1) / (81 - n), giving
the relative probability of being reached by the generation process, for two singly
indexed puzzles with respectively n+1 and n clues.

The above formula is valid globally if we start from all the complete grids, as
above, but it is also valid for all the single solution puzzles if we start from a single
complete grid (just forget N in the proof above). (Notice however that it is not valid
if we start from a subgrid instead of a complete grid.)

Now, call B the set of (non indexed) minimal puzzles. On B, all the puzzles are
minimal. Any puzzle strictly above B has redundant clues and a single solution.
Notice that, for all the puzzles on B and above B, singly indexed and non-indexed
puzzles are in one-to-one correspondence. Therefore, the relative probability of two
minimal puzzles is given by the above formula.

On the set B of minimal puzzles, there is thus a probability Pr naturally induced
by the different Pn's and it is the probability that a minimal puzzle Q is output by
our controlled-bias generator. It depends only on the number of clues and it is
defined by Pr(Q) = P(n) if Q has n clues.

The most important here is that, by construction of Pr on B (a construction
which models the workings of the virtual controlled bias generator), the fundamental
relation: Pr(n+1)/Pr(n) = (n+1)/(81-n) holds for any two minimal puzzles, with
respectively n+1 and n clues.

For n < 41, this relation means that a minimal puzzle with n clues is more likely
to be reached from the top than a minimal puzzle with n+1 clues. More precisely,
we have: Pr(40) = Pr(41), Pr(39) = 42/40×Pr(40), Pr(38) = 43/39×Pr(39). Repeated
application of the formula gives Pr(24) = 61.11×Pr(30): a puzzle with 24 clues has
about 61 times more chances of being output by the controlled-bias generator than
a puzzle with 30 clues. This is indeed a very strong bias.

160 Pattern-Based Constraint Satisfaction and Logic Puzzles

A non-biased generator would give the same probability to all the minimal
puzzles. The above analysis shows that the controlled bias generator:
- is unbiased when restricted (by filtering its output) to n-clue puzzles, for any
fixed n,
- is strongly biased towards puzzles with fewer clues,
- this bias is well known and given by Pr(n+1) / Pr(n) = (n + 1) / (81 – n),
- the puzzles produced are uncorrelated, provided that the complete grids are
chosen in an uncorrelated way.

As we know precisely the bias with respect to uniformity, we can correct it
easily by applying correction factors cf(n) to the probabilities on B. Only the
relative values of the cf(n) is important: they satisfy cf(n+1) / cf(n) = (81-n)/(n+1).
Mathematically, after normalisation, cf is just the relative density of the uniform
distribution on B with respect to the probability distribution Pr.

 This analysis also shows that a classical top-down generator is still more
strongly biased towards puzzles with fewer clues because, instead of discarding the
current path when it meets a multi-solution puzzle, it backtracks to the previous
floor and tries again to go deeper.

6.2.3. Computing unbiased means and standard deviations using a controlled-bias
generator

In practice, how can one compute unbiased statistics of minimal puzzles based
on a (large) sample produced by a controlled-bias generator? Consider any random
variable X defined (at least) on the set of minimal puzzles. Define: on(n) = the
number of n-clue puzzles in the sample, E(X, n) = the mean value of X for n-clue
puzzles in the sample and σ(X, n) = the standard deviation of X for n-clue puzzles in
the sample.

The mean and standard-deviation of X on a sample are classically computed as:
mean(X) = ∑n [E(X, n) × on(n)] / ∑n on(n)
σ(X) = √{∑n [σ(X, n)2 × on(n)] / ∑n [on(n)]}.

The unbiased mean and standard deviation of X must then be estimated as (this
is merely the mean and standard deviation for a weighted average):
unbiased-mean(X) = ∑n [E(X, n) × on(n) × cf(n)] / ∑n [on(n) × cf(n)];
unbiased-σ(X) = √{∑n [σ(X, n)2 × on(n) × cf(n)] / ∑n [on(n) × cf(n)]}.

These formulæ show that the cf(n) sequence needs be defined only modulo a
multiplicative factor. It is convenient to choose cf(26) = 1. This gives the following
sequence of correction factors (in the range n = 19-31, which includes all the
puzzles of all the samples we have obtained with all the random generators
considered here):

6. Unbiased statistics and whip classification results 161

[0.00134 0.00415 0.0120 0.0329 0.0843 0.204 0.464 1 2.037 3.929 7.180 12.445
20.474]

It may be shocking to consider that 30-clue puzzles in a sample must be given a
weight 61 times greater than 24-clue puzzles, but it is a fact. As a result of this
strong bias of the controlled-bias generator (strong but known and much smaller
than the other generators), unbiased statistics for the mean number of clues of
minimal puzzles (and any variable correlated with this number) must rely on
extremely large samples with sufficiently many 29-clue and 30-clue puzzles.

6.3. The real distribution of clues and the number of minimal puzzles

The above formulæ show that the number-of-clue distribution of the controlled-
bias generator is the key for computing unbiased statistics.

6.3.1. The number-of-clue distribution as a function of the generator

Generator →
sample size →
 ↓ #clues

bottom-up
1,000,000

% (sample)

top-down
1,000,000

% (sample)

ctr-bias
5,926,343

% (sample)

real

% (estimated)
20 0.028 0.0044 0.0 0.0
21 0.856 0.24 0.0030 0.000034
22 8.24 3.45 0.11 0.0034
23 27.67 17.25 1.87 0.149
24 36.38 34.23 11.85 2.28
25 20.59 29.78 30.59 13.42
26 5.45 12.21 33.82 31.94
27 0.72 2.53 17.01 32.74
28 0.054 0.27 4.17 15.48
29 0.0024 0.017 0.52 3.56
30 0 0.001 0.035 0.41
31 0 0 0.0012 0.022

mean 23.87 24.38 25.667 26.577
std-dev 1.08 1.12 1.116 1.116

Table 6.1: The experimental number-of-clue distribution (%) for the bottom-up, top-down and
controlled-bias generators and the estimated real distribution.

After applying the above formulæ to estimate the real number-of-clue
distribution, Table 6.1 shows that the bias with respect to the number of clues is
very strong in all the generators we have considered; moreover, controlled-bias, top-

162 Pattern-Based Constraint Satisfaction and Logic Puzzles

down and bottom-up are increasingly biased towards puzzles with fewer clues.
Graphically, the estimated number-of-clue distribution is very close to Gaussian.

Table 6.1 partially explains Tables 6.3 and 6.4 in section 6.4. More precisely, it
explains why there can be a noticeable W rating bias in the samples produced by the
bottom-up and top-down generators, in spite of the weak correlation coefficient
between the number of clues and the W rating of a puzzle: the bias with respect to
the number of clues is very strong in these generators.

6.3.2. Collateral result: the number of minimal puzzles

The number of minimal Sudoku puzzles has been a longstanding open question.
We can now provide precise estimates for the distribution of the mean number of n-
clue minimal puzzles per complete grid (mean and standard deviation in the second
and third columns of Table 6.2).

number

of
clues

number of n-clue
minimal puzzles

per complete grid:
mean

number of n-clue
minimal puzzles

per complete grid:
relative error
(~ 1 std dev)

mean number
of tries

20 6.152×106 70.7% 7.6306×1011
21 1.4654×109 7.81% 9.3056×109
22 1.6208×1012 1.23% 2.2946×108
23 6.8827×1012 0.30% 1.3861×107
24 1.0637×1014 0.12% 2.1675×106
25 6.2495×1014 0.074% 8.4111×105
26 1.4855×1015 0.071% 7.6216×105
27 1.5228×1015 0.10% 1.5145×106
28 7.2063×1014 0.20% 6.1721×106
29 1.6751×1014 0.56% 4.8527×107
30 1.9277×1013 2.2% 7.3090×108
31 1.1240×1012 11.6% 2.0623×1010
32 4.7465×1010 70.7% 7.6306×1011

Total 4.6655×1015 0.065%

Table 6.2: Mean number of n-clue minimal puzzles per complete grid. Last column: inverse of
the proportion of n-clue minimal puzzles among n-clue sub-grids

Another number of interest (e.g. for the first naïve algorithm given in section
6.1) is the mean number of tries one must do to find an n-clue minimal puzzle by

6. Unbiased statistics and whip classification results 163

randomly deleting 81-n clues from a complete grid. It is the inverse of the
proportion of n-clue minimal puzzles among n-clue sub-grids, given by the last
column in Table 6.2.

One can also get:
– after multiplying the total mean by the number of complete grids (known to be

6,670,903,752,021,072,936,960 [Felgenhauer et al. 2005]), the total number of
minimal Sudoku puzzles: 3.1055×1037, with 0.065% relative error;

– after multiplying the total mean by the number of non isomorphic complete
grids (known to be 5,472,730,538 [Russell et al. 2006]), the total number of non
isomorphic minimal Sudoku puzzles: 2.5477×1025, also with 0.065% relative
error.

6.4. The W-rating distribution as a function of the generator

We can now apply the bias correction formulæ of section 6.2.3 to estimate the W
rating distribution. Table 6.3 shows that the mean W rating of the minimal puzzles
in a sample depends noticeably on the type of generator used to produce them and
that all the generators give rise to mean complexity below the real values.

Generator
sample size

bottom-up
10,000

top-down
50,000

ctr-bias
5,926,343

real

W rating : mean
W rating : std dev

1.80
1.24

1.94
1.29

2.22
1.35

2.45
1.39

max W found in sample 11 13 16

Table 6.3: The W-rating means and standard deviations for bottom-up, top-down and
controlled-bias generators, compared with the estimated real values.

The mean W rating gives only a very pale idea of what really happens, because
the first two levels, W0 and W1, concentrate a large part of the distribution, for any
of the generators. With the full distributions, Table 6.4 provides more detail about
the bias in the W rating for the three kinds of generators (with the same sample sizes
as in Table 6.3). All these distributions have the same two modes as the real
distribution, at levels W0 and W3. But, when one moves from bottom-up to top-
down to controlled-bias to real, the mass of the distribution moves progressively to
the right. This displacement towards higher complexity occurs mainly at the first W
levels, after which it is only slight, but still visible.

164 Pattern-Based Constraint Satisfaction and Logic Puzzles

More detailed analyses (available on our website), in particular with skewness
and kurtosis, seem to show that there is a (non absolute) barrier of complexity, such
that, when we consider n-clue puzzles and when the number n of clues increases:
- the n-clue mean W rating increases;
- the proportion of puzzles with W rating away from the n-clue mean increases;
but:
- the proportion of puzzles with W rating far below the n-clue mean increases;
- the proportion of puzzles with W rating far above the n-clue mean decreases.

Graphically, the W rating distribution of n-clue puzzles looks like a wave. When
n increases, the wave moves to the right, with a longer tail on its left and a steeper
front on its right. The same remarks apply if the W rating is replaced by the SER.

Generator →
W-rating ↓

bottom-up
% (sample)

top-down
% (sample)

ctr-bias
% (sample)

real
% (estimated)

0 (first mode →) 46.27 41.76 35.08 29.17
1 13.32 12.06 9.82 8.44
2 12.36 13.84 13.05 12.61

3 (second mode →) 15.17 16.86 20.03 22.26
4 10.18 12.29 17.37 21.39
5 1.98 2.42 3.56 4.67
6 0.49 0.55 0.79 1.07
7 0.19 0.15 0.21 0.29
8 0.020 0.047 0.055 0.072
9 0.010 0.013 0.015 0.020

10 0* 3.8 10-3 4.4 10-3 5.5 10-3
11 0.01* 1.5 10-3 1.2 10-3 1.5 10-3

12-16 0* 1.1 10-3 4.3 10-4 5.4 10-4

Table 6.4: The W-rating distribution (in %) for bottom-up, top-down and controlled-bias
generators, compared with the estimated real distribution. A * sign on a result means that the

number of puzzles justifying it is too small to allow a precise value.

6.5. Stability of the classification results

6.5.1. Insensivity of the controlled-bias generator wrt the source of complete grids

There remains a final question: do the above results depend on the source of
complete grids? Until now, we have done as if this was not a problem. Nevertheless,
producing the unbiased and uncorrelated collections of complete grids, necessary in
the first step of all the puzzle generators, is all but obvious. It is known that there are
6.67x1021 complete grids; it is therefore impossible to have a generator scan them

6. Unbiased statistics and whip classification results 165

all. Up to isomorphisms, there are “only” 5.47x109 complete grids, but this remains
a very large number and storing them in uncompressed format would require about
half a terabyte.

In 2009, Glenn Fowler provided both a collection of all the (equivalence classes
of) complete grids in a compressed format (only 6 gigabytes) and a real time
decompressor. All the results reported above for the controlled bias generator were
obtained with this a priori unbiased source of complete grids. (Notice that, due to
the normalisation and compression of grids, it is unbiased only when one does full
scans of its grids, whence the queer sizes of some of our samples of controlled-bias
minimal puzzles).

Before this, all the generators we tried had a first phase consisting of creating a
complete grid and this is where some type of bias could slip in at this level.
Nevertheless, we tested several sources of complete grids based on very different
generation principles and the classification results remained very stable.

This insensitivity of the controlled-bias generator to the source of complete grids
can be understood intuitively: it deletes in the mean two thirds of the initial grid data
and any structure that might be present in the complete grids and cause a bias is
washed away by the deletion phase.

6.5.2. Insensivity of the classification results wrt the generators implementation

As can be seen from additional results on our website, we have tested several
independent implementations of the bottom-up and top-down generators, using in
particular various pseudo-random number generators for the selection of clue
deletions (or additions in the bottom-up case); they all lead to the same conclusions.

6.6. The W rating is a good approximation of the B rating

The above statistical results are unchanged when the W rating is replaced by the
B rating. Indeed, in 10,000 puzzles tested, only 20 (0.2%) have different W and B
ratings. Moreover, in spite of non-confluence of the whip resolution theories, the
maximum length of whips in a single resolution path using only loopless whips
and obtained by the “simplest first” strategy (defined in section 5.5.2 for the B
rating) is a good approximation of both the W and B ratings.

7. g-labels, g-candidates, g-whips and g-braids

After introducing the purely structural notion of a “grouped-label” or “g-label”,
we give a new description of whips of length one. Having g-labels (or, equivalently,
whips of length one) is an intrinsic property of a CSP with deep consequences for its
resolution theories. When a CSP has g-labels, one can define two new families of
resolution rules: g-whips and g-braids, extending the resolution power of whips and
braids by allowing the presence of slightly more complex right-linking objects: g-
candidates, i.e. groups of candidates related by pre-defined structural relationships,
that act locally like the logical “or” of the candidates in the group.

7.1. g-labels, g-links, g-candidates and whips[1]

7.1.1. g-labels and g-links

7.1.1.1. General definition of a grouped label (g-label) in a CSP

Definition: in a CSP, a potential-g-label is a pair <V, g>, where V is a CSP
variable and g is a set of labels for V, such that:

– the cardinality of g is greater than one, but g is not the full set of labels for V;
– there is at least one label l such that l is not a label for V and l is linked

(possibly by different constraints) to all the labels in g.

Definition: a g-label is a potential g-label <V, g> that is “saturated” or “locally
maximal” in the sense that, for any potential g-label <V, g’> with g’ strictly larger
than g, there is a label l that is not a label for V and that is linked to all the elements
of g but not to all the elements of g’.

Miscellaneous remarks:
– when CSP variable V is clear, we often speak of g-label g, but one must be

careful with this abuse of language; (see the Sudoku discussion in section 7.1.1.3);
– as a result of the first condition, a label is not a g-label and there are CSPs with

no g-labels;
– one can introduce a new, auxiliary sort: g-Label, with a constant symbol for

every g-label and with variable symbols g, g’, g1, g2, …;

168 Pattern-Based Constraint Satisfaction and Logic Puzzles

– the “saturation” or “local maximality” condition plays no role in all our
theoretical analyses (in particular, it has no impact on the definition of a g-link); it is
there mainly for efficiency reasons; it has the effect of minimising the number of g-
labels one must consider when looking for chain patterns built on them; accepting
non locally maximal g-labels would increase the computational complexity of the
corresponding resolution rules without providing any more generality (as can easily
be checked from the definitions of g-whips and g-braids below); for an example
where this saturation condition appears as essential from a computational point of
view and how it works in more complex cases than Sudoku, see section 15.5 on
Kakuro;

– in LatinSquare, there are no g-labels; in Sudoku, all the elements of a g-label
are linked to l by constraints of the same type; in N-Queens, there are g-labels but
their different elements are always linked to l by two or three constraints of different
types (see section 7.8.1); in Kakuro (section 15.5) there are two types of CSP-
variables and two corresponding types of g-labels.

7.1.1.2. g-links

Definition: a g-label <V, g> and a label l are g-linked if l is not a label for V and
l is linked to all the elements of g; and we define an auxiliary predicate g-linked with
signature (g-Label, Label) by:
g-linked(<V, g>, l) ≡ ∀v ¬label(l, V, v) ∧ ∀l’∈g linked(l’, l);

Definition: a g-label <V, g> and a label l are compatible if they are not g-linked.

Definition: a g-label <V, g> is compatible with a g-label <V’, g’> if g contains
some label l compatible with <V’, g’> . Notice that this is a symmetric relation, in
spite of the non symmetric definition (most of the time, we shall use this relation in
its apparently non-symmetric form); it is equivalent to: there are some l ∈ g and
some l’ ∈ g’ such that l and l’ are not linked.

Definition: a label l [respectively a g-label <V, g>] is compatible with a set S of
labels and g-labels if l [resp. <V, g>] is compatible with each element of S.

7.1.1.3. Grouped labels (g-labels) in Sudoku

As an example, let us analyse the situation in Sudoku. Informally, a g-label
could be defined as the set of labels for a given Number “in” the intersection of a
row and a block or “in” the intersection of a column and a block (these are the only
possibilities). These intersections are known respectively as row-segments and
column-segments (sometimes also as mini-rows and mini-columns).

Then, g-label (n°, r°, cijk) would be the mediator of a symmetric conjugacy
relationship between the set of labels (n°, r°, c°1) such that rc-cell (r°, c°1) is in row
r° but not in block b° and the set of labels for <variable, value> pairs <b°n°, s°2>

7. g-labels, g-candidates, g-whips and g-braids 169

such that rc-cell [b°, s°2] is in block b° but not in row r°. Similarly, if (rijk, c°) =
[b°, spqr], then g-label (n°, rijk, c°) would be the mediator of a conjugacy between the
set of labels (n°, r°1, c°) such that rc-cell (r°1, c°) is in column c° but not in block b°
and the set of labels for <variable, value> pairs <b°n°, s°2> such that rc-cell [b°, s°2]
is in block b° but not in column c°.

“Conjugacy”, in the above sentences, must be understood in the following sense.
When two sets of labels are conjugated via a g-label as above, a proof that all the
candidates from one set are impossible leads in an obvious way to a proof that all
the candidates from the other set are also impossible. Thus, when one knows that, in
row r° [resp. in column c°], number n° can only be in block b°, one can delete n°
from all the rc-cells in block b° that are not in row r° [resp. not in column c°].
Conversely, when one knows that, in block b°, number n° can only be in row r°
[resp. in column c°], one can delete n° from all the rc-cells in row r° [resp. in
column c°] that are not in block b°. These rules are among the most basic ones in
Sudoku; they are usually named row-block and column-block interactions (or
“locked candidates”). In Sudoku, g-labels correspond to what is also sometimes
called “hinges”: they are hinges for the conjugacy. As shown in HLS (see also the
end of section 7.1.2), these basic interactions are equivalent to whip[1].

Nevertheless, this kind of symmetric conjugacy between two CSP variables is
specific to Sudoku. We have chosen to define the notion of a g-label in a much more
general way, involving only one CSP variable, so that it can be applied when it is
not the “intersection” of two CSP variables and there is no associated symmetric
conjugacy relationship. In particular, g-labels in the N-Queens CSP (section 7.8.1)
will not be defined by two CSP variables.

According to our formal definition, Sudoku has the following 972 “g-labels”:
– for each Row r°, for each Number n°, three g-labels for CSP variable Xr°n°:

<Xr°n°, r°n°c123>, <Xr°n°, r°n°c456> and <Xr°n°, r°n°c789>, where:
r°n°c123 is the set of three labels {(n°, r°, c1), (n°, r°, c2), (n°, r°, c3)};
r°n°c456 is the set of three labels {(n°, r°, c4), (n°, r°, c5), (n°, r°, c6)};
r°n°c789 is the set of three labels {(n°, r°, c7), (n°, r°, c8), (n°, r°, c9)};

– for each Column c°, for each Number n°, three g-labels for CSP variable
Xc°n°: <Xc°n°, c°n°r123>, <Xc°n°, c°n°r456> and <Xc°n°, c°n°r789>, where:
c°n°r123 is the set of three labels {(n°, c°, r1), (n°, c°, r2), (n°, c°, r3)};
c°n°r456 is the set of three labels {(n°, c°, r4), (n°, c°, r5), (n°, c°, r6)};
c°n°r789 is the set of three labels {(n°, c°, r7), (n°, c°, r8), (n°, c°, r9)};

– for each Block b°, for each Number n°, three g-labels for CSP variable Xb°n°:
<Xb°n°, b°n°s123>, <Xb°n°, c°n°s456> and <Xb°n°, c°n°s789>, where:
b°n°s123 is the set of three labels {(n°, b°, s1), (n°, b°, s2), (n°, b°, s3)};
b°n°s456 is the set of three labels {(n°, b°, s4), (n°, b°, s5), (n°, b°, s6)};
b°n°s789 is the set of three labels {(n°, b°, s7), (n°, b°, s8), (n°, b°, s9)};

170 Pattern-Based Constraint Satisfaction and Logic Puzzles

– for each Block b°, for each Number n°, three g-labels for CSP variable Xb°n°:
<Xb°n°, b°n°s147>, <Xb°n°, c°n°s258> and <Xb°n°, c°n°s369>, where:
b°n°s147 is the set of three labels {(n°, b°, s1), (n°, b°, s4), (n°, b°, s7)};
b°n°s258 is the set of three labels {(n°, b°, s2), (n°, b°, s5), (n°, b°, s8)};
b°n°s369 is the set of three labels {(n°, b°, s3), (n°, b°, s6), (n°, b°, s9)}.

The two groups of g-labels for the Xbn CSP variables may seem redundant with
respect to the first two groups: their sets of label triplets are the same as the sets of
label triplets related to rows and columns. But they are not considered as g-labels for
the same CSP variables. In Sudoku, this difference has always been in implicit
existence with the classical distinction between the rules of interaction from blocks
to rows (or columns) and rules of interaction from rows (or columns) to blocks,
respectively called pointing and claiming (names that are now falling into oblivion).

Contrary to what we did for labels (considering them as equivalence classes of
pre-labels), we do not consider two g-labels as being essentially the same if they
have the same sets of labels but different underlying CSP variables. The reason for
this will be clear after the SudoQueens example in section 7.8.3.

7.1.2. g-candidates and their correspondence with whips of length one

Definitions: we say that a g-label <V, g> for a CSP variable V is a g-candidate
for V in a resolution state RS if there are at least two different labels l1 and l2 in g
such that l1 and l2 are present as candidates in RS, i.e. RS |= candidate(l1) and
RS |= candidate(l2). Thus, in the same spirit as in the definition of a g-label, we
consider that an ordinary candidate is not a g-candidate. The above defined notion of
“g-linked” can be extended straightforwardly from g-labels to g-candidates, by
considering the complete g-labels underlying the g-candidates. Beware: it is not
enough that all the actual candidates be linked; the underlying g-labels must be g-
linked). As for “compatibility” between a candidate l and a g-candidate g, it is
defined similarly, in terms of the underlying g-label of g, and there is the condition
that g must contain at least two candidates compatible with l.

g-labels act like the logical “or” of several candidates (but not any combination
of any candidates, only structurally fixed combinations for the same CSP variable,
predefined by the set of g-labels): in any context in which the true value of V is one
of those in the g-candidate, it is not necessary to know precisely which of them is
true; one can always conclude that any candidate g-linked to this g-label must be
false in this context.

It can also be noticed that g-labels could be used to define two kinds of extended
elementary resolution rules (which could be called g-resolution rules, as they deal
with g-labels, g-links, g-values and g-candidates in addition to labels, links, values

7. g-labels, g-candidates, g-whips and g-braids 171

and candidates): gS would assert a g-value predicate for a g-label <V, g> and gECP
would eliminate any candidate g-linked to an asserted g-value <V, g>.

But the following remark will lead us further and will require no extension of the
notion of a resolution theory. If <V, g> is a g-candidate for V, Z is a candidate g-
linked to it and l = <V, x> is any candidate in g, then V{x .} is a whip[1] with target
Z. Conversely, for any whip[1]: V{x .} with target Z, there must be at least another
value x’ for V such that <V, x’> is in g, is still a candidate and is linked to Z
(otherwise, the whip would degenerate into a Single, a possibility we have excluded
from the definition of a whip); if one defines g as the set of labels for V that are
linked to Z, then <V, g> is a g-label for variable V and Z is g-linked to it.

7.2. g-bivalue chains, g-whips and g-braids

We now introduce extensions of bivalue chains, whips and braids by allowing
the right-linking (but not the left-linking) objects to be either candidates or g-
candidates.

Definition: in a resolution state RS, a g-regular sequence of length n associated
with a sequence (V1, … Vn) of CSP variables is a sequence of length 2n [or 2n-1]
(L1, R1, L2, R2, …. Ln, [Rn]), such that:

– for 1≤k≤ n, Lk is a candidate,
– for 1≤k≤ n [or 1≤k<n], Rk is a candidate or a g-candidate,
– for each k, Lk has a representative <Vk, lk> with Vk and Rk is a candidate or a

g-candidate <Vk, rk> for Vk; this “strong continuity” or “strong g-continuity”
(depending on what Rk is) from Lk to Rk implies “continuity” or “g-continuity” (i.e.
link or g-link) from Lk to Rk.
The Lk are called the left-linking candidates of the sequence and the Rk the right-
linking candidates or g-candidates.

Definition: A g-regular chain is a g-regular sequence that satisfies all the
additional Rk-1 to Lk g-continuity conditions: Lk is linked or g-linked to Rk-1 for all k.

7.2.1. Definition of g-bivalue chains

Definition: in any CSP and in any resolution state RS, given a candidate Z
(which will be a target), a g-bivalue-chain of length n (n ≥ 1) is a g-regular chain
(L1, R1, L2, R2, …. Ln, Rn) associated with a sequence (V1, … Vn) of CSP variables,
such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Ln, Rn}, nor a
member of any g-candidate in this set, for any 1≤k<n;

– Z is linked to L1;

172 Pattern-Based Constraint Satisfaction and Logic Puzzles

– R1 is the only candidate or g-candidate for V1 compatible with Z;
– for any 1 < k ≤ n, Rk is the only candidate or g-candidate for Vk compatible

with Rk-1;
– Z is not a label for Vm;
– Z is linked or g-linked to Rm.

Notice that these conditions imply that Z cannot be a label for any of the CSP
variables Vk.

Theorem 7.1 (g-bivalue-chain rule for a general CSP): in any resolution state
of any CSP, if Z is a target of a g-bivalue-chain, then it can be eliminated
(formally, this rule concludes ¬candidate(Z)).

Proof: the proof is short and obvious but it will be the basis for the proof of all
our forthcoming generalised chain, whip and braid rules including g-labels.

If Z was True, then L1 and all the other candidates for V1 linked to Z would be
eliminated by ECP; therefore R1 would have to be or to contain the true value of V1;
but then L2 and all the candidates for V2 linked or g-linked to R1 would be
eliminated by ECP or W1 and R2 would have to be or to contain the true value of
V2….; finally Rn would have to be or to contain the true value of Vn; which would
contradict the hypothesis that Z was True. Therefore Z can only be False. qed.

Notation: a g-bivalue-chain of length n, together with a potential target
elimination, is written symbolically as:
g-biv-chain[n]: {L1 R1} – {L2 R2} – …… – {Ln Rn} ⇒ ¬candidate(Z),
where the curly brackets recall that the two candidates or g-candidates inside have
representatives with the same CSP variable.

Re-writing the candidates or g-candidates as <variable, value> or <variable, g-
value> pairs and “factoring” the CSP variables out of the pairs, a bivalue chain will
also be written symbolically in either of the more explicit forms:
g-biv-chain[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln rn} ⇒ ¬candidate(Z), or:
g-biv-chain[n]: V1{l1 r1} – V2{l2 r2} – …… – Vn{ln rn} ⇒ VZ ≠ vZ.

In spite of the apparently non reversible definition, one has:

Theorem 7.2: a g-bivalue-chain is reversible.

Proof: the main point of the proof is the construction of the reversed chain (L’1,
R’1, L’2, R’2, …. L’n, R’n). It is based on the reversed sequence of CSP variables and
defined as follows (for a similar theorem, see section 9.2.2):

– L’k = Rn-k+1 if Rn-k+1 is a candidate; L’k = any element in Rn-k+1 if Rn-k+1 is a g-
candidate; thus, L’k is always a candidate;

7. g-labels, g-candidates, g-whips and g-braids 173

– R’k = Ln-k+1 plus all the candidates for Vn-k+1 that are linked to Rn-k; thus, R’k
can be a candidate or a g-candidate.

7.2.2. Definition of g-whips

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a g-whip of length n (n ≥ 1) built on Z is a g-regular sequence (L1, R1, L2,
R2, …. Ln) [notice that there is no Rn] associated with a sequence (V1, … Vn) of CSP
variables, such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Ln} nor a member of
any g-candidate in this set;

– L1 is linked to Z;
– for each 1 < k ≤ n, Lk is linked or g-linked to Rk-1; this is what we call g-

continuity from Rk-1 to Lk;
– for any 1 ≤ k < n, Rk is the only candidate or g-candidate for Vk compatible

with Z and with all the previous right-linking candidates and g-candidates (i.e. with
Z and with all the Ri, 1 ≤ i < k);

– Z is not a label for Vn;
– Vn has no candidate compatible with Z and with all the previous right-linking

candidates and g-candidates (but Vn has more than one candidate).

Notice that left-linking candidates are labels, as in the case of whips; they are not
g-labels. Accepting g-labels instead of labels would lead to no added generality but
it would entail unnecessary complications. This is the main reason for our restrictive
definition of a g-label (i.e. a label is not a g-label).

Definition: as in the cases of bivalue-chains, whips and braids, in any of the
above defined g-bivalue chains, g-whips or g-braids, a candidate other than Lk for a
CSP variable Vk is called a t- [respectively a z-] candidate if it is incompatible with
a previous right-linking candidate or g-candidate [resp. with the target]. And, here
again, a candidate can be z- and t- at the same time and that the t- and z- candidates
are not considered as being part of the pattern. Notice also that a right-linking g-
candidate can contain z- and/or t-candidates, as long as it has more than one non-z
and non-t candidate (otherwise, the only compatible candidate is considered as a
mere right-linking candidate).

Theorem 7.3 (g-whip rule for a general CSP): in any resolution state of any
CSP, if Z is a target of a g-whip, then it can be eliminated (formally, this rule
concludes ¬candidate(Z)).

Proof: the proof is a simple adaptation of that for g-bivalue-chains, adding the
elimination of all the z-candidates by ECP and, at each step, the elimination of all
the next t-candidates by ECP or W1. The end is slightly different: the last condition

174 Pattern-Based Constraint Satisfaction and Logic Puzzles

on the g-whip entails that, if the target Z was True, there would be no possible value
for the last variable Vn (because it is not a CSP-Variable for Z).

7.2.3. Definition of g-braids

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a g-braid of length n (n ≥ 1) built on Z is a g-regular sequence (L1, R1, L2,
R2, …. Ln) [notice that there is no Rn] associated with a sequence (V1, … Vn) of CSP
variables, such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Ln} nor a member of
any g-candidate in this set;

– L1 is linked to Z;
– for any 1 < k ≤ n, Lk is either linked to a previous right-linking candidate or to

the target or g-linked to a previous right-linking g-candidate; this is the only (but
major) structural difference with g-whips (for which the only linking possibility is
Rk-1); the “g-continuity” condition of g-whips is not satisfied by g-braids;

– for any 1 ≤ k < n, Rk is the only candidate or g-candidate for Vk compatible
with Z and with all the previous right-linking candidates and g-candidates (i.e. with
Z and with all the Ri, 1 ≤ i < k);

– Z is not a label for Vn;
– Vn has no candidate compatible with Z and with all the previous right-linking

candidates and g-candidates (but Vn has more than one candidate).

As in g-whips, left-linking candidates are labels, not g-labels. Here also,
accepting g-labels instead of labels would lead to no added generality but it would
entail unnecessary complications.

Theorem 7.4 (g-braids rule for a general CSP): in any resolution state of any
CSP, if Z is a target of a g-braid, then it can be eliminated (formally, this rule
concludes ¬candidate(Z)).

Proof: obvious (almost the same as in the g-whips case).

7.2.4. Properties of g-whips and g-braids

g-whips and g-braids have properties very similar to those of whips and braids,
namely: linearity, g-continuity (for g-whips), non anticipativeness, left-
composability,… In the next sections, we shall see that g-braids also have the two
strongest properties of braids: confluence and relationship with gT&E, i.e.
T&E(W1).

7. g-labels, g-candidates, g-whips and g-braids 175

7.3. g-whip and g-braid resolution theories; the gW and gB ratings

One can now define two new families of resolution theories and two new ratings,
in a way that strictly parallels what was done for whips and braids in chapter 5. As
was the case for the W and B ratings, the gW and gB ratings of an instance will be
measures of the hardest step in its simplest resolution path with g-whips or g-braids;
they will not take into account combinations of steps of the whole path.

7.3.1. g-whip resolution theories in a general CSP; the gW rating

Recall that BRT(CSP) is the Basic Resolution Theory of the CSP defined in
section 4.3.

Definition: for any n ≥ 0, let gWn be the following resolution theory:
– gW0 = BRT(CSP) = W0 = B0,
– gW1 = gW0 ∪ {rules for g-whips of length 1} = W1 (obviously),
– gW2 = gW1 ∪ {rules for g-whips of length 2},
–
– gWn = gWn-1 ∪ {rules for g-whips of length n},
– gW∞ = ∪n≥0 gWn.

Definition : the gW-rating of an instance P of the CSP, noted gW(P), is the
smallest n ≤ ∞ such that P can be solved within gWn. An instance P has gW rating n
if it can be solved using only g-whips of length no more than n but it cannot be
solved using only g-whips of length strictly smaller than n. By convention,
gW(P) = ∞ means that P cannot be solved by g-whips.

The gW rating has some good properties one can expect of a rating:
– it is defined in a purely logical way, independent of any implementation; the

gW rating of an instance is an intrinsic property of this instance;
– in the Sudoku case, it is invariant under symmetry and supersymmetry; similar

symmetry properties will be true for any CSP, if it has symmetries of any kind and
they are properly formalised.

7.3.2. g-braid resolution theories in a general CSP; the gB rating

Definition: for any n ≥ 0, let gBn be the following resolution theory:
– gB0 = BRT(CSP) = gW0 = W0 = B0,
– gB1 = gB0 ∪ {rules for g-braids of length 1} = gW1 = W1 = B1,
– gB2 = gB1 ∪ {rules for g-braids of length 2},
–

176 Pattern-Based Constraint Satisfaction and Logic Puzzles

– gBn = gBn-1 ∪ {rules for g-braids of length n},
– gB∞ = ∪n≥0 gBn.

Definition : the gB-rating of an instance P of the CSP, noted gB(P), is the
smallest n ≤ ∞ such that P can be solved within gBn. An instance P has gB rating n if
it can be solved using only g-braids of length no more than n but it cannot be solved
using only g-braids of length strictly smaller than n. By convention, gB(P) = ∞
means that P cannot be solved by g-braids.

The gB rating has all the good properties one can expect of a rating:
– it is defined in a purely logical way, independent of any implementation; the

gB rating of an instance is an intrinsic property of this instance;
– as will be shown in the second next section, it is based on an increasing

sequence of theories (gBn) with the confluence property; this ensures a priori better
computational properties ; in particular, one can define a “simplest first” resolution
strategy able to provide the gB rating after following a single resolution path;

– in the Sudoku case, it is invariant under symmetry and supersymmetry ;
similar properties will be true for any CSP with symmetries properly formalised.

7.4. Comparison of the ratings based on whips, braids, g-whips and g-braids

The first natural question is: how do these two new ratings differ from the W and
B ratings associated with ordinary whips and braids? For any CSP, any instance P
and any 1 ≤ n ≤ ∞, it is obvious that gBn(P) ≤ {gWn(P), Bn(P)} ≤ Wn(P), but the
relationship between gWn(P) and Bn(P) is not obvious at all.

Statistically, in Sudoku, there is surprisingly little difference between the four
ratings for instances with finite W ratings. Based on 21,371 puzzles generated by the
controlled bias generator, only 49 cases with gW(P) < W(P) were found. This is a
proportion of 0.23%. In most of these cases, the difference was 1. In 3 cases, the
difference was 2. In 1 case, the difference was 5 (see section 7.7.1).

In what follows, as there can be no confusion, we use the same symbol to name a
resolution theory T and the set of instances of the CSP solvable in it, i.e. we use T to
mean {P / P solvable in T}.

7.4.1. In any CSP, W2 = B2 ⊆ gW2 = gB2

Theorem 5.5 has shown that W2 = B2. The proof below will show that
gW2 = gB2. As a result, one has W2 = B2 ⊆ gW2 = gB2.

7. g-labels, g-candidates, g-whips and g-braids 177

This is the most one can hope in general: the inclusion B2 ⊂ gW2 is strict in
Sudoku (gW2 ⊄ B2), as shown by the counter-example to equality in section 7.7.2.
The example in section 7.7.3 will even show that gW2 ⊄ B∞.

Theorem 7.5: In any CSP, any elimination done by a g-braid of length 2 can
be done by a g-whip of same or shorter length; as a result, gB2 = gW2.

Proof: Let B = V1{l1 r1} – V2{l2 .} ⇒ Vz ≠ vz be a g-braid[2] with target
Z = <VZ, rZ> in some resolution state RS. If variable V2 has a candidate <V2, v’> (it
may be <V2, l2>) such that <V2, v’> is linked or g-linked to <V1, r1>, then V1{l1 r1}
– V2{v’ .} ⇒ Vz ≠ vz is a g-whip[2] with target Z. Otherwise, <V2, l2> is linked to
<Vz, vz> and V2{l2 .} ⇒ Vz ≠ vz is a shorter g-whip[1] with target Z.

7.4.2. In any CSP, gW3 = gB3 and therefore W3 ⊆ B3 ⊆ gW3

Theorem 7.6: In any CSP, any elimination done by a g-braid of length 3 can
be done by a whip or a g-whip of same or shorter length; as a result, gB3 = gW3
and W3 ⊆ B3 ⊆ gW3.

Proof: The proof is a little harder than that of gB2 = gW2. It involves three kinds
of changes: 1) re-ordering the various cells; exchanging the roles of left-linking,
right-linking and t- objects; exchanging candidates with g-candidates. It is a very
good exercise on the manipulation of these notions.

Let B = V1{l1 r1} – V2{l2 r2} – V3{l3 .} ⇒ Vz ≠ vz be a g-braid[3] in some
resolution state RS. We can always suppose that is has been pruned of its useless
branches, i.e. of any part Vk{lk rk} such that no candidate for any posterior CSP
variable is linked or g-linked to rk. This entails in particular that CSP variable V3 has
a candidate linked or g-linked to <V2, r2>; by modifying B if necessary, we can
always suppose it is <V3, l3>. Then all the other candidates for V3 are linked or g-
linked to (at least) one of <VZ, vZ>, <V1, r1> or <V2, r2>. We now consider two
subcases.

1) If CSP variable V2 has at least one candidate linked or g-linked to <V1, r1>,
we can always suppose it is <V2, l2> (otherwise, we modify the l2 of the original g-
braid). Then B is a g-whip[3] built on target <VZ, vZ>.

2) Otherwise, all the candidates for V2 other than <V2, r2> are linked or g-linked
to <VZ, vZ>; then “V2{l2 r2} – V3{l3 ” is a possible beginning for a g-whip built on
target <VZ, vZ>. Moreover, in this case, V3 must have at least one candidate <V3, t3>
linked or g-linked to <V1, r1> (otherwise V1{l1 r1} would be a useless branch of B
and it would have been pruned). If V3 has only one such t3, let gt3 be t3; if V3 has
several such t3, they can only belong to a same g-label, say gt3, for V3. Let r’1 be r1 if
r1 is a candidate and any candidate in r1 if r1 is a g-candidate. Then the following is a
g-whip[3] built on target <VZ, vZ>: V2{l2 r2} – V3{l3 gt3} – V1{r’1 .}. qed.

178 Pattern-Based Constraint Satisfaction and Logic Puzzles

Case 2 is where a tentative proof of B3 ⊆ W3 along similar lines would fail: in
some subcases, we need a right-linking g-candidate gt3, even if B had only right-
linking candidates. (Of course, this is not enough to prove that B3 ⊄ W3.)

7.4.3. General comparisons

Getting occasionally a lower rating is not the only advantage of having g-whips.

We already mentioned that the inclusion B2 ⊂ gW2 is strict in Sudoku (i.e.
gW2 ⊄ B2). But we also have the much stronger (a priori unexpected) result that
gW2 cannot be reduced in general to whips or braids of any length, i.e. gW2 ⊄ B∞
(which obviously implies that gW∞ ⊄ B∞). This will be shown by the example of
section 7.7.3. Notice however that such instances will be very exceptional, at least
for the Sudoku CSP, as “almost all” the randomly generated puzzles can be solved
with whips (see chapter 6).

The simple counter-example in section 7.7.3 is related to the presence in the
puzzle of a Sudoku specific pattern, a Swordfish (see chapter 8). The example in
section 7.7.4 is much more complex but it shows that even when the Subset patterns
are not involved, one can prove that gW∞ ⊄ B∞ (indeed it shows that gW18 ⊄ B∞).

What about the converse? Is B∞ ⊆ gW∞? With a puzzle that can be solved by
braids (of maximal length 6) but not by g-whips, section 7.7.5 gives a negative
answer: B∞ ⊄ gW∞. What the smallest n such that Bn ⊄ gWn is remains an open
question; we only know that n ≤ 6.

Finally, none of B∞ and gW∞ is included in the other.

Now, as a g-whip is a particular case of a g-braid, one has gWn ⊆ gBn for all n.
But the converse is not true in general, except for n = 0, 1, 2 or 3. g-braids are a true
generalisation of g-whips. Even in the Sudoku case (for which whips solve almost
any puzzle), there seems to be (rare) examples of puzzles that can be solved with g-
braids but (probably) not with g-whips: a probable one will appear in section 7.7.6.

7.5. The confluence property of the gBn resolution theories

7.5.1. The confluence property of g-braid resolution theories

Theorem 7.7: each of the gBn resolution theories, 0 ≤ n ≤ ∞ , is stable for
confluence; therefore it has the confluence property.

Let n be fixed. We must show that, if an elimination of a candidate Z could have
been done in a resolution state RS1 by a g-braid B of length m ≤ n and with target Z,
it will always still be possible, starting from any further state RS2 obtained from RS1

7. g-labels, g-candidates, g-whips and g-braids 179

by consistency preserving assertions and eliminations, if we use a sequence of rules
from gBn. Let B be: {L1 R1} – {L2 R2} – …. – {Lp Rp} – {Lp+1 Rp+1} – … – {Lm .},
with target Z, where the Rk’s are candidates or g-candidates modulo Z and the
previous Ri’s.

The proof follows that for braids in section 5.5, with a few additional subtleties.
Consider first the state RS3 obtained from RS2 by applying repeatedly the rules in
BRT until quiescence. As BRT has the confluence property, this state is uniquely
defined. (Notice that we could legitimately apply rules from W1 instead of only
BRT, but this would not guarantee that they do all the eliminations needed in later
steps of the following proof).

If, in RS3, target Z has been eliminated, there remains nothing to prove. If target
Z has been asserted, then the instance of the CSP is contradictory; if not yet detected
in RS3, this contradiction can be detected by CD in a state posterior to RS3, reached
by a series of applications of rules from W1, following the g-braid structure of B.

Otherwise, we must consider all the elementary events related to B that can have
happened between RS1 and RS3 as well as those we must provoke in posterior
resolution states RS. For this, we start from B’ = what remains of B in RS3 and we
let RS = RS3. At this point, B’ may not be a g-braid in RS. We progressively update
RS and B’ by repeating the following procedure, for p = 1 to p = m, until it produces
a new (possibly shorter) g-braid B’ with target Z in RS – a situation that is bound to
happen. (This is a difference with the braids case: we have to consider a state RS
posterior to RS3). We return from this procedure as soon as B’ is a g-braid in RS.
All the references below are to the current RS and B’.

a) If, in RS, the left-linking or any t- or z- candidate of CSP variable Vp has been
asserted (as can be checked on what is done in the other steps, this can only have
happened between RS1 and RS3), then all the candidates linked to it have been
eliminated by ECP in RS3, in particular: Z and/or the candidate(s) Rk (k<p) to which
it is linked and/or all the elements of the g-candidate(s) Rk (k<p) to which it is g-
linked; if Z is among them, there remains nothing to prove; otherwise, the procedure
has already been successfully terminated by case f1 or f2α of the first such k.

b) If, in RS, left-linking candidate Lp has been eliminated (but not asserted) (it
can therefore no longer be used as a left-linking candidate in a g-braid) and if CSP
variable Vp still has a z- or a t- candidate Cp (i.e. a candidate Cp linked or g-linked to
Z or to some previous Ri), then replace Lp by Cp. Now, up to Cp, B’ is a partial g-
braid in RS with target Z. Notice that, even if Lp was linked or g-linked to Rp-1 (e.g.
if B was a g-whip) this may not be the case for Cp; therefore trying to prove a
similar theorem for g-whips would fail here.

c) If, in RS, any t- or z- candidate of Vp has been eliminated (but not asserted),
this does not change the basic structure of B (at stage p). Continue with the same B’.

180 Pattern-Based Constraint Satisfaction and Logic Puzzles

d) If, in RS, right-linking candidate Rp or a candidate Rp’ in right-linking g-
candidate Rp has been asserted (p can therefore not be the last index of B’), Rp can
no longer be used as an element of a g-braid, because it is no longer a candidate or a
g-candidate. Contrary to the proof for braids, and only because of this d case, we
cannot be sure that this assertion occurred in RS3; we must palliate this. First
eliminate by ECP or W1 any left-linking or t- candidate for any CSP variable of B’
after p that is incompatible with Rp, i.e. linked or g-linked to it, if it is still present in
RS. Now, considering the g-braid structure of B upwards from p, more eliminations
and assertions can been done by rules from W1. (Notice that we are not trying to do
more eliminations or assertions than needed to get a g-braid in RS; in particular, we
continue to consider Rp, not Rp’; in any case, it will be excised from B’; but, most of
all, we do not have to find the shortest possible g-braid!)

Let q be the smallest number strictly greater than p such that, in RS, CSP
variable Vq still has a (left-linking, t- or z-) candidate Cq that is not linked or g-
linked to any of the Ri for p ≤ i < q (by definition of a g-braid, Cq is therefore linked
or g-linked to Z or to some Ri with i < p). Apply the following rules from W1 (if
they have not yet been applied between RS2 and RS) for each of the CSP variables
Vu of B with index u increasing from p+1 to q-1 included:
- eliminate its left-linking candidate Lu by ECP or W1;
- at this stage, CSP variable Vu had no left-linking, t- or z- candidate;
- if Ru is a candidate, assert it by S and eliminate by ECP all the left-linking and t-
candidates for CSP variables after u that are incompatible with Ru in the current RS;
- if Ru is a g-candidate, it cannot be asserted by S; eliminate by W1 all the left-
linking and t- candidates for CSP variables after u that are incompatible with Ru in
the current RS.

In the new RS thus obtained, excise from B’ the part related to CSP variables p
to q-1 (included) and, if Lq has been eliminated in the passage from RS2 to RS,
replace it by Cq; for each integer s ≥ p, decrease by q-p the index of CSP variable Vs
and of its candidates and g-candidates in the new B’. In RS, B’ is now, up to p (the
ex q), a partial g-braid in gBn with target Z.

e) If, in RS, left-linking candidate Lp has been eliminated (but not asserted), and
if CSP variable Vp has no t- or z- candidate in RS (complementary to case b), then
there are now two cases (Vp must have at least one candidate).

e1) If Rp is a candidate, then Vp has only one possible value, namely Rp. If Rp
has not yet been asserted by S somewhere between RS2 and RS, do it now; this case
is now reducible to case d (because the assertion of Rp also entails the elimination of
Lp); go back to case d for the same value of p (this does not introduce an infinite
loop!). Otherwise, go to the next p.

7. g-labels, g-candidates, g-whips and g-braids 181

e2) If Rp is a g-candidate, then Rp cannot be asserted by S; use it, for any CSP
variable after p, to eliminate by W1 any of its t-candidates that is g-linked to Rp. Let
q be the smallest number strictly greater than p such that, in RS, CSP variable Vq
still has a (left-linking, t- or z-) candidate Cq that is not linked or g-linked to any of
the Ri for p ≤ i < q. Replace RS by the state obtained after all the assertions and
eliminations similar to those in case d above have been done. Then, in RS, excise
the part of B’ related to CSP variables p to q-1 (included), replace Lq by Cq (if Lq
has been eliminated in the passage from RS2 to RS3) and re-number the posterior
elements of B’, as in case d. In RS, B’ is now, up to p (the ex q), a partial g-braid in
gBn with target Z. If p is its last index, it is a g-braid; return it and stop.

f) Finally, consider eliminations occurring in a right-linking candidate or g-
candidate Rp. This implies that p cannot be the last index of B’. There are two cases.

f1) If, in RS, right-linking candidate Rp of B has been eliminated (but not
asserted) or marked (by f2γ) in a previous step (i.e. it has become a t-candidate),
then replace B’ by its initial part: {L1 R1} – {L2 R2} – …. – {Lp .}. At this stage, B’
is in RS a (possibly shorter) g-braid with target Z. Return B’ and stop.

f2) If, in RS, a candidate in right-linking g-candidate Rp has been eliminated (but
not asserted) or marked in a previous step, then:

f2α) either there remains no unmarked candidate of Rp in RS; then replace B’ by
its initial part: {L1 R1} – {L2 R2} – …. – {Lp .}; at this stage, B’ is in RS a (possibly
shorter) g-braid with target Z; return B’ and stop;

f2β) or the remaining unmarked candidates of Rp in RS still make a g-candidate
and B’ does not have to be changed;

f2γ) or there remains only one unmarked candidate Rp’ of Rp; replace Rp by Rp’
in B’. We must also prepare the next steps by putting marks. Any t-candidate of B
that was g-linked to Rp, if it is still present in RS, can still be considered as a t-
candidate in B’, where it is now linked to Rp’ instead of being g-linked to Rp; this
does not raise any problem. However, this substitution may entail that candidates
that were not t-candidates in B become t-candidates in B’; if they are left-linking
candidates of B’, this is not a problem either; but if any of them is a right-linking
candidate or an element of a right-linking g-candidate for B’, then mark it so that the
same procedure (i.e. f1 or f2) can be applied to it in a later step.

Notice that, as was the case for braids, this proof works only because the notions
of being linked and g-linked do not depend on the resolution state.

182 Pattern-Based Constraint Satisfaction and Logic Puzzles

7.5.2. g-braid resolution strategies consistent with the gB rating

As explained in section 4.5.3 and in exactly the same way as in the braids case,
we can take advantage of the confluence property of g-braid resolution theories to
define a “simplest firth” strategy that will always find the simplest (in terms of the
length of the g-braids it will use) solution after following a single resolution path.
As a result, it will also compute the gB rating of an instance. The following order
satisfies this requirement:
ECP > S >
biv-chain[1] > whip[1] > g-whip[1] > braid[1] > g-braid[1] >
… > …
biv-chain[k] > whip[k] > g-whip[k] > braid[k] > g-braid[k] >
biv-chain[k+1] > whip[k+1] > g-whip[k+1] > braid[k+1] > g-braid[k+1] > …

Notice that bivalue-chains, whips, g-whips and braids being special cases of g-
braids of same length, their explicit presence in the set of rules does not change the
final result (z-chains and t-whips could also be added in the landscape). We put
them here because when we look at a resolution path, it may be nicer to see simple
patterns appear instead of more complex ones (g-braids). Also, it allows to see (in
the Sudoku case) that, in practice, g-braids that are neither g-whips nor braids do not
appear very often in the resolution paths.

Here, we have put g-whips before braids of same length, because they are
structurally simpler and experiments confirm this complexity hierarchy (in terms of
computation times and memory requirements). This choice has no impact on the gB
rating.

As in the case of ordinary braids, the above ordering does not completely define
a deterministic procedure: it does not set any precedence between different chains of
same type and length. This could be done by using an ordering of the candidates
instantiating them, based e.g. on their lexicographic order. But, here again, one can
also decide that, for all practical purposes, which of these equally prioritised rule
instantiations should be “fired” first should be chosen randomly (as in the default
behaviour of CSP-Rules).

7.6. The “gT&E vs g-braids” theorem

In section 5.6.1, we defined the procedure T&E(T, Z, RS) for any candidate Z,
any resolution state RS and any resolution theory T with the confluence property. In
this section, we consider T = W1 = B1 and we set gT&E = T&E(W1). It is obvious
that any elimination that can be done by a g-braid B can be done by gT&E, using a
sequence of rules from B1 = W1, following the structure of B. The converse is more
interesting:

7. g-labels, g-candidates, g-whips and g-braids 183

Theorem 7.8: for any instance of any CSP, any elimination that can be done
by gT&E can be done by a g-braid. Any instance of a CSP that can be solved by
gT&E can be solved by g-braids.

Proof: Let RS be a resolution state and let Z be a candidate eliminated by
gT&E(Z, RS) using some auxiliary resolution state RS’. Following the steps of
resolution theory B1 in RS’, we progressively build a g-braid in RS with target Z.
But we must do this in a little smarter way than in our proof for mere braids. First,
remember that B1 contains only four types of rules: ECP (which eliminates
candidates), S (which asserts a value for a CSP variable), W1 (whips of length 1,
which eliminates candidates) and CD (which detects a contradiction on a CSP
variable).

Consider the sequence (P1, P2, …, Pk, …Pn) of rule applications in RS’ based on
rules from W1 different from ECP and suppose that Pn is the first occurrence of CD
(there must be at least one occurrence of CD if Z is eliminated by gT&E). We first
define the Rk and Vk sequences; starting from empty Rk and Vk, for k = 1 to n-1:
- if Pk is of type S, then it asserts a value Rk for some CSP variable Vk; add Rk and
Vk at the end of the appropriate sequences;
- if Pk is of type whip[1]: {Mk .} ⇒ ¬candidate(Ck) for some CSP variable Vk, then
define Rk as the g-candidate for Vk that contains Mk and is g-linked to Ck; (notice
that Ck will not necessarily be Lk+1); add Rk and Vk to the appropriate sequences.

We shall build a g-braid[n] in RS with target Z, with the Rk’s as its sequence of
right-linking candidates or g-candidates and with the Vk’s as its sequence of first n-1
CSP variables. We only have to define properly the Lk’s. We do this successively
for k = 1, …, k = n. As the proofs for k = 1 and for the passage from k to k+1 are
almost identical, we skip the case k = 1. Suppose we have done it until k and
consider CSP variable Vk+1.

Whatever rule Pk+1 is (S or whip[1]), the fact that it can be applied means that,
apart from Rk+1 (if it is a candidate) or the labels contained in Rk+1 (if it is a g-
candidate), all the other labels for CSP variable Vk+1 that were still candidates for
Vk+1 in RS (and there must be at least one, say Lk+1) have been eliminated in RS’ by
the assertion of Z and the previous rule applications. But these previous eliminations
can only result from being linked or g-linked to Z or to some Ri, i≤k. {Lk+1 Rk+1} is
therefore a legitimate extension for our partial g-braid.

End of the procedure: at step n, a contradiction is obtained by CD for some
variable Vn. It means that all the candidates for Vn that were still candidates for Vn
in RS (and there must be at least one, say Ln) have been eliminated in RS’ by the
assertion of Z and the previous rule applications. But these previous eliminations
can only result from being linked or g-linked to Z or to some Ri, i<n. Ln is thus the
last left-linking candidate of the g-braid we were looking for in RS.

184 Pattern-Based Constraint Satisfaction and Logic Puzzles

Here again (as in the proof of confluence), this proof works only because the
existence of a link or a g-link between two candidates does not depend on the
resolution state. And, again, it is very unlikely that the gT&E procedure followed by
the construction in this proof would produce the shortest available g-braid in RS.

7.7. Exceptional examples

This section provides the proofs by examples announced in section 7.4.

7.7.1. A puzzle with W=B=7 and gW=2

In section 7.4, we mentioned the rare case of a puzzle P with finite W rating but
with very different W and gW ratings: gW(P) = W(P) - 5. One might think that this
can happen only for hard puzzles, but the example in Figure 7.1 shows that it can
also happen with relatively simple ones: here, we have gW(P) = 2 and W(P) = 7.

1 6 9 1 2 3 4 5 6 7 8 9
 4 5 6 7 8 9 1 3 2
 8 1 5 6 7 8 9 1 3 2 5 6 4
 3 6 8 1 2 3 4 6 9 7 8 5 1
 7 6 1 8 5 2 4 3 9 7
 8 2 4 6 9 7 5 3 1 8 2 4 6
 4 9 2 3 4 1 9 7 5 6 2 8

5 6 8 4 1 5 6 2 8 4 1 9 7 3
 7 3 8 9 7 2 6 3 4 1 5

Figure 7.1. Puzzle P (cb#41065) with W(P)=B(P)=7 and gW(P)=2

1) If we accept g-whips, there is a very short resolution path:

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 *****	
26	 givens	 and	 206	 candidates,	 1339	 csp-‐links	 and	 1339	 links.	 Initial	 density	 =	 1.59	
singles	 ==>	 r8c9	 =	 3,	 r8c3	 =	 2	
whip[1]:	 c9n5{r9	 .}	 ==>	 r9c8	 ≠	 5	
whip[1]:	 r8n9{c7	 .}	 ==>	 r9c8	 ≠	 9,	 r9c7	 ≠	 9,	 	
whip[1]:	 r8n7{c8	 .}	 ==>	 r7c7	 ≠	 7	
whip[1]:	 r6n3{c5	 .}	 ==>	 r5c4	 ≠	 3,	 r5c5	 ≠	 3	
;;; Resolution state RS1
whip[2]:	 b4n6{r5c1	 r5c3}	 –	 b4n8{r5c3	 .}	 ==>	 r5c1	 ≠	 4,r5c1	 ≠	 2	
whip[2]:	 b4n8{r5c1	 r5c3}	 –	 b4n6{r5c3	 .}	 ==>	 r5c1	 ≠	 9	
whip[2]:	 b4n6{r5c3	 r5c1}	 –	 b4n8{r5c1	 .}	 ==>	 r5c3	 ≠	 5,	 r5c3	 ≠	 4	
whip[1]	 :	 r5n4{c6	 .}	 ==>	 r4c6	 ≠	 4	

7. g-labels, g-candidates, g-whips and g-braids 185

whip[2]:	 b4n6{r5c3	 r5c1}	 –	 b4n8{r5c1	 .}	 ==>	 r5c3	 ≠	 1	
whip[2]:	 b4n8{r5c3	 r5c1}	 –	 b4n6{r5c1	 .}	 ==>	 r5c3	 ≠	 9	
;;; Resolution state RS2
g-‐whip[2]:	 r3n7{c1	 c456}	 –	 c4n7{r2	 .}	 ==>	 r6c1	 ≠	 7	
singles	 to	 the	 end	

2) If we accept only whips, the resolution path is much longer:

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 *****	
;;; same path up to resolution stateRS2
whip[3]:	 c4n7{r1	 r6}	 –	 c2n7{r6	 r2}	 –	 r3n7{c1	 .}	 ==>	 r1c5	 ≠	 7	
whip[3]:	 c2n7{r1	 r6}	 –	 c4n7{r6	 r1}	 –	 r3n7{c6	 .}	 ==>	 r2c1	 ≠	 7	
whip[3]:	 c4n7{r2	 r6}	 –	 c2n7{r6	 r1}	 –	 r3n7{c1	 .}	 ==>	 r2c5	 ≠	 7,	 r2c6	 ≠	 7	
whip[3]:	 r5n2{c6	 c2}	 –	 r1n2{c2	 c4}	 –	 b8n2{r9c4	 .}	 ==>	 r4c5	 ≠	 2	
whip[3]:	 b4n7{r6c2	 r4c1}	 –	 r3n7{c1	 c6}	 –	 b8n7{r7c6	 .}	 ==>	 r6c5	 ≠	 7	
whip[3]:	 r9c2{n1	 n9}	 –	 r9c1{n9	 n8}	 –	 r9c8{n8	 .}	 ==>	 r9c7	 ≠	 1	
whip[3]:	 r9c8{n8	 n1}	 –	 r9c2{n1	 n9}	 –	 r9c1{n9	 .}	 ==>	 r9c9	 ≠	 8	
whip[5]:	 r4n2{c1	 c6}	 –	 r4n7{c6	 c5}	 –	 b8n7{r7c5	 r7c6}	 –	 r3n7{c6	 c1}	 –	 r6c1{n7	 .}	 ==>	 r4c1	 ≠	 9	
whip[5]:	 r4c8{n9	 n5}	 –	 r4c5{n5	 n7}	 –	 b8n7{r7c5	 r7c6}	 –	 r3n7{c6	 c1}	 –	 r6c1{n7	 .}	 ==>	 r4c3	 ≠	 9	
whip[3]:	 r9c2{n9	 n1}	 –	 c3n1{r7	 r6}	 –	 c3n9{r6	 .}	 ==>	 r2c2	 ≠	 9	
whip[6]:	 b3n1{r2c7	 r2c8}	 –	 r9c8{n1	 n8}	 –	 r9c1{n8	 n9}	 –	 r6c1{n9	 n7}	 –	 b1n7{r3c1	 r1c2}	 –	
c4n7{r1	 .}	 ==>	 r2c7	 ≠	 7	
whip[7]:	 c3n6{r2	 r5}	 –	 c1n6{r5	 r2}	 –	 c1n4{r2	 r4}	 –	 c1n2{r4	 r3}	 –	 b3n2{r3c9	 r2c9}	 –	
c9n8{r2	 r7}	 –	 c3n8{r7	 .}	 ==>	 r2c3	 ≠	 4	
whip[7]:	 r3n3{c1	 c5}	 –	 c3n3{r3	 r7}	 –	 b7n1{r7c3	 r9c2}	 –	 b7n9{r9c2	 r9c1}	 –	 r6c1{n9	 n7}	 –	
r3n7{c1	 c6}	 –	 c4n7{r1	 .}	 ==>	 r2c1	 ≠	 3	
whip[7]:	 r1n2{c5	 c2}	 –	 c1n2{r2	 r4}	 –	 c6n2{r4	 r5}	 –	 r2n2{c6	 c9}	 –	 r3c9{n2	 n4}	 –	 c6n4{r3	 r2}	 –	
c1n4{r2	 .}	 ==>	 r3c5	 ≠	 2	
whip[7]:	 r4n2{c1	 c6}	 –	 r4n7{c6	 c5}	 –	 b8n7{r7c5	 r7c6}	 –	 r3n7{c6	 c1}	 –	 c1n2{r3	 r2}	 –	 r1c2{n2	 n5}	 –	
r2c2{n5	 .}	 ==>	 r4c1	 ≠	 4	
hidden-‐single-‐in-‐a-‐block	 ==>	 r4c3	 =	 4	
whip[4]:	 b5n4{r5c6	 r5c4}	 –	 r1n4{c4	 c7}	 –	 c7n7{r1	 r8}	 –	 c7n9{r8	 .}	 ==>	 r5c6	 ≠	 9	
whip[4]:	 r3c3{n9	 n3}	 –	 r3c5{n3	 n7}	 –	 c4n7{r1	 r6}	 –	 r6c1{n7	 .}	 ==>	 r3c1	 ≠	 9	
whip[5]:	 b3n7{r1c7	 r2c8}	 –	 c8n1{r2	 r9}	 –	 r7c7{n1	 n6}	 –	 r9c7{n6	 n4}	 –	 r1n4{c7	 .}	 ==>	 r1c4	 ≠	 7	
;;; only now do we get the crucial elimination with a whip[2]:
whip[2]:	 c4n7{r6	 r2}	 –	 r3n7{c6	 .}	 ==>	 r6c1	 ≠	 7	
singles	 to	 the	 end	

3) Interestingly (anticipating on chapter 8), this puzzle can also be solved with
Subset rules (of size 3), but it gets a higher rating (S=3) than with g-whips (gW=2);
i.e. g-whips are better than Subsets in this case.

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW+S	 *****	
;;; same path up to resolution stateRS1
hidden-‐pairs-‐in-‐a-‐row:	 r5{n6	 n8}{c1	 c3}	 ==>	 r5c3	 ≠	 9,	 r5c3	 ≠	 5,	 r5c3	 ≠	 4,	 r5c3	 ≠	 1,	 r5c1	 ≠	 9,	 r5c1	 ≠4	
whip[1]	 :	 r5n4{c6	 .}	 ==>	 r4c6	 ≠	 4	
hidden-‐pairs-‐in-‐a-‐row:	 r5{n6	 n8}{c1	 c3}	 ==>	 r5c1	 ≠	 2	

186 Pattern-Based Constraint Satisfaction and Logic Puzzles

;;; same situation as RS2 (all the whips[2] in the W or gW resolution paths are
hidden pairs)
naked-‐triplets-‐in-‐a-‐row:	 r9{c1	 c2	 c8}{n8	 n9	 n1}	 ==>	 r9c9	 ≠	 8,	 r9c7	 ≠	 1	
swordfish-‐in-‐rows:	 n7{r3	 r4	 r7}{c6	 c1	 c5}	 ==>	 r6c5	 ≠	 7	
;;; The crucial elimination is now obtained with a swordfish:
swordfish-‐in-‐rows:	 n7{r3	 r4	 r7}{c6	 c1	 c5}	 ==>	 r6c1	 ≠	 7	
singles	 to	 the	 end	

7.7.2. gW2 ⊄ B2: a puzzle with W=3, B=3, gW=2, gB=2

Our second example (puzzle cb#1249 in Figure 7.2) proves that the obvious
inclusion B2 ⊂ gW2 is not an equality in general (“obvious” because B2 = W2).

1) The resolution path with g-whips gives gW(P) = 2:

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 *****	
27	 givens,	 200	 candidates,	 1254	 csp-‐links	 and	 1254	 links.	 Initial	 density	 =	 1.58	
singles	 ==>	 r7c3	 =	 2,	 r1c2	 =	 2,	 r2c2	 =	 5,	 r2c4	 =	 7,	 r1c5	 =	 5,	 r2c6	 =	 9,	 r3c5	 =	 3,	 r4c7	 =	 9,	 r5c9	 =	 2	
whip[1]:	 c9n1{r9	 .}	 ==>	 r7c7	 ≠	 1,	 r8c8	 ≠	 1,	 r9c7	 ≠	 1,	 r9c8	 ≠	 1	
whip[1]:	 c2n1{r9	 .}	 ==>	 r7c1	 ≠	 1,	 r8c1	 ≠	 1,	 r9c1	 ≠	 1	
whip[1]:	 r4n6{c8	 .}	 ==>	 r6c8	 ≠	 6,	 r6c7	 ≠	 6	
whip[1]:	 r4n8{c8	 .}	 ==>	 r5c8	 ≠	 8,	 r5c7	 ≠	 8	
whip[2]:	 r4c6{n3	 n5}	 –	 r4c4{n5	 .}	 ==>	 r4c8	 ≠	 3	
whip[1]:	 r4n3{c4	 .}	 ==>	 r5c6	 ≠	 3	
whip[2]:	 r4c6{n5	 n3}	 –	 r4c4{n3	 .}	 ==>	 r4c8	 ≠	 5,	 r4c9	 ≠	 5	
singles	 ==>	 r6c8	 =	 5,	 r6c4	 =	 2,	 r9c5	 =	 2	
;;; Resolution state RS1
g-‐whip[2]:	 c7n8{r1	 r789}	 –	 r8n8{c9	 .}	 ==>	 r1c1	 ≠	 8	
singles	 to	 the	 end	

 3 4 6 9 1 2 3 4 5 6 7 8 9
 8 2 3 4 5 6 7 8 9 1 2 3

7 1 2 5 7 8 9 1 3 2 5 4 6
2 7 1 4 2 7 1 3 4 5 9 6 8
5 6 5 8 4 6 9 7 3 1 2
 3 8 7 6 3 9 2 1 8 4 5 7
 9 3 6 2 5 7 1 8 9 4
 4 5 9 2 8 4 5 9 6 3 2 7 1
 7 4 9 1 7 8 2 4 6 3 5

Figure 7.2. A puzzle P (cb #1249) with gW(P)=2 and W(P)=B(P)=3

2) The resolution path with whips gives W(P) = 3; the resolution path with
braids is exactly the same, i.e. no non-whip braid appears in it, and B(P) = 3:

7. g-labels, g-candidates, g-whips and g-braids 187

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 *****	
;;; same path up to resolution stateRS1
whip[3]:	 b1n1{r1c1	 r2c1}	 –	 c1n4{r2	 r6}	 –	 r6c7{n4	 .}	 ==>	 r1c7	 ≠	 1	
whip[3]:	 c7n6{r7	 r2}	 –	 b3n1{r2c7	 r1c8}	 –	 c8n7{r1	 .}	 ==>	 r8c8	 ≠	 6	
whip[3]:	 c1n4{r2	 r6}	 –	 r6c7{n4	 n1}	 –	 r2n1{c7	 .}	 ==>	 r2c1	 ≠	 6	
whip[3]:	 r2c3{n4	 n6}	 –	 b4n6{r6c3	 r6c1}	 –	 c1n4{r6	 .}	 ==>	 r2c7	 ≠	 4	
whip[1]:	 r2n4{c1	 .}	 ==>	 r3c3	 ≠	 4	
whip[3]:	 r2c7{n6	 n1}	 –	 r6c7{n1	 n4}	 –	 c8n4{r5	 .}	 ==>	 r3c8	 ≠	 6	
whip[3]:	 b6n8{r4c9	 r4c8}	 –	 r3c8{n8	 n4}	 –	 c9n4{r3	 .}	 ==>	 r7c9	 ≠	 8	
whip[3]:	 r2c3{n4	 n6}	 –	 r2c7{n6	 n1}	 –	 r6c7{n1	 .}	 ==>	 r6c3	 ≠	 4	
whip[3]:	 b1n9{r3c2	 r3c3}	 –	 b1n6{r3c3	 r2c3}	 –	 r6c3{n6	 .}	 ==>	 r3c2	 ≠	 8	
whip[3]:	 b1n8{r1c1	 r3c3}	 –	 b1n9{r3c3	 r3c2}	 –	 b7n9{r9c2	 .}	 ==>	 r9c1	 ≠	 8	
whip[3]:	 c1n8{r8	 r1}	 –	 c7n8{r1	 r7}	 –	 r8n8{c9	 .}	 ==>	 r9c2	 ≠	 8	
whip[3]:	 b7n8{r7c1	 r7c2}	 –	 c7n8{r7	 r9}	 –	 r8n8{c8	 .}	 ==>	 r1c1	 ≠	 8	
singles	 to	 the	 end	

7.7.3. gW2 ⊄ B∞: a puzzle not solvable by braids of any length but solvable in gW2

The example in Figure 7.3 (a puzzle from Mauricio’s swordfish collection)
allows to go much further: it proves that gW2 ⊄ B∞ and therefore gW∞ ⊄ B∞.

 1 2 3 6 4 1 5 9 2 8 7 3
 1 4 8 7 5 6 1 3 2 4 9

2 4 5 2 3 9 4 7 8 5 6 1
 6 7 8 3 1 6 2 4 7 9 5 8
 5 2 7 5 4 1 8 9 3 2 6
9 3 4 9 8 2 3 5 6 4 1 7
 8 1 5 4 2 8 7 3 1 6 9 5
 9 6 5 9 7 8 6 4 1 3 2
1 9 7 1 6 3 9 2 5 7 8 4

Figure 7.3. A puzzle P with B(P)=∞ but gW(P)=2

Using the T&E procedure and the “T&E vs braids” theorem, it is easy to check
that this puzzle is not solvable by braids, let alone by whips. But it is in gT&E and it
can therefore be solved by g-braids. Let us try to do better and solve it by g-whips.

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 *****	
24	 givens,	 214	 candidates,	 1289	 csp-‐links	 and	 1289	 links.	 Initial	 density	 =	 1.41	
g-‐whip[2]:	 c3n4{r5	 r789}	 –	 r7n4{c2	 .}	 ==>	 r5c5	 ≠	 4	
g-‐whip[2]:	 r1n9{c5	 c789}	 –	 c9n9{r3	 .}	 ==>	 r5c5	 ≠	 9	
singles	 to	 the	 end	

Anticipating on chapter 8, this puzzle can also be solved by Subsets of size 3,
more precisely by Swordfish; actually, we find two Swordfish (for two different

188 Pattern-Based Constraint Satisfaction and Logic Puzzles

numbers) in the same three columns, a very exceptional situation. This puzzle will
also count as a very rare example of a Swordfish not completely subsumed by
whips.

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B+S	 *****	
24	 givens,	 214	 candidates,	 1289	 csp-‐links	 and	 1289	 links.	 Initial	 density	 =	 1.41	
swordfish-‐in-‐columns	 n4{c3	 c6	 c9}{r9	 r5	 r8}	 ==>	 r9c5	 ≠	 4,	 r9c2	 ≠	 4,	 r8c1	 ≠	 4,	 r5c5	 ≠	 4,	 r5c1	 ≠	 4	
swordfish-‐in-‐columns	 n9{c3	 c6	 c9}{r3	 r2	 r5}	 ==>	 r5c7	 ≠	 9,	 r5c5	 ≠	 9	 	 ;	 singles	 to	 the	 end	

7.7.4. gW∞ ⊄ B∞: a puzzle not solvable by braids of any length but solvable in gW18

Even without invoking puzzles, as in section 7.7.3, involving the rare case of a
Subset pattern that is not subsumed by whips or braids, there are examples that can
be solved by g-whips but not by braids. Consider the puzzle (created by Arto Inkala)
shown in Figure 7.4 (and known as “AI Broken Brick”).

Using the T&E procedure and the “T&E vs braids” theorem, it is easy to check
that this puzzle is not solvable by T&E and it has therefore no chance of being
solvable by braids, let alone by whips. But it is solvable by gT&E and it can
therefore be solved by g-braids. Let us try to do better and solve it by g-whips.

4 6 7 4 5 1 8 6 3 9 7 2
 6 9 8 2 7 1 4 6 5 3
 3 2 1 6 3 7 5 9 2 8 4 1

7 8 5 7 9 6 3 2 8 5 1 4
 1 4 3 1 5 4 7 6 2 9 8
 2 9 5 8 2 4 9 5 1 3 6 7
 7 5 1 4 8 6 3 9 7 2 5
 9 1 3 2 7 9 1 8 5 4 3 6
 3 4 8 5 6 3 2 4 7 1 8 9

Figure 7.4. Puzzle “AI Broken Brick” with B(P)=∞ and gW(P)=18

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 *****	
23	 givens,	 219	 candidates,	 1366	 csp-‐links	 and	 1366	 links.	 Initial	 density	 =	 1.43	
hidden-‐single-‐in-‐a-‐column	 ==>	 r2c6	 =	 4	
whip[1]	 :	 c3n7{r3	 .}	 ==>	 r2c2	 ≠	 7	
whip[4]:	 b4n5{r5c3	 r5c1}	 –	 b4n9{r5c1	 r4c2}	 –	 r2c2{n9	 n8}	 –	 r1c2{n8	 .}	 ==>	 r3c3	 ≠	 5,	 r2c3	 ≠	 5,	
r1c3	 ≠	 5	
hidden-‐single-‐in-‐a-‐column	 ==>	 r5c3	 =	 5	
whip[9]:	 r6n7{c9	 c6}	 –	 b5n1{r6c6	 r4c5}	 –	 r4n3{c5	 c4}	 –	 b5n6{r4c4	 r5c6}	 –	 r8c6{n6	 n5}	 –	
r9c6{n5	 n9}	 –	 r7n9{c6	 c8}	 –	 r5c8{n9	 n2}	 –	 r4n2{c8	 .}	 ==>	 r6c9	 ≠	 3	
whip[10]:	 b1n6{r3c1	 r3c3}	 –	 r4c3{n6	 n4}	 –	 r6c3{n4	 n8}	 –	 r6c1{n8	 n3}	 –	 b4n6{r6c1	 r4c2}	 –	
c4n6{r4	 r7}	 –	 b9n6{r7c8	 r8c9}	 –	 c9n4{r8	 r6}	 –	 r6c7{n4	 n1}	 –	 r9n1{c7	 .}	 ==>	 r9c1	 ≠	 6	

7. g-labels, g-candidates, g-whips and g-braids 189

whip[13]:	 b1n6{r3c1	 r3c3}	 –	 r4c3{n6	 n4}	 –	 r6c3{n4	 n8}	 –	 r6c1{n8	 n3}	 –	 b4n6{r6c1	 r4c2}	 –	
c4n6{r4	 r9}	 –	 r8n6{c6	 c9}	 –	 c9n4{r8	 r6}	 –	 r6c7{n4	 n1}	 –	 c6n1{r6	 r1}	 –	 r1c3{n1	 n2}	 –	 r7c3{n2	 n1}	 –	
r9n1{c1	 .}	 ==>	 r7c1	 ≠	 6	
whip[13]:	 c6n5{r8	 r1}	 –	 r1n1{c6	 c3}	 –	 r2n1{c1	 c5}	 –	 b5n1{r4c5	 r6c6}	 –	 c7n1{r6	 r9}	 –	 r9c1{n1	 n2}	 –	
b1n2{r2c1	 r2c3}	 –	 b1n7{r2c3	 r3c3}	 –	 b1n6{r3c3	 r3c1}	 –	 r3n5{c1	 c8}	 –	 r2c8{n5	 n9}	 –	 c1n9{r2	 r5}	 –	
c7n9{r5	 .}	 ==>	 r9c4	 ≠	 5	
whip[1]:	 c4n5{r1	 .}	 ==>	 r1c6	 ≠	 5	
whip[15]:	 r4c3{n6	 n4}	 –	 r6c3{n4	 n8}	 –	 r3c3{n8	 n7}	 –	 b1n6{r3c3	 r3c1}	 –	 b4n6{r5c1	 r4c2}	 –	
c4n6{r4	 r9}	 –	 r8n6{c6	 c9}	 –	 c9n4{r8	 r6}	 –	 r6n7{c9	 c6}	 –	 r8c6{n7	 n5}	 –	 r9c6{n5	 n9}	 –	 r7n9{c6	 c8}	 –	
b9n1{r7c8	 r9c7}	 –	 r6n1{c7	 c8}	 –	 r6n6{c8	 .}	 ==>	 r7c3	 ≠	 6	
g-‐whip[15]:	 c7n1{r9	 r6}	 –	 c6n1{r6	 r1}	 –	 c5n1{r2	 r4}	 –	 c8n1{r4	 r7}	 –	 b9n9{r7c8	 r9c9}	 –	 c6n9{r9	 r7}	
–	 c6n3{r7	 r456}	 –	 r4n3{c4	 c9}	 –	 b3n3{r2c9	 r1c7}	 –	 r1n9{c7	 c2}	 –	 r4n9{c2	 c8}	 –	 r2n9{c8	 c5}	 –	
b2n3{r2c5	 r2c4}	 –	 r2n7{c4	 c3}	 –	 c3n1{r2	 .}	 ==>	 r9c7	 ≠	 2	
g-‐whip[18]:	 r4n1{c8	 c5}	 –	 b2n1{r2c5	 r1c6}	 –	 c6n9{r1	 r789}	 –	 r7n9{c5	 c6}	 –	 c6n3{r7	 r456}	 –	
r4n3{c4	 c9}	 –	 r4n2{c9	 c4}	 –	 r5c5{n2	 n7}	 –	 b6n7{r5c9	 r6c9}	 –	 c9n4{r6	 r8}	 –	 r8c7{n4	 n2}	 –	
r8c5{n2	 n8}	 –	 r3c5{n8	 n9}	 –	 r2c5{n9	 n3}	 –	 r1n3{c6	 c7}	 –	 c7n9{r1	 r9}	 –	 r9n1{c7	 c1}	 –	
r9n2{c1	 .}	 ==>	 r4c8	 ≠	 9	
whip[5]:	 r4n9{c9	 c2}	 –	 r1n9{c2	 c6}	 –	 c6n1{r1	 r6}	 –	 c7n1{r6	 r9}	 –	 r9n9{c7	 .}	 ==>	 r2c9	 ≠	 9	
g-‐whip[10]:	 c5n1{r2	 r4}	 –	 c6n1{r6	 r1}	 –	 b2n3{r1c6	 r123c4}	 –	 r4n3{c4	 c9}	 –	 r4n9{c9	 c2}	 –	
r2c2{n9	 n5}	 –	 r1c2{n5	 n8}	 –	 r1n9{c2	 c789}	 –	 r2c8{n9	 n2}	 –	 r2c9{n2	 .}	 ==>	 r2c5	 ≠	 8	
g-‐whip[14]:	 b9n1{r9c7	 r7c8}	 –	 r4n1{c8	 c5}	 –	 b2n1{r2c5	 r1c6}	 –	 c6n9{r1	 r7}	 –	 c6n3{r7	 r456}	 –	
r4n3{c4	 c9}	 –	 r4n9{c9	 c2}	 –	 c2n4{r4	 r789}	 –	 r7n4{c3	 c2}	 –	 r7n6{c2	 c4}	 –	 r4c4{n6	 n2}	 –	 r9c4{n2	 n7}	
–	 r9c6{n7	 n5}	 –	 r8c6{n5	 .}	 ==>	 r9c7	 ≠	 9	
naked-‐single	 ==>	 r9c7	 =	 1	
whip[5]:	 c6n5{r8	 r9}	 –	 r9n9{c6	 c9}	 –	 r4n9{c9	 c2}	 –	 r1c2{n9	 n8}	 –	 r2c2{n8	 .}	 ==>	 r8c2	 ≠	 5	
whip[7]:	 r4n9{c2	 c9}	 –	 b9n9{r9c9	 r7c8}	 –	 r2n9{c8	 c5}	 –	 c5n1{r2	 r4}	 –	 r4n3{c5	 c4}	 –	
b2n3{r1c4	 r1c6}	 –	 b2n1{r1c6	 .}	 ==>	 r1c2	 ≠	 9	
whip[5]:	 r1c2{n8	 n5}	 –	 r2c2{n5	 n9}	 –	 b4n9{r4c2	 r5c1}	 –	 b4n3{r5c1	 r6c1}	 –	 b4n8{r6c1	 .}	 ==>	
r1c3	 ≠	 8,	 r2c3	 ≠	 8,	 r3c3	 ≠	 8	
whip[8]:	 r1c2{n5	 n8}	 –	 r2c2{n8	 n9}	 –	 b4n9{r4c2	 r5c1}	 –	 b4n3{r5c1	 r6c1}	 –	 b4n8{r6c1	 r6c3}	 –	
r6c7{n8	 n4}	 –	 b3n4{r3c7	 r3c8}	 –	 b3n5{r3c8	 .}	 ==>	 r2c1	 ≠	 5	
whip[9]:	 r1c2{n8	 n5}	 –	 r2c2{n5	 n9}	 –	 b4n9{r4c2	 r5c1}	 –	 b4n3{r5c1	 r6c1}	 –	 b4n8{r6c1	 r6c3}	 –	
r6c7{n8	 n4}	 –	 r3c7{n4	 n9}	 –	 c8n9{r3	 r7}	 –	 c5n9{r7	 .}	 ==>	 r3c1	 ≠	 8	
whip[10]:	 b7n5{r9c1	 r9c2}	 –	 r1c2{n5	 n8}	 –	 r2c2{n8	 n9}	 –	 r4n9{c2	 c9}	 –	 b9n9{r9c9	 r7c8}	 –	
c5n9{r7	 r3}	 –	 c6n9{r1	 r9}	 –	 r9n7{c6	 c4}	 –	 r3n7{c4	 c3}	 –	 b1n6{r3c3	 .}	 ==>	 r3c1	 ≠	 5	
whip[1]:	 c1n5{r9	 .}	 ==>	 r9c2	 ≠	 5	 	
whip[3]:	 c2n6{r7	 r4}	 –	 c2n9{r4	 r2}	 –	 r3c1{n9	 .}	 ==>	 r8c1	 ≠	 6	
whip[1]:	 b7n6{r9c2	 .}	 ==>	 r4c2	 ≠	 6	 	
whip[5]:	 b1n8{r2c1	 r1c2}	 –	 b3n8{r1c9	 r3c7}	 –	 b3n4{r3c7	 r3c8}	 –	 b3n5{r3c8	 r2c8}	 –	 c2n5{r2	 .}	 ==>	
r2c4	 ≠	 8	
whip[8]:	 r3c1{n9	 n6}	 –	 r3c3{n6	 n7}	 –	 r3c5{n7	 n8}	 –	 b8n8{r8c5	 r7c4}	 –	 c3n8{r7	 r6}	 –	 r6c1{n8	 n3}	 –	
r6c7{n3	 n4}	 –	 b3n4{r3c7	 .}	 ==>	 r3c8	 ≠	 9	
whip[10]:	 r1c2{n8	 n5}	 –	 r2c2{n5	 n9}	 –	 b4n9{r4c2	 r5c1}	 –	 b4n3{r5c1	 r6c1}	 –	 b4n8{r6c1	 r6c3}	 –	
r6c7{n8	 n4}	 –	 r8n4{c7	 c9}	 –	 r8n6{c9	 c6}	 –	 c4n6{r9	 r4}	 –	 b4n6{r4c3	 .}	 ==>	 r8c2	 ≠	 8	
whip[9]:	 r3c1{n9	 n6}	 –	 r3c3{n6	 n7}	 –	 r3c5{n7	 n8}	 –	 r8n8{c5	 c1}	 –	 r6c1{n8	 n3}	 –	 r5c1{n3	 n9}	 –	
b1n9{r2c1	 r2c2}	 –	 c8n9{r2	 r7}	 –	 c5n9{r7	 .}	 ==>	 r3c7	 ≠	 9	

190 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[8]:	 r8c7{n2	 n4}	 –	 r3c7{n4	 n8}	 –	 c5n8{r3	 r7}	 –	 c3n8{r7	 r6}	 –	 b6n8{r6c9	 r5c9}	 –	
b6n7{r5c9	 r6c9}	 –	 c9n4{r6	 r4}	 –	 r6n4{c8	 .}	 ==>	 r8c5	 ≠	 2	
whip[9]:	 r1c2{n8	 n5}	 –	 r1c4{n5	 n3}	 –	 r2n3{c5	 c9}	 –	 r4n3{c9	 c5}	 –	 c5n1{r4	 r2}	 –	 r1c6{n1	 n9}	 –	
r1c7{n9	 n2}	 –	 r8c7{n2	 n4}	 –	 r3c7{n4	 .}	 ==>	 r1c9	 ≠	 8	
whip[9]:	 b3n3{r1c7	 r2c9}	 –	 r4n3{c9	 c5}	 –	 r4n1{c5	 c8}	 –	 r6n1{c8	 c6}	 –	 r1c6{n1	 n9}	 –	 r1c9{n9	 n2}	 –	
r4n2{c9	 c4}	 –	 b8n2{r9c4	 r7c5}	 –	 b8n9{r7c5	 .}	 ==>	 r1c4	 ≠	 3	
whip[2]:	 r1c2{n8	 n5}	 –	 r1c4{n5	 .}	 ==>	 r1c7	 ≠	 8	
whip[4]:	 r1c4{n5	 n8}	 –	 r3n8{c5	 c7}	 –	 b3n4{r3c7	 r3c8}	 –	 b3n5{r3c8	 .}	 ==>	 r2c4	 ≠	 5	
whip[8]:	 c7n9{r1	 r5}	 –	 c1n9{r5	 r3}	 –	 b1n6{r3c1	 r3c3}	 –	 r4c3{n6	 n4}	 –	 r6c3{n4	 n8}	 –	 c7n8{r6	 r3}	 –	
b3n4{r3c7	 r3c8}	 –	 b3n5{r3c8	 .}	 ==>	 r2c8	 ≠	 9	
whip[1]:	 b3n9{r1c7	 .}	 ==>	 r1c6	 ≠	 9	 	
whip[1]:	 c6n9{r9	 .}	 ==>	 r7c5	 ≠	 9	 	
whip[4]:	 r1c3{n2	 n1}	 –	 r2c3{n1	 n7}	 –	 r2c4{n7	 n3}	 –	 r1c6{n3	 .}	 ==>	 r2c1	 ≠	 2	
whip[1]:	 c1n2{r9	 .}	 ==>	 r7c3	 ≠	 2	 	
whip[5]:	 r6n1{c8	 c6}	 –	 r1c6{n1	 n3}	 –	 r2n3{c5	 c9}	 –	 b3n8{r2c9	 r3c7}	 –	 b3n4{r3c7	 .}	 ==>	 r6c8	 ≠	 4	
whip[7]:	 r6c8{n6	 n1}	 –	 c6n1{r6	 r1}	 –	 c5n1{r2	 r4}	 –	 r4n3{c5	 c4}	 –	 c6n3{r6	 r7}	 –	 r7n9{c6	 c8}	 –	
b9n6{r7c8	 .}	 ==>	 r4c9	 ≠	 6	
whip[8]:	 r8c7{n2	 n4}	 –	 r8c9{n4	 n6}	 –	 r8c2{n6	 n7}	 –	 r9c2{n7	 n6}	 –	 r9c4{n6	 n7}	 –	 r2c4{n7	 n3}	 –	
r2c9{n3	 n8}	 –	 r3c7{n8	 .}	 ==>	 r9c9	 ≠	 2	
whip[8]:	 c2n5{r2	 r1}	 –	 b1n8{r1c2	 r2c1}	 –	 c1n9{r2	 r5}	 –	 c8n9{r5	 r7}	 –	 r9n9{c9	 c6}	 –	 r9n5{c6	 c1}	 –	
r8c1{n5	 n2}	 –	 b9n2{r8c7	 .}	 ==>	 r2c2	 ≠	 9	
hidden-‐single-‐in-‐a-‐column	 ==>	 r4c2	 =	 9	
whip[1]:	 c2n4{r8	 .}	 ==>	 r7c3	 ≠	 4	 	
whip[2]:	 r1c2{n8	 n5}	 –	 r2c2{n5	 .}	 ==>	 r7c2	 ≠	 8	
whip[1]:	 c2n8{r1	 .}	 ==>	 r2c1	 ≠	 8	 	
whip[5]:	 r8c5{n8	 n7}	 –	 r3c5{n7	 n9}	 –	 c1n9{r3	 r2}	 –	 c1n1{r2	 r7}	 –	 r7c3{n1	 .}	 ==>	 r7c5	 ≠	 8	
whip[4]:	 b8n9{r7c6	 r9c6}	 –	 r9n5{c6	 c1}	 –	 r9n2{c1	 c4}	 –	 r7c5{n2	 .}	 ==>	 r7c6	 ≠	 3	
g-‐whip[2]:	 r4n3{c9	 c456}	 –	 c6n3{r5	 .}	 ==>	 r1c9	 ≠	 3	
whip[3]:	 b4n3{r5c1	 r6c1}	 –	 c7n3{r6	 r1}	 –	 c6n3{r1	 .}	 ==>	 r5c5	 ≠	 3	
whip[3]:	 b4n3{r5c1	 r6c1}	 –	 c7n3{r6	 r1}	 –	 c6n3{r1	 .}	 ==>	 r5c9	 ≠	 3	
whip[3]:	 c9n8{r6	 r2}	 –	 b3n3{r2c9	 r1c7}	 –	 c7n9{r1	 .}	 ==>	 r5c7	 ≠	 8	
whip[3]:	 c4n8{r3	 r7}	 –	 c3n8{r7	 r6}	 –	 c7n8{r6	 .}	 ==>	 r3c5	 ≠	 8	
hidden-‐single-‐in-‐a-‐column	 ==>	 r8c5	 =	 8	
whip[2]:	 b2n5{r3c4	 r1c4}	 –	 c4n8{r1	 .}	 ==>	 r3c4	 ≠	 7	
whip[2]:	 r7n1{c1	 c3}	 –	 r7n8{c3	 .}	 ==>	 r7c1	 ≠	 2	
whip[3]:	 r9c2{n6	 n7}	 –	 b8n7{r9c6	 r8c6}	 –	 b8n5{r8c6	 .}	 ==>	 r9c6	 ≠	 6	
whip[4]:	 r9c9{n9	 n6}	 –	 r9c2{n6	 n7}	 –	 r9c4{n7	 n2}	 –	 r7n2{c5	 .}	 ==>	 r7c8	 ≠	 9	
singles	 to	 the	 end	

7.7.5. B∞ ⊄ gW∞: a puzzle P with gW(P) = ∞ but B(P) = 6

With Figure 7.5, we now have the converse case of a puzzle P (of moderate
difficulty) not solvable by g-whips but solvable by braids: B(P) = gB(P) = 6 but
W(P) = gW(P) = ∞.

7. g-labels, g-candidates, g-whips and g-braids 191

Not only is this puzzle not solvable by whips or g-whips, it allows no
elimination at all by whips or g-whips at the start. Let us try with braids :

 1 2 8 9 4 6 5 1 3 7 2
 1 3 4 7 1 6 8 3 2 9 4 5
 5 4 6 3 2 5 4 7 9 6 8 1
 3 5 7 2 8 3 5 9 6 7 1 4
 4 2 5 4 9 7 1 3 8 2 6
1 8 9 1 6 7 2 4 8 5 3 9
 2 9 1 4 7 2 9 8 5 1 6 3
 3 6 7 9 3 8 1 6 4 2 5 7
6 7 9 6 5 1 3 2 7 4 9 8

Figure 7.5. A puzzle P with B(P) = 6 but gW(P) = W(P) = ∞

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B	 *****	
25	 givens,	 204	 candidates,	 1214	 csp-‐links	 and	 1214	 links.	 Initial	 density	 =	 1.47	
braid[5]:	 b9n6{r7c9	 r7c8}	 –	 r7n3{c8	 c6}	 –	 r2c9{n8	 n5}	 –	 c6n5{r2	 r8}	 –	 r8c8{n8	 .}	 ==>	 r7c9	 ≠	 8	
braid[5]:	 b9n2{r9c7	 r8c7}	 –	 c7n4{r8	 r6}	 –	 r8c8{n8	 n5}	 –	 r6n5{c7	 c2}	 –	 r9c2{n8	 .}	 ==>	 r9c7	 ≠	 8	
braid[6]:	 r9c2{n5	 n8}	 –	 r8c8{n5	 n8}	 –	 r2c9{n5	 n8}	 –	 c7n8{r1	 r5}	 –	 c3n8{r2	 r1}	 –	 c4n8{r9	 .}	 ==>	
r9c9	 ≠	 5	
whip[6]:	 b4n5{r5c1	 r6c2}	 –	 r9n5{c2	 c5}	 –	 r1n5{c5	 c8}	 –	 r2c9{n5	 n8}	 –	 b6n8{r5c9	 r4c8}	 –	
r8c8{n8	 .}	 ==>	 r5c7	 ≠	 5	
braid[5]:	 r5c7{n8	 n3}	 –	 r8c8{n8	 n5}	 –	 c6n3{r5	 r7}	 –	 r7c8{n8	 n6}	 –	 r6c8{n6	 .}	 ==>	 r4c8	 ≠	 8	
whip[3]:	 r5n5{c1	 c9}	 –	 r2c9{n5	 n8}	 –	 b6n8{r5c9	 .}	 ==>	 r5c1	 ≠	 8	
braid[5]:	 r5c7{n8	 n3}	 –	 r8c8{n8	 n5}	 –	 c6n3{r5	 r7}	 –	 r7c8{n8	 n6}	 –	 r6c8{n6	 .}	 ==>	 r8c7	 ≠	 8	
whip[6]:	 b2n5{r1c5	 r2c6}	 –	 c9n5{r2	 r5}	 –	 c1n5{r5	 r8}	 –	 r9c2{n5	 n8}	 –	 b8n8{r9c5	 r8c4}	 –	 r8c8{n8	 .}	
==>	 r7c5	 ≠	 5	
braid[5]:	 r7c5{n8	 n4}	 –	 r8c8{n8	 n5}	 –	 r6n4{c5	 c7}	 –	 r8c7{n5	 n2}	 –	 r8c6{n5	 .}	 ==>	 r7c8	 ≠	 8	
whip[3]:	 c5n5{r1	 r9}	 –	 r9c2{n5	 n8}	 –	 r7n8{c1	 .}	 ==>	 r1c5	 ≠	 8	
whip[4]:	 r7c5{n8	 n4}	 –	 r6n4{c5	 c7}	 –	 b9n4{r9c7	 r9c9}	 –	 b9n8{r9c9	 .}	 ==>	 r8c4	 ≠	 8	
braid[6]:	 b8n5{r8c6	 r9c5}	 –	 r2c9{n5	 n8}	 –	 r9c2{n5	 n8}	 –	 r4n8{c9	 c1}	 –	 b8n8{r9c5	 r7c5}	 –	
r3n8{c9	 .}	 ==>	 r2c6	 ≠	 5	
hidden-‐single-‐in-‐a-‐block	 ==>	 r1c5	 =	 5	
whip[2]:	 r9n5{c2	 c7}	 –	 c8n5{r7	 .}	 ==>	 r6c2	 ≠	 5	
hidden-‐single-‐in-‐a-‐block	 ==>	 r5c1	 =	 5	
whip[6]:	 b8n3{r7c6	 r9c4}	 –	 r6n3{c4	 c7}	 –	 b6n4{r6c7	 r4c9}	 –	 r9c9{n4	 n8}	 –	 r8c8{n8	 n5}	 –	
b6n5{r6c8	 .}	 ==>	 r7c8	 ≠	 3	
whip[4]:	 r4c8{n1	 n6}	 –	 r7c8{n6	 n5}	 –	 b6n5{r6c8	 r6c7}	 –	 b6n4{r6c7	 .}	 ==>	 r4c9	 ≠	 1	
whip[5]:	 c8n3{r1	 r6}	 –	 b6n5{r6c8	 r6c7}	 –	 c7n3{r6	 r9}	 –	 c7n4{r9	 r8}	 –	 b9n2{r8c7	 .}	 ==>	 r3c9	 ≠	 3	
whip[6]:	 r6n4{c7	 c5}	 –	 c6n4{r4	 r7}	 –	 b8n3{r7c6	 r9c4}	 –	 r9c9{n3	 n8}	 –	 r8c8{n8	 n5}	 –	 b8n5{r8c6	 .}	
==>	 r8c7	 ≠	 4	
whip[4]:	 r8c4{n1	 n2}	 –	 r8c7{n2	 n5}	 –	 b8n5{r8c6	 r7c6}	 –	 b8n3{r7c6	 .}	 ==>	 r9c4	 ≠	 1	
whip[4]:	 b9n4{r9c9	 r7c9}	 –	 r7n3{c9	 c6}	 –	 b8n5{r7c6	 r8c6}	 –	 b8n4{r8c6	 .}	 ==>	 r9c3	 ≠	 4	

192 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[6]:	 b8n5{r8c6	 r7c6}	 –	 b8n3{r7c6	 r9c4}	 –	 r9n2{c4	 c7}	 –	 c7n4{r9	 r6}	 –	 b6n5{r6c7	 r6c8}	 –	
r6n3{c8	 .}	 ==>	 r8c6	 ≠	 2	
whip[6]:	 c7n4{r9	 r6}	 –	 b6n5{r6c7	 r6c8}	 –	 r6n3{c8	 c4}	 –	 b8n3{r9c4	 r7c6}	 –	 b8n5{r7c6	 r8c6}	 –	
r8c7{n5	 .}	 ==>	 r9c7	 ≠	 2	
singles	 ==>	 r8c7	 =	 2,	 r8c4	 =	 1,	 r9c3	 =	 1	
whip[5]:	 r2n7{c1	 c4}	 –	 r5n7{c4	 c5}	 –	 r3n7{c5	 c8}	 –	 c8n1{r3	 r4}	 –	 c5n1{r4	 .}	 ==>	 r1c3	 ≠	 7	
whip[5]:	 r3c6{n2	 n9}	 –	 r2c6{n9	 n6}	 –	 r5c6{n6	 n3}	 –	 b8n3{r7c6	 r9c4}	 –	 b8n2{r9c4	 .}	 ==>	 r3c5	 ≠	 2	
whip[5]:	 c2n9{r1	 r4}	 –	 c5n9{r4	 r5}	 –	 r5n1{c5	 c9}	 –	 b3n1{r3c9	 r3c8}	 –	 r3n3{c8	 .}	 ==>	 r3c1	 ≠	 9	
whip[6]:	 b6n5{r6c8	 r6c7}	 –	 r6n4{c7	 c5}	 –	 r7c5{n4	 n8}	 –	 r9c5{n8	 n2}	 –	 r9c4{n2	 n3}	 –	 r6n3{c4	 .}	
==>	 r6c8	 ≠	 6	
whip[6]:	 r3c9{n8	 n1}	 –	 r5n1{c9	 c5}	 –	 c5n9{r5	 r4}	 –	 r5n9{c6	 c3}	 –	 r5n7{c3	 c4}	 –	 c5n7{r6	 .}	 ==>	
r3c5	 ≠	 8	
whip[1]:	 c5n8{r9	 .}	 ==>	 r9c4	 ≠	 8	
whip[4]:	 c4n8{r2	 r1}	 –	 c7n8{r1	 r5}	 –	 c3n8{r5	 r8}	 –	 b9n8{r8c8	 .}	 ==>	 r2c9	 ≠	 8	
naked-‐single	 ==>	 r2c9	 =	 5	
whip[2]:	 c7n4{r6	 r9}	 –	 c7n5{r9	 .}	 ==>	 r6c7	 ≠	 3	
whip[2]:	 c7n4{r9	 r6}	 –	 c7n5{r6	 .}	 ==>	 r9c7	 ≠	 3	
whip[1]:	 b9n3{r9c9	 .}	 ==>	 r5c9	 ≠	 3	
whip[4]:	 c7n4{r9	 r6}	 –	 b6n5{r6c7	 r6c8}	 –	 r6n3{c8	 c4}	 –	 r9n3{c4	 .}	 ==>	 r9c9	 ≠	 4	
whip[2]:	 r6n4{c5	 c7}	 –	 c9n4{r4	 .}	 ==>	 r7c5	 ≠	 4	
naked-‐single	 ==>	 r7c5	 =	 8	
whip[2]:	 b6n4{r4c9	 r6c7}	 –	 r9n4{c7	 .}	 ==>	 r4c5	 ≠	 4	
whip[3]:	 r8c8{n5	 n8}	 –	 r9n8{c9	 c2}	 –	 b7n5{r9c2	 .}	 ==>	 r7c8	 ≠	 5	
singles	 ==>	 r7c8	 =	 6,	 r4c8	 =	 1,	 r3c9	 =	 1,	 r5c5	 =	 1	
whip[3]:	 b5n4{r4c6	 r6c5}	 –	 r9c5{n4	 n2}	 –	 r4c5{n2	 .}	 ==>	 r4c6	 ≠	 9	
whip[3]:	 b9n4{r7c9	 r9c7}	 –	 r9n5{c7	 c2}	 –	 r7n5{c2	 .}	 ==>	 r7c6	 ≠	 4	
whip[3]:	 r5c7{n3	 n8}	 –	 c9n8{r5	 r9}	 –	 r9n3{c9	 .}	 ==>	 r5c4	 ≠	 3	
whip[3]:	 b4n7{r6c3	 r5c3}	 –	 r5n9{c3	 c6}	 –	 b5n3{r5c6	 .}	 ==>	 r6c4	 ≠	 7	
whip[3]:	 r6n6{c2	 c4}	 –	 b5n3{r6c4	 r5c6}	 –	 r5n9{c6	 .}	 ==>	 r5c3	 ≠	 6	
whip[4]:	 c3n4{r1	 r8}	 –	 r8c6{n4	 n5}	 –	 r8c8{n5	 n8}	 –	 r3n8{c8	 .}	 ==>	 r1c3	 ≠	 8	
whip[3]:	 b9n8{r9c9	 r8c8}	 –	 c3n8{r8	 r2}	 –	 r3n8{c2	 .}	 ==>	 r5c9	 ≠	 8	
singles	 to	 the	 end	

7.7.6. gB∞ ≠ gW∞: a puzzle solvable by g-braids but probably not by g-whips

Finding a Sudoku puzzle solvable by g-braids but neither by braids nor by g-
whips is very hard: one can rely neither on random generators (all the puzzles we
produced with them – about ten millions – were solvable by whips) nor on Subset
rules that would not be subsumed by g-whips but would be by g-braids (see chapter
8 for comments on this). The following (Figure 7.6) gives the only such puzzle
(#77) in the Magictour-top1465 collection. Using the “gT&E vs g-braids” and “T&E
vs braids” theorems, it is easy to show that it can be solved by g-braids but not by
braids. And the following resolution path with g-whips shows that these are not
enough either to make substantial advances in the solution.

7. g-labels, g-candidates, g-whips and g-braids 193

7 4 7 9 8 6 3 5 4 2 1
 2 7 8 1 2 6 9 7 4 5 8 3
 3 8 9 4 5 3 2 1 8 6 7 9
 5 3 9 7 2 5 8 6 3 1 4
 6 2 9 5 6 4 1 2 3 8 9 7
 1 7 6 3 8 1 4 9 7 2 5 6
 3 9 6 1 7 3 5 2 9 4 8
 3 4 6 8 3 5 7 4 9 1 6 2
 9 1 5 2 4 9 8 6 1 7 3 5

Figure 7.6. A puzzle (Magictour-top1465#77) solvable by g-braids but not by braids and
probably not by g-whips

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 *****	
24	 givens,	 219	 candidates,	 1397	 csp-‐links	 and	 1397	 links.	 Initial	 density	 =	 1.46.	
hidden-‐single-‐in-‐a-‐row	 ==>	 r9c8	 =	 3	
whip[1]:	 r9n4{c2	 .}	 ==>	 r7c1	 ≠	 4,	 r7c2	 ≠	 4,	 r7c3	 ≠	 4	
g-‐whip[8]:	 c4n6{r2	 r9}	 –	 r1n6{c4	 c3}	 –	 b1n8{r1c3	 r1c2}	 –	 b1n9{r1c2	 r2c1}	 –	 b1n1{r2c1	 r3c123}	 –	
r3c5{n1	 n5}	 –	 r7c5{n5	 n8}	 –	 r9c5{n8	 .}	 ==>	 r2c6	 ≠	 6	
whip[11]:	 c3n4{r4	 r2}	 –	 c6n4{r2	 r4}	 –	 b5n6{r4c6	 r4c5}	 –	 r9c5{n6	 n8}	 –	 r7c5{n8	 n5}	 –	 r3c5{n5	 n1}	
–	 c4n1{r3	 r5}	 –	 b5n8{r5c4	 r6c4}	 –	 b5n9{r6c4	 r6c5}	 –	 r6c2{n9	 n5}	 –	 r3c2{n5	 .}	 ==>	 r5c1	 ≠	 4	
whip[12]:	 r9c5{n8	 n6}	 –	 r7c5{n6	 n5}	 –	 r3c5{n5	 n1}	 –	 r4c5{n1	 n9}	 –	 r6c4{n9	 n4}	 –	 r5c6{n4	 n3}	 –	
b4n3{r5c1	 r6c1}	 –	 c1n9{r6	 r2}	 –	 r2c4{n9	 n6}	 –	 r1n6{c6	 c3}	 –	 b1n8{r1c3	 r1c2}	 –	 b1n1{r1c2	 .}	 ==>	
r6c5	 ≠	 8	
g-‐whip[14]:	 r3n4{c4	 c123}	 –	 c3n4{r2	 r4}	 –	 c6n4{r4	 r2}	 –	 r5c6{n4	 n3}	 –	 b4n3{r5c1	 r6c1}	 –	
r6n4{c1	 c8}	 –	 r6n2{c8	 c7}	 –	 b4n2{r6c1	 r4c1}	 –	 r9n2{c1	 c4}	 –	 c6n2{r8	 r1}	 –	 b2n3{r1c6	 r1c5}	 –	
r1c9{n3	 n1}	 –	 r5n1{c9	 c7}	 –	 b6n5{r5c7	 .}	 ==>	 r5c4	 ≠	 4	
whip[15]:	 b3n6{r2c7	 r3c7}	 –	 b3n7{r3c7	 r3c8}	 –	 r3n2{c8	 c4}	 –	 c4n4{r3	 r6}	 –	 r5c6{n4	 n3}	 –	
r6c5{n3	 n9}	 –	 r4c6{n9	 n6}	 –	 r1n6{c6	 c3}	 –	 b1n8{r1c3	 r1c2}	 –	 r6c2{n8	 n5}	 –	 c8n5{r6	 r1}	 –	
r1c6{n5	 n9}	 –	 r1c4{n9	 n1}	 –	 r5c4{n1	 n8}	 –	 r5c1{n8	 .}	 ==>	 r2c4	 ≠	 6	

After this point, there is no whip or g-whip of length less than 18. While trying
g-whips[18], the number of partial g-whips to be analysed suddenly gets so large
that SudoRules encounters memory overflow problems. Given the poor partial
results above (only 8 eliminations after the HS(row)), it is unlikely that a g-whip
solution can be obtained.

Exercise for the reader: write a better implementation of g-whips (less greedy for
memory) and prove that there is indeed no g-whip solution.

7.7.7. A puzzle with all the W, B and gW ratings finite, but very different

In section 5.10.4, we mentioned a puzzle P (Figure 5.6) with W(P) = 31 and
B(P) = 19. We shall now show that gW(P) = 12. This will show that, even when all
the ratings are finite, they can, in extremely rare cases, be very different. The path

194 Pattern-Based Constraint Satisfaction and Logic Puzzles

with g-whips is radically different from the start from the paths with whips or
braids. It can also be shown that gB(P) = 11.

Together with all the previous ones, this example shows that “obstructions” to
the extension of partial whips into longer ones can sometimes be palliated by two
very different mild forms of branching: as in braids or as in g-whips. Moreover,
most of the time, the g-whip type is more powerful than the braid type, even though
it does not subsume it.

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 	 	 *****	
24	 givens,	 220	 candidates,	 1433	 csp-‐links	 and	 1433	 links.	 Initial	 density	 =	 1.49	
g-‐whip[6]:	 b2n4{r3c6	 r1c4}	 –	 c3n4{r1	 r456}	 –	 r6n4{c2	 c3}	 –	 b4n8{r6c3	 r4c1}	 –	 r3n8{c1	 c5}	 –	
c6n8{r3	 .}	 ==>	 r3c6	 ≠	 6,	 r3c6	 ≠	 9	
g-‐whip[6]:	 b4n8{r6c3	 r4c1}	 –	 r3n8{c1	 c456}	 –	 c6n8{r2	 r3}	 –	 b2n4{r3c6	 r1c4}	 –	 c3n4{r1	 r5}	 –	
r6n4{c3	 .}	 ==>	 r6c3	 ≠	 6,	 r6c3	 ≠	 1	
whip[11]:	 c8n9{r1	 r5}	 –	 r4c9{n9	 n5}	 –	 r2n5{c9	 c4}	 –	 b2n7{r2c4	 r1c4}	 –	 b2n4{r1c4	 r3c6}	 –	
r5c6{n4	 n3}	 –	 c4n3{r5	 r7}	 –	 b8n8{r7c4	 r7c5}	 –	 b2n8{r3c5	 r2c6}	 –	 r3n8{c6	 c1}	 –	 r4n8{c1	 .}	 ==>	
r2c7	 ≠	 9	
whip[11]:	 r8n1{c1	 c5}	 –	 r9c4{n1	 n5}	 –	 c2n5{r9	 r4}	 –	 b4n7{r4c2	 r4c1}	 –	 b4n8{r4c1	 r6c3}	 –	
r6c5{n8	 n2}	 –	 r4n2{c6	 c7}	 –	 b6n4{r4c7	 r5c7}	 –	 b4n4{r5c3	 r6c2}	 –	 c3n4{r6	 r1}	 –	 c4n4{r1	 .}	 ==>	
r7c2	 ≠	 1	
whip[12]:	 r6n4{c2	 c4}	 –	 r4n4{c6	 c7}	 –	 b6n2{r4c7	 r6c8}	 –	 r6n3{c8	 c9}	 –	 r6n6{c9	 c2}	 –	
r6n1{c2	 c5}	 –	 r5c4{n1	 n3}	 –	 r5c6{n3	 n9}	 –	 r4n9{c6	 c9}	 –	 r2n9{c9	 c2}	 –	 c2n1{r2	 r9}	 –	
r8n1{c1	 .}	 ==>	 r5c3	 ≠	 4	
g-‐whip[5]:	 c3n4{r1	 r6}	 –	 b4n8{r6c3	 r4c1}	 –	 r3n8{c1	 c456}	 –	 c6n8{r2	 r3}	 –	 b2n4{r3c6	 .}	 ==>	
r1c2	 ≠	 4	
g-‐whip[5]:	 c3n4{r1	 r6}	 –	 b4n8{r6c3	 r4c1}	 –	 r3n8{c1	 c456}	 –	 c6n8{r2	 r3}	 –	 b2n4{r3c6	 .}	 ==>	
r1c1	 ≠	 4	
whip[10]:	 c3n4{r1	 r6}	 –	 b4n8{r6c3	 r4c1}	 –	 b1n8{r1c1	 r2c3}	 –	 b1n2{r2c3	 r2c1}	 –	 c1n7{r2	 r8}	 –	
c2n7{r9	 r4}	 –	 b4n5{r4c2	 r5c1}	 –	 c1n1{r5	 r7}	 –	 b9n1{r7c9	 r9c9}	 –	 b9n7{r9c9	 .}	 ==>	 r1c3	 ≠	 7	
whip[11]:	 c3n7{r9	 r2}	 –	 b1n2{r2c3	 r2c1}	 –	 b1n1{r2c1	 r2c2}	 –	 c2n7{r2	 r4}	 –	 r9n7{c2	 c9}	 –	
b9n1{r9c9	 r7c9}	 –	 c1n1{r7	 r5}	 –	 b4n5{r5c1	 r4c1}	 –	 r4c9{n5	 n9}	 –	 r5n9{c8	 c6}	 –	 r2n9{c6	 .}	 ==>	
r8c1	 ≠	 7	
g-‐whip[11]:	 b1n2{r2c1	 r2c3}	 –	 c3n8{r2	 r6}	 –	 c3n4{r6	 r1}	 –	 r3n4{c2	 c6}	 –	 r3n8{c6	 c5}	 –	
b8n8{r7c5	 r7c4}	 –	 b8n3{r7c4	 r8c6}	 –	 r5c6{n3	 n9}	 –	 c8n9{r5	 r123}	 –	 r2n9{c9	 c2}	 –	
b1n1{r2c2	 .}	 ==>	 r2c1	 ≠	 8	
whip[12]:	 b9n1{r7c9	 r9c9}	 –	 r9c4{n1	 n5}	 –	 c2n5{r9	 r4}	 –	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	
r2n9{c6	 c2}	 –	 c2n1{r2	 r6}	 –	 r5c3{n1	 n6}	 –	 r5c1{n6	 n4}	 –	 r5n1{c1	 c4}	 –	 b5n3{r5c4	 r6c4}	 –	
r6n4{c4	 .}	 ==>	 r7c9	 ≠	 5	
whip[12]:	 r3c6{n8	 n4}	 –	 b1n4{r3c2	 r1c3}	 –	 r6c3{n4	 n8}	 –	 c4n8{r6	 r7}	 –	 b8n3{r7c4	 r8c6}	 –	
r5c6{n3	 n9}	 –	 r4c5{n9	 n2}	 –	 r6c5{n2	 n1}	 –	 b8n1{r8c5	 r9c4}	 –	 c2n1{r9	 r2}	 –	 r2n9{c2	 c9}	 –	
c8n9{r3	 .}	 ==>	 r3c5	 ≠	 8	
whip[4]:	 c3n8{r1	 r6}	 –	 c3n4{r6	 r1}	 –	 r3n4{c2	 c6}	 –	 r3n8{c6	 .}	 ==>	 r1c1	 ≠	 8	
whip[10]:	 r3n8{c1	 c6}	 –	 b2n4{r3c6	 r1c4}	 –	 b1n4{r1c3	 r3c2}	 –	 b1n3{r3c2	 r1c2}	 –	 r1n7{c2	 c8}	 –	
r2n7{c9	 c4}	 –	 b2n5{r2c4	 r1c5}	 –	 r1n9{c5	 c7}	 –	 b9n9{r9c7	 r9c9}	 –	 b9n7{r9c9	 .}	 ==>	 r3c1	 ≠	 7	

7. g-labels, g-candidates, g-whips and g-braids 195

whip[11]:	 r3n7{c9	 c2}	 –	 b1n3{r3c2	 r1c2}	 –	 b1n9{r1c2	 r2c2}	 –	 r2n7{c2	 c4}	 –	 c9n7{r2	 r9}	 –	
b9n9{r9c9	 r9c7}	 –	 r1n9{c7	 c5}	 –	 b2n5{r1c5	 r1c4}	 –	 r9c4{n5	 n1}	 –	 b5n1{r5c4	 r6c5}	 –	 c2n1{r6	 .}	
==>	 r1c8	 ≠	 7	
whip[12]:	 b9n9{r9c7	 r9c9}	 –	 r4c9{n9	 n5}	 –	 r2n5{c9	 c4}	 –	 r9c4{n5	 n1}	 –	 c5n1{r8	 r6}	 –	
c2n1{r6	 r2}	 –	 r2n9{c2	 c6}	 –	 r3c5{n9	 n6}	 –	 r1c5{n6	 n8}	 –	 c5n9{r1	 r4}	 –	 b5n2{r4c5	 r4c6}	 –	
c6n8{r4	 .}	 ==>	 r9c7	 ≠	 5	
whip[12]:	 r6c3{n4	 n8}	 –	 c1n8{r4	 r3}	 –	 r3c6{n8	 n4}	 –	 r4n4{c6	 c7}	 –	 b6n2{r4c7	 r6c8}	 –	
r6c5{n2	 n1}	 –	 r5c4{n1	 n3}	 –	 r5c6{n3	 n9}	 –	 b6n9{r5c8	 r4c9}	 –	 r2n9{c9	 c2}	 –	 c2n1{r2	 r9}	 –	
r8n1{c1	 .}	 ==>	 r5c1	 ≠	 4	
whip[4]:	 b4n5{r5c1	 r4c2}	 –	 b4n7{r4c2	 r4c1}	 –	 c1n8{r4	 r3}	 –	 c1n4{r3	 .}	 ==>	 r7c1	 ≠	 5	
g-‐whip[8]:	 r4c9{n5	 n9}	 –	 b5n9{r4c6	 r5c6}	 –	 r5n4{c6	 c4}	 –	 b5n3{r5c4	 r6c4}	 –	 b5n1{r6c4	 r6c5}	 –	
r8n1{c5	 c123}	 –	 c2n1{r9	 r2}	 –	 r2n9{c2	 .}	 ==>	 r5c7	 ≠	 5	
whip[12]:	 r5n5{c1	 c8}	 –	 r4c9{n5	 n9}	 –	 r5n9{c8	 c6}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 r9}	 –	 r8n1{c1	 c5}	
–	 c4n1{r9	 r6}	 –	 b5n3{r6c4	 r5c4}	 –	 c4n4{r5	 r1}	 –	 c3n4{r1	 r6}	 –	 r6c2{n4	 n6}	 –	 r5c3{n6	 .}	 ==>	
r5c1	 ≠	 1	
biv-‐chain[3]:	 r5c1{n5	 n6}	 –	 r1c1{n6	 n7}	 –	 r4n7{c1	 c2}	 ==>	 r4c2	 ≠	 5	
whip[1]:	 c2n5{r9	 .}	 ==>	 r8c1	 ≠	 5	
whip[4]:	 b7n4{r7c1	 r7c2}	 –	 b7n5{r7c2	 r9c2}	 –	 r9c4{n5	 n1}	 –	 b9n1{r9c9	 .}	 ==>	 r7c1	 ≠	 1	
whip[6]:	 r6n2{c8	 c5}	 –	 r7n2{c5	 c1}	 –	 b7n4{r7c1	 r7c2}	 –	 b7n5{r7c2	 r9c2}	 –	 r9c4{n5	 n1}	 –	
b5n1{r5c4	 .}	 ==>	 r8c8	 ≠	 2	
whip[7]:	 c1n1{r8	 r2}	 –	 c1n2{r2	 r7}	 –	 b7n4{r7c1	 r7c2}	 –	 b7n5{r7c2	 r9c2}	 –	 c2n1{r9	 r6}	 –	
b5n1{r6c5	 r5c4}	 –	 r9c4{n1	 .}	 ==>	 r8c1	 ≠	 6	
whip[9]:	 b7n5{r7c2	 r9c2}	 –	 r9c4{n5	 n1}	 –	 r5n1{c4	 c3}	 –	 b4n6{r5c3	 r5c1}	 –	 b4n5{r5c1	 r4c1}	 –	
r4c9{n5	 n9}	 –	 r5n9{c8	 c6}	 –	 r2n9{c6	 c2}	 –	 c2n1{r2	 .}	 ==>	 r7c2	 ≠	 6	
g-‐whip[11]:	 b7n4{r7c1	 r7c2}	 –	 b7n5{r7c2	 r9c2}	 –	 r9c4{n5	 n1}	 –	 b5n1{r5c4	 r6c5}	 –	
r6c2{n1	 n6}	 –	 r6n4{c2	 c4}	 –	 r5c4{n4	 n3}	 –	 r5c6{n3	 n9}	 –	 c8n9{r5	 r123}	 –	 r2n9{c9	 c2}	 –	
c2n1{r2	 .}	 ==>	 r4c1	 ≠	 4	
whip[5]:	 b2n7{r2c4	 r1c4}	 –	 r1n4{c4	 c3}	 –	 c1n4{r3	 r7}	 –	 c1n2{r7	 r8}	 –	 c1n1{r8	 .}	 ==>	 r2c1	 ≠	 7	
whip[5]:	 r7c2{n5	 n4}	 –	 c1n4{r7	 r3}	 –	 b2n4{r3c6	 r1c4}	 –	 b2n7{r1c4	 r2c4}	 –	 b2n5{r2c4	 .}	 ==>	
r7c5	 ≠	 5	
whip[6]:	 r7c2{n5	 n4}	 –	 b4n4{r6c2	 r6c3}	 –	 r1n4{c3	 c4}	 –	 b2n7{r1c4	 r2c4}	 –	 c4n5{r2	 r9}	 –	 r8n5{c5	 .}	
==>	 r7c8	 ≠	 5	
whip[6]:	 b2n5{r1c5	 r2c4}	 –	 r7n5{c4	 c2}	 –	 r9n5{c2	 c9}	 –	 r4n5{c9	 c1}	 –	 c1n7{r4	 r1}	 –	 b2n7{r1c4	 .}	
==>	 r1c7	 ≠	 5	
whip[6]:	 r7c2{n5	 n4}	 –	 b4n4{r6c2	 r6c3}	 –	 r1n4{c3	 c4}	 –	 b2n7{r1c4	 r2c4}	 –	 c4n5{r2	 r9}	 –	 r8n5{c5	 .}	
==>	 r7c7	 ≠	 5	
whip[5]:	 b9n7{r9c9	 r8c8}	 –	 b9n5{r8c8	 r8c7}	 –	 c5n5{r8	 r1}	 –	 r2n5{c4	 c9}	 –	 r4c9{n5	 .}	 ==>	 r9c9	 ≠	 9	
hidden-‐single-‐in-‐a-‐block	 ==>	 r9c7	 =	 9	
whip[6]:	 c6n3{r8	 r5}	 –	 r5n9{c6	 c8}	 –	 r4c9{n9	 n5}	 –	 c8n5{r5	 r1}	 –	 b9n5{r8c8	 r8c7}	 –	 c5n5{r8	 .}	 ==>	
r8c8	 ≠	 3	
whip[6]:	 c1n1{r2	 r8}	 –	 c1n2{r8	 r7}	 –	 b9n2{r7c7	 r8c7}	 –	 r8n3{c7	 c6}	 –	 c6n6{r8	 r9}	 –	 b8n2{r9c6	 .}	
==>	 r2c1	 ≠	 6	
whip[2]:	 r8c1{n2	 n1}	 –	 r2c1{n1	 .}	 ==>	 r7c1	 ≠	 2	
whip[7]:	 c5n5{r1	 r8}	 –	 r9c4{n5	 n1}	 –	 r5n1{c4	 c3}	 –	 c2n1{r6	 r2}	 –	 r2n9{c2	 c9}	 –	 r4c9{n9	 n5}	 –	
b9n5{r9c9	 .}	 ==>	 r1c5	 ≠	 9	
biv-‐chain[2]:	 c5n9{r3	 r4}	 –	 r5n9{c6	 c8}	 ==>	 r3c8	 ≠	 9	
biv-‐chain[3]:	 c5n9{r3	 r4}	 –	 b6n9{r4c9	 r5c8}	 –	 r1n9{c8	 c2}	 ==>	 r3c2	 ≠	 9	

196 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[4]:	 c5n5{r1	 r8}	 –	 c7n5{r8	 r4}	 –	 r4c9{n5	 n9}	 –	 c8n9{r5	 .}	 ==>	 r1c8	 ≠	 5	
whip[1]:	 b3n5{r2c9	 .}	 ==>	 r2c4	 ≠	 5	
whip[4]:	 r8n7{c3	 c8}	 –	 c8n5{r8	 r5}	 –	 r4n5{c7	 c1}	 –	 b4n7{r4c1	 .}	 ==>	 r9c2	 ≠	 7	
whip[1]:	 b7n7{r9c3	 .}	 ==>	 r2c3	 ≠	 7	
whip[4]:	 r8n7{c3	 c8}	 –	 c8n5{r8	 r5}	 –	 r5c1{n5	 n6}	 –	 r5c3{n6	 .}	 ==>	 r8c3	 ≠	 1	
whip[4]:	 c8n7{r3	 r8}	 –	 c8n5{r8	 r5}	 –	 r4n5{c7	 c1}	 –	 b4n7{r4c1	 .}	 ==>	 r3c2	 ≠	 7	
whip[1]:	 r3n7{c9	 .}	 ==>	 r2c9	 ≠	 7	
whip[4]:	 c5n5{r1	 r8}	 –	 c8n5{r8	 r5}	 –	 c7n5{r4	 r2}	 –	 b3n8{r2c7	 .}	 ==>	 r1c5	 ≠	 8	
whip[6]:	 r9c4{n5	 n1}	 –	 r5n1{c4	 c3}	 –	 c2n1{r6	 r2}	 –	 b1n9{r2c2	 r1c2}	 –	 c8n9{r1	 r5}	 –	 r4c9{n9	 .}	 ==>	
r9c9	 ≠	 5	
whip[1]:	 b9n5{r8c7	 .}	 ==>	 r8c5	 ≠	 5	
hidden-‐single-‐in-‐a-‐column	 ==>	 r1c5	 =	 5	
biv-‐chain[2]:	 b2n9{r2c6	 r3c5}	 –	 b2n6{r3c5	 r2c6}	 ==>	 r2c6	 ≠	 8	
whip[2]:	 c1n8{r4	 r3}	 –	 c6n8{r3	 .}	 ==>	 r4c5	 ≠	 8	
whip[3]:	 r9c6{n2	 n6}	 –	 r8c5{n6	 n1}	 –	 r8c1{n1	 .}	 ==>	 r8c6	 ≠	 2	
whip[4]:	 b9n2{r7c7	 r8c7}	 –	 r8c1{n2	 n1}	 –	 c5n1{r8	 r6}	 –	 c5n8{r6	 .}	 ==>	 r7c5	 ≠	 2	
whip[1]:	 r7n2{c8	 .}	 ==>	 r8c7	 ≠	 2	
whip[4]:	 r2n5{c7	 c9}	 –	 r4c9{n5	 n9}	 –	 r5n9{c8	 c6}	 –	 r2c6{n9	 .}	 ==>	 r2c7	 ≠	 6	
whip[4]:	 r2c6{n6	 n9}	 –	 r2c9{n9	 n5}	 –	 r4c9{n5	 n9}	 –	 r5n9{c8	 .}	 ==>	 r2c2	 ≠	 6,	 r2c3	 ≠	 6	
biv-‐chain[5]:	 r6c9{n3	 n6}	 –	 r2n6{c9	 c6}	 –	 r3c5{n6	 n9}	 –	 r4c5{n9	 n2}	 –	 r6n2{c5	 c8}	 ==>	 r6c8	 ≠	 3	
whip[5]:	 r1n9{c8	 c2}	 –	 b1n3{r1c2	 r3c2}	 –	 b1n6{r3c2	 r3c1}	 –	 r3n8{c1	 c6}	 –	 r3n4{c6	 .}	 ==>	 r1c8	 ≠	 6	
biv-‐chain[6]:	 c9n1{r7	 r9}	 –	 b9n7{r9c9	 r8c8}	 –	 c8n5{r8	 r5}	 –	 c1n5{r5	 r4}	 –	 r4n8{c1	 c6}	 –	
c5n8{r6	 r7}	 ==>	 r7c5	 ≠	 1	
biv-‐chain[3]:	 r5n1{c3	 c4}	 –	 c5n1{r6	 r8}	 –	 c1n1{r8	 r2}	 ==>	 r2c3	 ≠	 1	
whip[4]:	 r8n7{c3	 c8}	 –	 r8n5{c8	 c7}	 –	 r2c7{n5	 n8}	 –	 r2c3{n8	 .}	 ==>	 r8c3	 ≠	 2	
whip[2]:	 r8n1{c5	 c1}	 –	 r8n2{c1	 .}	 ==>	 r8c5	 ≠	 6	
whip[2]:	 r2n6{c9	 c6}	 –	 b8n6{r9c6	 .}	 ==>	 r7c9	 ≠	 6	
whip[3]:	 r9n7{c9	 c3}	 –	 b7n1{r9c3	 r8c1}	 –	 b7n2{r8c1	 .}	 ==>	 r9c9	 ≠	 1	
hidden-‐single-‐in-‐a-‐block	 ==>	 r7c9	 =	 1	
biv-‐chain[5]:	 b3n8{r1c7	 r2c7}	 –	 r2n5{c7	 c9}	 –	 r2n6{c9	 c6}	 –	 c5n6{r3	 r7}	 –	 r7n8{c5	 c4}	 ==>	
r1c4	 ≠	 8	
whip[3]:	 r4c2{n7	 n4}	 –	 c3n4{r6	 r1}	 –	 r1c4{n4	 .}	 ==>	 r1c2	 ≠	 7	
whip[4]:	 b6n4{r5c7	 r4c7}	 –	 r4c2{n4	 n7}	 –	 r2n7{c2	 c4}	 –	 r1c4{n7	 .}	 ==>	 r5c4	 ≠	 4	
whip[2]:	 c3n4{r6	 r1}	 –	 c4n4{r1	 .}	 ==>	 r6c2	 ≠	 4	
whip[2]:	 r5c3{n6	 n1}	 –	 r6c2{n1	 .}	 ==>	 r5c1	 ≠	 6	
singles	 ==>	 r5c1	 =	 5,	 r8c8	 =	 5,	 r9c9	 =	 7,	 r3c8	 =	 7,	 r8c3	 =	 7	
whip[2]:	 r2n6{c9	 c6}	 –	 r8n6{c6	 .}	 ==>	 r1c7	 ≠	 6	
whip[1]:	 b3n6{r3c9	 .}	 ==>	 r6c9	 ≠	 6	
singles	 ==>	 r6c9	 =	 3,	 r3c2	 =	 3	
whip[1]:	 r1n6{c1	 .}	 ==>	 r3c1	 ≠	 6	
biv-‐chain[3]:	 b4n6{r5c3	 r6c2}	 –	 r1c2{n6	 n9}	 –	 c8n9{r1	 r5}	 ==>	 r5c8	 ≠	 6	
singles	 ==>	 r5c8	 =	 9,	 r4c9	 =	 5,	 r1c8	 =	 3,	 r1c7	 =	 8,	 r2c7	 =	 5,	 r1c2	 =	 9	
whip[2]:	 c2n6{r9	 r6}	 –	 c8n6{r6	 .}	 ==>	 r7c1	 ≠	 6	
singles	 to	 the	 end	

7. g-labels, g-candidates, g-whips and g-braids 197

7.8. g-labels and g-whips in N-Queens and in SudoQueens

N-Queens provides an interesting example where g-labels are very different
from those of Sudoku. See chapters 14 and 15 for still more different examples.

7.8.1. g-labels in n-Queens

We have seen in section 5.11 that, in the n-Queens CSP, one can identify a label
with a cell in the grid. From the various examples of whip[1] we have already seen
there, we can understand that the g-labels of n-Queens are:

– for variable Xr°:
- all the symmetric sets of horizontal triplets of cells in row r° that are

separated by k other cells, 0 ≤ k ≤ IP((n-3)/2), provided that: 1) either the second
diagonal passing though the leftmost cell, the first diagonal passing through the
rightmost cell and the column passing through the inner cell meet in a cell above r°
and inside the grid; 2) or the first diagonal passing through the leftmost cell, the
second diagonal passing through the rightmost cell and the column passing through
the inner cell meet in a cell under r° and inside the grid. The labels l g-linked to such
a g-label correspond to the meeting points; (there are at most 2 such labels,
symmetric with respect to r°);

- all the sets of horizontal pairs of cells in row r° that are separated by k other
cells (0≤k≤n-2), provided that the column passing through one cell and one of the
two diagonals passing through the other cell meet in a cell inside the grid, and
provided that they are not part of some of the previous g-labels (maximality
condition). The labels l g-linked to such a g-label correspond to the meeting points;
(depending on r°, k and n, there are at most 2 or 4 such labels, symmetric with
respect to r° and the column containing l2);

– for variable Xc°: similar g-labels obtained by 90° rotation.

Notice that, contrary to the Sudoku case, any label l g-linked to a g-label <V, g>
for a CSP variable V must use at least two different types of constraints (row,
column, first diagonal or second diagonal) for its links with the various elements of
g and at least one of these constraints is not defined by a CSP variable.

A simple case of a g-whip[3] can already be seen in the example of Figure 5.11,
section 5.11.4. The first whip[4] elimination there can be replaced by a g-whip[3]:

g-‐whip[3]:	 r8{c5	 c1}	 –	 r2{c1	 c58}	 –	 r4{c8	 .}	 ⇒ 	 ¬r2c9	 (G	 eliminated)	

7.8.2. A g-whip[3] example in 9-Queens

Accepting the same solution grid as that in Figure 5.11, the puzzle in Figure 7.7
is based on the same first two givens, but a different third one (r3c3, r6c2 and r8c5).

198 Pattern-Based Constraint Satisfaction and Logic Puzzles

*****	 Manual	 solution	 *****	
whip[2]:	 c6{r1	 r5}	 –	 c4{r5	 .}	 ⇒	 ¬r1c9	 (A	 eliminated)	
g-‐whip[3]:	 r4{c8	 c67}	 –	 r5{c6	 c9}	 –	 r7{c9	 .}	 ⇒ 	 ¬r1c8	 (B	 eliminated)	
g-‐whip[3]:	 r4{c8	 c67}	 –	 r5{c6	 c9}	 –	 r7{c9	 .}	 ⇒ 	 ¬r9c8	 (C	 eliminated)	
whip[3]:	 r9{c7	 c1}	 –	 r2{c1	 c7}-‐	 r4{c7	 .}	 ⇒	 ¬r7c9	 (D	 eliminated)	
single	 in	 r7:	 r7c8	
whip[1]:	 r4{c7	 .}	 ⇒	 ¬r5c9	 (E	 eliminated)	
whip[2]:	 r4{c6	 c7}	 –	 r2{c7	 .}	 ⇒	 ¬r9c1	 (F	 eliminated)	
single	 in	 r9:	 r9c7;	 single	 in	 c1:	 r2c1;	 single	 in	 r4:	 r4c6;	 single	 in	 r1:	 r1c4;	 single	 in	 r5:	 r5c9	
Solution	 found	 in	 gW3.	
	

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 ° ° ° + ° ° B A

r2 + ° ° ° ° °

r3 ° ° * ° ° ° ° ° °

r4 ° ° ° ° ° + °
r5 ° ° ° ° E ° +

r6 ° * ° ° ° ° ° ° °

r7 ° ° ° ° ° ° ° +

D

r8 ° ° ° ° * ° ° ° °

r9 F ° ° ° ° ° + C °

Figure 7.7. g-whips in a 9-Queens instance

7.8.3. g-labels in n-SudoQueens

n-SudoQueens was introduced in section 5.11.8. The g-labels of n-SudoQueens
are both those of n-Sudoku (without their Number coordinate) and those of n-
Queens. As a result, the set of labels of a g-label can be included in the set of labels
of another g-label (for a different CSP variable). For instance, consider 9-
SudoQueens and the following two g-labels:
- <Xb1, g1> associated with CSP variable Xb1: <Xb1, r3c123>,
- <Xr3, g2> associated with CSP variable Xr3: <Xr3, r3c12>.

Let l be a label with respective representatives (r, c) and [b, s] in the two
coordinate systems. Then:

7. g-labels, g-candidates, g-whips and g-braids 199

- l is g-linked to <Xb1, g1> if and only if b = b1;
- l is g-linked to <Xr3, g2> if and only if (r = r2 or r = r4) and (c = 1 or c = 2).

This example shows that, although the set of labels in g2 is included in the set of
labels in g1, none of the sets of labels linked to them is included in the other. This
justifies our definition of a g-label, in which the CSP variable is kept as an explicit
component.

7.8.4. A g-whip[4] example in 9-SudoQueens

The puzzle in Figure 7.8 shows an example of a g-whip[4] in 9-SudoQueens.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 * ° ° ° ° ° ° ° °

r2 ° ° ° ° ° ° ° * °

r3 ° ° ° ° * ° ° ° °

r4 ° -3 -0 ° ° ° +3 ° -2

r5 ° -0 ° A ° -0 ° ° -0

r6 ° ° -0 ° ° ° -2 ° +2

r7 ° -0 ° -0 ° -0 ° ° °

r8 ° ° -0 ° +1 -0 ° +2

r9 ° B -0 ° +1 -1 ° °

Figure 7.8. A partial grid for 9-SudoQueens

We shall also use this example to illustrate how one can find instances of a CSP
manually. When we introduced n-SudoQueens in section 5.11.8, we did not know
for sure whether this CSP was not too constrained to have instances, at least for
small values of n. So we tried to find instances for increasing values of n. As
mentioned in that section, there are no instances for n = 2 or n = 4. But we found the
instance in Figure 5.15 for n = 9, by a heuristic technique of adding queens
progressively in the cell that is linked to the fewest other cells, so that we destroy
fewer possibilities for the next ones. We started by cells in the two main diagonals,
as close as possible to a corner (lesser destruction). When we reached the situation

200 Pattern-Based Constraint Satisfaction and Logic Puzzles

in Figure 7.8 (three queens given, in cells r1c1, r2c8 and r3c5), block b5 had only
two possibilities left; r5c4 is linked to 11 available cells and r5c6 to 12; so we chose
to put a queen in r5c4; but we were unable to find a solution. We then tried to prove
that r5c4 was impossible; this is how we found the following g-whip[4] and a first
resolution path showing that there is a unique solution.

g-‐whip[4]:	 c6{r7	 r89}	 –	 b9{r9c7	 r9c9}	 –	 b6{r4c9	 r4c7}	 –	 r4{c2	 .}	 ⇒ 	 ¬r5c4	 (A	 eliminated)	

In this g-whip: r5c6 and r7c6 are z-candidates for Xr6 (1st cell); r8c7 is both a z-
and a t-candidate for Xb9 (2nd cell); r5c6 is both a z- and a t- candidate for Xb6;
r6c7, r4c9 and r6c9 and t-candidates for Xb6 (3rd cell); r4c3 and r5c2 are t-
candidates for Xr4 (last cell).

In Figure 7.8, in addition to our previous conventions, the characters in bold in a
cell mean the following:
“-0” : the z-candidates of this g-whip;
“+n” the right-linking candidate or g-candidate for the n-th CSP variable;
“-n” the candidates linked to the n-th previous right-linking pattern in the n-th cell;
they can be left-linking or t-candidates for the (n+1)-th CSP variables.

[We keep this g-whip example here only for illustrative purposes. Later, we found a
simpler pattern, a whip[3], for the same elimination:

*****	 Manual	 solution	 *****	
whip[3]:	 b4{r5c2	 r4c2}	 –	 b9{r9c7	 r8c9}	 –	 b6{r6c9	 .}	 ⇒ 	 ¬r5c4	 (A	 eliminated)	
;;;	 the	 sequel	 has	 nothing	 noticeable:	
single	 in	 block	 b5:	 r5c6	
whip[1]:	 c4{r9	 .}	 ⇒	 ¬r9c3	 (B	 eliminated)	
single	 in	 block	 b7:	 r7c2;	 single	 in	 column	 c3:	 r4c3;	 single	 in	 column	 c4:	 r8c4;	 single	 in	 row	 r6:	 r6c9;	
single	 in	 row	 r9:	 r9c7	
Solution	 found	 in	 gW4	 (The	 solution	 is	 given	 in	 Figure	 5.15.)]	

Part Three

BEYOND G-WHIPS AND G-BRAIDS

8. Subset rules in a general CSP

This chapter has the two complementary goals of defining elementary Subset
rules in any CSP and of showing that whips, g-whips, braids and g-braids subsume
“almost all” the instances of these rules. This is not to mean that such elementary
Subset rules (that are globally much weaker than whips) should not be preferred to
chain rules when they can be applied; on the contrary, they may provide a shorter or
a better understandable solution. But, when merely added to them, they do not bring
much more resolution power; things are different when they are combined, as they
will be in chapter 9, with the general “zt-ing” technique of whips and braids.
Preparing the introduction of such combinations is the third goal of this chapter.

For the Subsets of size greater than two, we pay particular attention to the
definitions: we want them to be comprehensive enough to get the broadest coverage
but restrictive enough to exclude degenerated cases: for us, two Singles do not make
a Pair, a Pair and a Single do not make a Triplet, a Triplet and a Single do not make
a Quad, two Pairs do not make a Quad, … This modelling choice is consistent with
what has already been done in the Sudoku case in HLS1, but it is now also closely
related to how these patterns can be assigned a well defined “size” and ranked with
respect to the Wn, Bn, gWn and gBn hierarchies; this will be essential in chapter 9
when we take them as building blocks of “Sp-whips” and “Sp-braids”.

In sections 8.2 to 8.4, we define an Sp-subset rule in the general CSP framework
(for p = 2, p = 3 and p = 4 – corresponding respectively to Pairs, Triplets and Quads)
and we illustrate it by the classical form it takes in Sudoku, depending on which
families of CSP variables one considers. For Sudoku, we write the Subsets in rows
and leave it to the reader to write the corresponding Subsets in columns and in
blocks (e.g. using meta-theorems 4.1 and 4.3 on symmetry and analogy). We give
both the English and the formal logic statements and we insist once more on the
symmetry and super-symmetry relationships between Naked, Hidden and Super-
Hidden Subsets of same size (see Figure 8.1). Subsets are the simplest example of
how the general CSP framework unifies, in a still stronger way than the mere
symmetry relationships already present in HLS1, patterns that would otherwise be
considered as different: in the CSP framework, Naked, Hidden and Super-Hidden
Subset rules are not only related by symmetry relationships (for Subsets of given
size), they are the very same rule. (Symmetry, super-symmetry and analogy of rules
have already been illustrated in this book by whips and braids, but in a different,
more powerful, way: they use only basic predicates having these properties.)

204 Pattern-Based Constraint Satisfaction and Logic Puzzles

Though they were not formulated in CSP terms, all the classical Subset rules of
sections 8.2 to 8.4 (except the Special Quads) were present in HLS1, in their Sudoku
specific form. But our perspective here is different: we are less concerned with these
patterns for themselves than with their relationship with whips and braids – whence
the general subsumption theorems of section 8.6 and the choice of examples in
section 8.7, mainly centred on showing rare cases not covered by subsumption.

8.1. Transversality, Sp-labels and Sp-links

In the same way as, in chapter 7, we had to introduce a distinction between g-
labels (defined as maximal sets of labels) and g-candidates (that did not have to be
maximal), we must now introduce a distinction between:

– Sp-labels, that can only refer to CSP variables and transversal sets of labels
(which can be considered as a saturation or maximality condition for Sp-labels),

– and Sp-subsets, in which considerations about mandatory and optional
candidates will appear.

8.1.1. Set of labels transversal to a set of CSP variables

Definition: for p>1, given a set of p different CSP variables {V1, V2, …, Vp}, we
say that a non-empty set S of at most p different labels is transversal with respect to
{V1, V2, …, Vp} for constraint c if:

– none of these labels has a representative with two of these CSP variables;
– all these labels are pairwise linked by c;
– S is maximal, in the sense that no label pertaining to one of these CSP

variables could be added to it without contradicting the first two conditions.

Remarks:
– the first condition will always be true for pairwise strongly disjoint CSP

variables, i.e. CSP variables such that no two of them share a label; but we do not
adopt this stronger condition on CSP variables; adopting it would not change the
general theory (for Subsets in the present chapter and for Reversible-Sp-chains, Sp-
whips and Sp-braids in chapter 9) and it would not restrict the applications to
Sudoku; but it may restrict the applications to others CSPs; moreover, the
corresponding definition for g-Subsets in chapter 10 would restrict the applications,
even for Sudoku (see the example in section 10.3).

– the second condition could be generalised by allowing labels in the transversal
set to be pairwise linked by different constraints. In LatinSquare or Sudoku, due to
the theorems proven in chapter 11 of HLS1, such pairwise constraints can always be
replaced by a global constraint as in the present definition; this is also obviously true
in N-Queens. In case a CSP had a transversal set that could not be defined via a

8. Subset rules in a general CSP 205

unique constraint, we think modelling choices should be investigated. Anyway, the
apparently more general condition would not change the theory developed in this
chapter and in chapter 9 (it is nowhere used in the proofs) – although it may have a
noticeable negative impact on the complexity of any possible implementation.

Typical examples of transversal sets of labels occur when the CSP can be
represented on a k dimensional grid and two candidates differing by only one
coordinate are contradictory, as can be illustrated by the Sudoku or LatinSquare
examples: given CSP variables Xrc1 and Xrc2, {<Xrc1, n°>, <Xrc2, n°>} is a
transversal set of labels, for any fixed Number n°; given CSP variables Xrn1 and
Xrn2, {<Xrn1, c°>, <Xrn2, c°>} is also a transversal set of labels for any fixed
Column c°… But there is no reason to restrict the above definition to such cases of
“geometrical transversality”. In particular, a transversal set of labels does not have
to be associated with a “transversal” CSP variable (in the sense that, e.g. in Sudoku,
variable Xc°n° could be called transversal to variable Xr°n°): in N-Queens, given
two CSP variables Xr1 and Xr2 corresponding to different rows, the set of
intersections of any diagonal (which is not associated with any CSP variable) with
these rows defines a transversal set of labels (see section 8.8.1 for an example).

8.1.2. Sp-labels and Sp-links

Definitions: for any integer p>1, an Sp-label is a couple of data: {CSPVars,
TransvSets}, where CSPVars is a set of p different CSP variables and TransvSets is
a set of p different transversal sets of labels for these variables (each one for a well
defined constraint). An S-label is an Sp-label for some p >1.

Definition: a label l is Sp-linked or simply S-linked to an Sp-label S = {CSPVars,
TransvSets} if there is some k, 1≤k≤p, such that l is linked by the constraint ck of
TransvSetsk to all the labels of TransvSetsk (where TransvSetsk is the k-th element
of TransvSets). In these conditions, l is also called a potential target of the Sp-label.

Miscellaneous remarks:
– with this definition, a label and a g-label are not Sp-labels (due to the condition

p>1); for labels, this is a mere matter of convention, but this choice is more
convenient for the sequel;

– as a result of this condition, there may be CSPs with no Sp-labels for some p;
– different transversal sets in the Sp-label are not required to be disjoint;
– in a sense, an Sp-label specifies the maximal extent of a possible Sp-subset (as

defined below), but it does not tackle non-degeneracy conditions.

Notation: in the forthcoming definition of Subsets, we shall need a means of
specifying that, in some transversal sets, some labels must exist while others may
exist or not. We shall write this as e.g. {<V1, v1>, <V2, v2>, …, (<Vk, vk>), ….}.

206 Pattern-Based Constraint Satisfaction and Logic Puzzles

This should be understood as follows: a label not surrounded with parentheses must
exist; a pseudo-label surrounded with parentheses may exist or not; if it exists, then
it is named <Vk, vk>.

8.2. Pairs

8.2.1. Pairs in a general CSP

Definition: in any resolution state RS of any CSP, a Pair (or S2-subset) is an S2-
label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2},
– TransvSets is composed of the following transversal sets of labels:

{<V1, v11>, <V2, v21>} for constraint c1,
{<V1, v12>, <V2, v22>} for constraint c2,

such that:
– in RS, V1 and V2 are disjoint, i.e. they share no candidate;
– <V1, v11> ≠ <V1, v12> and <V2, v22> ≠ <V2, v21>;
– in RS, V1 has the two mandatory candidates <V1, v11> and <V1, v12> and no

other candidate;
– in RS, V2 has the two mandatory candidates <V2, v22> and <V2, v21> and no

other candidate.

A target of a Pair is defined as a candidate S2-linked to the underlying S2-label.

Theorem 8.1 (S2 rule): in any CSP, a target of a Pair can be eliminated.

Proof: as the two transversal sets play similar roles, we can suppose that Z is
linked to both <V1, v11> and <V2, v21>. If Z was True, these candidates would be
eliminated by ECP. As V1 and V2 have only two candidates each, their other
candidate (<V1, v12>, respectively <V2, v22>) would be asserted by S, which is
contradictory, as they are linked. Notice that the proof works only because V1 and
V2 share no candidate in RS (and therefore in no posterior resolution state).

The rest of this section shows how, choosing pairs of variables in different sub-
families of CSP variables, the familiar Naked Pairs, Hidden Pairs and Super-Hidden
Pairs (X-Wing) of Sudoku (or LatinSquare) appear as mere Pairs in the above
defined sense.

8.2.2. Naked Pairs in Sudoku

For the definition of Naked Pairs, there can be no ambiguity and we adopt the
standard formulation. Naked Pairs in a row, or NP(row), is the following rule:

8. Subset rules in a general CSP 207

if there is a row r and there are two different columns c1 and c2 and two different
numbers n1 and n2, such that:
- the candidates for cell (r, c1) are exactly the two numbers n1 and n2,
- the candidates for cell (r, c2) are exactly the two numbers n1 and n2,
then eliminate the two numbers n1 and n2 from the candidates for any other rc-cell in
row r in rc-space.

Validity is very easy to prove directly from this (almost) standard formulation of
the problem: in row r, each of the two cells defined by columns c1 and c2 must get a
value and only two values (n1 and n2) are available for them, which entails that,
whatever distribution is made between them of these two values, none of these two
values remains available for the other cells in the same row.

The logical formulation strictly parallels the English one (except that, as is often
the case, something which is formulated in natural language as “if there exists a row
…”, which should apparently translate into an existential quantifier, must be written
with a universal quantifier):

∀r∀≠(c1,c2)∀≠(n1,n2)
 { candidate(n1, r, c1) ∧ candidate(n2, r, c1) ∧
 candidate(n2, r, c2) ∧ candidate(n1, r, c2) ∧
 ∀c∈{c1, c2}∀n≠n1,n2 ¬candidate(n, r, c)
 ⇒
 ∀c≠c1,c2 ∀n∈{n1, n2} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Pairs of the general definition give when
applied to CSP variables Xrc1 and Xrc2, with transversal sets defined by CSP
variables (considered as constraints) Xrn1 and Xrn2.

8.2.3. Hidden Pairs in Sudoku

If we apply meta-theorem 4.2 to Naked Pairs in a row, permuting the words
“number” and “column”, we obtain the rule for Hidden Pairs in a row, or HP(row)
(once transposed into rn-space, a Hidden Pairs in a row looks graphically like a
Naked Pairs in a row would in rc-space):
if there is a row r and there are two different numbers n1 and n2 and two different
columns c1 and c2, such that:
- the candidates (columns) of rn-cell (r, n1) (in rn-space) are exactly c1 and c2,
- the candidates (columns) of rn-cell (r, n2) (in rn-space) are exactly c1 and c2,
then eliminate the two columns c1 and c2 from the candidates for any other rn-cell
(r, n) in row r in rn-space.

∀r∀≠(n1,n2)∀≠(c1,c2)
 { candidate(n1, r, c1) ∧ candidate(n1, r, c2) ∧
 candidate(n2, r, c2) ∧ candidate(n2, r, c1) ∧

208 Pattern-Based Constraint Satisfaction and Logic Puzzles

 ∀n∈{n1, n2}∀c≠c1,c2 ¬candidate(n, r, c)
 ⇒
 ∀n≠n1,n2∀c∈{c1, c2} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Pairs of the general definition give when
applied to CSP variables Xrn1 and Xrn2, with transversal sets defined by CSP
variables (considered as constraints) Xrc1 and Xrc2.

8.2.4. Super Hidden Pairs in Sudoku (X-Wing)

This is not yet the full story: one can iterate the application of meta-theorem 4.2
and a rule SHP(row) can be obtained from rule HP(row) by permuting the words
“row” and “number”. Let us first do this permutation formally, i.e. by applying the
Srn transform to HP(row) = Scn(NP(row)). We get the logical formulation for Super
Hidden Pairs in rows, or SHP(row):

∀n∀≠(r1,r2)∀≠(c1,c2)
 { candidate(n, r1, c1) ∧ candidate(n, r1, c2) ∧
 candidate(n, r2, c2) ∧ candidate(n, r2, c1) ∧
 ∀r∈{r1, r2}∀c≠c1,c2 ¬candidate(n, r, c)
 ⇒
 ∀r≠r1,r2∀c∈{c1, c2} ¬candidate(n, r, c) }.

Let us now try to understand the result, with a strict English transcription:
if there is a number n and there are two different rows r1 and r2 and two different
columns c1 and c2 such that:
- the candidates (columns) of rn-cell (r1, n) (in rn-space) are c1 and c2 and no other
column,
- the candidates (columns) of rn-cell (r2, n) (in rn-space) are c1 and c2 and no other
column,
then eliminate the two columns c1 and c2 from the candidates (columns) for any
other rn-cell (r, n) in column n in rn-space.

Exercise: show that this is exactly what Pairs of the general definition give when
applied to CSP variables Xr1n and Xr2n, with transversal sets defined by CSP
variables (considered as constraints) Xc1n and Xc2n.

As the meaning of this rule is not absolutely clear in rc-space, let us make it
more explicit with a new equivalent formulation based on rc-space: if there is a
number n and there are two different rows r1 and r2, such that, in these rows, n
appears as a candidate in and only in columns c1 and c2, then, in any of these two
columns, eliminate n from the candidates for any row other than r1 and r2. We find
the usual formulation of X-Wing in rows. Finally, we have shown that the familiar
X-Wing in rows is the super-hidden version of Naked Pairs in a row: SHP(row) ≡
Srn(HP(row)) ≡ Srn(Scn(NP(row))) = X-Wing(row).

8. Subset rules in a general CSP 209

8.3. Triplets

8.3.1. Triplets in a general CSP

There may be several formulations of Triplets. Here, we adopt one (cyclic form)
that is neither too restrictive (the presence of some of the candidates potentially
involved is not mandatory) nor too comprehensive (by making mandatory the
presence of some of the candidates involved, it excludes degenerated cases). The
justification was done in HLS1 for Sudoku, but it is valid for the general CSP.

Definition: in any resolution state RS of any CSP, a Triplet (or S3-subset) is an
S3-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3},
– TransvSets is composed of the following transversal sets of labels:

{<V1, v11>, (<V2, v21>), <V3, v31>} for constraint c1,
{<V1, v12>, <V2, v22>, (<V3, v32>)} for constraint c2,
{(<V1, v13>), <V2, v23>, <V3, v33>} for constraint c3,

such that:
– in RS, V1, V2 and V3 are pairwise disjoint, i.e. no two of these variables share

a candidate;
– <V1, v11> ≠ <V1, v12>, <V2, v22> ≠ <V2, v23> and <V3, v33> ≠ <V3, v31>;
– in RS, V1 has the two mandatory candidates <V1, v11> and <V1, v12>, one

optional candidate <V1, v13> (supposing this label exists) and no other candidate;
– in RS, V2 has the two mandatory candidates <V2, v22> and <V2, v23>, one

optional candidate <V2, v21> (supposing this label exists) and no other candidate;
– in RS, V3 has the two mandatory candidates <V3, v33> and <V3, v31>, one

optional candidate <V3, v32> (supposing this label exists) and no other candidate.

A target of a Triplet is defined as a candidate S3-linked to the underlying S3-
label.

Theorem 8.2 (S3 rule): in any CSP, a target of a Triplet can be eliminated.

Proof: as the three transversal sets play similar roles, we can suppose that Z is
linked to the first, i.e. to <V1, v11>, <V2, v21> (and <V3, v31> if it exists). If Z was
True, these candidates (if they are present) would be eliminated by ECP. Each of V1,
V2 and V3 would have at most two candidates left. Any choice for V1 would reduce
to at most one the number of possibilities for each of V2 and V3 (due to the pairwise
contradictions between members of each transversal set). Finally, the unique choice
for V2, if any, would in turn reduce to zero the number of possibilities for V3.

The rest of this section shows how, choosing sets of three variables in different
sub-families of CSP variables, the familiar Naked Triplets, Hidden Triplets and

210 Pattern-Based Constraint Satisfaction and Logic Puzzles

Super-Hidden Triplets (Swordfish) of Sudoku all appear as mere Triplets of the
general CSP.

8.3.2. Naked Triplets in Sudoku

There may be several definitions of Naked Triplets (see HLS1 for a discussion).
Here, we adopt the same as in HLS1, neither too restrictive nor too comprehensive
(i.e. it does not allow degenerated cases). Naked Triplets in a row or NT(row):
if there is a row r and there are three different columns c1, c2 and c3 and three
different numbers n1, n2 and n3, such that:
- cell (r, c1) has n1 and n2 among its candidates,
- cell (r, c2) has n2 and n3 among its candidates,
- cell (r, c3) has n3 and n1 among its candidates,
- none of the cells (r, c1), (r, c2) and (r, c3) has any candidate other than n1, n2 or n3,
then eliminate the three numbers n1, n2 and n3 from the candidates for any other cell
in row r in rc-space.

∀r∀≠(c1,c2,c3)∀≠(n1,n2,n3)
 { candidate(n1, r, c1) ∧ candidate(n2, r, c1) ∧
 candidate(n2, r, c2) ∧ candidate(n3, r, c2) ∧
 candidate(n3, r, c3) ∧ candidate(n1, r, c3) ∧
 ∀c∈{c1, c2, c3}∀n≠n1,n2,n3 ¬candidate(n, r, c)
 ⇒
 ∀c≠c1,c2,c3 ∀n∈{n1, n2, n3} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Triplets of the general definition give
when applied to CSP variables Xrc1, Xrc2 and Xrc3, with transversal sets defined by
CSP variables (considered as constraints) Xrn1, Xrn2 and Xrn3.

8.3.3. Hidden Triplets in Sudoku

If we apply meta-theorem 4.2 to Naked Triplets in a row, permuting the words
“number” and “column”, we obtain the rule for Hidden Triplets in a row, or
HT(row):
if there is a row r, and there are three different numbers n1, n2 and n3 and three
different columns c1, c2 and c3, such that:
- rn-cell (r, n1) (in in rn-space) has c1 and c2 among its candidates (columns),
- rn-cell (r, n2) (in in rn-space) has c2 and c3 among its candidates (columns),
- rn-cell (r, n3) (in in rn-space) has c3 and c1 among its candidates (columns),
- none of the rn-cells (r, n1), (r, n2) and (r, n3) (in in rn-space) has any remaining
candidate (column) other than c1, c2 and c3,
then eliminate the three columns c1, c2 and c3 from the candidates for any other rn-
cell (r, n) in row r in rn-space.

8. Subset rules in a general CSP 211

∀r∀≠(n1,n2,n3)∀≠(c1,c2,c3)
 { candidate(n1, r, c1) ∧ candidate(n1, r, c2) ∧
 candidate(n2, r, c2) ∧ candidate(n2, r, c3) ∧
 candidate(n3, r, c3) ∧ candidate(n3, r, c1) ∧
 ∀n∈{n1, n2, n3}∀c≠c1,c2,c3 ¬candidate(n, r, c)
 ⇒
 ∀n≠n1,n2,n3∀c∈{c1, c2, c3} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Triplets of the general definition give
when applied to CSP variables Xrn1, Xrn2 and Xrn3, with transversal sets defined by
CSP variables (considered as constraints) Xrc1, Xrc2 and Xrc3.

8.3.4. Super Hidden Triplets in Sudoku (Swordfish)

As in the case of Pairs, one can iterate the application of meta-theorem 4.2 and a
rule SHT(row) can be obtained from rule HT(row) by permuting the words “row”
and “number”. If we apply the Srn transform to HT(row) = Scn(NT(row)), we get the
logical formulation of Super Hidden Triplets in rows, or SHT(row):

∀n∀≠(r1,r2,r3)∀≠(c1,c2,c3)
 { candidate(n, r1, c1) ∧ candidate(n, r1, c2) ∧
 candidate(n, r2, c2) ∧ candidate(n, r2, c3) ∧
 candidate(n, r3, c3) ∧ candidate(n, r3, c1) ∧
 ∀r∈{r1, r2, r3}∀c≠c1,c2,c3 ¬candidate(n, r, c)
 ⇒
 ∀r≠r1,r2,r3∀c∈{c1, c2, c3} ¬candidate(n, r, c) }.

Let us now try to understand the result, first with a direct English transliteration:
if there is a number n, and there are three different rows r1, r2 and r3 and three
different columns c1, c2 and c3, such that:
- rn-cell (r1, n) (in rn-space) has c1 and c2 among its candidates (columns),
- rn-cell (r2, n) (in rn-space) has c2 and c3 among its candidates (columns),
- rn-cell (r3, n) (in rn-space) has c3 and c1 among its candidates (columns),
- none of the rn-cells (r1, n), (r2, n) and (r3, n) (in rn-space) has any candidate
(column) other than c1, c2 and c3,
then eliminate the three columns c1, c2 and c3 from the candidates (columns) for any
other rn-cell (r, n) in column n in rn-space in rn-space .

Exercise: show that this is exactly what Triplets of the general definition give
when applied to CSP variables Xr1n, Xr2n and Xr3n, with transversal sets defined by
CSP variables (considered as constraints) Xc1n, Xc2n and Xc3n.

As this is not yet very explicit, let us try to clarify it by expressing it in rc-space
and by temporarily forgetting part of the conditions: if there is a number n and there
are three different rows r1, r2 and r3 and three different columns c1, c2 and c3, such

212 Pattern-Based Constraint Satisfaction and Logic Puzzles

that for each of the three rows the instance of number n that must be somewhere in
each of these rows can actually be only in either of the three columns, then in any of
the three columns eliminate n from the candidates for any row different from the
given three.

What we find is the usual formulation of the rule for Swordfish in rows. There
remains one point: the part of the conditions we have temporarily discarded. It is
precisely what prevents Swordfish in rows from reducing to X-Wing in rows.

8.4. Quads

8.4.1. Quads in a general CSP

Finding the proper formulation for Quads, guaranteeing that it covers no
degenerated case, is less obvious than for Triplets. Indeed, the simplest way is to
introduce two types of Quads: Cyclic and Special. (In order to avoid technicalities,
we shall show that there can only be these two types for the Sudoku CSP, but the
analysis can be transposed to the general framework.) We choose to write the
Special Quad in such a way that it does not cover any case already covered by the
Cyclic Quad. If we wanted to introduce larger Subsets, though one could always
write a general formula expressing non-degeneracy (which would lead to
computationally very inefficient implementations), it would get harder and harder to
write an explicit (more efficient) list of non-degenerated subcases. [As we shall see
soon, in the 9×9 Sudoku case, this would be useless.]

Definition: in any resolution state RS of any CSP, a Cyclic Quad (or Cyclic S4-
subset) is an S4-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3, V4},
– TransvSets is composed of the following transversal sets of labels:

{<V1, v11>, (<V2, v21>), (<V3, v31>), <V4, v41>} for constraint c1,
{<V1, v12>, <V2, v22>, (<V3, v32>), (<V4, v42>)} for constraint c2,
{(<V1, v13>), <V2, v23>, <V3, v33>, (<V4, v43>)} for constraint c3,
{(<V1, v14>), (<V2, v24>), <V3, v34>, <V4, v44>} for constraint c4,

such that:
– in RS, V1, V2, V3 and V4 are pairwise disjoint, i.e. no two of these variables

share a candidate;
– <V1, v11> ≠ <V1, v12>, <V2, v22> ≠ <V2, v23>, <V3, v33> ≠ <V3, v34> and

<V4, v44> ≠ <V4, v41>;
– in RS, V1 has the two mandatory candidates <V1, v11> and <V1, v12>, two

optional candidates <V1, v13> and <V1, v14> (supposing any of these labels exists)
and no other candidate,

8. Subset rules in a general CSP 213

– in RS, V2 has the two mandatory candidates <V2, v22> and <V2, v23>, two
optional candidates <V2, v24> and <V2, v21> (supposing any of these labels exists)
and no other candidate,

– in RS, V3 has the two mandatory candidates <V3, v33> and <V3, v34>, two
optional candidates <V3, v31> and <V3, v32> (supposing any of these labels exists)
and no other candidate,

– in RS, V4 has the two mandatory candidates <V4, v44> and <V4, v41>, two
optional candidates <V4, v42> and <V4, v43> (supposing any of these labels exists)
and no other candidate.

Definition: in any resolution state RS of any CSP, a Special Quad (or Special S4-
subset) is an S4-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3, V4},
– TransvSets is composed of the following transversal sets of labels:

{<V1, v11>, <V2, v21>, <V3, v31>, (<V4, v41>}) for constraint c1,
{<V1, v12>, (<V2, v22>), (<V3, v32>), <V4, v42>} for constraint c2,
{(<V1, v13>), <V2, v23>, (<V3, v33>), <V4, v43>} for constraint c3,
{(<V1, v14>), (<V2, v24>), <V3, v34>, <V4, v44>} for constraint c4,

such that:
– in RS, V1, V2, V3 and V4 are pairwise disjoint, i.e. no two of these variables

share a candidate;
– <V1, v11> ≠ <V1, v12>, <V2, v21> ≠ <V2, v23> and <V3, v31> ≠ <V3, v34>;

moreover <V4, v42>, <V4, v43> and <V4, v44> are pairwise different;
– in RS, V1 has the two mandatory candidates <V1, v11> and <V1, v12> and no

other candidate;
– in RS, V2 has the two mandatory candidates <V2, v21> and <V2, v23> and no

other candidate;
– in RS, V3 has the two mandatory candidates <V3, v31> and <V3, v34> and no

other candidate;
– in RS, V4 has the three mandatory candidates <V4, v42>, <V4, v43> and

<V4, v44> and no other candidate.

In both cases, a target of a Quad is defined as a candidate S4-linked to the
underlying S4-label.

Theorem 8.3 (S4 rule): in any CSP, a target of a Quad can be eliminated.

Proof for the cyclic case: as the four transversal sets play similar roles, we can
suppose that Z is linked to all of <V1, v11>, <V2, v21>, (<V3, v31>) and (<V4, v41>). If
Z was True, these candidates (if they are present) would be eliminated by ECP. Each
of V1, V2, V3 and V4 would have at most three candidates left. Any choice for V1
would reduce to at most two the number of possibilities for V2, V3 and V4. Any

214 Pattern-Based Constraint Satisfaction and Logic Puzzles

further choice among the remaining candidates for V2 would reduce to at most one
the number of possibilities for V3 and V4. Finally the unique choice left for V3, if
any, would reduce to zero the number of possibilities for V4.

Proof for the special case: there are four subcases (the last two of which are
similar to the second):
- suppose Z is linked to all of <V1, v11>, <V2, v21>, <V3, v31> (and <V4, v41> if it
exists). If Z was True, these candidates (if they are present) would be eliminated by
ECP. Each of V1, V2, V3, would have only one candidate left; choosing these as
values would reduce to zero the number of possibilities for V4.
- suppose Z is linked to all of <V1, v12> (, <V2, v22>), (<V3, v32>) and <V4, v42>. If Z
was True, <V1, v12> (, <V2, v22>), (<V3, v32>) and <V4, v42> would be eliminated by
ECP; <V1, v11> would then be asserted by S, which would eliminate <V2, v21> and
<V3, v31>. Then <V2, v23> and <V3, v34> would be asserted. This would leave no
possibility for V4.

The rest of this section shows how, choosing sets of four variables in different
sub-families of CSP variables, the familiar Naked Quads, Hidden Quads and Super-
Hidden Quads (Jellyfish) of Sudoku appear as mere Quads of the general CSP.

8.4.2. Naked Quads in Sudoku

The good formulation for Naked Quads is a little harder to find than for Triplets.

Naked Quads in a row (first tentative formulation, sometimes called Strict Naked
Quads or Complete Naked Quads): if there is a row and there are four numbers and
four cells in this row whose remaining candidates are exactly these four numbers,
then remove these four numbers from the candidates for the other cells in this row.
But there is a major problem: it is unnecessarily restrictive and situations where it
can be applied are extremely rare (actually, in 10,000,000 randomly generated
minimal puzzles, we have found no example that would use this form of Quads if
simpler rules, i.e. Subsets and whips of size strictly less than four, are allowed).

Naked Quads in a row (second tentative formulation, sometimes called
Comprehensive Naked Quads): if there is a row and there are four numbers and four
cells in this row such that all their candidates are among these four numbers, then
remove these four numbers from the candidates for all the other cells in this row.
But, again, it has a major problem: it includes Naked Triplets in a row, Naked Pairs
in a row and even Naked Single in a row as special cases.

So, neither of the usual two formulations of the Naked Quads rule is correct
according to our guiding principles. How then can one formulate it so that it is
comprehensive but does not subsume any of the rules for Naked Subsets of smaller
size? It is enough to make certain that the four cells have no candidate other than the
four given numbers (say n1, n2, n3 and n4), that each of them has more than one

8. Subset rules in a general CSP 215

candidate (it is not a Naked-Single), that no two of them have exactly the same two
candidates (which would make a Naked Pairs in a row) and that no three of them
form a Naked Triplets in a row. There are only two ways to satisfy these conditions.

The first, most general way is to impose candidates n1 and n2 for cell 1,
candidates n2 and n3 for cell 2, candidates n3 and n4 for cell 3 and candidates n4 and
n1 for cell 4. This is the “Cyclic Naked Quads”. We get the final formulation of this
first case, more complex than usual but with its full natural scope:
if there is a row r and there are four different columns c1, c2, c3 and c4, and four
different numbers n1, n2, n3 and n4, such that:
- cell (r, c1) has n1 and n2 among its candidates,
- cell (r, c2) has n2 and n3 among its candidates,
- cell (r, c3) has n3 and n4 among its candidates,
- cell (r, c4) has n4 and n1 among its candidates,
- none of the cells (r, c1), (r, c2), (r, c3) and (r, c4) has any candidate other than n1, n2,
n3 or n4,
then eliminate the four numbers n1, n2, n3 and n4 from the candidates for any other
cell in row r in rc-space.

∀r∀≠(c1,c2,c3,c4)∀≠(n1,n2,n3,n4)
 { candidate(n1, r, c1) ∧ candidate(n2, r, c1) ∧
 candidate(n2, r, c2) ∧ candidate(n3, r, c2) ∧
 candidate(n3, r, c3) ∧ candidate(n4, r, c3) ∧
 candidate(n4, r, c4) ∧ candidate(n1, r, c4) ∧
 ∀c∈{c1, c2, c3, c4}∀n≠n1,n2,n3,n4 ¬candidate(n, r, c)
 ⇒
 ∀c≠c1,c2,c3,c4∀n∈{n1, n2, n3, n4} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Cyclic Quads of the general definition
give when applied to CSP variables Xrc1, Xrc2, Xrc3 and Xrc4, with transversal sets
defined by CSP variables (considered as constraints) Xrn1, Xrn2, Xrn3 and Xrn4.

The second way will be called Special Naked Quads in a row, a very rare
pattern, with the following respective contents for its four cells: {n1 n2}, {n1 n3},
{n1 n4}, {n2 n3 n4}:

∀r∀≠(c1,c2,c3,c4)∀≠(n1,n2,n3,n4)
 { candidate(n1, r, c1) ∧ candidate(n2, r, c1) ∧ ∀n≠n1,n2 ¬candidate(n, r, c1) ∧
 candidate(n1, r, c2) ∧ candidate(n3, r, c2) ∧ ∀n≠n1,n3 ¬candidate(n, r, c2) ∧
 candidate(n1, r, c3) ∧ candidate(n4, r, c3) ∧ ∀n≠n1,n4 ¬candidate(n, r, c3) ∧
 candidate(n2, r, c4) ∧ candidate(n3, r, c4) ∧ candidate(n4, r, c4)

 ∧ ∀n≠n2,n3,n4 ¬candidate(n, r, c4)
 ⇒
 ∀c≠c1,c2,c3,c4∀n∈{n1, n2, n3, n4} ¬candidate(n, r, c) }.

216 Pattern-Based Constraint Satisfaction and Logic Puzzles

Exercise: show that this is exactly what Special Quads of the general definition
give when applied to CSP variables Xrc1, Xrc2, Xrc3 and Xrc4, with transversal sets
defined by CSP variables (considered as constraints) Xrn1, Xrn2, Xrn3 and Xrn4.

Exercise: Transpose the above justification for the two definitions of Quads in
Sudoku to the general CSP framework. (Show that there are no other possibilities
than the Cyclic and Special Quads.)

8.4.3. Hidden Quads in Sudoku

The proper formulation of rules for Hidden Quads would not be obvious if we
could not rely on super-symmetries and meta-theorem 4.2. But, if we apply meta-
theorem 4.2 to Cyclic Naked Quads in a row and to Special Naked Quads in a row,
permuting the words “number” and “column”, we immediately obtain two rules,
corresponding to what is known as “Hidden Quads in a row” in the Sudoku world:

Cyclic Hidden Quads in a row, or Cyclic HQ(row):
if there is a row r, and there are four different numbers n1, n2, n3 and n4 and four
different columns c1, c2, c3 and c4, such that:
- rn-cell (r, n1) (in rn-space) has c1 and c2 among its candidates (columns),
- rn-cell (r, n2) (in in rn-space) has c2 and c3 among its candidates (columns),
- rn-cell (r, n3) (in in rn-space) has c3 and c4 among its candidates (columns),
- rn-cell (r, n4) (in in rn-space) has c4 and c1 among its candidates (columns),
- none of the rn-cells (r, n1), (r, n2), (r, n3) and (r, n4) (in in rn-space) has any
remaining candidate (column) other than c1, c2, c3 and c4,
then eliminate the four columns c1, c2, c3 and c4 from the candidates for any other
rn-cell (r, n) in row r in rn-space.

∀r∀≠(n1,n2,n3,n4)∀≠(c1,c2,c3,c4)
 { candidate(n1, r, c1) ∧ candidate(n1, r, c2) ∧
 candidate(n2, r, c2) ∧ candidate(n2, r, c3) ∧
 candidate(n3, r, c3) ∧ candidate(n3, r, c4) ∧
 candidate(n4, r, c4) ∧ candidate(n4, r, c1) ∧
 ∀n∈{n1, n2, n3, n4}∀c≠c1,c2,c3,c4 ¬candidate(n, r, c)
 ⇒
 ∀n≠n1,n2,n3,n4∀c∈{ c1, c2, c3, c4} ¬candidate(n, r, c) }.

And Special Hidden Quads in a row, or Special HQ(row):

∀r∀≠(n1,n2,n3,n4)∀≠(c1,c2,c3,c4)
 { candidate(n1, r, c1) ∧ candidate(n1, r, c2) ∧ ∀c≠c1,c2 ¬candidate(n1, r, c) ∧
 candidate(n2, r, c1) ∧ candidate(n2, r, c3) ∧ ∀c≠c1,c3 ¬candidate(n2, r, c) ∧
 candidate(n3, r, c1) ∧ candidate(n3, r, c4) ∧∀n≠c1,c4 ¬candidate(n3, r, c) ∧
 candidate(n4, r, c2) ∧ candidate(n4, r, c3) ∧ candidate(n4, r, c4) ∧

 ∧ ∀c≠c2,c3,c4 ¬candidate(n4, r, c)

8. Subset rules in a general CSP 217

 ⇒
 ∀n≠n1,n2,n3,n4∀c∈{ c1, c2, c3, c4} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Cyclic and Special Quads of the general
definition give when applied to CSP variables Xrn1, Xrn2, Xrn3 and Xrn4, with
transversal sets defined by CSP variables (considered as constraints) Xrc1, Xrc2,
Xrc3 and Xrc4.

8.4.4. Super Hidden Quads in Sudoku (Jellyfish)

Finally, there remains to consider a rule that should be called Cyclic Super
Hidden Quads in rows, or SHQ(row), obtained from Cyclic Hidden Quads in a row
by permuting the words “row” and “number”, according to meta-theorem 4.2. Let us
first do this formally, i.e. by applying the Srn transform to HQ(row) = Scn(NQ(row)):

∀n∀≠(r1,r2,r3,r4)∀≠(c1,c2,c3,c4)
 { candidate(n, r1, c1) ∧ candidate(n, r1, c2) ∧
 candidate(n, r2, c2) ∧ candidate(n, r2, c3) ∧
 candidate(n, r3, c3) ∧ candidate(n, r3, c4) ∧
 candidate(n, r4, c4) ∧ candidate(n, r4, c1) ∧
 ∀r∈{r1, r2, r3, r4}∀c≠c1,c2,c3,c4 ¬candidate(n, r, c)
 ⇒
 ∀r≠r1,r2,r3,r4∀c∈{c1, c2, c3, c4} ¬candidate(n, r, c) }.

Exercise: show that this is exactly what Cyclic Quads of the general definition
give when applied to CSP variables Xr1n, Xr2n, Xr3n and Xr4n, with transversal sets
defined by CSP variables (considered as constraints) Xc1n, Xc2n, Xc3n and Xc4n.

In the same way as in the Triplets case, we can clarify this rule by temporarily
forgetting part of the conditions: if there is a number n and there are four different
rows r1, r2 , r3 and r4 and four different columns c1, c2 , c3 and c4, such that for each
of the four rows the instance of number n that must be somewhere in each of these
rows can actually only be in either of the four columns, then in any of the four
columns eliminate n from the candidates for any row different from the given four.

This is the usual formulation of the rule for Jellyfish in rows. The part we have
temporarily discarded corresponds to the conditions we have added to
Comprehensive Cyclic Naked Quads in a row; it is just what prevents Jellyfish in
rows from reducing to X-Wing in rows or to Swordfish in rows. Finally, we have
not only shown that the familiar Jellyfish in rows is the supersymmetric version of
Cyclic Naked Quads in a row, but we have also found the proper way to write this
rule according to our guiding principles, in as comprehensive a way as possible.

We leave it to the reader to write the rule for Special Super Hidden Quads or
Special Jellyfish.

218 Pattern-Based Constraint Satisfaction and Logic Puzzles

8.5. Relations between Naked, Hidden and Super Hidden Subsets in Sudoku

The so-called “fishy patterns” (X-Wing, Swordfish, Jellyfish, …) are very
popular in the Sudoku micro-world, even the non-existent ones (such as Squirmbag,
a would be Super Hidden Quintuplets in our vocabulary) and there are many very
specific extensions of these patterns (such as “finned fish”, “sashimi fish”, … See
also chapter 10 for another kind of extension).

As can be seen by looking at the logical formulæ in the previous sections, a
graph similar to that in Figure 4.2 for Singles would not be enough to describe all
the rules available for Subsets of size greater than one. Moreover, there is a major
difference between Singles and larger Subsets: in the latter, there are different
numbers of quantified variables of different sorts: Numbers, Rows and Columns.
Building on these differences, the question now is, how far can one go in the
iteration of theorem 4.2 and in the definition of Subset rules: Naked, Hidden, Super-
Hidden, Super-Super-Hidden, …?

As for the Naked and Hidden Subsets, a well-known (and obvious) property of
Subsets shows that we have found all of them: for any subset S of Numbers of size p
(1≤p<9), there is a complementary subset Sc of size 9-p (with 1≤9-p<9). And S
forms a Naked Subset of size p on p cells in a row [respectively a column, a block],
if and only if Sc forms a Hidden Subset of size 9-p on the remaining 9-p cells in this
row [resp. this column, this block]. As a result, no Naked or Hidden Subset rule for
subsets of size greater than four is needed. For instance, Naked Quintuplets in a row
is just Hidden Quads in the same row and Hidden Quintuplets in a row is just Naked
Quads in the same row.

What was not known before HLS1, because super-symmetries had not been
explicited, the mythical Super Hidden Quintuplets in a row (alias Squirmbag) is just
Hidden Quads in a column (as shown by Figure 8.1 and the remarks above). This is
a very interesting example of a named thing that had no independent existence.

Indeed, after the previous sections, several natural questions may arise, such as:
– what if, instead of applying symmetry Scn to NP(row), we apply symmetry Srn?
– what if we formulate a rule analogous to X-Wing in rows but in rn-space – i.e.

a rule that should be called Hidden X-Wing in rows or HXW(row) or HSHP(row)?

Do we get new unknown rules? The answer is no; the previous set of rules is
strongly closed under symmetry and supersymmetry. More specifically, the full
story is to be found in Figure 8.1. The first practical consequence of this is that it
exempts us from looking for new types of Subset rules (but see chapter 10 for g-
Subset rules). Checking the assertions of Figure 8.1 is an easy exercise about the Src,
Srn and Scn transforms (one must just be very careful with the indices). As a detailed
proof is available in HLS, we do not reproduce it here.

8. Subset rules in a general CSP 219

Figure 8.1. Sudoku symmetries and supersymmetries (X = Pairs, Triplets or Quads – or
Subsets of size ≤ IP(n/2) for Sudoku on n×n grids)

[Historical note: after the first edition of HLS, we were informed that the idea of
“another view of Fish” (i.e. of X-Wings, Swordfish and Jellyfish) had already been
expressed by “Arcilla” on the late Sudoku Player’s Forum, in the thread “a new (?)
view of fish (naked or hidden)”, November 3rd, 2006. The same thread also shows
that similar ideas had been mentioned even before, still in informal ways or in
programmers jargon (e.g. “the same program can be used to find Naked Subsets and
Fish”). All this was very smart, though it missed the mathematical notions of
symmetry and supersymmetry and the closely related idea (first presented in HLS1)
of introducing the four 2D (rc, rn, cn and bn) spaces and cells as first class concepts,
with their associated representations in an Extended Sudoku Board. As a result, it
did not develop into a global framework and it led neither to the meta-theorems of
chapter 4, nor to the systematic relationships displayed in Figure 8.1 (some of which
are not obvious at all), nor to the idea of hidden chains introduced in HLS1.]

HX(row)

NX(row) SHX(row)

NX(col) SHX(col)

Scn Srn

Srn Scn

<
⎯
> c

Src Src

Src

HX(col)

Srn

Scn

220 Pattern-Based Constraint Satisfaction and Logic Puzzles

8.6. Subset resolution theories in a general CSP; confluence

8.6.1. Definition of the Subset resolution theories

The principle of the definitions for Pairs, Triplets and Quads can easily be
extended to larger Subsets, although, as we mentioned above, the conditions for
non-degeneracy may be tedious to write explicitly. Given a non-degenerated Subset
pattern, we define its size to be the number of CSP variables (or transversal sets) in
its definition: Pairs have size 2, Triplets size 3, Quads size 4, … As should now be
expected from what was done with our previous families of rules, we can define an
increasing sequence of resolution theories.

Definition: In any CSP, the Subset resolution theories are defined as follows:
– S0 = BRT(CSP),
– S1 = W1,
– S2 = S1 ∪ {rules for non degenerated Pairs},
– S3 = S2 ∪ {rules for non degenerated Triplets},
– ….
– Sn+1 = Sn ∪ {rules for non degenerated Subsets of size n+1},
– S∞ = ∪n≥0 Sn.

Notice that, in this hierarchy of resolution theories, we put W1 before Pairs; this
is not only a matter of convention: as already noticed, whips of length 1 (when they
exist) are the most basic pattern after Singles and it would not make much sense to
define any resolution theory, apart from BRT(CSP), without them.

In 9×9 Sudoku or Latin Squares, S∞ = S4. More generally, in n×n Sudoku or
Latin Squares, S∞ = Sp, with p = IP(n/2) (where “IP” means the integer part).

Theorem 8.4: in any CSP, each of the Sn resolution theories is stable for
confluence; therefore, it has the confluence property.

Proof: let S be an Sp-subset (p≤n), for CSP variables {V1, …, Vp} and transversal
sets (some of the labels below may be missing):
{<V1, v11>, <V2, v21>, …<Vp, vp1>}
….
{<V1, v1p>, <V2, v2p>, …<Vp, vpp>}

If Z is a target for S, it is linked to all the elements in some of these sets. There
may happen two different events:
- if some optional candidate is eliminated from the transversal sets, what remains is
still an Sp-subset and Z is still linked to it via the same transversal set;
- if a mandatory candidate is eliminated from a transversal set, either what remains
is still an Sp-subset (due to the presence of the remaining optional candidates) or

8. Subset rules in a general CSP 221

what remains can be split into two (or more) smaller Subsets or Singles and Z is still
linked to one of them.
In any case, Z can still be eliminated by rules in Sn.

8.6.2. Complexity considerations (in Sudoku)

When we increase the size p of Subsets (p goes up from 2 to 4 as we pass from
Pairs to Quads, via Triplets), the number of possible cases in each row (forgetting
the Special Quads) increases from (9×8)2 = 5184 to (9×8×7×6)2 = 9,144,576 (4
different columns and 4 different numbers). Multiplying this by 9 rows and by 8
patterns (3 Naked, 3 Hidden and 2 Super-Hidden), i.e. by 72, gives an idea of the
increase in complexity (from 373,248 to 658,409,472). These figures can be
significantly improved by ordering the columns and/or numbers (and this is essential
for an effective implementation), but the relative order of magnitude remains the
same. Programming Triplets and Quads as rules in a knowledge-based system is a
very good exercise for AI students: they can see the importance of having a precise
logical formulation before they start to code them in the specific formalism of their
inference engine, they can be shown different techniques of rule optimisation and
finally they can see at work Newell’s famous distinction [Newell 1982] between the
“knowledge level” (here a non-ambiguous English or MS-FOL formulation) and the
“symbol level” (the rule in the syntax of the inference engine, where different
logical conditions may have to be ordered, control facts may have to be added,
different saliences, i.e. priorities of rules, may have to be introduced, ….).

8.6.3. Definition of the Wn+Sn, gWn+Sn, Bn+Sn and gBn+Sn theories and ratings

Combining whips and Subsets, one can define the increasing sequence (Wn+Sn,
n≥0) of resolution theories:

– W0+S0 = BRT(CSP),
– W1+S1 = W1,
– …
– W n+1+Sn+1 = Wn+Sn ∪ Wn+1 ∪ Sn+1,
– …
– W∞+S∞ = ∪n≥0 Wn+Sn.

Combining g-whips and Subsets, one can define in similar ways the increasing
sequences (gWn+Sn, n≥0), (Bn+Sn, n≥0) and (gBn+Sn, n≥0) of resolution theories.
And with each of these sequences, one can associate a rating. As a direct corollary
to theorems 5.6 and 7.4 and to lemma 4.1, we get:

Theorem 8.5: in any CSP, each of the Bn+Sn and gBn+Sn resolution theories is
stable for confluence; therefore, it has the confluence property.

222 Pattern-Based Constraint Satisfaction and Logic Puzzles

8.7. Whip subsumption results for Subset rules

After the previous definitions, this section describes the main relationships
between Subsets and whips. In the Sudoku case, additional subsumption results can
be found on our website for extended Subset patterns (“finned fish” and “sashimi
fish”). In our opinion, this is the main section of this chapter; it establishes a strong
link between the length of a whip or braid and the size of a Subset. For consistency
reasons, patterns that can be seen either as whips [resp. g-whips, braids or g-braids]
or as Subsets must be assigned the same W [resp. gW, B, gB] and S ratings.
Moreover, the results proven here justify the a priori combinations (with the same
n) of the Sn and Wn, gWn, Bn or gBn theories used in the definitions in section 8.6.3.

8.7.1. Subsumption and almost-subsumption theorems in a general CSP

8.7.1.1. Pairs

Theorem 8.6: S2 ⊆ W2 (whips of length 2 subsume all the Pairs).

Proof: keeping the notations of theorem 8.1 and considering a target Z of the
Pair that is linked to the first transversal set, the following whip eliminates Z:
whip[2]: V1{v11 v12} – V2{v22 .} ⇒ ¬candidate(Z).

The converse of the above theorem is false: W2 ⊄ S2. For a deep understanding
of whips, this is as interesting as the theorem itself. The Sudoku example in section
8.8.1 has W(P) = 2 but S(P) = 3. It also has three very instructive examples of
whip[2] that cannot be considered as Pairs (or even as g-Pairs, see section 10.1.6.1.).

8.7.1.2. Triplets

Theorem 8.7: W3 subsumes “almost all” the Triplets.

Proof: keeping the notations of theorem 8.2 and considering a target Z of the
Triplet that is linked to the first transversal set (the three of them play similar roles),
the following whip eliminates Z in any CSP:
whip[3]: V1{v11 v12} – V2{v22 v23} – V3{v33 .} ⇒ ¬candidate(Z),
provided that <V1, v13> is not a candidate for V1.
The optional candidates of the Triplet appear in the whip as z- or t- candidates.

Considering that, in the above situation, the three CSP variables play
symmetrical roles, there is only one case of a Triplet elimination that cannot be
replaced by a whip[3] elimination. It occurs when the optional candidates for
variables V1, V2 and V3 in the transversal set to which the target is S3-linked
correspond to existing labels and are all effectively present in the resolution state.

8. Subset rules in a general CSP 223

This theorem is illustrated by the same Sudoku example as above (in section
8.8.1), whereas a Sudoku example of non-subsumption is given in section 8.8.2; it
even shows that S3 ⊄ B∞.

Replacing whips by braids would not change the above results.

8.7.1.3. Quads

Theorem 8.8: W4 subsumes “almost all” the Cyclic Quads.

Keeping the notations of theorem 8.3, the following whip eliminates a target Z
of the Cyclic Quad in any CSP:
whip[4]: V1{v11 v12} – V2{v22 v23} – V3{v33 v34} – V4{v41 .} ⇒ ¬candidate(Z),
provided that <V1, v13> and <V1, v14> (if they exist) are not candidates for V1 and
<V2, v23> (if it exists) is not a candidate for V2.
The optional candidates of the Quad appear in the whip as z- or t- candidates.

An exceptional example of non-subsumption for a Naked Quad elimination is
given in section 8.8.3.

Theorem 8.9: B4 subsumes all the Special Quads.

Keeping the notations of theorem 8.3, let Z be a target of the Special Quad:
- if Z is linked to the first transversal set, the following braid eliminates Z:
braid[4]: V1{v11 v12} – V2{v21 v23} – V3{v31 v34} – V4{v44 .} ⇒ ¬candidate(Z),
in which the first three left-linking candidates are linked to Z;
- if Z is linked to another transversal set, say the second, the following whip
eliminates Z:
whip[4]: V1{v12 v11} – V2{v21 v23} – V4{v43 v44} – V3{v34 .} ⇒ ¬candidate(Z),
in which candidate <V4, v42> appears as a z candidate for the third CSP variable.

8.7.2. Statistical almost-subsumption results in Sudoku

The theorems in the previous subsection show that, for n ≤ 4, “almost all” of the
eliminations done by Subsets can be done by whips or braids. Can this “almost all”,
until now only specified by logical conditions, be given any numerical meaning?
One has W+S(P) ≤ W(P) for any instance P and the question can be reformulated as:
how frequently can the two ratings be different? Notice that this is not exactly an
answer to our initial question, because equality of the ratings does not mean that the
same eliminations were done; another resolution path may have been followed.
Anyway, experiments with the first 10,000 random minimal puzzles in the
Sudogen0 collection show that the W+S and the W ratings differ in only 8 cases:
either non-subsumption cases are statistically very rare (as suggested by the above
“almost subsumption” theorems) or they are well compensated by other
eliminations.

224 Pattern-Based Constraint Satisfaction and Logic Puzzles

8.7.3. Comparison of the resolution power of whips and Subsets of same length

Subsets are “almost” subsumed by whips of same length; but is there any
reciprocal almost subsumption, so that both would have approximately the same
resolution power? The answer is negative. The classification results in Table 8.1
show that, even with W1 included in all the Sn theories, Subsets have a very weak
resolution power compared to whips. The W line comes from the “ctr-bias” column
of Table 6.4; the S line is based on a series of 275,867 puzzles from the controlled-
bias generator. Only the part of the Table in bold is meaningful for this comparison.

rating → 0 (BRT) 1 (S1=W1) 2 3 4 4<n<∞

S 35.08% 9.82% 5.44% 0.36% 0.011% 0%

W 35.08% 9.82% 13.05% 20.03% 17.37% qsp 100%

Table 8.1: non-cumulative S and W distributions for the controlled-bias generator

One way of understanding these results is that the definition of Subsets is much
more restrictive than the definition of whips of same size. In Subsets, transversal
sets are defined by a single constraint. In whips, the fact of being linked to the target
or to a given previous right-linking candidate plays a role very similar to each of
these transversal sets. But being linked to a candidate is much less restrictive than
being linked to it via a pre-assigned constraint. As shown by the almost subsumption
results, the few Subset cases not covered by whips because of the restrictions on
them related to sequentiality are too rarely met in practice to be able to compensate
for this.

8.8. Subsumption and non-subsumption examples from Sudoku

This final section illustrates both subsumption and non-subsumption cases. It
also shows concretely how Super Hidden Subsets can look like Naked ones in the
appropriate 2D space.

8.8.1. W2 ⊄ S2 ; also an example of Swordfish subsumption by a whip[3]

Let us first prove that W2 ⊄ S2. For the puzzle P in Figure 8.2 (Royle17#18966),
we shall show that W(P) = 2 and S(P) = 3.

After an initial sequence of 36 Hidden Singles, leading to the puzzle in the
middle of Figure 8.2, we consider two resolution paths.

8. Subset rules in a general CSP 225

 5 4 5 1 4 8 3 6 7 5 1 4 2 8 9 3 6
 3 8 6 1 3 5 8 4 6 9 2 1 3 5 8 7 4
 1 4 8 3 6 5 1 4 8 3 7 6 9 5 2 1
3 8 7 3 5 6 8 4 7 1 3 2 5 6 8 4 7 1 9
 6 5 8 6 3 1 4 5 8 6 7 3 9 1 4 5 2
 2 1 4 2 5 6 8 3 9 1 4 2 5 7 6 8 3
 5 6 4 3 5 6 4 8 2 3 9 5 7 6 1 4 8
1 8 3 1 8 3 6 5 1 7 8 9 4 2 3 6 5
 5 6 8 3 7 5 4 6 8 1 3 2 9 7

Figure 8.2. Puzzle Royle17#18966: 1) original, 2) after initial Singles, 3) solution

In the first path, using only the Subset theories, the simplest rule applicable is a
Swordfish in columns (Figure 8.3); it allows four eliminations; after three have been
done, Singles and ECP are enough to solve the puzzle, showing that S(P) = 3.

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 S	 *****	
swordfish-‐in-‐columns:	 n7{c2	 c4	 c8}{r2	 r3	 r8}	 ==>	 r3c6	 ≠	 7,	 r8c5	 ≠	 7,	 r8c6	 ≠	 7	 	
	 singles	 to	 the	 end	

In the second path, using only the whip theories, the simplest applicable rules are
three very instructive cases of whip[2] that cannot be considered as Pairs [or even
as g-Pairs (see 10.1.6.1)], leading to eliminations unrelated to the above Swordfish;
these are enough to solve the puzzle with Singles and ECP, showing that W(P) = 2.

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 *****	
whip[2]:	 r1n7{c1	 c5}	 –	 r5n7{c5	 .}	 ==>	 r2c3	 ≠	 7	
whip[2]:	 r1n7{c5	 c1}	 –	 r6n7{c1	 .}	 ==>	 r3c6	 ≠	 7	
whip[2]:	 b4n7{r5c3	 r6c1}	 –	 r1n7{c1	 .}	 ==>	 r5c5	 ≠	 7	
singles	 to	 the	 end	

Now, forgetting the simple whip[2] eliminations, we can also use this example to
show how a Swordfish looks like in the proper 2D space. Spotting this Swordfish in
the standard representation (upper part of Figure 8.3) may be difficult because it
seems to be very degenerated (three of the nine rc-cells on which it lies are even
decided). However, in the cn-representation (lower part of Figure 8.3), it looks like a
very incomplete Naked-Triplets, but still a non-degenerated one. Indeed, it is a
hidden xy-chain[3] (defined in HLS1 as a kind of bivalue-chain[3], but in rn- instead
of rc- space, and therefore a whip[3]).

Exercise: based on the proof of theorem 8.7, write the four whips[3] allowing the
eliminations of the four Swordfish targets.

226 Pattern-Based Constraint Satisfaction and Logic Puzzles

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
 n2

n7 n9 n5 n1 n4

 n2

n7 n9
n8

 n2

 n9 n3 n6 r1

r2 n6
 n2

n7 n9

 n2

n7 n9
n1 n3 n5 n8

 n2

n7 n9
n4 r2

r3 n4 n8 n3

n7 n9 n6

 n2

n7 n9
n5

 n2

n7 n9
n1 r3

r4 n3
 n2

 n9

n5 n6 n8 n4 n7 n1
 n2

 n9

r4

r5 n8 n6
 n2

n7 n9

n3

n7 n9

n1 n4 n5
 n2

 n9

r5

r6

n7 n9 n1 n4 n2 n5

n7 n9
n6 n8 n3 r6

r7
 n2

n7 n9 n3

 n2

n7 n9
n5

n1 n2

n7 n9
n6

n1 n2

 n9 n4 n8 r7

r8 n1
 n2
n4
n7 n9

n8

n7 n9

 n2
n4
n7 n9

 n2

n7 n9

n3 n6 n5 r8

r9 n5
 n2
n4
 n9

n6 n8
n1 n2
n4
 n9

n3
n1 n2

 n9

 n2

 n9

n7 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

n1 r8 r6 r1 r2

r7 r9
r5

r7 r9 r4 r3 n1

n2
r1

r7

 r2
r4

 r8

 r2
 r5

r7
r6

r1

r7 r8 r9

 r3

 r8

r1

r7 r9
 r2 r3

 r9

r4 r5

n2

n3 r4 r7 r3 r5 r2 r9 r8 r1 r6 n3

n4 r3

 r8 r9
r6 r1

 r8 r9
r4 r5 r7 r2 n4

n5 r9 r1 r4 r7 r6 r2 r3 r5 r8 n5

n6 r2 r5 r9 r4 r3 r7 r6 r8 r1 n6

n7
r1
 r6
r7

 r2

 r8

 r2
 r5

r7

 r3

 r8
r1

 r5
r7 r8

 r3
 r6

 r8
r4

 r2 r3

r9 n7

n8 r5 r3 r8 r9 r4 r1 r2 r6 r7 n8

n9
r1
 r6
r7

 r2
r4
 r8 r9

 r2
 r5

r7

 r3

 r8
r1

 r5
r7 r8 r9

 r3
 r6

 r8

r1

r7 r9
 r2 r3

 r9

r4 r5

n9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 8.3. Puzzle Royle17#18966, seen in rc and cn spaces, after initial Singles have been
applied. The four eliminations allowed by the Swordfish (in grey cells) are underlined.

8. Subset rules in a general CSP 227

8.8.2. S3 ⊄ B∞ : a Swordfish not subsumed by whips or braids

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1

n4 n5 n6
n7 n8

n4 n6
n7 n8

n1

 n5 n6
n7 n8

 n5
n7 n8 n9

n2

 n6
 n8 n9

 n6
n7 n8 n9

n3 r1

r2
 n3
 n5 n6
n7 n8

 n3
 n6
n7 n8

 n3
 n5
n7 n9

 n5 n6
n7 n8

n1
 n3
 n5 n6
 n8 n9

 n2
 n6
 n8 n9

n4
 n2
 n6
n7 n9

r2

r3 n2
 n3
 n6
n7 n8

 n3

n7 n9
n4

 n3

n7 n8 n9

 n3
 n6
 n8 n9

n5
n1
 n6
n7 n8 n9

n1
 n6
n7 n9

r3

r4
 n3
n4

n1 n2 n3
n4

n6

n1 n2
 n5

 n2
n4 n5
 n9

n7
n1 n3

 n9

n1 n3
 n5
 n9

n8 r4

r5
 n3
n4
n7 n8

n5
 n3
n4
n7

n1
 n6
 n8

n4
 n8 n9

n4 n6
 n8 n9

n1 n3
 n6
 n9

n2
n1
 n6
n7 n9

r5

r6 n9
n1 n2

n7 n8

 n2

n7
n3

 n2
 n5
 n8

 n5 n6
 n8

n4
n1
 n5 n6
n7

n1
 n6
n7

r6

r7
 n3
n4 n6
n7

 n2 n3
n4 n6
n7

n8
 n2

n7

 n2 n3
n4
n7

n1
 n2 n3
 n6
 n9

 n3
 n6
 n9

n5 r7

r8
 n3
n4 n5
n7

n9
 n2 n3
n4 n5
n7

 n2
 n5
n7 n8

n6
 n3
n4 n5
 n8

n1 n2 n3

 n8

n1 n3

 n8

n1 n2
n4

r8

r9 n1
 n2 n3
n4 n6

 n2 n3
n4 n5

n9
 n2 n3
n4 n5
 n8

 n3
n4 n5
 n8

n7
 n3
 n6
 n8

 n2
n4 n6

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

n1 r9

r4 r6

r1

r4 r5

r2 r7

r4 r5
 r8

 r3
r4 r6
 r8

 r3
 r5 r6
 r8

n1

n2 r3

r4 r6
r7 r9

 r6
r7 r9

r4
r7 r8

r4 r6
r7 r9

r1
 r2

r7 r8

r5
 r2

 r8 r9

n2

n3
 r2
r4 r5
r7 r8

 r2 r3
r4
r7 r9

 r2 r3
 r5
 r8 r9

r6
 r3

r7 r9

 r2 r3

 r8 r9

r4 r5
r7 r8

r4
r7 r8 r9

r1 n3

n4
r1
r4 r5
r7 r8

r1
r4
r7 r9

 r5
 r8 r9

r3

r4 r5
r7 r9

 r5
 r8 r9

r6 r2

 r8 r9

n4

n5
r1 r2

 r8

r5
 r2

 r8 r9

r1 r2
r4
 r8

r1
r4
r7 r9

 r2
 r6
 r8 r9

r3

r4 r6

r7 n5

n6
r1 r2

r7

r1 r2 r3

r7 r9
r4

r1 r2
r4

r8

 r2 r3
 r5 r6

r1 r2
 r5
r7

r1 r3
 r6
r7

 r2 r3
 r5 r6
 r9

n6

n7
r1 r2
 r5
r7 r8

r1 r2 r3
 r6
r7

 r2 r3
 r5 r6
 r8

r1 r2

r7 r8

r1 r3

r7
r4 r9

r1 r3
 r6

 r2 r3
 r5 r6

n7

n8
r1 r2
 r5

r1 r2 r3
 r6

r7

r1 r2
 r5
 r8

r1 r3
 r5 r6
 r9

 r2 r3
 r5 r6
 r8 r9

r1 r2

 r8

r1 r3

 r8 r9
r4 n8

n9 r6 r8
 r2 r3

r9

r1 r3
r4 r5

 r2 r3
 r5

r1 r2
r4 r5
r7

r1 r3
r4
r7

 r2 r3
 r5

n9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 8.4. Two Swordfish in columns at the same time, in rc and cn representations

228 Pattern-Based Constraint Satisfaction and Logic Puzzles

We have already met in section 7.7.3 (Figure 7.3, reproduced as Figure 8.5) the
puzzle we shall now use to illustrate a case of non-subsumption of a Swordfish in
columns by whips. We already know from section 7.7.3 that this puzzle cannot be
solved by braids of any length, let alone by whips. However, it has a resolution path
using only Swordfish (besides rules in BSRT), which proves that at least one of the
Swordfish eliminations cannot be replaced by a whip or a braid elimination.

 1 2 3 6 4 1 5 9 2 8 7 3
 1 4 8 7 5 6 1 3 2 4 9

2 4 5 2 3 9 4 7 8 5 6 1
 6 7 8 3 1 6 2 4 7 9 5 8
 5 2 7 5 4 1 8 9 3 2 6
9 3 4 9 8 2 3 5 6 4 1 7
 8 1 5 4 2 8 7 3 1 6 9 5
 9 6 5 9 7 8 6 4 1 3 2
1 9 7 1 6 3 9 2 5 7 8 4

Figure 8.5. A puzzle P with W(P)=B(P)=∞ but S(P)=3

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 S	 *****	
24	 givens,	 214	 candidates,	 1289	 csp-‐links	 and	 1289	 links.	 Initial	 density	 =	 1.41	
swordfish-‐in-‐columns:	 n4{c3	 c6	 c9}{r5	 r8	 r9}	 ==>	 r9c5	 ≠	 4,	 r9c2	 ≠	 4,	 r8c1	 ≠	 4,	 r5c5	 ≠	 4,	
r5c1	 ≠	 4	
swordfish-‐in-‐columns:	 n9{c3	 c6	 c9}{r2	 r3	 r5}	 ==>	 r5c7	 ≠	 9,	 r5c5	 ≠	 9	
;;; this swordfish allows three more eliminations, but they are interrupted by singles
singles	 to	 the	 end	

As for the advantages of considering the four 2D spaces, notice that in the upper
part of Figure 8.4 (rc-space at the start of resolution), it is difficult to distinguish the
two Swordfish, because they are in the same columns and they have three rc-cells in
common. In the lower part (cn-space), it is obvious: they lie in different rows (for n).

Exercise: use theorem 8.7 and its proof to show exactly which eliminations done
(or allowed) by the two Swordfish are subsumed by whips and which are not.

As previously shown in section 7.7.3, this puzzle can be solved by g-whips[2],
but this is irrelevant to our present purposes, because these g-whips are unrelated to
the two Swordfish.

8.8.3. A Jellyfish not subsumed by whips but solved by g-whips or (longer) braids

After theorem 8.8, whips subsume most cases of Cyclic Quads. But there are
rare examples in which this is not the case, such as the puzzle in Figure 8.6

8. Subset rules in a general CSP 229

(#017#Mauricio-002#8#1). Not only is there a Quad elimination that cannot be done
by whips or braids of length 4, but also there is no whip of length < 18 that could do
it. We shall also use this puzzle to illustrate the fact that allowing/disallowing one
more resolution rule can occasionally have dramatic effects on the classification of a
puzzle, although the statistical effects seem to be minor.

 4 9 5 7 8 6 3 1 2
 1 3 7 6 5 1 2 8 9 4
 1 2 3 4 5 6 8 1 2 3 9 4 5 6 7
 1 8 9 2 7 3 4 5 6
 2 3 7 8 6 2 3 4 5 1 7 8 9
 4 7 6 1 2 5 4 7 9 6 8 1 2 3
 2 6 4 1 3 5 9 7 8
 3 1 8 7 6 4 9 3 1 8 2 7 6 4 5
 5 8 2 3 9 5 8 6 4 9 2 3 1

Figure 8.6. Puzzle P with W+S(P)=4, B(P) = 10, W(P) >18 and gW(P) = 4

8.8.3.1. Solution with whips and subsets, W+S(P)=4

Let us first find a solution combining whips and Subsets:

*****	 	 SudoRules	 version	 13.7wter2,	 config:	 W+S	 	 *****	
nrc-‐chain[2]:	 c8n5{r4	 r7}	 –	 r8n5{c9	 c5}	 ==>	 r4c5	 ≠	 5	 (a	 special	 case	 of	 whip[2])	
xyz-‐chain[3]:	 r6c4{n9	 n5}	 –	 r5c5{n5	 n4}	 –	 r9c5{n4	 n9}	 ==>	 r4c5	 ≠	 9	 (a	 special	 case	 of	 whip[3])	
naked-‐quads-‐in-‐a-‐block:	 b5{r5c4	 r5c5	 r5c6	 r6c4}{	 n1	 n4	 n5	 n9}	 ==>	 r4c4	 ≠	 4,	 r4c5	 ≠	 4	 	

;;; here , due to the simplest first strategy, the application of Naked Quad is
“interrupted” by the availability of a simpler rule (this could be modified):
whip[1]:	 b4n4{r5c4	 .}	 ==>	 r5c9	 ≠	 4	
;;; now the Quad continues:
naked-‐quads-‐in-‐a-‐block:	 b5{r5c4	 r5c5	 r5c6	 r6c4}{n1	 n4	 n5	 n9}	 ==>	 r4c4	 ≠	 1,	 r4c4	 ≠	 5,	
r4c4	 ≠	 9,	 r4c6	 ≠	 5,	 r4c6	 ≠	 9,	 r6c6	 ≠	 5,	 r6c6	 ≠	 9	
;;; Resolution state RS1

The resolution state RS1 reached at this point is displayed in Figure 8.7; here, we
have artificially isolated the last elimination allowed by this Quad, for later
reference, because the same resolution state will be reached by another resolution
path using only braids.
;;; let us now continue past resolution state RS1:
naked-‐quads-‐in-‐a-‐block:	 b5{r5c4	 r5c5	 r5c6	 r6c4}{n1	 n4	 n5	 n9}	 ==>	 r4c6	 ≠	 1	
hidden-‐single-‐in-‐row	 r4	 ==>	 r4c1	 =	 1	

;;; we now reach a resolution state RS2 (Figure 8.8) in which there is a Jellyfish;
notice that this Jellyfish was already present in resolution state RS1.

230 Pattern-Based Constraint Satisfaction and Logic Puzzles

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
 n3
n4 n5 n6
n7 n8 n9

 n6
n7 n8 n9

n4 n5 n6
 n9

 n2
 n5 n6
n7 n9

 n2
 n5

n7 n8 n9

 n2
 n5 n6
 n8 n9

 n3
n4
 n8 n9

n1

n7 n9

n1 n2 n3
n4
n7 n8 n9

r1

r2
 n3
n4 n5 n6
n7 n8 n9

 n6
n7 n8 n9

n4 n5 n6
 n9

 n2
 n5 n6
n7 n9

n1
 n2

 n5 n6
 n8 n9

 n3
n4
 n8 n9

n7 n9

 n2 n3
n4
n7 n8 n9

r2

r3

n7 n8 n9
n1 n2 n3

n7 n8 n9
n4 n5 n6

n7 n8 n9
r3

r4
n1
 n5 n6
 n8 n9

 n6
 n8 n9

 n5 n6
 n9

n1 n2
n4 n5
n7 n9

 n2 n3
n4
n7 n8

n1 n2 n3
 n5
 n8 n9

 n3
n4
 n9

 n5

 n9

 n3
n4 n5 n6
 n9

r4

r5
n1
 n5 n6
 n9

n2 n3
n1
n4 n5
 n9

n4 n5
 n9

n1
 n5
 n9

n7 n8

(n4)n5n6
 n9

r5

r6

 n5
 n8 n9

n4 n7

 n5
 n9

n6
 n3
 n5
 n8 n9

n1 n2
 n3

 n5
 n9

r6

r7
 n2

n4 n6
n7 n9

 n6
n7 n9

n4 n6
 n9

n1 n2
n4 n5 n6
 n9

 n2 n3
n4 n5
 n9

n1 n2 n3
 n5 n6
 n9

 n8 n9

n1
 n5

n7 n9

n1
 n5

n7 n8 n9
r7

r8
 n2

 n9

n3 n1 n8
 n2

 n5
 n9

n7 n6 n4

 n5
 n9

r8

r9

n4 n6
n7 n9

n5 n8
n1
n4 n6
 n9

n4
 n9

n1
 n6
 n9

n2 n3
n1

n7 n9

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 8.7. resolution state RS1: a Naked Quad in block b5 (in grey cells); the nine
candidates eliminated by the Quad just before resolution state RS1 is reached are barred; the

candidate (n4r5c9) eliminated by the whip[1] is between parentheses; the next candidate
(n1r4c6) the Quad could eliminate is underlined; it is the target of no whip or braid.

;;; let us now continue past RS2:
jellyfish-‐in-‐columns:	 n9{c2	 c3	 c7	 c8}{r1	 r2	 r4	 r7}	 ==>	 r1c6	 ≠	 9,	 r1c9	 ≠	 9,	 r2c1	 ≠	 9,	 r2c4	 ≠	 9,	
r2c6	 ≠	 9,	 r2c9	 ≠	 9,	 r4c9	 ≠	 9,	 r7c1	 ≠	 9,	 r7c4	 ≠	 9,	 r7c5	 ≠	 9,	 r7c6	 ≠	 9,	 r7c9	 ≠	 9	
nrc-‐chain[3]:	 c6n9{r5	 r9}	 –	 r9c5{n9	 n4}	 –	 b5n4{r5c5	 r5c4}	 ==>	 r5c4	 ≠	 9	 (a	 special	 kind	 of	 whip[3])	
jellyfish-‐in-‐columns:	 n9{c2	 c3	 c7	 c8}{r1	 r2	 r4	 r7}	 ==>	 r1c4	 ≠	 9,	 r1c5	 ≠	 9	
singles	 to	 the	 end	

8.8.3.2. Using only braids, B(P)=10

Suppose we now want a pure braids solution and we do not allow Subset rules.
Then we get B(P) = 10.

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B	 *****	
26	 givens,	 222	 candidates,	 1621	 csp-‐links	 and	 1621	 links.	 Initial	 density	 =	 1.65	
whip[2]:	 c8n5{r4	 r7}	 –	 r8n5{c9	 .}	 ==>	 r4c5	 ≠	 5	
whip[3]:	 r6c4{n9	 n5}	 –	 r5c5{n5	 n4}	 –	 r9c5{n4	 .}	 ==>	 r4c5	 ≠	 9	

8. Subset rules in a general CSP 231

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
 n3
n4 n5 n6
n7 n8 n9

 n6
n7 n8 n9

n4 n5 n6
 n9

 n2
 n5 n6
n7 n9

 n2
 n5

n7 n8 n9

 n2
 n5 n6
 n8 n9

 n3
n4
 n8 n9

n1

n7 n9

n1 n2 n3
n4
n7 n8 n9

r1

r2
 n3
n4 n5 n6
n7 n8 n9

 n6
n7 n8 n9

n4 n5 n6
 n9

 n2
 n5 n6
n7 n9

n1
 n2

 n5 n6
 n8 n9

 n3
n4
 n8 n9

n7 n9

 n2 n3
n4
n7 n8 n9

r2

r3

n7 n8 n9
n1 n2 n3

n7 n8 n9
n4 n5 n6

n7 n8 n9
r3

r4 n1

 n6
 n8 n9

 n5 n6
 n9

 n2

n7

 n2 n3

n7 n8

 n2 n3

 n8

 n3
n4
 n9

 n5

 n9

 n3
n4 n5 n6
 n9

r4

r5

 n5 n6
 n9

n2 n3
n1
n4 n5
 n9

n4 n5
 n9

n1
 n5
 n9

n7 n8

 n5 n6
 n9

r5

r6

 n5
 n8 n9

n4 n7

 n5
 n9

n6
 n3

 n8
n1 n2

 n3
 n5

 n9
r6

r7
 n2

n4 n6
n7 n9

 n6
n7 n9

n4 n6
 n9

n1 n2
n4 n5 n6
 n9

 n2 n3
n4 n5
 n9

n1 n2 n3
 n5 n6
 n9

 n8 n9

n1
 n5

n7 n9

n1
 n5

n7 n8 n9
r7

r8
 n2

 n9

n3 n1 n8
 n2

 n5
 n9

n7 n6 n4

 n5
 n9

r8

r9

n4 n6
n7 n9

n5 n8
n1
n4 n6
 n9

n4
 n9

n1
 n6
 n9

n2 n3
n1

n7 n9

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 8.8. Resolution state RS2: a Jellyfish not subsumed by whips or g-braids

;;; the following whips[4] replace all but one of the eliminations allowed by the
Naked Quad in the previous resolution path:
whip[4]:	 b5n7{r4c4	 r4c5}	 –	 b5n2{r4c5	 r4c6}	 –	 b5n3{r4c6	 r6c6}	 –	 b5n8{r6c6	 .}	 ==>	 r4c4	 ≠	 1,	
r4c4	 ≠	 4,	 r4c4	 ≠	 5,	 r4c4	 ≠	 9	
whip[4]:	 b5n7{r4c5	 r4c4}	 –	 b5n2{r4c4	 r4c6}	 –	 b5n3{r4c6	 r6c6}	 –	 b5n8{r6c6	 .}	 ==>	 r4c5	 ≠	 4	
whip[1]:	 b4n4{r5c4	 .}	 ==>	 r5c9	 ≠	 4	
whip[4]:	 r6c4{n5	 n9}	 –	 r5c6{n9	 n1}	 –	 r5c4{n1	 n4}	 –	 r5c5{n4	 .}	 ==>	 r4c6	 ≠	 5	
whip[4]:	 r6c4{n9	 n5}	 –	 r5c6{n5	 n1}	 –	 r5c4{n1	 n4}	 –	 r5c5{n4	 .}	 ==>	 r4c6	 ≠	 9	
whip[4]:	 r6c4{n5	 n9}	 –	 r5c6{n9	 n1}	 –	 r5c4{n1	 n4}	 –	 r5c5{n4	 .}	 ==>	 r6c6	 ≠	 5	
whip[4]:	 r6c4{n9	 n5}	 –	 r5c6{n5	 n1}	 –	 r5c4{n1	 n4}	 –	 r5c5{n4	 .}	 ==>	 r6c6	 ≠	 9	

Here, we have reached the same resolution state as RS1. But now, candidate
n1r4c6 (underlined in Figure 8.7), which could be eliminated by the Naked Quad in
the previous resolution path, is the target of no whip or braid; it is a rare case of a
Quad elimination not subsumed by whips, braids, g-whips or g-braids. As a
consequence of this missing elimination, r4c1 = 1 cannot be asserted. Nevertheless,
this does not prevent the Jellyfish from being present (it was already present in state
RS1). But, what is really exceptional here is that none of the candidates that could
be eliminated by the Jellyfish can be eliminated by a whip[4].

232 Pattern-Based Constraint Satisfaction and Logic Puzzles

The resolution path with braids continues, much harder than with Subsets:

whip[5]:	 b4n1{r4c1	 r5c1}	 –	 r5n6{c1	 c9}	 –	 b6n5{r5c9	 r6c9}	 –	 r6c4{n5	 n9}	 –	 r5n9{c4	 .}	 ==>	 r4c1	 ≠	 5	
whip[5]:	 b4n1{r4c1	 r5c1}	 –	 r5n6{c1	 c9}	 –	 b6n9{r5c9	 r6c9}	 –	 r6c4{n9	 n5}	 –	 r5n5{c4	 .}	 ==>	 r4c1	 ≠	 9	
whip[5]:	 r4n1{c1	 c6}	 –	 b5n8{r4c6	 r6c6}	 –	 b5n3{r6c6	 r4c5}	 –	 b5n2{r4c5	 r4c4}	 –	 b5n7{r4c4	 .}	 ==>	
r4c1	 ≠	 8	
whip[6]:	 r8c9{n9	 n5}	 –	 c8n5{r7	 r4}	 –	 c8n9{r4	 r7}	 –	 c7n9{r7	 r4}	 –	 c3n9{r4	 r1}	 –	 c2n9{r2	 .}	 ==>	
r2c9	 ≠	 9	
whip[6]:	 r8c9{n9	 n5}	 –	 c8n5{r7	 r4}	 –	 c8n9{r4	 r7}	 –	 c7n9{r7	 r4}	 –	 c3n9{r4	 r2}	 –	 c2n9{r1	 .}	 ==>	
r1c9	 ≠	 9	
whip[6]:	 r9c5{n9	 n4}	 –	 r5c5{n4	 n5}	 –	 r8n5{c5	 c9}	 –	 b9n9{r8c9	 r9c9}	 –	 b7n9{r9c1	 r8c1}	 –	
r3n9{c1	 .}	 ==>	 r7c5	 ≠	 9	
braid[6]:	 b5n5{r5c4	 r6c4}	 –	 r8c9{n5	 n9}	 –	 r6n9{c4	 c1}	 –	 r3n9{c1	 c5}	 –	 r5c5{n5	 n4}	 –	 r9c5{n9	 .}	
==>	 r5c9	 ≠	 5	
whip[7]:	 r9c5{n4	 n9}	 –	 r5c5{n9	 n5}	 –	 r8n5{c5	 c9}	 –	 r8n9{c9	 c1}	 –	 r3n9{c1	 c9}	 –	 r6n9{c9	 c4}	 –	
r5n9{c4	 .}	 ==>	 r7c5	 ≠	 4	
whip[7]:	 r9c5{n9	 n4}	 –	 r5c5{n4	 n5}	 –	 r8n5{c5	 c9}	 –	 r8n9{c9	 c1}	 –	 r3n9{c1	 c9}	 –	 r6n9{c9	 c4}	 –	
r5n9{c4	 .}	 ==>	 r1c5	 ≠	 9	
braid[7]:	 r2c8{n7	 n9}	 –	 r3c9{n9	 n8}	 –	 c7n8{r2	 r7}	 –	 c7n9{r7	 r4}	 –	 r9n7{c9	 c1}	 –	 r3c1{n7	 n9}	 –	
b4n9{r6c1	 .}	 ==>	 r1c9	 ≠	 7	
braid[7]:	 r2c8{n7	 n9}	 –	 r3c9{n9	 n8}	 –	 c7n8{r2	 r7}	 –	 c7n9{r7	 r4}	 –	 r9n7{c9	 c1}	 –	 r3c1{n7	 n9}	 –	
b4n9{r6c1	 .}	 ==>	 r2c9	 ≠	 7	
braid[7]:	 r2c8{n7	 n9}	 –	 r9n7{c1	 c9}	 –	 r3c9{n7	 n8}	 –	 c7n8{r1	 r7}	 –	 c7n9{r1	 r4}	 –	 r3c1{n7	 n9}	 –	
b4n9{r6c1	 .}	 ==>	 r2c1	 ≠	 7	
braid[7]:	 r6c4{n5	 n9}	 –	 r8c9{n5	 n9}	 –	 r5n9{c4	 c1}	 –	 r3n9{c1	 c5}	 –	 r8n5{c9	 c5}	 –	 r5c5{n5	 n4}	 –	
r9c5{n9	 .}	 ==>	 r6c9	 ≠	 5	
whip[1]:	 b6n5{r4c8	 .}	 ==>	 r4c3	 ≠	 5	
whip[1]:	 c3n5{r1	 .}	 ==>	 r1c1	 ≠	 5,	 r2c1	 ≠	 5	
whip[4]:	 c1n5{r5	 r6}	 –	 r6c4{n5	 n9}	 –	 r5n9{c4	 c9}	 –	 r5n6{c9	 .}	 ==>	 r5c1	 ≠	 1	
hidden-‐single-‐in-‐a-‐block	 ==>	 r4c1	 =	 1	
braid[10]:	 b4n8{r4c2	 r6c1}	 –	 r6n5{c1	 c4}	 –	 c5n3{r4	 r7}	 –	 r6n9{c4	 c9}	 –	 r8c9{n9	 n5}	 –	
c5n5{r8	 r1}	 –	 c5n2{r1	 r8}	 –	 c5n7{r1	 r3}	 –	 r3c1{n7	 n9}	 –	 r8n9{c9	 .}	 ==>	 r4c5	 ≠	 8	
whip[1]:	 c5n8{r1	 .}2	 ==>	 r1c6	 ≠	 8,	 r2c6	 ≠	 8	
whip[7]:	 b2n8{r1c5	 r3c5}	 –	 c1n8{r3	 r6}	 –	 r6n5{c1	 c4}	 –	 r6n9{c4	 c9}	 –	 r3n9{c9	 c1}	 –	 r8n9{c1	 c5}	 –	
r9n9{c6	 .}	 ==>	 r1c2	 ≠	 8	
whip[8]:	 b2n8{r1c5	 r3c5}	 –	 c5n7{r3	 r4}	 –	 c5n3{r4	 r7}	 –	 c5n2{r7	 r8}	 –	 r8c1{n2	 n9}	 –	 r3n9{c1	 c9}	 –	
r6n9{c9	 c4}	 –	 r5n9{c4	 .}	 ==>	 r1c5	 ≠	 5	
braid[5]:	 r6n3{c9	 c6}	 –	 c5n3{r4	 r7}	 –	 r6c4{n9	 n5}	 –	 r8c9{n9	 n5}	 –	 c5n5{r8	 .}	 ==>	 r6c9	 ≠	 9	
singles	 ==>	 r6c9	 =	 3,	 r6c6	 =	 8,	 r4c2	 =	 8	
whip[2]:	 r6n9{c4	 c1}	 –	 b7n9{r9c1	 .}	 ==>	 r7c4	 ≠	 9	
whip[3]:	 r6n9{c4	 c1}	 –	 r8n9{c1	 c9}	 –	 r3n9{c9	 .}	 ==>	 r5c5	 ≠	 9	
whip[3]:	 r9c5{n9	 n4}	 –	 r5c5{n4	 n5}	 –	 r6c4{n5	 .}	 ==>	 r9c4	 ≠	 9	
whip[3]:	 r6n9{c1	 c4}	 –	 r5n9{c4	 c9}	 –	 b9n9{r9c9	 .}	 ==>	 r7c1	 ≠	 9	
whip[4]:	 b4n9{r6c1	 r4c3}	 –	 b6n9{r4c9	 r5c9}	 –	 r8n9{c9	 c5}	 –	 r3n9{c5	 .}	 ==>	 r9c1	 ≠	 9	
whip[3]:	 b7n9{r7c2	 r8c1}	 –	 b4n9{r5c1	 r4c3}	 –	 b6n9{r4c9	 .}	 ==>	 r7c9	 ≠	 9	
whip[4]:	 r9n9{c6	 c9}	 –	 r8n9{c9	 c1}	 –	 r5n9{c1	 c4}	 –	 r6n9{c4	 .}	 ==>	 r7c6	 ≠	 9	
whip[4]:	 b8n9{r9c6	 r8c5}	 –	 r3n9{c5	 c1}	 –	 r6n9{c1	 c4}	 –	 r5n9{c4	 .}	 ==>	 r9c9	 ≠	 9	

8. Subset rules in a general CSP 233

whip[1]:	 r9n9{c5	 .}	 ==>	 r8c5	 ≠	 9	
whip[2]:	 r8n9{c9	 c1}	 –	 b4n9{r5c1	 .}	 ==>	 r4c9	 ≠	 9	
whip[3]:	 r6n9{c4	 c1}	 –	 r3n9{c1	 c9}	 –	 r8n9{c9	 .}	 ==>	 r1c4	 ≠	 9,	 r2c4	 ≠	 9	
whip[1]:	 c4n9{r6	 .}	 ==>	 r5c6	 ≠	 9	
whip[3]:	 r6n9{c1	 c4}	 –	 r5n9{c4	 c9}	 –	 r8n9{c9	 .}	 ==>	 r1c1	 ≠	 9,	 r2c1	 ≠	 9,	 r3c1	 ≠	 9	
whip[3]:	 r8n9{c9	 c1}	 –	 r5n9{c1	 c4}	 –	 r6n9{c4	 .}	 ==>	 r3c9	 ≠	 9	
singles	 to	 the	 end	

8.8.3.3. Using only whips, W(P)>18

Suppose now we wanted a solution with only whips. If a resolution path could
be obtained with whips, some of them would have to be of length > 18, i.e. one has
W(P) > 18. Actually, we did not try longer ones because of memory overflow
problems and we did not insist because it did not seem interesting to go further.

8.8.3.4. Using g-whips, gW(P)=4

If we now use g-whips, we get gW(P) = 4, with a completely different resolution
path (unrelated to the Quads in the first path):

*****	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 *****	
26	 givens,	 222	 candidates	 and	 1621	 nrc-‐links	
whip[2]:	 c8n5{r4	 r7}	 –	 r8n5{c9	 .}	 ==>	 r4c5	 ≠	 5	
whip[3]:	 r6c4{n9	 n5}	 –	 r5c5{n5	 n4}	 –	 r9c5{n4	 .}	 ==>	 r4c5	 ≠	 9	

;;; after this point, the resolution path diverges completely with respect to the
previous ones :
g-‐whip[3]:	 b6n9{r4c7	 r456c9}	 –	 r3n9{c9	 c5}	 –	 r8n9{c5	 .}	 ==>	 r4c1	 ≠	 9	
g-‐whip[3]:	 b4n9{r4c3	 r456c1}	 –	 r3n9{c1	 c5}	 –	 r8n9{c5	 .}	 ==>	 r4c9	 ≠	 9	
g-‐whip[3]:	 b7n9{r7c3	 r789c1}	 –	 r3n9{c1	 c9}	 –	 b9n9{r9c9	 .}	 ==>	 r7c5	 ≠	 9	
g-‐whip[3]:	 b4n9{r6c1	 r4c123}	 –	 b6n9{r4c7	 r456c9}	 –	 b9n9{r9c9	 .}	 ==>	 r7c1	 ≠	 9	
g-‐whip[3]:	 b7n9{r7c3	 r789c1}	 –	 r5n9{c1	 c456}	 –	 r6n9{c6	 .}	 ==>	 r7c9	 ≠	 9	
whip[4]:	 b5n7{r4c4	 r4c5}	 –	 b5n2{r4c5	 r4c6}	 –	 b5n3{r4c6	 r6c6}	 –	 b5n8{r6c6	 .}	 ==>	 r4c4	 ≠	 5,	
r4c4	 ≠	 4,	 r4c4	 ≠	 1,	 r4c4	 ≠	 9	
whip[4]:	 b5n7{r4c5	 r4c4}	 –	 b5n2{r4c4	 r4c6}	 –	 b5n3{r4c6	 r6c6}	 –	 b5n8{r6c6	 .}	 ==>	 r4c5	 ≠	 4	
whip[1]	 :	 r4n4{c9	 .}	 ==>	 r5c9	 ≠	 4	
whip[4]:	 r6c4{n5	 n9}	 –	 r5c6{n9	 n1}	 –	 r5c4{n1	 n4}	 –	 r5c5{n4	 .}	 ==>	 r4c6	 ≠	 5,	 r6c6	 ≠	 5	
whip[4]:	 r6c4{n9	 n5}	 –	 r5c6{n5	 n1}	 –	 r5c4{n1	 n4}	 –	 r5c5{n4	 .}	 ==>	 r4c6	 ≠	 9,	 r6c6	 ≠	 9	
g-‐whip[3]:	 b9n9{r7c7	 r789c9}	 –	 r6n9{c9	 c1}	 –	 b7n9{r9c1	 .}	 ==>	 r7c4	 ≠	 9	
g-‐whip[4]:	 b4n9{r5c1	 r4c123}	 –	 b6n9{r4c7	 r456c9}	 –	 r8n9{c9	 c5}	 –	 r9n9{c6	 .}	 ==>	 r3c1	 ≠	 9	
whip[3]:	 r3n9{c5	 c9}	 –	 r8n9{c9	 c1}	 –	 r6n9{c1	 .}	 ==>	 r5c5	 ≠	 9	
whip[3]:	 r9c5{n9	 n4}	 –	 r5c5{n4	 n5}	 –	 r6c4{n5	 .}	 ==>	 r9c4	 ≠	 9	
whip[4]:	 r9n7{c9	 c1}	 –	 r3c1{n7	 n8}	 –	 r3c9{n8	 n9}	 –	 r2c8{n9	 .}	 ==>	 r2c9	 ≠	 7	
whip[4]:	 r9n7{c9	 c1}	 –	 r3c1{n7	 n8}	 –	 r3c9{n8	 n9}	 –	 r2c8{n9	 .}	 ==>	 r1c9	 ≠	 7	
whip[4]:	 r2c8{n7	 n9}	 –	 r3n9{c9	 c5}	 –	 r3n7{c5	 c9}	 –	 r9n7{c9	 .}	 ==>	 r2c1	 ≠	 7	
whip[4]:	 r8c9{n5	 n9}	 –	 r3n9{c9	 c5}	 –	 r9c5{n9	 n4}	 –	 r5c5{n4	 .}	 ==>	 r8c5	 ≠	 5	
singles	 ==>	 r8c9	 =	 5,	 r4c8	 =	 5	
whip[1]:	 c3n5{r1	 .}	 ==>	 r1c1	 ≠	 5,	 r2c1	 ≠	 5	

234 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[3]:	 r8n9{c1	 c5}	 –	 r9n9{c6	 c9}	 –	 r3n9{c9	 .}	 ==>	 r7c3	 ≠	 9,	 r7c2	 ≠	 9	
whip[1]:	 b7n9{r9c1	 .}	 ==>	 r1c1	 ≠	 9,	 r2c1	 ≠	 9,	 r5c1	 ≠	 9,	 r6c1	 ≠	 9	
whip[1]:	 b4n9{r4c2	 .}	 ==>	 r4c7	 ≠	 9	
whip[1]:	 b6n9{r6c9	 .}	 ==>	 r9c9	 ≠	 9	
whip[1]:	 b9n9{r7c7	 .}	 ==>	 r7c6	 ≠	 9	
whip[1]:	 b6n9{r6c9	 .}	 ==>	 r1c9	 ≠	 9,	 r2c9	 ≠	 9,	 r3c9	 ≠	 9	
singles	 to	 the	 end	

8.9. Subsets in N-Queens

Recalling that, in N-Queens, a label corresponds to a cell, we shall represent
each transversal set in an Sp-subset pattern by p grey cells with the same shade of
grey.

8.9.1. A Pair in 7-Queens with a transversal set not associated with a CSP variable

The instance of 7-Queens in Figure 8.9, with two queens already placed in r2c1
and r6c4 has a Pair for CSP variables Xr4 and Xr7, with transversal sets {r4c5,
r7c2} and {r4c7, r7c7}. These sets are defined as the intersections of the two rows
with respectively a diagonal and a column. The first thus provides an example of a
transversal set not defined via a “transversal” CSP variable.

 c1 c2 c3 c4 c5 c6 c7

r1
° ° ° B

r2 * ° ° ° ° ° °

r3
° ° ° A °

r4 ° ° ° ° °
r5 ° ° ° ° C
r6 ° ° ° * ° ° °

r7 ° ° ° ° °

Figure 8.9. A 7-Queens instance, with a Pair

*****	 Manual	 solution	 *****	
whip[1]:	 r4{c5	 .}	 ⇒	 ¬r3c6	 (A	 eliminated)	
pair:	 {{Xr4,	 Xr7},	 {{r4c5,	 r7c2},	 {r4c7,	 r7c7}}}	 ⇒	 ¬r1c7,	 ¬r5c7	 (B	 and	 C	 eliminated)	

8. Subset rules in a general CSP 235

Notice that A could have been eliminated by the Pair, because it is also linked to
the first transversal set, but the whip[1] is applied before, because it is considered
simpler. Both B and C are linked to the second transversal set.

Remember that the disjointness conditions of the definition bear on the
candidates of the different CSP variables in the current resolution state and not on
the transversal sets, let alone on the global transversal constraints (or transversal
CSP variables) defining them, if any: here r2c7 is common to both constraints.

Finally, notice that, in conformance with the general theory, the Pair can be seen
as a whip[2]:

whip[2]:	 ⇒	 r4{c7	 c5}	 –	 r7{c2	 .}	 ⇒	 ¬r1c7,	 ¬r5c7	

8.9.2. A Pair in 10-Queens with transversal sets defined via transversal variables

 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1
° ° ° ° ° ° * ° ° °

r2
° ° ° ° ° ° ° ° ° *

r3 ° ° ° °
+ ° ° ° °

r4 ° ° * ° ° ° ° ° ° °

r5 + ° ° ° ° ° ° ° °

r6
° ° ° ° ° ° ° * ° °

r7
° °

+ ° ° ° ° ° °

r8 B + ° ° ° ° ° ° °

r9
° ° ° ° ° ° ° ° * °

r10 C ° ° °
+ A ° ° ° °

Figure 8.10. A 10-Queens instance, with a Pair

Consider again the 10-Queens instance in Figure 5.10 (section 5.11.2),
reproduced below as Figure 8.10. Suppose we do not see the second and the third
long distance interaction whips. We can still eliminate B and C, based on Pairs in
rows (CSP variables Xr3, Xr5), in which the transversal sets correspond to the
intersections with columns (“transversal CSP variables” Xc1, Xc6).

236 Pattern-Based Constraint Satisfaction and Logic Puzzles

*****	 Manual	 solution	 *****	
whip[1]:	 r3{c1	 .}	 ⇒	 ¬r10c6	 (A	 eliminated)	
pairs:	 {{Xr3,	 Xr5},	 {c1{r3,	 r5},	 c6{r3,	 r5}}}	 ⇒	 ¬r8c1,	 ¬r10c1	 	 	 (B,	 C	 eliminated)	
single	 in	 r10:	 r10c5;	 single	 in	 r8:	 r8c2;	 single	 in	 r7:	 r7c4;	 single	 in	 r5:	 r5c1;	 single	 in	 r3:	 r3c6	
Solution	 found	 in	 W2.	

8.9.3. Triplets in 9-Queens not subsumed by whip[3]

The instance of 9-Queens in Figure 8.11 has a complete Triplet (three candidates
for the three CSP variables, i.e. all the optional candidates are present). The (unique)
elimination (A) allowed by the Triplet cannot be replaced by a whip[3].

Here, the method is used to provide a simple proof that this instance has no
solution.

*****	 Manual	 solution	 *****	
triplets:	 {{Xr1,	 Xr3,	 Xr7},	 {c1{r1,	 r3,	 r7},	 c5{r1,	 r3,	 r7},	 c7{r1,	 r3,	 r7}}}	 ⇒	 ¬r6c1	 (A	 eliminated)	
whip[3]:	 r6{c2	 c8}	 –	 r7{c7	 c5}	 –	 r3{c5	 .}	 	 ⇒	 ¬r8c2	 (B	 eliminated)	
single	 in	 r8	 ⇒	 r8c8	
whip[1]:	 c1{r7	 .}	 	 ⇒	 ¬r7c5	 (C	 eliminated)	
single	 in	 r7	 ⇒	 r7c1	
This	 puzzle	 has	 no	 solution:	 no	 value	 for	 Xc2	

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 ° ° ° ° ° °

r2 ° ° * ° ° ° ° ° °

r3 ° ° ° ° ° °

r4
° ° ° ° ° ° ° ° *

r5
° ° ° * ° ° ° ° °

r6 A ° ° ° ° ° °

r7 + ° ° °
C ° ° °

r8
°

B ° ° ° ° °
+ °

r9
° ° ° ° ° * ° ° °

Figure 8.11. A 9-Queens instance, with a complete Triplet

09. Reversible-Sp-chains, Sp-whips and Sp-braids

In this chapter, we define more complex types of chains than the whips, g-whips
and corresponding braids introduced until now8. At least for the Sudoku CSP, this
entails that we are dealing with exceptional instances, either because they cannot be
solved by the previous patterns or because the new ones give them a smaller rating.

The main idea is that there are patterns that can be considered as elementary or
“atomic” and there are ways to combine them into more complex ones. Until now,
typical “atomic” patterns have been single candidates in chapter 5 and g-candidates
in chapter 7. And the typical way of combining them has been to assemble them into
chains, whips, g-whips, braids and g-braids via what we shall now call the “zt-ing
principle”: in the context of these chains, i.e. “modulo the target (z) and the previous
right-linking candidates (t)”, they appear as single candidates or as g-candidates.

We shall now show that this principle can be extended to the Sp-subset patterns
of chapter 8, more precisely: given any Subset resolution theory Sp (0≤p≤∞) for any
CSP, one can define Sp-whips and Sp-braids as generalised whips or braids that
accept patterns from this family of rules (i.e. Sp’-subsets for any p’≤p), in addition to
candidates and g-candidates, for their right-linking elements – whereas their left-
linking elements remain mere candidates, as in the case of whips and g-whips. In a
sense, allowing the inclusion of such patterns introduces a restricted kind of look-
ahead with respect to the original non-anticipating (no look-ahead) whips and g-
whips, because each Sp’-subset is inserted into the chain as a whole and it increases
its length by p’ (its size) instead of 1; but this form of look-ahead is strictly
controlled by the p parameter and by the very specific type of pattern the Sp’-subsets
are.

If we consider that, in the context of a whip or a g-whip, the left-linking
candidates have negative valence and the right-linking candidates or g-candidates
have positive valence, then in the context of the new Sp-whips and Sp-braids, the
right-linking Sp-subsets have positive valence, in the sense that, if the target was
True in some resolution state RS, there would be some posterior resolution state in
which they would appear as autonomous Sp-subsets.

8 In the Sudoku context, we first introduced these extended whips and braids (with a different
terminology) in the “Fully Supersymmetric Chains” thread of the late Sudoku Player’s Forum
(p. 14, October 17th, 2008).

238 Pattern-Based Constraint Satisfaction and Logic Puzzles

In the next chapters, we shall see that one can go still further, but we think the
intermediate step developed here is sufficiently interesting in its own. Moreover, it
will be easier to justify certain choices we shall have to make later, after we have
analysed the simpler case of Sp-whips (simpler mainly because, contrary to whips or
braids, the Sp-subset patterns can be defined without any reference to their target).

Everything goes for Sp-whips as for g-whips (except that a few additional
technicalities have to be faced). The main point to be noticed is that, when it comes
to defining the concepts of Sp-links and Sp-compatibility, we always consider the Sp-
labels underlying the Sp-subsets instead of the Sp-subsets themselves, in exactly the
same way as we considered the full g-labels underlying the g-candidates when we
defined g-links. The main reason for this choice is the same as that for g-links: we
want all the notions related to linking and compatibility to be purely structural, i.e.
we do not want them to depend on any particular resolution state; this will be
essential for the confluence property of Sp-braid resolution theories (in section 9.4)
and for the “T&E(Sp) vs Sp-braids” theorem (in section 9.5). But there are also
important computational benefits in doing so (such as the possibility of pre-
computing all the Sp-labels and Sp-links – but we shall not dwell on implementation
matters here).

9.1. Sp-links; Sp-subsets modulo other Subsets; Sp-regular sequences

9.1.1. Sp-links, Sp-compatibility

Definition: a label l is compatible with an Sp-label S if l is not Sp-linked to S (i.e.
if, for each transversal set TS of S, there is at least one label l’ in TS such that l is
not linked to l’).

Definition: a label l is compatible with a set R of labels, g-labels and S-labels if l
is compatible with each element of R (in the senses of “compatible” already defined
separately for labels, g-labels and Sp-labels).

Definitions: a label l is Sp-linked to an Sp-subset S if l is Sp-linked to the Sp-label
underlying S; a label l is compatible with an Sp-subset if l is not Sp-linked to it; a
label l is compatible with a set R of candidates, g-candidates and Subsets if l is
compatible with each element of R (in the senses of “compatible” already defined
separately for candidates, g-candidates and Sp-subsets).

Notice that, in conformance with what we mentioned in the introduction to this
chapter, according to the definition of “Sp-linked to an Sp-subset”, it is not enough
for label l to be linked to all the actual candidates of one of its transversal sets: it
must be linked to all the labels of one of its transversal sets.

9. Reversible-Sp-chains, Sp-whips and Sp-braids 239

9.1.2. Sp-subsets modulo a set of labels, g-labels and S-labels

All our forthcoming definitions (Reversible-Sp-chains, Sp-whips and Sp-braids)
will be based on that of an Sp-subset modulo a set R of labels, g-labels and S-labels;
in practice, R will be either the previous right-linking pattern or the set consisting of
the target plus all the previous right-linking patterns (i.e. candidates, g-candidates
and Sk-subsets).

Definition: in any resolution state of any CSP, given a set R of labels, g-labels
and S-labels [or a set R of candidates, g-candidates and Subsets], a Pair (or S2-
subset) modulo R is an S2-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2},
– TransvSets is composed of the following transversal sets of labels:

{<V1, v11>, <V2, v21>} for constraint c1,
{<V1, v12>, <V2, v22>} for constraint c2,

such that:
– in RS, V1 and V2 are disjoint, i.e. they share no candidate;
– <V1, v11> ≠ <V1, v12> and <V2, v22> ≠ <V2, v21>;
– in RS, V1 has the two mandatory candidates <V1, v11> and <V1, v12>

compatible with R and no other candidate compatible with R;
– in RS, V2 has the two mandatory candidates <V2, v21> and <V2, v22>

compatible with R and no other candidate compatible with R.

Definition: in any resolution state of any CSP, given a set R of labels, g-labels
and S-labels [or a set R of candidates, g-candidates and Subsets], a Triplet (or S3-
subset) modulo R is an S3-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3},
– TransvSets is composed of the following transversal sets of labels:
– {<V1, v11>, (<V2, v21>), <V3, v31>} for constraint c1,
– {<V1, v12>, <V2, v22>, (<V3, v32>)} for constraint c2,
– {(<V1, v13>), <V2, v23>, <V3, v33>} for constraint c3,

such that:
– in RS, V1, V2 and V3 are pairwise disjoint, i.e. no two of these variables share

a candidate;
– <V1, v11> ≠ <V1, v12>, <V2, v22> ≠ <V2, v23> and <V3, v33> ≠ <V3, v31>;
– in RS, V1 has the two mandatory candidates <V1, v11> and <V1, v12>

compatible with R, one optional candidate <V1, v13> compatible with R (supposing
this label exists) and no other candidate compatible with R;

240 Pattern-Based Constraint Satisfaction and Logic Puzzles

– in RS, V2 has the two mandatory candidates <V2, v22> and <V2, v23>
compatible with R, one optional candidate <V2, v21> compatible with R (supposing
this label exists) and no other candidate compatible with R;

– in RS, V3 has the two mandatory candidates <V3, v33> and <V3, v31>
compatible with R, one optional candidate <V3, v32> compatible with R (supposing
this label exists) and no other candidate compatible with R.

We leave it to the reader to write the definitions of Subsets of larger sizes
modulo R (Sp-subsets modulo R). The general idea is that, when one looks in RS at
some Sp-label “modulo R”, i.e. when all the candidates in RS incompatible with R
are “forgotten”, what remains in RS satisfies the conditions of a non degenerated
Subset of size p based on this Sp-label.

Definition: in all the above cases, a target of the Sp-subset modulo R is defined
as a target of the Sp-subset itself (i.e. as a candidate Sp-linked to its underlying Sp-
label). The idea is that, in any context (e.g. in a chain) in which all the elements in R
have positive valence, the Sp-subset itself will have positive valence and any of its
targets will have negative valence.

9.1.3. Sp-regular sequences

As in the case of chains built on mere candidates, it is convenient to introduce an
auxiliary notion before we define Reversible-Sp-chains, Sp-whips and Sp-braids.

Definition: let there be given an integer 1≤p≤∞, an integer m≥1, a sequence (q1,
…, qm) of integers, with 1≤qk≤p for all 1≤k≤m, and let n = ∑1≤k≤m qk; let there also
be given a sequence (W1, …, Wm) of different sets of CSP variables of respective
cardinalities qk and a sequence (V1, …, Vm) of CSP variables such that Vk ∈ Wk for
all 1≤k≤m. We define an Sp-regular sequence of length n associated with (W1, …
Wm) and (V1, … Vm) to be a sequence of length 2m [or 2m-1] (L1, R1, L2, R2, …. Lm,
[Rm]), such that:

– qm=1 and Wm = {Vm};
– for 1≤k≤ m, Lk is a candidate;
– for 1≤k≤ m [or 1≤k<m], Rk is a candidate or a g-candidate if qk=1 and it is a

(non degenerated) Sqk-subset if qk>1;
– for each 1≤k≤m [or 1≤k<m], one has “strong continuity”, “strong g-

continuity” or “strong Sqk-continuity” from Lk to Rk, namely:
- if Rk is a candidate (qk=1 and Wk={Vk}), Lk and Rk have a representative

with Vk: <Vk, lk> and <Vk, rk>,
- if Rk is a g-candidate (qk=1 and Wk={Vk}), Lk is a candidate <Vk, lk> for Vk

and Rk is a g-candidate <Vk, rk> for Vk (rk being its set of values),

9. Reversible-Sp-chains, Sp-whips and Sp-braids 241

- if Rk is an Sqk-subset (qk>1), then Wk is its set of CSP variables and Lk has a
representative <Vk, lk> with Vk.

The Lk’s are called the left-linking candidates of the sequence and the Rk’s the
right-linking objects (or elements or patterns or Subsets).

Remarks:
– Notice the natural expression chosen for Lk to Rk continuity in case Rk is a

Subset.
– The definition of Subsets implies a disjointness condition on the sets of

candidates for the CSP variables inside each Wk, but the present definition puts no a
priori condition on the intersections of different Wk’s. In particular, Wk+i may be a
strict subset of Wk, if the right-linking elements in between give negative valence in
Wk+i to some candidates that had no individual valence assigned in Wk. This is not
considered as an inner loop of the sequence.

Exercise: after reading all this chapter, comment on the condition qm=1 and
show that it entails no restriction in the sequel.

9.2. Reversible-Sp-chains

Reversible-Sp-chains are an extension of g-bivalue chains in which right-linking
candidates may be replaced by g-candidates or Sp’-subsets (p’≤p). [One could
imagine introducing an intermediate, restricted notion, in which g-candidates would
not be not allowed; with the proper definition, extending that of bivalue chains, they
would be reversible and give rise to resolution theories with the confluence
property; but, for the same reasons as invoked in the definition of the Subset
resolution theories, this would not make much sense in practice.]

9.2.1. Definition of Reversible-Sp-chains

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be a target), a
Reversible-Sp-chain of length n (n ≥ 1) built on Z, noted RSpC[n], is an Sp-regular
sequence (L1, R1, L2, R2, …. Lm, Rm) of length n associated with a sequence (W1, …
Wm) of sets of CSP variables and a sequence (V1, … Vm) of CSP variables (with
Vk ∈ Wk for all 1≤k≤m and Wm = {Vm}), such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm, Rm}, nor a
member of any g-candidate in this set, nor equal to any label in the Sqk-label of Rk
when Rk is an Sqk-subset, for any 1≤k<m;

– Z is linked to L1;
– for each 1 < k ≤ m, Lk is linked or g-linked or Sqk-1-linked to Rk-1; this is the

natural way of defining “continuity” from Rk-1 to Lk;

242 Pattern-Based Constraint Satisfaction and Logic Puzzles

– R1 is a candidate or a g-candidate or an Sq1-subset modulo Z: R1 is the only
candidate or g-candidate or is the unique Sq1-subset composed of all the candidates
C for the CSP variables in W1 such that C is compatible with Z;

– for any 1 < k ≤ m, Rk is a candidate or a g-candidate or an Sqk-subset modulo
Rk-1: Rk is the only candidate or g-candidate or (if k≠m) is the unique Sqk-subset
composed of all the candidates C for the CSP variables in Wk such that C is
compatible with Rk-1;

– Z is not a label for Vm;
– Z is linked or g-linked to Rm.

Theorem 9.1 (Reversible-Sp-chain rule for a general CSP): in any resolution
state of any CSP, if Z is the target of a Reversible-Sp-chain, then it can be
eliminated (formally, this rule concludes ¬candidate(Z)).

Proof: if Z was True, then L1 would be eliminated by ECP and R1 would be
asserted by S (if it is a candidate) or it would be a g-candidate or an Sq1-subset; in
any case, L2 would be eliminated by ECP or W1 or Sq1. After iteration: Rm would be
asserted by S or it would be a g-candidate – which would contradict Z being True.

9.2.2. Reversibility of Reversible-Sp-chains in the general CSP

The following theorem justifies the name we have given these chains. Notice
that it does in no way depend on the fact that the transversal sets defining the
Subsets would be defined by “transversal” CSP variables.

Theorem 9.2: a Reversible-Sp-chain is reversible.

Proof: the main point of the proof is the construction of the reversed chain (a
generalisation of the construction for g-bivalue-chains in section 7.2).

This construction can be followed in part using Figure 9.1. This Figure gives a
symbolic representation of the end of a Reversible-S2-chain and the start of the
associated reversed chain. Horizontal solid lines represent CSP variables (both
chains use the same global set of CSP variables); vertical dotted lines represent
transversal sets: on horizontal lines, candidates can only exist at the intersections
with dotted lines (here “horizontal” and “vertical” are in no way related to an
underlying grid on which the CSP would have to be defined). Octagons are
symbolic containers for the candidates in the right-linking S2-subsets (solid lines for
the initial chain, dotted lines for the reversed chain); they also show how CSP
variables are grouped (differently) in each chain to define their respective Subsets.

Given a Reversible-Sp-chain (L1, R1, L2, R2, …. Lm, Rm) of length n built on Z
and associated with the sequence (W1, … Wm) of sets of CSP variables and the
sequence (V1, … Vm) of CSP variables, let us define a reversed Sp-chain of same

9. Reversible-Sp-chains, Sp-whips and Sp-braids 243

length, with the same target Z and associated with a sequence (W’1, …, W’m) of sets
of CSP variables and a sequence (V’1, …, V’m) of CSP variables that are closely
related, but not identical, to the reversed sequences of (W1, …, Wm) and (V1, …,
Vm) respectively, and with a sequence of sizes (q’1, …, q’m) such that its first m-1
elements are those of (q1, …, qm-1) in reversed order and q’m=1. Let L’1 = Rm.

Figure 9.1. A symbolic representation of the end of a Reversible-S2-chain and the start of the
associated reversed chain.

We can now define W’1, V’1, R’1 and L’2, depending on what Rm-1 is:
– if qm-1=1 and Rm-1 is a candidate or a g-candidate and it is linked or g-linked to

only one candidate for Vm (which implies that this candidate can only be Lm), then
let W’1 = {Vm}, V’1 = Vm, q’1=1 and R’1 = Lm (R’1 is a candidate); let L’2 = Rm-1 if
Rm-1 is a candidate and L’2 = any candidate in Rm-1 if Rm-1 is a g-candidate;

– if qm-1=1 and Rm-1 is a candidate or a g-candidate and it is linked or g-linked to
several candidates for Vm (which implies that these candidates can only be elements
of a g-label for Vm, say g), let W’1 = {Vm}, V’1 = Vm, q’1=1 and let R’1 be the subset
of g consisting of these candidates (R’1 is a thus g-candidate); as before, let L’2 =
Rm-1 if Rm-1 is a candidate and L’2 = any candidate in Rm-1 if Rm-1 is a g-candidate;

Vm-1,V’2

L’2

Rm
L’1

Rm-1

R’1
Lm

Vm-2,V’3 Rm-2

R’2
Lm-1

L’3

Vm

244 Pattern-Based Constraint Satisfaction and Logic Puzzles

– if qm-1>1, then Rm-1 is an Sqm-1-subset; let W’1 = Wm-1 ∪ {Vm} − {Vm-1}; let
V’1 = Vm; and let R’1 be the set of all the candidates for variables in W’1. Because
Rm is the only candidate for Vm modulo Rm-1, all the candidates for Vm other than
L’1 = Rm can only be in the transversal sets of Rm-1. Thus, forgetting L’1, R’1
together with the same transversal sets as Rm-1 is an Sqm-1-subset and it has all the
candidates for Vm-1 in Rm-1 as targets (and we take any of these as L’2). As a result,
all the other candidates for Vm-1 (i.e. all those that are compatible with R’1) can only
be in the transversal sets of Rm-2.

We are now in a situation in which L’2 is defined and the above construction can
be iterated, using L’2 instead of L’1, Rm-2 instead of Rm-1, Wm-1 instead of Wm and
Vm-1 instead of Vm (once L’1 was defined, the fact that qm=1, i.e. that Rm was a
candidate or a g-candidate played no role in the above construction).

All this can be iterated until we can define the final W’m ={V’m} with V’m = V1;
L1 or the g-candidate consisting of L1 and the other candidates for V1 linked to Z can
be taken as R’m. qed.

Notice that, in this construction: even though qm=1, one can have q’1≠1; and
even if q1≠1, one always has q’m=1, as in the definition of a Reversible-Sp-chain.

Exercise: check that this reversed chain does satisfy all the conditions in the
definition of a Reversible-Sp-chain.

9.2.3. RSpCn resolution theories and the RSpC ratings

As is now usual after introducing new rules, we can define a new increasing
family of resolution theories. Here, we can do it for each p.

Definition: for each p, 1≤p≤∞, one can define an increasing sequence (RSpCn,
n ≥ 0) of resolution theories:

– RSpC0 = BRT(CSP),
– RSpC1 = RSpC0 ∪ {rules for Reversible-Sp-chains of length 1} = W1,
– RSpC2 = RSpC1 ∪ S2 (if p≥2) ∪ {rules for Reversible-Sp-chains of length 2},
–
– RSpCn = RSpCn-1 ∪ Sn (if p≥n) ∪ {rules for Reversible-Sp-chains of length n},
– RSpC∞ = ∪n≥0 RSpCn.

For p=1, S1Wn = gWn. For p=∞, i.e. for Reversible-Sp-chains built on Subsets of
a priori unrestricted size, we also write RSCn instead of RS∞Cn.

Definition: for any 1≤p≤∞, the RSpC-rating of an instance P, noted RSpC(P), is
the smallest n ≤ ∞ such that P can be solved within RSpCn, i.e. with Resersible Sp-
Chains of total length not greater than n.

9. Reversible-Sp-chains, Sp-whips and Sp-braids 245

Theorem 9.3: all the RSpCn resolution theories (for 1≤p≤∞ and n ≥ 0) are
stable for confluence; therefore, they have the confluence property.

Proof: we leave it as an exercise for the reader. (Using reversibility to propagate
the consequences of value assertions and candidate deletions, it can be obtained via
a drastic simplification of the proof for the Sp-braids case, theorem 9.9.)

9.2.4. Reversible-Subset-chains in Sudoku: grouped ALS chains and AICs

Non Sudoku experts can skip this sub-section or see the classical definitions of
ALS chains (chains of Almost Locked Set) and AICs (Alternating Inference Chains
/ Nice Loops) in the over-abundant Sudoku literature, e.g. at www.sudopedia.org.
Our main purpose here is to notice that the above Reversible-Subset-chains, defined
for any CSP, correspond in Sudoku to these well-known patterns (though the above
presentation provides a very unusual perspective of them).

In Sudoku, if one considers only the Xrc CSP variables, Reversible-Subset-chains
correspond to the classical grouped ALS-chains (“grouped” because we allow g-
candidates as right-linking patterns). The only difference is, we never mention
“Almost Locked Sets” (ALSs) or “Restricted Commons”, we deal only with Subsets
(“Locked Sets”) modulo something.

If one uses all the Xrc, Xrn, Xcn and Xbn CSP variables, Reversible-Subset-chains
correspond to the grouped AICs (Alternating Inference Chains).

[Historical note: what an AIC is has never been very clear in the Sudoku
literature. (In what it differs from “Nice Loops”, apart from being written in a
different notation has never been very clear either; it seems to be more a matter of
competition between different people than anything else). On the one hand, the
definition of AICs is so vague that, transposed into our vocabulary, almost anything
could be used as a right-linking pattern.

On the other hand, i.e. on the concrete side of things, the fact that “Fish” (our
Super-Hidden Subsets) could be included in AICs has been mentioned only long
after we introduced the more general Sp-whips and Sp-braids (in a different
terminology); as the definition of the latter was fully supersymmetric and included
all types of Subsets from the start, there was no need to make a special mention of
Fish Subsets; in particular, all our classification results with Subsets in HLS, or
those with Sp-braids mentioned in section 9.6 below, included Fish.

From an epistemological point of view, it is interesting to explore the reasons of
this late recognition. In our opinion, there are four:

– the various notions involved lacked being formalised;
– in particular, there was an incomplete view of all the logical symmetries;

246 Pattern-Based Constraint Satisfaction and Logic Puzzles

– the notions of an Almost Locked Set and of a Restricted Common, at the basis
of ALS chains, are much more complicated than the notion of a Locked Set modulo
something; they are difficult to deal with; in particular, their correct transposition to
AICs, i.e. their extension to the rn, cn and bn spaces, seems to be difficult to do
without having a complete logical formalisation; they also lead to the introduction of
several levels of “almosting”: AALSs, AAALSs (all of which are taken care of by
the more general zt-ing principle);

– there was a strong insistence on chains having to be “reversible” (without any
definition of this property); even for chains effectively reversible according to our
definition, this blocked any view of them, such as the one exposed here, that would
have allowed to shortcut the notion of a Restricted Common.]

9.3. Sp-whips and Sp-braids

Sp-whips and Sp-braids are an extension of g-whips and g-braids in which Sp’-
subsets (p’≤p) may appear as right-linking patterns. They can also be seen as
extensions of the Reversible-Sp-chains: starting from the same Sp-subset bricks, the
“almosting-principle” used to assemble Reversible-Sp-chains (a principle that only
allows to “forget” candidates linked to the previous right-linking pattern) has to be
replaced by the much more powerful “zt-ing principle” (a principle that allows to
“forget” candidates linked to any of the previous right-linking patterns or to the
target). In this replacement, reversibility is lost, but the most important property,
non-anticipativeness, is preserved (with the above-mentioned remarks on the
restricted form of look-ahead that corresponds to inner Subsets).

9.3.1. Definition of Sp-whips

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be the target),
an Sp-whip of length n (n ≥ 1) built on Z is an Sp-regular sequence (L1, R1, L2, R2,
…. Lm) [notice that there is no Rm] of length n, associated with a sequence (W1, …
Wm) of sets of CSP variables and a sequence (V1, … Vm) of CSP variables (with
Vk ∈ Wk for all 1≤k<m and Wm = {Vm}), such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm} nor a member of
any g-candidate in this set nor equal to any element in the Sqk-label of Rk when Rk is
an Sqk-subset, for any 1≤k≤m;

– L1 is linked to Z;
– for each 1 < k ≤ m, Lk is linked or g-linked or Sqk-1-linked to Rk-1; this is the

natural way of defining “continuity” from Rk-1 to Lk;
– for any 1 ≤ k < m, Rk is a candidate or a g-candidate or an Sqk-subset modulo

Z and all the previous right-linking patterns: either Rk is the only candidate or g-
candidate compatible with Z and with all the Ri with 1≤ i< k, or Rk is the unique

9. Reversible-Sp-chains, Sp-whips and Sp-braids 247

Sqk-subset composed of all the candidates C for some of the CSP variables in Wk
such that C is compatible with Z and with all the Ri with 1≤ i< k;

– Z is not a label for Vm;
– Vm has no candidate compatible with the target and with all the previous right-

linking objects (but Vm has more than one candidate).

Theorem 9.4 (Sp-whip rule for a general CSP): in any resolution state of any
CSP, if Z is a target of an Sp-whip, then it can be eliminated (formally, this rule
concludes ¬candidate(Z)).

Proof: the proof is an easy adaptation of that for g-whips.

If Z was True, all the z-candidates would be eliminated by ECP and, iterating
upwards from k=2: Rk-1 would be asserted by S or it would be a g-candidate or an
Sqk-1-subset; Rk-1 to Lk continuity ensures that Lk would be eliminated by ECP, W1
or Sqk-1; and the t- candidates would be eliminated by these rules. When m-1 is
reached, Rm-1 would be asserted by S or it would be a whip[1] (a g-candidate) or a
Subset with target Lm; finally, there would be no value left for Vm (because Z itself
is not a label for Vm).

9.3.2. Definition of Sp-braids

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be the target),
an Sp-braid of length n (n ≥ 1) built on Z is an Sp-regular sequence (L1, R1, L2, R2,
…. Lm) [notice that there is no Rm] of length n, associated with a sequence (W1, …
Wm) of sets of CSP variables and a sequence (V1, … Vm) of CSP variables (with
Vk ∈ Wk for all 1≤k<m and Wm = {Vm}), such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm} nor a member of
any g-candidate in this set nor equal to any element in the Sqk-label of Rk when Rk is
an Sqk-subset, for any 1≤k≤m;

– L1 is linked to Z;
– for each 1 < k ≤ m, Lk is linked or g-linked or S-linked to Z or to some of the

Ri, i<k; this is the only difference with Sp-whips;
– for any 1 ≤ k < m, Rk is a candidate or a g-candidate or an Sqk-subset modulo

Z and all the previous right-linking patterns: either Rk is the only candidate or g-
candidate compatible with Z and with all the Ri with 1≤ i< k, or Rk is the unique
Sqk-subset composed of all the candidates C for some of the CSP variables in Wk
such that C is compatible with Z and with all the Ri with 1≤ i< k;

– Z is not a label for Vm;
– Vm has no candidate compatible with the target and with all the previous right-

linking objects (but Vm has more than one candidate).

248 Pattern-Based Constraint Satisfaction and Logic Puzzles

Theorem 9.5 (Sp-braid rule for a general CSP): in any resolution state of any
CSP, if Z is a target of an Sp-braid, then it can be eliminated (formally, this rule
concludes ¬candidate(Z)).

Proof: almost the same as in the Sp-whips case. The Z or Ri (i<k) to Lk condition
replacing the Rk-1 to Lk continuity condition allows the same intermediate
conclusion for Lk.

Definition: in any of the above defined Reversible-Sp-chains, Sp-whips [and their
obvious reversible Sp-z-whips specialisation, with no t- candidates (see section
9.3.4)] or Sp-braids, a candidate other than Lk for any of the CSP variables (“global”
variable Vk or inner variables Vk,i if Rk is an inner Subset), is called a t-
[respectively a z-] candidate if it is incompatible with a previous right-linking
pattern [resp. with the target]. Notice that a candidate can be z- and t- at the same
time and that the t- and z- candidates are not considered as being part of the pattern.

9.3.3. Sp-whip and Sp-braid resolution theories; SpW and SpB ratings

In exactly the same way as in the cases of whips, g-whips, braids and g-braids,
one can now, for each p, define an increasing sequence of resolution theories. They
now have two parameters, one (n) for the total length of the chain and one (p) for the
maximum size of its inner Subsets. By convention, p=1 means no Subset, only
candidates and g-candidates.

Definition: for each 1≤p≤∞, one can define an increasing sequence (SpWn, n ≥ 0)
of resolution theories (similar definitions can be given for Sp-braids, merely by
replacing everywhere “whip” by “braid” and “W” by “B”):

– SpW0 = BRT(CSP),
– SpW1 = SpW0 ∪ {rules for Sp-whips of length 1} = W1,
– SpW2 = SpW1 ∪ S2 (if p≥2) ∪ {rules for Sp-whips of length 2},
–
– SpWn = SpWn-1 ∪ Sn (if p≥n) ∪ {rules for Sp-whips of length n},
– SpW∞ = ∪n≥0 SpWn.

For p=1, S1Wn = gWn. For p=∞, i.e. for S-whips built on Subsets of a priori
unrestricted size (but, in practice, p < n), we also write SWn instead of S∞Wn.

Definition: for any 1≤p≤∞, the SpW-rating of an instance P, noted SpW(P), is the
smallest n ≤ ∞ such that P can be solved within SpWn, i.e. by Sp-whips of maximal
total length n. By convention, SpW(P) = ∞ means that P cannot be solved by Sp-
whips of any length; SW(P) = ∞ means that P cannot be solved by S-whips of any
length including Subsets of any size.

9. Reversible-Sp-chains, Sp-whips and Sp-braids 249

Definition: similarly, for any 1≤p≤∞, the SpB-rating of an instance P, noted
SpB(P), is the smallest n ≤ ∞ such that P can be solved within SpBn. By convention,
SpB(P) = ∞ means that P cannot be solved by Sp-braids of any length.

For any 1≤p≤∞, the SpW and SpB ratings are defined in a purely logical way,
independent of any implementation; the SpW and SpB ratings of an instance are
intrinsic properties of this instance; moreover, as will be shown in the next section,
for any fixed p (1≤p≤∞), the SpB rating is based on an increasing sequence of
theories (SpBn, n≥0) with the confluence property and it can therefore be computed
with a simplest first strategy based on the global length of the Sp-braids involved.

For any puzzle P, one has obviously W(P) ≥ gW(P) = S1W(P) ≥ S2W(P) ≥
SpW(P) ≥ Sp+1W(P) ≥ … ≥ S∞W(P) and similar inequalities for the SpB(P).

Beware of not confusing the definitions in this section with those in section
8.6.3. In the latter case, whips and Subsets of same size are merely put together in
the same set of rules; in the present section, whips and Subsets are fused into more
complex structures. The respective notations can be remembered with the following
mnemonic (and a similar one for braids): the “+” sign (and the repetition of size n)
in W+S (and in Wn+Sn) indicate(s) the juxtaposition of two different things; the
absence of a space between W and S in WS and in WSn indicates their fusion into
new patterns.

Notice that consistent definitions of length for Sp-whips or Sp-braids and of the
associated SpW and SpB ratings are highly constrained:

– by the fact that they are generalisations of the RSpC chains;
– by the subsumption theorems of section 8.7 and their obvious generalisations

to Subsets of any size: in “many” cases of inclusion of such Subsets in an Sp-whip or
Sp-braid, it will be possible to replace them by equivalent g-whips or g-braids and to
transform the original Sp-whip or Sp-braid into an equivalent Wp-whip or Bp-braid
(chapter 11). It seems natural to impose that, in such cases, the two visions of the
“same” pattern lead to the same length (especially as length is taken as the measure
of complexity of instances).

Finally, the confluence property of all the SpBn resolution theories for each p,
1 ≤ p ≤ ∞, (proven in section 9.4 below), allows to superimpose on SpBn a “simplest
first” strategy compatible with the SpB rating.

9.3.4. Sp-z-whips and how they subsume Sp+1-subsets

9.3.4.1. Definition of Sp-z-whips

In simple terms, an Sp-z-whip is a particular kind of Sp-whip (as such, it allows
the elimination of its target): it has no t-candidate (more precisely, no t-candidate

250 Pattern-Based Constraint Satisfaction and Logic Puzzles

that cannot also be considered as a z-candidate). It is easy to define the Sp-z-whip[n]
resolution theories and to prove that they have the confluence property.

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be the target),
an Sp-z-whip of length n (n ≥ 1) built on Z is an Sp-regular sequence (L1, R1, L2, R2,
…. Lm) [notice that there is no Rm] of length n, associated with a sequence (W1, …
Wm) of sets of CSP variables and a sequence (V1, … Vm) of CSP variables (with
Vk ∈ Wk for all 1≤k<m and Wm = {Vm}), such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm} nor a member of
any g-candidate in this set nor equal to any element in the Sqk-label of Rk when Rk is
an Sqk-subset, for any 1≤k≤m;

– L1 is linked to Z;
– for each 1 < k ≤ m, Lk is linked or g-linked or Sqk-1-linked to Rk-1; this is the

natural way of defining “continuity” from Rk-1 to Lk;
– for any 1 ≤ k < m, Rk is a candidate or a g-candidate or an Sqk-subset modulo

Z: either Rk is the only candidate or g-candidate compatible with Z, or Rk is the
unique Sqk-subset composed of all the candidates C for some of the CSP variables in
Wk such that C is compatible with Z;

– Z is not a label for Vm;
– Vm has no candidate compatible with Z (but Vm has more than one candidate).

9.3.4.2. Targets of Sp-subsets are targets of Sp-1-z-whips[p]

Theorem 9.6: a target of an Sp-subset is always also a target of an Sp-1-z-whip
of length p.

Proof: almost obvious. After renumbering the CSP variables, one can always
suppose that Z is Sp-linked to transversal set TS1 and that V1 has a candidate L1 =
<V1, l1> to which Z is linked. Let Lp = <Vp, lp> be a candidate for Vp not in TS1
(there must be one if the Sp-subset is not degenerated). Let R2 be the Sp-1-subset:
{{V1,…, Vp-1}, {TS2, …, TSp}}. Then Z is a normal target of the following whip:

Sp-1-z-whip[p]: {L1 R2} – Vp{lp .} ⇒ ¬candidate(Z).

9.3.5. Type-2 targets of Sp-subsets

It appears that an Sp-subset that has transversal sets with non-void intersections
allows more eliminations than the “standard” ones defined in chapter 8. (This can
happen only for p>2.)

Definition: a type-2 target of an Sp-subset is a candidate belonging to (at least)
two of its transversal sets.

Theorem 9.7: a type-2 target of an Sp-subset can be eliminated.

9. Reversible-Sp-chains, Sp-whips and Sp-braids 251

Proof: suppose the type-2 target Z is a candidate for variable V1 and it belongs to
transversal sets TS1 and TS2. If Z was True, then all the other candidates in TS1 or
TS2 or in a g-candidate in TS1 or TS2 would be eliminated by ECP. This would
leave at most p-2 possibilities for the remaining p-1 CSP variables – which is
contradictory, in exactly the same way as in the case of a normal target.

Notice however that this is a very unusual kind of elimination. Until now, for all
the rules we have met, the target did not belong to the pattern. The following
theorem shows that this “cannibalistic” abnormality can be palliated. It also justifies
that we did not consider type-2 targets of Sp-subsets in chapter 8: these abnormal
targets can always be eliminated by a simpler pattern. An illustration of this theorem
will appear in section 10.3 for the more general case of gSp-subsets.

Theorem 9.8: A type-2 target of an Sp-subset is always the (normal) target of a
shorter Sp-2-z-whip of length p-1.

Proof: in a resolution state RS, let Z be a type-2 target of an Sp-subset with CSP
variables V1, … Vp and transversal sets TS1, … TSp. One can always suppose that
V1 is the CSP variable for which Z is a candidate (there can be only one in RS) and
that TS1 and TS2 are the two transversal sets to which Z belongs.

Firstly, each of the CSP variables V2, V3, … Vp must have at least one candidate
belonging neither to TS1 nor to TS2 (if it has several, choose one arbitrarily and
name it <V2, c2>, … <Vp, cp>, respectively). Otherwise, the initial Sp-subset would
be degenerated; more precisely, Z could be eliminated by a whip[1] (or even by
ECP after a Single) associated with (any of) the CSP variable(s) that has no such
candidate.

Secondly, in TS1 or TS2, there must be at least one candidate for at least one of
the CSP variables V2, … Vp. Otherwise, the initial Sp-subset would be degenerated;
more precisely, it would contain, among others, the Sp-2-subset {{V3, …, Vp}, {TS3,
…, TSp}}; this would allow to eliminate all the candidates for V1 and V2 that are not
in TS1 or TS2; Z could then be eliminated by a whip[1] associated with V2; and V1
would have no candidate left. One can always suppose that there exists such a
candidate L2 for V2, i.e. L2 = <V2, l2>.

Modulo Z, we therefore have an Sp-2 subset R2 with CSP variables V2, … Vp-1
and transversal sets TS3, … TSp. Then, Z is a (normal) target of the following Sp-2-z-
whip of length p-1:

Sp-2-z-whip[p-1]: V2{l2 R2} – Vp{cp .} ⇒ ¬candidate(Z).

252 Pattern-Based Constraint Satisfaction and Logic Puzzles

9.3.6. Accepting type-2 targets of Sp-subsets in SpW and SpB?

Theorem 9.8 alone does not guarantee that type-2 targets of Sp-subsets, if
allowed to be used as left-linking candidates in the definitions of Sp-whips or Sp-
braids, could not lead to (slightly) more general patterns than those in our current
definitions. The following, if true, would provide a negative answer and it would
complete the justification for not accepting type-2 targets in Sp-subsets: “for any Sp-
whip or Sp-braid, according to an extended definition that would allow using type-2
targets of Sp’-subsets as left-linking candidates, there is an equivalent standard (i.e.
satisfying the definitions of this chapter) Sp-whip or Sp-braid, respectively, of same
or shorter length and with the same target”. But, although we have no counter-
example, this does not seem to be true in general.

In order to understand why it may not be true, consider the following tentative
proof, using the notations of the definitions. If the situation occurs several times in
the chain, the same kind of actions as defined below could be repeated.

If left-linking candidate Lk+1 is a type-2 target of Subset Sk, then consider CSP
variable Vk+1 (notice that it cannot be the unique CSP variable of Sk for which Lk+1
is a candidate) Z and all the previous right-linking objects:

– either it has another candidate, say L’k, linked to all the candidates in some of
the transversal sets of Sk to which Lk+1 does not belong; then, one can replace Lk+1
with L’k+1 in the original chain;

– or it has no such candidate but it has a candidate linked to Z or to a previous
right-linking object; then, in the Sp-braid cases but a priori not in the Sp-whip case,
one can replace Lk+1 with this candidate in the original chain;

– or it has no such candidate and no candidate linked to Z or to a previous right-
linking object; then no possibility seems to be available.

We think that the cases in which this construction does not work and there are no
alternative resolution paths are extremely rare and that allowing type-2 targets of
Sp’-subsets inside Sp-whips or Sp-braids is not worth until experimental results show
the contrary. Until then, we shall stick to our original definitions.

See Theorem 10.17 for complementary aspects of this question in case g-Subsets
instead of Subsets are involved.

Remark: the main interest of the above tentative proof may be that it can be
transposed to other situations; e.g. it can explain why, given an Sp’-subset S allowing
the elimination of a target L that could be replaced by a whip elimination (according
to the subsumption theorems), if the same S appears inside an Sp-whip or Sp-braid
modulo the target and the previous right-linking patterns of this Sp-whip or Sp-braid
and if L is used in this Sp-whip or Sp-braid as the next left-linking candidate, S can
nevertheless not always be considered as an ordinary sub-whip of this global Sp-

9. Reversible-Sp-chains, Sp-whips and Sp-braids 253

whip or Sp-braid. In particular, given that W2 subsumes S2, this gives an idea why
S2Wn is not equal to gWn for n>2 (or why S2W5 ⊄ gW5, as shown by the example in
section 9.7.1; or why S2B is not equal to gB in table 9.1).

9.4. The confluence property of the SpBn resolution theories

Theorem 9.9: each of the SpBn resolution theories (for 1 ≤ p ≤ ∞ , 0 ≤ n ≤ ∞) is
stable for confluence; therefore, it has the confluence property.

Proof: in order to keep the same notations as in the proof for the g-braid
resolution theories (section 7.6), we prove the result for SrBn, r and n fixed. The
proof follows the same general lines as that for g-braids in section 7.5. We keep the
same numbering of the various cases to be considered. However, some new sub-
cases appear and some cases have to be split into three, in order to take into account
the different kinds of right-linking patterns. Marks now extend from case f to case d.

We must show that, if an elimination of a candidate Z could have been done in a
resolution state RS1 by an Sr-braid B of length n’ ≤ n and with target Z, it will
always still be possible, starting from any further state RS2 obtained from RS1 by
consistency preserving assertions and eliminations, if we use a sequence of rules
from SrBn. Let B be: {L1 R1} – {L2 R2} – …. – {Lp Rp} – {Lp+1 Rp+1} – … – {Lm .},
with target Z, where the Rk’s are now candidates or g-candidates or Subsets from Sr
modulo Z and the previous Ri’s.

Consider first the state RS3 obtained from RS2 by applying repeatedly the rules
in Sr until quiescence. As Sr has the confluence property (by theorem 8.4), this state
is uniquely defined.

If, in RS3, target Z has been eliminated, there remains nothing to prove. If target
Z has been asserted, then the instance of the CSP is contradictory; if not yet detected
in RS3, this contradiction can be detected by CD in a state posterior to RS3, reached
by a series of applications of rules from Sr, following the Sr-braid structure of B.

Otherwise, we must consider all the elementary events related to B that can have
happened between RS1 and RS3 as well as those we must provoke in posterior
resolution states RS. For this, we start from B’ = what remains of B in RS3 and we
let RS = RS3. At this point, B’ may not be an Sr-braid in RS. We progressively
update RS and B’ by repeating the following procedure, for p = 1 to p = m, until it
produces a new (possibly shorter) Sr-braid B’ with target Z in resolution state RS – a
situation that is bound to happen. (As in the g-braids case, and because we have
included W1 in Sr, we have to consider a state RS posterior to RS3). Return from this
procedure as soon as B’ is a g-braid in RS. All the references below are to the
current RS and B’.

254 Pattern-Based Constraint Satisfaction and Logic Puzzles

a) If, in RS, any candidate that had negative valence in B – i.e. the left-linking
candidate, or any t- or z- candidate, of CSP variable Vp, or any t- or z- candidate of
Rp in case Rp is an inner Subset – has been asserted (this can only be between RS1
and RS3), then all the candidates linked to it have been eliminated by relevant rules
from Sr in RS3, in particular: Z and/or all the candidate(s) Rk (k<p) to which it is
linked, and/or all the elements of the g-candidate(s) Rk (k<p) to which it is g-linked,
and/or all the candidates of the CSP variable in Wk to which it belongs and/or all the
candidates in the transversal set(s) of the Rk’s (k<p) to which it is S-linked (by the
definition of an Sr-braid); if Z is among them, there remains nothing to prove;
otherwise, the procedure has already either been successfully terminated by case f1
or f2α or dealt with by case d2 of the first previous such k.

b) If, in RS, left-linking candidate Lp has been eliminated (but not asserted), it
can no longer be used as a left-linking candidate in an Sr-braid. Suppose that either
CSP variable Vp still has a z- or a t- candidate Cp, or Rp is an inner Subset and there
is another CSP variable Vp’ in its Wp such that Vp’ still has a z- or a t- candidate Cp;
then replace Lp by Cp and (in the latter case) Vp by Vp’. Now, up to Cp, B’ is a
partial Sr-braid in RS with target Z. Notice that, even if Lp was linked or g-linked or
Sr-linked to Rp-1 (e.g. if B was an Sr-whip) this may not be the case for Cp; therefore
trying to prove a similar theorem for Sr-whips would fail here.

c) If, in RS, any t- or z- candidate of Vp or of the inner Subset Sp has been
eliminated (but not asserted), this has not changed the basic structure of B (at stage
p). Continue with the same B’.

d) Consider now assertions occurring in right-linking objects. There are two
cases instead of one for g-braids.

d1) If, in RS, right-linking candidate Rp or a candidate Rp’ in right-linking g-
candidate Rp has been asserted (p can therefore not be the last index of B’), Rp can
no longer be used as an element of an Sr-braid, because it is no longer a candidate or
a g-candidate. As in the proof for g-braids, and only because of this d1 case, we
cannot be sure that this assertion occurred in RS3. We must palliate this. First
eliminate by ECP or W1 any left-linking or t- candidate for any CSP variable of B’
after p, including those in the inner Subsets, that is incompatible with Rp, i.e. linked
or g-linked to it, if it is still present in RS. Now, considering the Sr-braid structure of
B upwards from p, more eliminations and assertions can been done by rules from Sr.
(Notice that, as in the g-braids case, we are not trying to do more eliminations or
assertions than needed to get a g-braid in RS; in particular, we continue to consider
Rp, not Rp’; in any case, it will be excised from B’; but, most of all, we do not have
to find the shortest possible Sr-braid!)

Let q be the smallest number strictly greater than p such that CSP variable Vq or
some CSP variable Vq’ in Wq still has a left-linking, t- or z- candidate Cq that is not

9. Reversible-Sp-chains, Sp-whips and Sp-braids 255

linked, g-linked or S-linked to any of the Ri for p ≤ i < q (Cq is therefore linked, g-
linked or S-linked to Z or to some Ri with i < p). (For index q, there is thus a Vq’ in
Wq and a candidate Cq for Vq’ such that Cq is linked, g-linked or S-linked to Z or to
some Ri with i < p.)

Apply the following rules from Sr (if they have not yet been applied between
RS2 and RS) for each of the CSP variables Vu (and all the Vu,i in Wu if Ru is an inner
Subset) with index (or first index) u increasing from p+1 to q-1 included:
- eliminate its left-linking candidate (Lu) by ECP or W1 or some Sr’ (r’≤r);
- at this stage, CSP variable Vu has no left-linking candidate and there remains no t-
or z- candidate in Wu if Ru is an inner Subset;
- if Ru is a candidate, assert it by S and eliminate by ECP all the candidates for CSP
variables after u, including those in the inner Subsets, that are incompatible with Ru
in the current RS;
- if Ru is a g-candidate, it cannot be asserted; eliminate by W1 all the candidates for
CSP variables after u, including those in the inner Subsets, that are incompatible
with Ru in the current RS;
- if Ru is an Squ-subset, it cannot be asserted by Squ; eliminate by Squ all the
candidates for CSP variables after u, including those in the inner Subsets, that are
incompatible with Ru in the current RS.

In the new RS thus obtained, excise from B’ the part related to CSP variables
and inner Subsets p to q-1 (included); if Lq has been eliminated in the passage from
RS2 to RS, replace it by Cq (and, if necessary, replace Vq by Vq’); for each integer
s ≥ p, decrease by q-p the index of CSP variable Vs, of its candidates and inner right-
linking pattern (g-candidate or Sr’-subset) and of the set Ws, in the new B’. In RS, B’
is now, up to p (the ex q), a partial Sr-braid in SrBn with target Z.

d2) If, in RS, a candidate Cp in a right-linking Sqp-subset Rp has been asserted or
eliminated or marked in a previous step, Rp can no longer be used as such as a right-
linking Subset of an Sr-braid, because it may no longer be a (conditional) Sqp-
subset. Moreover, there may be several such candidates in Rp; consider them all at
once. Notice that candidates can only have been asserted as values in the transition
from RS1 to RS3 (the candidates asserted in case d1 are all excised from B’) and that
all the candidates for their CSP variables or in their transversal sets have also been
eliminated in this transition. Delete from Rp the CSP variables and the transversal
sets corresponding to these asserted candidates (as we do not have type-2 targets,
there is the same number of each). Call Rp’ what remains of Rp and replace Rp by
Rp’ in B’. A few more questions must be dealt with:
- is there still a candidate for one of the CSP variables of Rp’ that could play the role
of a left-linking candidate for Rp’? If not, Rp’ has already become an autonomous
Subset in RS3; excise it from B’, together with a whole part of B’ after it, along the
same lines as in case d1;

256 Pattern-Based Constraint Satisfaction and Logic Puzzles

- is Rp’ still linked to the next part of B’? If not, excise it from B’, together with a
whole part of B’ after it, as in the previous case;
- is Rp’ degenerated (modulo Z and the previous Rk’s)? If so, this can easily be fixed
by replacing Rp’ with the corresponding Reversible-Subset-chain (modulo Z and the
previous Rk’s);
- does Rp’ or the Reversible-Subset-chain (modulo Z and the previous Rk’s)
replacing it have more targets than Rp? If so, if any of these is a right-linking
candidate or an element of a right-linking g-candidate or of an Sr’-subset of B’ for an
index after p, then mark it so that the information can be used in cases d2, f1, f2 or
f3 of later steps.

In RS, B’ is now, up to p (the ex q), a partial Sr-braid in SrBn with target Z.

e) If, in RS, a left-linking candidate Lp has been eliminated (but not asserted) and
CSP variable Vp has no t- or z- candidate in RS2 (complementary to case b), we now
have to consider three cases instead of the two we had for g-braids.

e1) If Rp is a candidate, then Vp has only one possible value, namely Rp; if Rp
has not yet been asserted by S somewhere between RS2 and RS, do it now; this case
is now reducible to case d1 (because the assertion of Rp also entails the elimination
of Lp); go back to case d1 for the same value of p (in order to prevent an infinite
loop, mark this case as already dealt with for the current step).

e2) If Rp is a g-candidate, then Rp cannot be asserted by S; however, it can still
be used, for any CSP variable after p, to eliminate by W1 any of its t-candidates that
is g-linked to Rp. Let q be the smallest number strictly greater than p such that, in
RS, CSP variable Vq still has a left-linking, t- or z- candidate Cq that is not linked or
g-linked or S-linked to any of the Ri for p ≤ i < q. Replace RS by the state obtained
after all the assertions and eliminations similar to those in case d1 above have been
done. Then, in RS, excise the part of B’ related to CSP variables p to q-1 (included),
replace Lq by Cq (if Lq has been eliminated in the passage from RS2 to RS) and re-
number the posterior elements of B’, as in case d1. In RS, B’ is now, up to p (the ex
q), a partial Sr-braid in SrBn with target Z.

e3) If Rp is an Sqp-subset, then Rp is no longer linked via Lp to a previous right-
linking element of the braid. If none of the CSP variables Vp’ in Wp has a z- or t-
candidate Cp that can be linked, g-linked or S-linked to Z or to a previous Ri,
(situation complementary to case b), it means that the elimination of Lp has turned
Rp into an unconditional Sqp-subset. Let q be the smallest number strictly greater
than p such that, in RS, CSP variable Vq has a left-linking, t- or z- candidate Cq that
is not linked or g-linked or S-linked to any of the Ri for p ≤ i < q. Replace RS by the
state obtained after all the assertions and eliminations similar to those in case d1
above have been done. Then, in RS, excise the part of B’ related to CSP variables p
to q-1 (included), replace Lq by Cq (if Lq has been eliminated in the passage from

9. Reversible-Sp-chains, Sp-whips and Sp-braids 257

RS2 to RS) and re-number the posterior elements of B’, as in case d1. In RS, B’ is
now, up to p (the ex q), a partial Sr-braid in SrBn with target Z.

f) Finally, consider eliminations occurring in a right-linking object Rp. This
implies that p cannot be the last index of B’. There are three cases.

f1) If, in RS, right-linking candidate Rp of B has been eliminated (but not
asserted) or marked, then replace B’ by its initial part:
{L1 R1} – {L2 R2} – …. – {Lp .}. At this stage, B’ is in RS a (possibly shorter) Sr-
braid with target Z. Return B’ and stop.

f2) If, in RS, a candidate in right-linking g-candidate Rp has been eliminated (but
not asserted) or marked, then:

f2α) either there remains no unmarked candidate of Rp in RS; then replace B’ by
its initial part: {L1 R1} – {L2 R2} – …. – {Lp .}; at this stage, B’ is in RS a (possibly
shorter) Sr-braid with target Z; return B’ and stop;

f2β) or the remaining unmarked candidates of Rp in RS still make a g-candidate
and B’ does not have to be changed;

f2γ) or there remains only one unmarked candidate Cp of Rp; replace Rp by Cp in
B’. We must also prepare the next steps by putting marks. Any t-candidate of B that
was g-linked to Rp, if it is still present in RS, can still be considered as a t-candidate
in B’, where it is now linked to Cp instead of g-linked to Rp; this does not raise any
problem. However, this substitution may entail that candidates that were not t-
candidates in B become t-candidates in B’; if they are left-linking candidates of B’,
this is not a problem either; but if any of them is a right-linking candidate or an
element of a right-linking g-candidate or of an Sr’-subset of B’, then mark it so that
the same procedure (i.e. f1, f2 or f3) can be applied to it in a later step.

f3) If, in RS, a candidate Cp in right-linking Sqp-subset Rp has been eliminated
(but not asserted) or marked, this has been dealt with in case d2.

Notice that, as was the case for braids and g-braids, this proof works only
because the notions of being linked, g-linked or S-linked do not depend on the
resolution state.

9.5. The “T&E(Sp) vs Sp-braids” theorem, 1≤p≤∞

Any resolution theory T stable for confluence has the confluence property and
the procedure T&E(T) can therefore be defined (see section 5.6.1). Taking T = Sp, it
is obvious that any elimination done by an Sp-braid can be done by T&E(Sp). As
was the case for braids and for g-braids, the converse is true:

258 Pattern-Based Constraint Satisfaction and Logic Puzzles

Theorem 9.10: for any 1≤p≤∞ , any elimination done by T&E(Sp) can be done
by an Sp-braid.

The proof is very similar to the g-braids case.

Proof: Let RS be a resolution state and let Z be a candidate eliminated by
T&E(Sp, Z, RS) using some auxiliary resolution state RS’. Following the steps of
resolution theory Sp in RS’, we progressively build an Sp-braid in RS with target Z.
First, remember that Sp contains only five types of rules: ECP (which eliminates
candidates), W1 (whips of length 1, which eliminates candidates), Sp’ (which
eliminates targets of Sp’-subsets, p’≤p), S (which asserts a value for a CSP variable)
and CD (which detects a contradiction on a CSP variable).

Consider the sequence (P1, P2, …, Pk, …Pm) of rule applications in RS’ based on
rules from Sp different from ECP and suppose that Pm is the first occurrence of CD
(there must be at least one occurrence of CD if Z is eliminated by T&E(Sp, Z, RS)).
We first define the Rk, Vk, Wk and qk sequences, for k < m:
- if Pk is of type S, then it asserts a value Rk for some CSP variable Vk; let Wk =
{Vk} and qk=1;
- if Pk is of type whip[1]: {Mk .} ⇒ ¬candidate(Ck) for some CSP variable Vk, then
define Rk as the g-candidate of Vk that contains Mk and is g-linked to Ck; (notice that
Ck will not necessarily be Lk+1); let Wk = {Vk} and qk=1;
- if Pk is of type Sp’, then define Rk as the non degenerated Sp’-subset used by the
condition part of Pk, as it appears at the time when Pk is applied; let Wk be the set of
CSP variables of Rk and qk=p’; in this case, Vk will be defined later.

We shall build an Sp-braid[n] in RS with target Z, with the Rk’s as its sequence
of right-linking candidates or g-candidates or Sqk-subsets, with the Wk’s as its
sequence of sets of CSP variables, with the qk’s as its sequence of sizes and with
n = ∑1≤k≤m qk (setting qm = 1). We only have to define properly the Lk’s, qk’s and
Vk’s with Vk ∈ Wk. We do this by recursion, successively for k = 1 to k = m. As the
proofs for k = 1 and for the passage from k to k+1 are almost identical, we skip the
case k = 1. Suppose we have done it until k and consider the set Wk+1 of CSP
variables.

Whatever rule Pk+1 is (S or whip[1] or Sp’), the fact that it can be applied means
that, apart from Rk+1 (if it is a candidate) or the candidates contained in Rk+1 (if it is a
g-candidate or an Sp’-subset), all the other candidates for all the CSP variables in
Wk+1 that were still present in RS (and there must be at least one, say Lk+1, for some
CSP variable Vk+1 ∈ Wk+1) have been eliminated in RS’ by the assertion of Z and
the previous rule applications. But these previous eliminations can only result from
being linked or g-linked or S-linked to Z or to some Ri, i≤k. The data Lk+1, Rk+1 and
Vk+1 ∈ Wk+1 therefore define a legitimate extension for our partial Sp-braid.

9. Reversible-Sp-chains, Sp-whips and Sp-braids 259

End of the procedure: at step m, a contradiction is obtained by CD for a CSP
variable Vm. It means that all the candidates for Vm that were still candidates for Vm
in RS (and there must be at least one, say Lm) have been eliminated in RS’ by the
assertion of Z and the previous rule applications. But these previous eliminations
can only result from being linked or g-linked or S-linked to Z or to some Ri, i<m. Lm
is thus the last left-linking candidate of the Sp-braid we were looking for in RS and
we can take Wm={Vm}. qed.

Remarks:
– here again, this proof works only because the existence of a link, g-link or Sp-

link between a candidate and a pattern does not depend on the resolution state;
– as in the previous cases of braids and g-braids, it is very unlikely that

following the T&E(Sp) procedure to produce an Sp-braid, as in the construction in
this proof, would provide the shortest available one in resolution state RS (and this
intuition is confirmed by experience).

9.6. The scope of Sp-braids (in Sudoku)

The “T&E(Sp) vs Sp-braids” theorem can be used to estimate with simple
calculations the scope of Sp-braids (which is also an upper boundary for the scope of
Sp-whips) for any p, without having to find effectively the resolution paths.

Several times in this book, we mentioned that all the Sudoku puzzles in a set of
random collections of about 10,000,000 minimal puzzles generated according to
different methods (several independent implementations of the bottom-up, top-down
and controlled-bias algorithms) could be solved by T&E or (equivalently) by braids
(indeed, we also mentioned that they can all be solved by whips).

As a result, Sudoku puzzles that are not in the scope of braids are extremely rare
and if one wants to compare the scopes of several types of more complex Sp-braids,
one can only do this on a collection of exceptionally hard puzzles. The natural
choice for this is Glenn Fowler’s (alias gsf) highly non random, manually selected
collection of 8152 puzzles [gsf’s www]; it contains puzzles of varying levels of
difficulty, with a very strong bias for the hardest ones (and a tendency for repetition
of puzzles with similar patterns of givens, i.e. obtained by variations from a previous
pattern); although this is no longer true, its top level part has long been considered
as containing the hardest known puzzles.

In Table 9.19, the first column defines the sets of puzzles under consideration:
gsf's list is decomposed into slices of 500 puzzles each (but the last ones), starting

9 We first published these results on the late Sudoku Player’s Forum, “Abominable T&E and
Lovely Braids” thread, p. 3, October 2008.

260 Pattern-Based Constraint Satisfaction and Logic Puzzles

from the top (i.e. from the hardest in his classification). The next columns show how
many puzzles of each slice can be solved using the Sp-braids mentioned in the first
row (each column includes the results of the previous columns).

Resolution theory →

↓ slice of puzzles
B∞ gB∞ S2B∞ S3B∞ S4B∞ S4FinB∞ +x2y2

1-500 0 187 336 414 443 466 489
500-1000 0 178 335 415 460 480 497

1001-1500 0 163 382 451 486 494 500
1501-2000 0 168 397 476 490 496 499
2001-2500 0 135 367 434 474 489 497
2501-3000 0 116 334 443 479 493 499
3001-3500 1 120 335 424 473 486 498
3501-4000 0 113 325 426 472 493 499
4001-4500 1 104 298 395 448 471 497
4501-5000 0 231 399 450 482 494 499
5001-5500 47 348 487 500
5501-6000 434 490 500
6001-6500 487 500
6501-7000 494 500
7001-8152 1152

Total solved 2616 4505 6647 7480 7859 8014 8126
Total unsolved 5536 3647 1505 672 293 136 26

Table 9.1. Cumulated number of puzzles solved by Sp’-braids with p’ ≤ p, for each slice of 500
puzzles in gsf’s list. Missing cells in a row are intended to make it easier to see when a slice is

completely solved.

This table shows that almost all the hardest puzzles, known at the time when
gsf’s list was published, can be solved with braids (of unspecified total length) built
on (Naked, Hidden and Super-Hidden) Subsets, on Finned Fish (a variant of Fish
with additional candidates linked to the target, i.e. a z-Fish) and on x2y2-belts10.

10 x2y2 belts are our formal interpretation of a pattern known as a “hidden-pairs loop” or “sk-
loop”. This extremely symmetric pattern originated in the famous EasterMonster puzzle
created by “jpf” and was discovered by Steven Kurzhals [see chapter 13 for details].
EasterMonster has long been considered as the hardest known puzzle and it has given rise to
many variants, in the hope of finding still harder ones; as a result, it is over-represented in
gsf’s list.

9. Reversible-Sp-chains, Sp-whips and Sp-braids 261

However, “Eleven” recently reported [Eleven www] that he generated more than
fifteen million “potentially hardest” minimal puzzles (including 90% of the known
puzzles with SER > 11) that, in the vocabulary of the present book, cannot be solved
by T&E. He used a kind of genetic programming algorithm (an innovative idea in
the search of hard Sudoku puzzles), starting with a random collection of minimal
puzzles as the seed and mutating them by withdrawal and addition of clues. Later,
using T&E(S4) together with other filters (whose precise description would be
irrelevant here) for cropping the current population, and taking the widely used SER
rating11 of puzzles as the selection function, he published a sub-collection of 26,370
minimal puzzles [Eleven 2011] that cannot be solved by T&E(S4). The question of a
resolution theory T such that T&E(T), or associated T-braids, could solve all the
known Sudoku puzzles is thus more open (although these are extremely exceptional
instances, in proportion: even fifteen millions in approximately 2.5×1025 non
essentially equivalent minimal puzzles, as estimated in section 6.3.2, would not be
much). The new non-T&E(S4) sub-collection makes it very unlikely that such a
“universal” T-braids resolution theory could be based mainly on S-braids or braids
with variants of Subsets as inner patterns. This point will be re-examined in section
11.3 after we have introduced the more powerful notion of a B-braid.

9.7. Examples

As examples of Reversible-Subset-chains abound in the Sudoku web forums, we
shall not give any here. They can be found under the names of Alternating Inference
Chains (AICs) or Nice Loops, as explained in section 9.2.4. Still more examples of a
very special case, ALS chains (chains of Almost Locked Sets), can also be found;
they are AICs (in the broad sense we have given them here) restricted to rc-space.

9.7.1. S2W5 ⊄ gW5: an S2-whip[5] not subsumed by a g-whip[5] (+ S2W5 ⊄ gW13)

7 8 3 7 2 8 9 4 6 3 1 5
 2 1 9 3 4 2 5 1 6 7 8

5 5 1 6 7 3 8 2 4 9
 4 8 2 6 1 4 7 5 9 3 8 2 6
3 8 3 6 9 4 8 2 1 5 7
 1 9 3 8 5 2 1 6 7 4 9 3
 9 6 4 2 9 3 6 1 5 7 8 4
 7 5 4 8 1 3 7 9 5 6 2
 6 7 5 8 2 4 9 3 1

Figure 9.2. A puzzle P with W(P) = 13

11 See the first note of chapter 6.

262 Pattern-Based Constraint Satisfaction and Logic Puzzles

The puzzle P in Figure 9.2 provides an example of an S2-whip[5] that is not
equivalent to a whip or a g-whip of same length. This puzzle has moderate
complexity (though it is on the high side of the fuzzy boundary of puzzles solvable
by humans): W(P) = gW(P) = 13.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 7
n1 n2
 n6

8

n4 n5
 n9

n4 n5 n6
 n9

n4 n5 n6
 n9

3
n1
n4 n5 n6

n1 n2
 n5
 n9

r1

r2

n4 n6
 n9

 n3
 n6

 n3
n4 n6
 n9

2
 n3
n4 n5 n6
 n9

1

n4 n6
n7 n9

n4 n5 n6
n7 n8

 n5
n7 n8

r2

r3 5
n1 n2 n3
 n6

n1 n2 n3
n4 n6
 n9

n7 n8

 n3
n4 n6
 n9

n7 n8

n1 n2
n4 n6
 n9

n1
n4 n6

n1 n2

 n9
r3

r4
n1

 n9

4
n1
 n5
n7 n9

 n3
 n5
n7 n9

 n5
 n9

 n3
 n5
n7 n9

8 2 6 r4

r5 3
 n2
 n6
n7

 n2
 n6
n7 n9

n4
n7 n9

8
 n2
n4 n6
 n9

n1
n4
n7

n1
n4 n5
n7

n1
 n5
n7

r5

r6
 n2
 n6
 n8

 n2
 n5 n6
n7 n8

 n2
 n5 n6
n7

1
 n2
n4 n5 n6

 n2
n4 n5 n6
n7

n4
n7

9 3 r6

r7
n1 n2

 n8

9
n1 n2 n3
 n5
n7

6
n1 n2
 n5

 n2 n3
 n5
 n8

n1 n2

n7

n1 n3

n7 n8
4 r7

r8
n1 n2
n4 n6
 n8

n1 n2 n3
 n6
 n8

n1 n2 n3
n4 n6

 n3
n4
 n8 n9

7
 n2 n3
n4
 n8 n9

5
n1 n3
 n6
 n8

n1 n2

 n8 n9
r8

r9
n1 n2
n4 n6
 n8

n1 n3
 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7

 n3
n4 n5
 n8 n9

n1 n2
n4 n5
 n9

 n2 n3
n4 n5
 n8 n9

n1 n2
 n6
n7 n9

n1 n3
 n6
n7 n8

n1 n2

n7 n8 n9
r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 9.3. Resolution state RS1 of puzzle P in Figure 9.2

The first (easy) steps of the resolution paths with whips or g-whips are identical.

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 *****	
20	 givens,	 267	 candidates,	 2000	 csp-‐links	 and	 2000	 links.	 Initial	 density	 =	 1.41	
whip[1]:	 r4n1{c1	 .}	 ==>	 r5c3	 ≠	 1,	 r5c2	 ≠	 1	
whip[1]:	 r2n8{c8	 .}	 ==>	 r3c9	 ≠	 8,	 r3c8	 ≠	 8	
whip[1]:	 r2n7{c7	 .}	 ==>	 r3c9	 ≠	 7,	 r3c8	 ≠	 7,	 r3c7	 ≠	 7	
whip[1]:	 b6n5{r5c9	 .}	 ==>	 r5c2	 ≠	 5,	 r5c3	 ≠	 5,	 r5c4	 ≠	 5,	 r5c6	 ≠	 5	
whip[2]:	 b2n7{r3c4	 r3c6}	 –	 b2n8{r3c6	 .}	 ==>	 r3c4	 ≠	 4,	 r3c4	 ≠	 3	
whip[2]:	 b2n8{r3c4	 r3c6}	 –	 b2n7{r3c6	 .}	 ==>	 r3c4	 ≠	 9	
whip[2]:	 b2n7{r3c6	 r3c4}	 –	 b2n8{r3c4	 .}	 ==>	 r3c6	 ≠	 6,	 r3c6	 ≠	 4,	 r3c6	 ≠	 3	
whip[1]:	 b2n3{r2c5	 .}	 ==>	 r9c5	 ≠	 3,	 r7c5	 ≠	 3,	 r4c5	 ≠	 3	
whip[2]:	 b2n8{r3c6	 r3c4}	 –	 b2n7{r3c4	 .}	 ==>	 r3c6	 ≠	 9	
whip[3]:	 c1n2{r9	 r6}	 –	 b4n8{r6c1	 r6c2}	 –	 c2n5{r6	 .}	 ==>	 r9c2	 ≠	 2	

9. Reversible-Sp-chains, Sp-whips and Sp-braids 263

whip[4]:	 b3n8{r2c9	 r2c8}	 –	 r2n5{c8	 c5}	 –	 r4c5{n5	 n9}	 –	 c1n9{r4	 .}	 ==>	 r2c9	 ≠	 9	
whip[5]:	 r4n7{c6	 c3}	 –	 b4n1{r4c3	 r4c1}	 –	 b4n9{r4c1	 r5c3}	 –	 r5n6{c3	 c2}	 –	 r5n2{c2	 .}	 ==>	 r5c6	 ≠	 7	

The resolution state RS1 reached at this point is displayed in Figure 9.3.

After RS1, both resolution paths with whips or g-whips continue with a whip[6]
and a whip[8]:

whip[6]:	 c2n7{r5	 r9}	 –	 c9n7{r9	 r2}	 –	 b3n8{r2c9	 r2c8}	 –	 r2n5{c8	 c5}	 –	 r4c5{n5	 n9}	 –	 r5n9{c6	 .}	 ==>	
r5c3	 ≠	 7	
whip[8]:	 c1n2{r7	 r6}	 –	 b4n8{r6c1	 r6c2}	 –	 c2n5{r6	 r9}	 –	 c2n7{r9	 r5}	 –	 b6n7{r5c7	 r6c7}	 –	
r7c7{n7	 n1}	 –	 b8n1{r7c5	 r9c5}	 –	 c5n2{r9	 .}	 ==>	 r7c3	 ≠	 2	

After these two whips, the two resolution paths diverge (one has either a
whip[12] or a g-whip[8]), but they finally both give a rating of 13:
W(P)=gW(P)=13. As they have nothing noticeable, we skip them.

What is interesting in the context of this chapter is that, in state RS1, there
appears a shorter pattern than those provided by whips or g-whips, an S2-whip[5]
(Although, in row r2, n7 appears in column c7, i.e. outside the two cells of the
hidden pair, n7r2c7 is a z-candidate and can be “forgotten”: we have a hidden pair
modulo the target.):

S2-‐whip[5]:	 c1n9{r2	 r4}	 –	 r4c5{n9	 n5}	 –	 r2{c5n5	 HP:[c8	 c9][n7	 n8]}	 –r2n7{c8	 .}	 =>	 r2c7	 ≠	 9	

Indeed, the two full resolution paths with whips and g-whips show more: as the
elimination r2c7≠9 appears only after a whip[13], it shows that the above S2-
whip[5] cannot be replaced by a g-whip, even longer, with length less than 13.

For a more complex example of an S2-braid (one of total length 14), see Figure
13.6 and section 13.5.1.

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-
braids

This chapter extends the definitions and results of chapters 8 and 9 by allowing
the basic elements of Subsets (the “intersections” between the CSP variables and the
transversal sets) to be g-candidates instead of candidates. While gSp-subsets are an
extension of Sp-subsets in which g-transversal sets of candidates or g-candidates
replace transversal sets of candidates, gSp-whips (respectively gSp-braids) are an
extension of Sp-whips (resp. Sp-braids) in which gSp-subsets replace Sp-subsets. The
situation is similar to that in chapter 7, when we extended all the definitions and
results from whips (resp. braids) to g-whips (resp. g-braids). For this reason and the
following additional ones, we shall give precise definitions and theorems (at the risk
of some apparent redundancy) but we shall be rather sketchy for their proofs:

– the first two parts of this chapter strictly parallel chapters 8 and 9 respectively;
– it seems that exploiting all the possibilities of these new g-Subsets is rather

difficult in practice; in Sudoku, g-Subsets appear either as “Franken Fish” or as
“Mutant Fish” (see section 10.1.6); as far as we know, these exotic Fish patterns
have never before been considered as g-Subsets, i.e. as the “grouped” version of
Subsets (for the reason that Subsets themselves have never been considered in the
full generality allowed by the CSP point of view developed in chapter 8);

– our personal opinion is that, most of the time, it is often easier to find and
understand a solution with whips or g-whips, when it exists (see the subsumption
results in section 10.1.5), than with such patterns; but we acknowledge that some
Sudoku Fishermen may have a different opinion; the main advantage of a g-Subset
is that, like a Subset, it often allows several eliminations at once (see section 10.3);

– although this is not a problem for their general theory, finding explicitly all the
non degenerated subcases of gSp-subsets is very difficult for p>3;

– as for the gSp-whips and gSp-braids obtained by allowing these new g-Subsets
as right-linking objects, even if their theories can easily be developed in a strict
parallel to those of Sp-whips and Sp-braids (as shown in section 10.2), they seem to
be rather complex structures; in Sudoku, they include the “Fishy Cycles” (which are
already “almost” subsumed by the simpler Sp-whips and Sp-braids).

For a better understanding of the concepts involved, it may be a good idea to
read the detailed example in section 10.3 in parallel with the first two sections.

266 Pattern-Based Constraint Satisfaction and Logic Puzzles

10.1. g-Subsets

10.1.1. g-transversality, gSp-labels and gSp-links

In the same way as, in chapters 7 and 8, we had to introduce a distinction
between g-labels or Sp-labels (defined as maximal sets of labels) and g-candidates or
Sp-subsets (that did not have to be maximal), we must now introduce a distinction
between gSp-labels that can only refer to CSP variables and to g-transversal sets of
labels and g-labels (which can be considered as a kind of saturation or maximality
condition on gSp-labels), and gSp-subsets in which considerations about mandatory
and optional candidates or g-candidates will appear.

10.1.1.1. Set of labels and g-labels g-transversal to a set of disjoint CSP variables

Definition: for p>1, given a set of p different CSP variables {V1, V2, …, Vp}, we
say that a set S of at most p different labels and g-labels is g-transversal with respect
to {V1, V2, …, Vp} for constraint c if:

– 1) none of the labels in S or contained in a g-label in S has a representative for
two of these CSP variables;

– 2) all the labels in S or contained in a g-label in S are pairwise linked by some
constraint;

– 3) all the labels in S are pairwise linked by constraint c;
– 4) each g-label in S contains a “distinguished” label that is linked by constraint

c to all the labels in S and to all the other distinguished labels of all the g-labels of S;
– 5) S is maximal, in the sense that no label or g-label pertaining to one of these

CSP variables could be added to it without contradicting the first two conditions.

Remarks:
– as in the definition of transversal sets, the first condition will always be true

for pairwise strongly disjoint CSP variables, but, for the same reasons as before, we
do not take this as a necessary condition;

– conditions 2, 3 and 4 together express that constraint c plays a role for the
whole transversal set; forgetting the idea of such a global constraint and adopting
only condition 2 would not change the general theory developed in this chapter (but
the totality of the second remark in section 8.1.1 after the definition of a transversal
set applies here also);

– conversely, one could imagine replacing conditions 2, 3 and 4 by the stronger
one: all the labels in S or contained in a g-label in S are pairwise linked by
constraint c; in Sudoku, it is obvious that this would not change anything (because
all the g-labels involve blocks); but for the general CSP, this may be too restrictive.

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 267

10.1.1.2. gSp-labels and gSp-links

Definitions: for any integer p>1, a gSp-label is a couple of data: {CSPVars,
TransvSets}, where CSPVars is a set of p different CSP variables and TransvSets is
a set of p different g-transversal sets of labels and g-labels for these variables (each
one for a well defined constraint). A gS-label is a gSp-label for some p > 1.

Definition: a label l is gSp-linked or simply gS-linked to a gSp-label
S = {CSPVars, TransvSets} if there is some k with 1 ≤ k ≤ p and such that:

– l is linked or g-linked to all the labels and g-labels in the k-th element
TransvSetsk of TransvSets,

– l is linked by the constraint ck of TransvSetsk to all the labels and all the
distinguished labels contained in all the g-labels in TransvSetsk.

In these conditions, l is also called a potential target of the gSp-label.

Definition: Two sets of labels or g-labels are said to be “strongly transitively
disjoint” if no label appearing in one of them (even as an element of a g-label) can
appear in the other (even as an element of a g-label). This is much stronger than
saying that these two sets are disjoint (in the usual set-theoretic sense of “disjoint”);
if these sets are only disjoint, two g-labels, one in each of the sets, can be different
but share a label (in Sudoku, <Xr1n1, r1n1c123> and <Xc1n1, c1n1r123> share the
label with representative <r1c1, n1>); or a label in one set can be contained in a g-
label in the other (e.g. <r1n1, c1> in <Xc1n1, c1n1r123>).

Definition: In a resolution state RS, two sets of candidates or g-candidates are
said to be “transitively disjoint” if no candidate effectively present in one of them
(even as an element of a g-candidate) is effectively present in the other (even as a
candidate in a g-candidate); again this is much stronger than saying that these two
sets are disjoint. However, this is weaker than saying that the sets obtained by
considering the labels and g-labels underlying the candidates and g-candidates in
these two sets are strongly transitively disjoint.

Miscellaneous remarks about gSp-labels:
– with the above definition of a gSp-label, a label and a g-label are not gSp-labels

(due to the condition p > 1); for labels, this is a mere matter of convention, but this
choice is more convenient for the sequel;

– different transversal sets in a gSp-label are not required to be pairwise
transitively disjoint, let alone pairwise disjoint; such conditions will appear only in
the definitions of g-Subsets and only with respect to candidates (not labels);

– a gSp-label corresponds to the maximal extent of a possible gSp-subset (as
defined below), but it does not tackle non-degeneracy conditions.

268 Pattern-Based Constraint Satisfaction and Logic Puzzles

Notation: in the definition of g-Subsets, as in the case of Subsets, we shall need a
means of specifying that, in some g-transversal sets, some labels or g-labels must
exist while others may exist or not. We shall write this as e.g. {<V1, v1>, <V2, v2>,
…, (<Vk, vk>), ….}. This should be understood as follows: a label or g-label not
surrounded with parentheses must exist; a “label” or “g-label” surrounded with
parentheses, like (<Vk, vk>), may exist or not; if it exists, then it is named <Vk, vk>.

10.1.2. g-Pairs

Definition: in any resolution state RS of any CSP, a g-Pair (or gS2-subset) is a
gS2-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2},
– TransvSets is composed of the following g-transversal sets of labels and g-

labels:
{<V1, v11>, <V2, v21>} for constraint c1,
{<V1, v12>, <V2, v22>} for constraint c2,

such that:
– in RS, V1 and V2 are disjoint, i.e. they share no candidate;
– in RS, {<V1, v11>} and {<V1, v12>} are transitively disjoint; {<V2, v22>} and

{<V2, v21>} are transitively disjoint;
– in RS, V1 has the two mandatory candidates or g-candidates <V1, v11> and

<V1, v12> and no other candidate or g-candidate;
– in RS, V2 has the two mandatory candidates or g-candidates <V2, v21> and

<V2, v22> and no other candidate or g-candidate.

A target of a g-Pair is a candidate gS2-linked to the underlying gS2-label.

Theorem 10.1 (gS2 rule): in any CSP, a target of a g-Pair can be eliminated.

Proof: as the two g-transversal sets play similar roles, we can suppose that Z is
linked or g-linked to <V1, v11> and <V2, v21>. If Z was True, these candidates or all
the candidates these g-candidates contain would be eliminated by ECP. As V1 and
V2 have only two candidates or g-candidates each, their other candidate or g-
candidate (<V1, v12>, respectively <V2, v22>) would be or would contain their real
value, which is impossible, as both are linked or g-linked. Here again, the proof
works only because V1 and V2 share no candidate in RS (and in no posterior
resolution state).

10.1.3. g-Triplets

There may be several formulations of g-Triplets. Here again, as in the case of
ordinary Triplets, we adopt one that is neither too restrictive (the presence of some

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 269

of the candidates or g-candidates potentially involved is not mandatory) nor too
comprehensive (i.e., by making mandatory the presence of some of the candidates or
g-candidates involved, it does not allow degenerated cases).

Definition: in any resolution state RS of any CSP, a g-Triplet (or gS3-subset) is a
gS3-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3},
– TransvSets is composed of the following g-transversal sets of labels and g-

labels:
– {<V1, v11>, (<V2, v21>), <V3, v31>} for constraint c1,
– {<V1, v12>, <V2, v22>, (<V3, v32>)} for constraint c2,
– {(<V1, v13>), <V2, v23>, <V3, v33>} for constraint c3,

such that:
– in RS, V1, V2 and V3 are pairwise disjoint;
– in RS, {<V1, v11>} and {<V1, v12>} are transitively disjoint; {<V2, v22>} and

{<V2, v23>} are transitively disjoint; {<V3, v33>} and {<V3, v31>} are transitively
disjoint;

– in RS, V1 has the two mandatory candidates or g-candidates <V1, v11> and
<V1, v12>, one optional candidate or g-candidate <V1, v13> (supposing this label or
g-label exists) and no other candidate or g-candidate;

– in RS, V2 has the two mandatory candidates or g-candidates <V2, v22> and
<V2, v23>, one optional candidate or g-candidate <V2, v21> (supposing this label or
g-label exists) and no other candidate or g-candidate;

– in RS, V3 has the two mandatory candidates or g-candidates <V3, v33> and
<V3, v31>, one optional candidate or g-candidate <V3, v32> (supposing this label or
g-label exists) and no other candidate or g-candidate.

A target of a g-Triplet is defined as a candidate gS3-linked to the underlying gS3-
label.

Theorem 10.2 (gS3 rule): in any CSP, a target of a g-Triplet can be eliminated.

Proof: as the three g-transversal sets play similar roles, we can suppose that Z is
gS3-linked to the first, i.e. linked or g-linked to <V1, v11>, <V2, v21> and <V3, v31> if
it exists. If Z was True, these candidates or all the candidates these g-candidates
contain (if they are present) would be eliminated by ECP. Each of V1, V2 and V3
would have at most two candidates or g-candidates left. Any choice for V1 would
reduce to at most one the number of possibilities (in terms of candidates and g-
candidates) for each of V2 and V3 (due to the pairwise contradictions between
members of each g-transversal sets). Finally, the unique choice for V2 (still in terms
of candidates and g-candidates), if any, would in turn reduce to zero the number of
possibilities for V3.

270 Pattern-Based Constraint Satisfaction and Logic Puzzles

10.1.4. g-Quads

Finding the proper formulation for g-Quads, guaranteeing that it covers no
degenerated case, is less obvious than for g-Triplets. Borrowing to the Quads case,
we consider two types of g-Quads: Cyclic and Special, and we choose to write the
Special g-Quad in such a way that it does not cover any case already covered by the
Cyclic g-Quad.

Definition: in any resolution state RS of any CSP, a Cyclic g-Quad (or Cyclic
gS4-subset) is a gS4-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3, V4},
– TransvSets is composed of the following g-transversal sets of labels and g-

labels:
– {<V1, v11>, (<V2, v21>), (<V3, v31>), <V4, v41>} for constraint c1,
– {<V1, v12>, <V2, v22>, (<V3, v32>), (<V4, v42>)} for constraint c2,
– {(<V1, v13>), <V2, v23>, <V3, v33>, (<V4, v43>)} for constraint c3,
– {(<V1, v14>), (<V2, v24>), <V3, v34>, <V4, v44>} for constraint c4,

such that:
– in RS, V1, V2, V3 and V4 are pairwise disjoint, i.e. no two of these variables

share a candidate;
– in RS, {<V1, v11>} and {<V1, v12>} are transitively disjoint; {<V2, v22>} and

{<V2, v23>} are transitively disjoint; {<V3, v33>} and {<V3, v34>} are transitively
disjoint; {<V4, v44>} and {<V4, v41>} are transitively disjoint;

– in RS, V1 has the two mandatory candidates or g-candidates <V1, v11> and
<V1, v12>, two optional candidates or g-candidates <V1, v13> and <V1, v14>
(supposing any of these labels exists) and no other candidate or g-candidate;

– in RS, V2 has the two mandatory candidates or g-candidates <V2, v22> and
<V2, v23>, two optional candidates or g-candidates <V2, v24> and <V2, v21>
(supposing any of these labels exists) and no other candidate or g-candidate;

– in RS, V3 has the two mandatory candidates or g-candidates <V3, v33> and
<V3, v34>, two optional candidates or g-candidates <V3, v31> and <V3, v32>
(supposing any of these labels exists) and no other candidate or g-candidate;

– in RS, V4 has the two mandatory candidates or g-candidates <V4, v44> and
<V4, v41>, two optional candidates or g-candidates <V4, v42> and <V4, v43>
(supposing any of these labels exists) and no other candidate or g-candidate.

Definition: in any resolution state RS of any CSP, a Special g-Quad (or Special
gS4-subset) is a gS4-label {CSPVars, TransvSets}, where:

– CSPVars = {V1, V2, V3, V4},

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 271

– TransvSets is composed of the following transversal sets of labels and g-
labels:

{<V1, v11>, <V2, v21>, <V3, v31>, (<V4, v41>}) for constraint c1,
{<V1, v12>, (<V2, v22>), (<V3, v32>), <V4, v42>} for constraint c2,
{(<V1, v13>), <V2, v23>, (<V3, v33>), <V4, v43>} for constraint c3,
{(<V1, v14>), (<V2, v24>), <V3, v34>, <V4, v44>} for constraint c4,

such that:
– in RS, V1, V2, V3 and V4 are pairwise disjoint, i.e. no two of these variables

share a candidate;
– in RS, <V1, v11> and <V1, v12> are transitively disjoint; <V2, v21> and

<V2, v23> are transitively disjoint; <V3, v31> and <V3, v34> are transitively disjoint;
moreover, <V4, v42>, <V4, v43> and <V4, v44> are pairwise transitively disjoint;

– in RS, V1 has the two mandatory candidates or g-candidates <V1, v11> and
<V1, v12> and no other candidate or g-candidate;

– in RS, V2 has the two mandatory candidates or g-candidates <V2, v21> and
<V2, v23> and <V1, v12> and no other candidate or g-candidate;

– in RS, V3 has the two mandatory candidates or g-candidates <V3, v31> and
<V3, v34> and <V1, v12> and no other candidate or g-candidate;

– in RS, V4 has the three mandatory candidates or g-candidates <V4, v42>,
<V4, v43> and <V4, v44> and no other candidate or g-candidate.

In both cases, a target of a g-Quad is defined as a candidate gS4-linked to the
underlying gS4-label.

Theorem 10.3 (gS4 rule): in any CSP, a target of a Cyclic or Special g-Quad
can be eliminated.

Proof for the cyclic case: as the four g-transversal sets play similar roles, we can
suppose that Z is linked or g-linked to <V1, v11>, <V2, v21>, <V3, v31> if it exists and
<V4, v41> if it exists. If Z was True, these candidates or all the candidates these g-
candidates contain (if they are present) would be eliminated by ECP. Each of V1,
V2, V3 and V4 would have at most three candidates or g-candidates left. Any choice
for V1 would reduce to at most two the number of possibilities (in terms of
candidates and g-candidates) for V2, V3 and V4. Any further choice among the
remaining candidates or g-candidates for V2 would reduce to at most one the
number of possibilities (still in terms of candidates and g-candidates) for V3 and V4.
Finally, the unique choice left for V3 (still in terms of candidates and g-candidates),
if any, would reduce to zero the number of possibilities for V4.

Proof for the special case: there are four subcases (the last two of which are
similar to the second):
- suppose Z is linked or g-linked to both <V1, v11>, <V2, v21>, <V3, v31> and
<V4, v41> if it exists. If Z was True, these candidates or all the candidates these g-

272 Pattern-Based Constraint Satisfaction and Logic Puzzles

candidates contain (if they are present) would be eliminated by ECP. Each of V1,
V2, V3, would have only one candidate or g-candidate left; choosing these
candidates or any candidate in these g-candidates as their respective values would
reduce to zero the number of possibilities for V4.
- suppose Z is linked to both <V1, v12>, <V2, v22> if it exists, <V3, v32> and
<V4, v42> if it exists. If Z was True, <V1, v12> and <V4, v42> or all the candidates
they contain would be eliminated by ECP; <V1, v11> would then be True, which
would eliminate <V2, v21> and <V3, v31> or all the candidates they contain. Then
<V2, v23> and <V3, v34> would be True. This would leave no possibility for V4.

If we wanted to introduce larger g-Subsets, it would get harder and harder to
write separate formulæ guaranteeing non-degeneracy of each subcase. We leave this
as a (difficult) exercise for the reader. Contrary to Subsets, in the 9×9 Sudoku case,
there can be g-Subsets of size larger than 4: see the example of a Franken
Squirmbag (size 5) in section 10.3.

10.1.5. gSp-subset theories and confluence

All of section 8.6 can be transposed and extended from Sp-subsets to gSp-
subsets: definition of the gSp resolution theories, proof of their stability for
confluence, definition of the gWp+gSp and gBp+gSp resolution theories (in which g-
whips[p] or g-braids[p] are added to gSp-subsets) and proof of their stability for
confluence.

10.1.6. Subsumption results for g-Subsets

10.1.6.1. g-Pairs

Theorem 10.4: gS2 ⊆ gW2 (g-whips of length 2 subsume all the g-Pairs).

Proof: keeping the notations of theorem 10.1 and considering a target Z of the g-
Pair that is gS2-linked to the first g-transversal set, i.e. linked or g-linked to both
<V1, v11> and <V2, v21>, the following g-whip[2] eliminates Z:
g-whip[2]: V1{v*11 v12} – V2{v*22 .} ⇒ ¬candidate(Z),
where v*11 [respectively v*22] is v11 [resp. v22] if <V1, v11> [resp. <V2, v22>] is a
candidate and it is any element chosen in v11 [resp. v22] if <V1, v11> [resp. <V2, v22>]
is a g-candidate. In case <V1, v11> is a g-candidate, the candidates in <V1, v11> other
than <V1, v*11> are z-candidates in the whip[2]; in case <V2, v22> is a g-candidate,
the candidates in <V2, v22> other than <V2, v*22> are t-candidates in the whip[2].

The converse of the above theorem is false: gW2 ⊄ gS2; indeed, W2 ⊄ gS2. For
a deep understanding of both whips and g-Subsets, this is as interesting as the
theorem itself. Using the example in section 8.8.1, we have concluded in section
8.7.1 that W2 ⊄ S2. But the same example can now be used to show that W2 ⊄ gS2.

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 273

The three whips[2] defined in section 8.8.1 can be considered no more as g-Pairs
than as Pairs.

It is nevertheless instructive to understand how a tentative proof of the inclusion
gW2 ⊆ gS2 would fail. We would have to proceed as follows. Let
g-whip[2]: V1{v11 v12} – V2{v22 .} ⇒ ¬candidate(Z), be a g-whip[2] with target Z,
associated with CSP variables (V1, V2). Consider all the possible candidates or g-
candidates for each of these variables.

For V1, they can only be:
– <V1, v’11> = the candidate or g-candidate consisting of <V1, v11> and all the

candidates for V1 linked to Z;
– and <V1, v’12> = <V1, v12> (a candidate or a g-candidate, with no element

linked to Z).

For V2, they can only be:
– <V2, v’22> = the candidate or g-candidate consisting of <V2, v22> and all the

candidates for V2 linked to <V1, v12>;
– and <V2, v’21> = the candidate or g-candidate consisting of all the candidates

for V2 linked to Z but not to <V1, v12>.

We have thus built a g-transversal set {<V1, v’12>, <V2, v’22>}, but {<V1, v’11>,
<V2, v’21>} may not be a g-transversal set: the target Z is linked to these two
candidates or g-candidates that may not be linked together by any constraint. This is
exactly the situation with the three whips[2] in the example of section 8.8.1.

10.1.6.2. g-Triplets

Theorem 10.5: gW3 subsumes “almost all” the g-Triplets.

Proof: keeping the notations of theorem 10.3 and considering a target Z of the g-
Triplet that is gS-linked to the first g-transversal set (the three of them play similar
roles), the following g-whip eliminates Z in any CSP:
g-whip[3]: V1{v*11 v12} – V2{v*22 v23} – V3{v*33 .} ⇒ ¬candidate(Z),
provided that <V1, v13> is not a candidate or a g-candidate for V1.
Here, v*11 [respectively v*22, v*33] is v11 [resp. v22, v33] if <V1, v11> [resp. <V2, v22>,
<V3, v33>] is a candidate and it is any element chosen in v11 [resp. v22, v33] if
<V1, v11> [resp. <V2, v22>, <V3, v33>] is a g-candidate.
The optional candidates and the elements of the optional g-candidates of the g-
Triplet appear in the g-whip as z- or t- candidates.

Considering that, in the above situation, the three CSP variables play
symmetrical roles, there is only one case of a g-Triplet elimination that cannot be
replaced by a g-whip[3] elimination. It occurs when the optional candidates or g-
candidates for variables V1, V2 and V3 in the g-transversal set to which the target is

274 Pattern-Based Constraint Satisfaction and Logic Puzzles

gS-linked correspond to existing labels or g-labels and are all effectively present in
the resolution state.

10.1.6.3. g-Quads

Theorem 10.6: gW4 subsumes “almost all” the Cyclic g-Quads.

Keeping the notations of theorem 10.5, the following g-whip eliminates a target
Z of the Cyclic g-Quad in any CSP:
g-whip[4]: V1{v*11 v12} – V2{v*22 v23} – V3{v*33 v34} – V4{v*41 .} ⇒
¬candidate(Z),
provided that <V1, v13> and <V1, v14> are not candidates for V1 and <V2, v23> is not
a candidate for V2,
with the v*xy defined as before.
The optional candidates and the elements of the optional g-candidates of the g-Quad
appear in the g-whip as z- or t- candidates.

Theorem 10.7: gB4 subsumes all the Special g-Quads.

Keeping the notations of theorem 10.5, let Z be a target of the Special g-Quad:
- if Z is gS4-linked to the first g-transversal set, the following g-braid eliminates Z:
g-braid[4]: V1{v*11 v12} – V2{v*21 v23} – V3{v*31 v34} – V4{v*44 .} ⇒
¬candidate(Z),
in which the first three left-linking candidates are linked to Z;
- if Z is gS4-linked to another g-transversal set, say the second, the following g-whip
eliminates Z:
g-whip[4]: V1{v*12 v11} – V2{v*21 v23} – V4{v*43 v44} – V3{v*34 .} ⇒
¬candidate(Z),
in which candidate <V4, v42> appears as a z-candidate for the third CSP variable.

10.1.7. g-Subsets in Sudoku

Although the concept of a g-Subset has never been considered as such in
Sudoku, the point we want to make here is that g-Subsets have been in existence for
a very long time, under other names: they appear as the “Franken Fish” and “Mutant
Fish” patterns.

The difference between the two kinds depends on the specific geometry of
Sudoku and is of little interest for the general theory developed here. Let us
therefore mention it quickly, transposed into the vocabulary of this book. For a
given number n°, a standard Fish in rows [respectively in columns] (of size p) uses
only p different Xrn° [resp. Xcn°] CSP variables and p different transversal sets
defined by Xcn° [resp. Xrn°] constraints. A Franken Fish in rows (of size p) is
defined as an extended Fish (Super-Hidden Subset) pattern of size p in which either
some of the p CSP variables are of type Xbn° instead of Xrn° [resp. Xcn°] or some

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 275

of the p transversal sets are defined by Xbn° constraints instead of Xcn° [resp. Xrn°]
constraints. In a Mutant Fish, rows, columns and blocks may all appear in both CSP
variables (i.e. these may be Xr°c°, Xrn°, Xcn° and Xbn°) and in constraints defining
the transversal sets, which makes them much more complex than Franken Fish.

For more details and for examples, see sudopedia.org. For a (maybe not
exhaustive) review of the various possibilities, we direct the reader to the specialised
forums, where he will find that there is a handful of people who consecrate their
time to studying and naming them (together with their “finned”, “sushi”, “sashimi”
and other extensions). There is also a recent free java Sudoku solver, specialised in
Fish: Hodoku – as far as we know, the only solver implementing (almost) all the
known possibilities. See also the detailed example in section 10.3 below.

10.2. Reversible-gSp-chains, gSp-whips and gSp-braids

When we try to apply the zt-ing principle to g-Subsets, everything goes for gSp-
whips and gSp-braids as for Sp-whips and Sp-braids. Here again, when it comes to
defining the concepts of gSp-links and gSp-compatibility, we always consider the
gSp-labels underlying the gSp-subsets instead of the gSp-subsets themselves, in
exactly the same way as we considered the full Sp-labels underlying the Sp-subsets
when we defined Sp-links. The main reason for this choice is the same as in the Sp-
links case: we want all the notions related to linking and compatibility to be purely
structural (see chapter 9 for more detail).

10.2.1. gSp-links; gSp-subsets modulo other g-Subsets; gSp-regular sequences

10.2.1.1. gSp-links, gSp-compatibility

Definition: a label l is compatible with a gSp-label S if l is not gSp-linked to S
(i.e. if, for each g-transversal set TS of S, there is at least one label or g-label l’ in
TS such that l is not linked or g-linked to l’).

Definition: a label l is compatible with a set R of labels, g-labels, S-labels and
gS-labels if l is compatible with each element of R (in the senses of “compatible”
already defined separately for labels, g-labels, Sp-labels and gSp-labels).

Definitions: a label l is gSp-linked to a gSp-subset S if l is gSp-linked to the gSp-
label underlying S; a label l is compatible with a gSp-subset if l is not gSp-linked to
it; a label l is compatible with a set R of candidates, g-candidates, Subsets and g-
Subsets if l is compatible with each element of R (in the senses of “compatible”
already defined separately for candidates, g-candidates, Sp-subsets and gSp-subsets).

Notice that, in conformance with what we mentioned at the beginning of section
10.2, according to the definition of “gSp-linked to a gSp-subset”, it is not enough for

276 Pattern-Based Constraint Satisfaction and Logic Puzzles

label l to be linked or g-linked to all the actual candidates and g-candidates of one of
its transversal sets: it must be linked or g-linked to all the labels and g-labels of one
of its transversal sets.

10.2.1.2. gSp-subsets modulo a set of labels, g-labels, S-labels and gS-labels

All our forthcoming definitions (Reversible-gSp-chains, gSp-whips and gSp-
braids) will be based on that of a gSp-subset modulo a set R of labels, g-labels, S-
labels and gS-labels; in practice, R will be either the previous right-linking pattern
or the set consisting of the target plus all the previous right-linking patterns (i.e.
candidates, g-candidates, Sk-subsets and gSk-subsets).

Definition: in any resolution state of any CSP, given a set R of labels, g-labels,
S-labels and gS-labels [or a set R of candidates, g-candidates, Subsets and g-
Subsets], a g-Pair (or gS2-subset) modulo R is a gS2-label {CSPVars, TransvSets},
where:

– CSPVars = {V1, V2},
– TransvSets is composed of the following transversal sets of labels and g-

labels:
– {<V1, v11>, <V2, v21>} for constraint c1,
– {<V1, v12>, <V2, v22>} for constraint c2,

such that:
– in RS, V1 and V2 are disjoint, i.e. they share no candidate;
– in RS, {<V1, v11>} and {<V1, v12>} are transitively disjoint; in RS,

{<V2, v22>} and {<V2, v21>} are transitively disjoint;
– in RS, V1 has the two mandatory candidates or g-candidates <V1, v11> and

<V1, v12> compatible with R and no other candidate or g-candidate compatible with
R;

– in RS, V2 has the two mandatory candidates or g-candidates <V2, v21> and
<V2, v22> compatible with R and no other candidate or g-candidate compatible with
R.

Definition: in any resolution state of any CSP, given a set R of labels, g-labels,
S-labels and gS-labels [or a set R of candidates, g-candidates, Subsets and g-
Subsets], a g-Triplet (or gS3-subset) modulo R is a gS3-label {CSPVars,
TransvSets}, where:

– CSPVars = {V1, V2, V3},
– TransvSets is composed of the following transversal sets of labels and g-

labels:
– {<V1, v11>, (<V2, v21>), <V3, v31>} for constraint c1,
– {<V1, v12>, <V2, v22>, (<V3, v32>)} for constraint c2,

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 277

– {(<V1, v13>), <V2, v23>, <V3, v33>} for constraint c3,
such that:

– in RS, V1, V2 and V3 are pairwise disjoint;
– in RS, {<V1, v11>} and {<V1, v12>} are transitively disjoint; {<V2, v22>} and

{<V2, v23>} are transitively disjoint; {<V3, v33>} and {<V3, v31>} are transitively
disjoint;

– in RS, V1 has the two mandatory candidates or g-candidates <V1, v11> and
<V1, v12> compatible with R, one optional candidate or g-candidate <V1, v13>
compatible with R (supposing this label or g-label exists), and no other candidate or
g-candidate compatible with R;

– in RS, V2 has the two mandatory candidates or g-candidates <V2, v22> and
<V2, v23> compatible with R, one optional candidate or g-candidate <V2, v21>
compatible with R (supposing this label or g-label exists), and no other candidate or
g-candidate compatible with R;

– in RS, V3 has the two mandatory candidates or g-candidates <V3, v33> and
<V3, v31> compatible with R, one optional candidate or g-candidate <V3, v32>
compatible with R (supposing this label or g-label exists), and no other candidate or
g-candidate compatible with R.

We leave it to the reader to write the definitions of g-Subsets of larger sizes
modulo R (gSp-subsets modulo R). The general idea is that, when one looks in RS at
some gSp-label “modulo R”, i.e. when all the candidates and g-candidates in RS
incompatible with R are “forgotten”, what remains in RS satisfies the conditions of a
non degenerated g-Subset of size p based on this gSp-label.

Definition: in all the above cases, a target of the gSp-subset modulo R is defined
as a target of the gSp-subset itself (i.e. as a candidate gSp-linked to its underlying
gSp-label).

The idea is that, in any context (e.g. in a chain) in which the elements in R have
positive valence, the gSp-subset itself will have positive valence and any of its
targets will have negative valence.

10.2.1.3. gSp-regular sequences

As in the previous chapter, it is convenient to introduce an auxiliary notion
before we define Reversible-gSp-chains, gSp-whips and gSp-braids.

Definition: let there be given an integer 1≤p≤∞, an integer m≥1, a sequence (q1,
…, qm) of integers, with 1≤qk≤p for all 1≤k≤m, and let n = ∑1≤k≤m qk; let there also
be given a sequence (W1, …, Wm) of different sets of CSP variables of respective
cardinalities qk and a sequence (V1, …, Vm) of CSP variables such that Vk ∈ Wk for
all 1≤k≤m. We define a gSp-regular sequence of length n associated with (W1, …

278 Pattern-Based Constraint Satisfaction and Logic Puzzles

Wm) and (V1, … Vm) to be a sequence of length 2m [or 2m-1] (L1, R1, L2, R2, …. Lm,
[Rm]), such that:

– qm=1 and Wm = {Vm},
– for 1≤k≤ m, Lk is a candidate;
– for 1≤k≤ m [or 1≤k<m], Rk is a candidate or a g-candidate if qk=1 and it is a

(non degenerated) Sqk-subset or gSqk-subset if qk>1;
– for each 1≤k≤ m [or 1≤k<m], one has “strong continuity”, “strong g-

continuity”, “strong Sqk-continuity” or “strong gSqk-continuity” from Lk to Rk:
- if Rk is a candidate (qk=1 and Wk={Vk}), Lk and Rk have a representative

with Vk: <Vk, lk> and <Vk, rk>,
- if Rk is a g-candidate (qk=1 and Wk={Vk}), Lk has a representative <Vk, lk>

with Vk and Rk is a g-candidate <Vk, rk> for Vk (rk being its set of values),
- if Rk is an Sqk-subset or a gSqk-subset (qk>1), then Wk is its set of CSP

variables and Lk has a representative with Vk.

The Lk are called the left-linking candidates of the sequence and the Rk the right-
linking objects (or elements or patterns or g-Subsets). Notice that the natural
expression of Lk to Rk continuity in case Rk is a g-Subset is the same as if it is a
Subset.

Notice also that the definition of a g-Subset implies a disjointness condition on
the sets of candidates for the CSP variables inside each Wk, but for a gSp-regular
sequence there is no condition on the intersections of different Wk’s. In particular,
Wk+i may be a strict subset of Wk, if the right-linking elements in between give
negative valence in Wk+i to some candidates or g-candidates that had no individual
valence assigned in Wk. This is not considered as an inner loop of the sequence.

10.2.2. Reversible-gSp-chains

Reversible-gSp-chains are an extension of Reversible-Sp-chains in which right-
linking Sp’-subsets may be replaced by gSp’-subsets (p’≤p).

10.2.2.1. Definition of Reversible-gSp-chains

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be a target), a
Reversible-gSp-chain of length n (n ≥ 1) is a gSp-regular sequence (L1, R1, L2, R2,
…. Lm, Rm) of length n associated with a sequence (W1, … Wm) of sets of CSP
variables and a sequence (V1, … Vm) of CSP variables (with Vk ∈ Wk for all
1≤k<m), such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm, Rm} nor a
member of any g-candidate in this set nor equal to any label in the Sqk-label or gSqk-
label of Rk when Rk is an Sqk-subset or a gSqk-subset, for any 1≤k<m;

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 279

– Z is linked to L1;
– for each 1 < k ≤ m, Lk is linked or g-linked or Sqk-1-linked or gSqk-1-linked to

Rk-1; this is the natural way of defining “continuity” from Rk-1 to Lk;
– R1 is a candidate or a g-candidate or an Sq1-subset or a gSq1-subset modulo Z:

R1 is the only candidate or g-candidate or is the unique Sq1-subset or is the unique
gSq1-subset composed of all the candidates C for the CSP variables in W1 such that
C is compatible with Z;

– for any 1 < k ≤ m, Rk is a candidate or a g-candidate or an Sqk-subset or a
gSqk-subset modulo Rk-1: Rk is the only candidate or g-candidate or (if k≠m) is the
unique Sqk-subset or (if k≠m) is the unique gSqk-subset composed of all the
candidates C for the CSP variables in Wk such that C is compatible with Rk-1;

– Z is not a label for Vm;
– Z is linked to L1 and to Rm.

Theorem 10.8 (Reversible-gSp-chain rule for a general CSP): in any resolution
state of any CSP, if Z is a target of a Reversible-gSp-chain, then it can be
eliminated (formally, this rule concludes ¬candidate(Z)).

Proof: if Z was True, then L1 would be eliminated by ECP and R1 would be
asserted by S (if it is a candidate) or it would be a g-candidate or an Sq1-subset or a
gSq1-subset; in any case, L2 would be eliminated by ECP or W1 or Sq1 or gSq1. By
induction, we arrive at: Rm would be asserted by S or it would be a g-candidate –
which would contradict Z being True.

10.2.2.2. Reversibility of Reversible-gSp-chains in the general CSP

The following theorem justifies the name we have given these chains.

Theorem 10.9: a Reversible-gSp-chain is reversible.

Proof: the main point of the proof is the construction of the reversed chain. As it
is a simple transposition of the proof for Reversible-Sp-chains in section 9.2.2, we
leave it as an exercise for the reader. Figure 9.1 can still be used as a partial visual
support for the proof, but now the intersections between horizontal lines (CSP
variables) and vertical lines (g-transversal sets) must be interpreted as candidates or
g-candidates for these CSP variables instead of only candidates.

10.2.3. gSp-whips and gSp-braids

gSp-whips and gSp-braids are an extension of g-whips and g-braids in which Sp’-
subsets and gSp’-subsets (p’≤p) may appear as right-linking patterns. They can also
be seen as extensions of the Reversible-gSp-chains by application of the zt-ing
instead of the almost-ing principle.

280 Pattern-Based Constraint Satisfaction and Logic Puzzles

10.2.3.1. Definition of gSp-whips

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be the target),
a gSp-whip of length n (n ≥ 1) built on Z is a gSp-regular sequence (L1, R1, L2, R2,
…. Lm) [notice that there is no Rm] of length n, associated with a sequence (W1, …
Wm) of sets of CSP variables and a sequence (V1, … Vm) of CSP variables (with
Vk ∈ Wk for all 1≤k<m and Wm = {Vm}), such that:

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm} nor a member of
any g-candidate in this set nor equal to any label in the Sqk-label or gSqk-label of Rk
when Rk is an Sqk-subset or a gSqk-subset, for any 1≤k<m;

– L1 is linked to Z;
– for each 1 < k ≤ m, Lk is linked or g-linked or Sqk-1-linked or gSqk-1-linked to

Rk-1; this is a form of “continuity” from Rk-1 to Lk;
– for any 1 ≤ k < m, Rk is a candidate or a g-candidate or an Sqk-subset or a

gSqk-subset modulo Z and all the previous right-linking patterns: either Rk is the
only candidate or g-candidate compatible with Z and with all the Ri with 1≤ i< k, or
Rk is the unique Sqk-subset or gSqk-subset composed of all the candidates C for
some of the CSP variables in Wk such that C is compatible with Z and with all the Ri
with 1≤ i< k;

– Z is not a label for Vm;
– Vm has no candidate compatible with the target and with all the previous right-

linking objects (but Vm has more than one candidate).

Theorem 10.10 (gSp-whip rule for a general CSP): in any resolution state of
any CSP, if Z is a target of a gSp-whip, then it can be eliminated (formally, this
rule concludes ¬candidate(Z)).

Proof: the proof is an easy adaptation of that for the Sp-whips. Supposing Z was
True and iterating upwards: Rk-1 would be asserted by S or it would be a g-candidate
or an Sqk-1-subset or a gSqk-1-subset; due to Rk-1 to Lk continuity, Lk would be
eliminated by rule ECP, W1, Sqk-1 or gSqk-1; as usual the z- and t- candidates would
be progressively eliminated. When m-1 is reached, Rm-1 would have positive valence
and there would be no possible value left for Vm (because Z itself is not a label for
Vm).

10.2.3.2. Definition of gSp-braids

Definition: given an integer 1≤p≤∞ and a candidate Z (which will be the target),
a gSp-braid of length n (n ≥ 1) built on Z is a gSp-regular sequence (L1, R1, L2, R2,
…. Lm) [notice that there is no Rm] of length n, associated with a sequence (W1, …
Wm) of sets of CSP variables and a sequence (V1, … Vm) of CSP variables (with
Vk ∈ Wk for all 1≤k<m and Wm = {Vm}), such that:

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 281

– Z is neither equal to any candidate in {L1, R1, L2, R2, …. Lm} nor a member of
any g-candidate in this set nor equal to any label in the Sqk-label or gSqk-label of Rk
when Rk is an Sqk-subset or a gSqk-subset, for any 1≤k<m;

– L1 is linked to Z;
– for each 1 < k ≤ m, Lk is linked or g-linked or S-linked or gS-linked to Z or to

some of the Ri, i<k; this is the only difference with gSp-whips;
– for any 1 ≤ k < m, Rk is a candidate or a g-candidate or an Sqk-subset or a

gSqk-subset modulo Z and all the previous right-linking patterns: either Rk is the
only candidate or g-candidate compatible with Z and with all the Ri with 1≤ i< k, or
Rk is the unique Sqk-subset or gSqk-subset composed of all the candidates C for
some of the CSP variables in Wk such that C is compatible with Z and with all the Ri
with 1≤ i< k;

– Z is not a label for Vm;
– Vm has no candidate compatible with the target and with all the previous right-

linking objects (but Vm has more than one candidate).

Theorem 10.11 (gSp-braid rule for a general CSP): in any resolution state of
any CSP, if Z is a target of a gSp-braid, then it can be eliminated (formally, this
rule concludes ¬candidate(Z)).

Proof: almost the same as the proof for gSp-whips. The condition replacing Rk-1
to Lk continuity still allows the elimination of Lk by ECP.

10.2.3.3. gSp-whip and gSp-braid resolution theories; gSpW and gSpB ratings

In the same way as for the Sp-whips or Sp-braids cases, one can define increasing
sequences of resolution theories, with two parameters, one (n) for the total length of
the chain and one (p) for the maximum size of inner Subsets or g-Subsets. By
convention, p=1 means no Subset or g-Subset, only candidates and g-candidates.

Definition: for each p, 1≤p≤∞, define the increasing sequence (gSpWn, n≥0) of
resolution theories as follows (similar definitions can be given for gSp-braids, by
replacing everywhere “gSp-whip” by “gSp-braid” and “gSpW” by “gSpB”):

– gSpW0 = BRT(CSP),
– gSpW1 = gSpW0 ∪ {rules for gSp-whips of length 1} = W1,
– gSpW2 = gSpW1 ∪ gS2 (if p≥2) ∪ {rules for gSp-whips of length 2},
–
– gSpWn = gSpWn-1 ∪ gSn (if p≥n) ∪ {rules for gSp-whips of length n},
– gSpW∞ = ∪n≥0 gSpWn.

For p=∞, i.e. for gS-whips built on g-Subsets of a priori unrestricted size, we
also write gSWn instead of gS∞Wn.

282 Pattern-Based Constraint Satisfaction and Logic Puzzles

Definitions: for any 1≤p≤∞, the gSpW-rating of an instance P, noted gSpW(P), is
the smallest n ≤ ∞ such that P can be solved within gSpWn. Similarly, for any
1≤p≤∞, the gSpB-rating of an instance P, noted gSpB(P), is the smallest n ≤ ∞ such
that P can be solved within gSpBn.

Obviously, setting p=1, gS1Wn = gWn and gS1W(P) = gW(P) for any instance.
Similarly, gS1Bn = gBn and gS1B(P) = gB(P) for any instance

For any 1≤p≤∞, the gSpW and gSpB ratings are defined in a purely logical way,
independent of any implementation; they are intrinsic properties of each instance;
moreover, for any fixed p (1≤p≤∞), the gSpB rating is based on an increasing
sequence of theories (gSpBn, n≥0) with the confluence property (theorem 10.12).

For any puzzle P, one has obviously gW(P) = gS1W(P) ≥ gS2W(P) ≥ gSpW(P) ≥
gSp+1W(P) ≥ … ≥ gS∞W(P) and similar inequalities for the gSpB(P).

10.2.3.4. The confluence property of all the gSpBn resolution theories

Theorem 10.12: in any CSP, each of the gSpBn resolution theories (1 ≤ p ≤ ∞ ,
0 ≤ n ≤ ∞) is stable for confluence; therefore, it has the confluence property.

Proof: as it is a simple adaptation of the proof for the SpBn resolution theories,
we leave it as an exercise for the reader. We could even allow type-2 targets.

As usual, the confluence property of all the gSpBn resolution theories for each p,
1≤p≤∞, allows to superimpose on gSpBn a “simplest first” strategy compatible with
the gSpB rating.

10.2.3.5. The “T&E(gSp) vs gSp-braids” theorem, 1≤p≤∞

Any resolution theory T stable for confluence has the confluence property and
the procedure T&E(T) can therefore be defined (see section 5.6.1). Taking T = gSp,
it is obvious that any elimination done by a gSp-braid can be done by T&E(gSp). As
was the case for braids, for g-braids and for Sp-braids, the converse is true:

Theorem 10.13: for any 1≤p≤∞ , any elimination done by T&E(gSp) can be
done by a gSp-braid.

As the proof closely follows that for Sp-braids, we leave it to the reader.

10.2.4. gSp-z-whips and their relationships with gSp’-subsets

All the definitions and results in sections 9.3.4 to 9.3.6 can be extended with
only slight changes. Informally speaking, a gSp-z-whip[n] can be defined as a gSp-
whip[n] with no t-candidate that is not also a z-candidate. And gSp-z-whip
resolution theories can be defined and shown to have the confluence property.

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 283

Theorem 10.14: a target Z of a gSp-subset is always a target of a gSp-1-z-whip
of length p.

Proof: almost obvious. One can always suppose that Z is gSp-linked to TS1 and
that V1 has a candidate or a g-candidate to which Z is linked or g-linked. Let L1 =
<V1, l1> be this candidate or any candidate in this g-candidate. Let Lp = <Vp, lp> be a
candidate for Vp not in TS1 (there must be one if the gSp-subset is not degenerated).
Let R2 be the gSp-1-subset: {{V1, …, Vp-1}, {TS2, …, TSp}}. Then the desired chain
is RgSp-1C[p]: {L1 R2} – Vp{lp .}. qed.

A gSp-subset that has g-transversal sets with “transitively non-void” intersections
allows more eliminations than the “standard” ones defined in section 10.1. (This can
happen only for p>2.)

Definition: a type-2 target of a gSp-subset is a candidate belonging, either as an
element or as a member of a g-label, to (at least) two of its g-transversal sets.

Theorem 10.15: a type-2 target of a gSp-subset can be eliminated.

Proof: suppose a type-2 target Z is a candidate for variable V1 and belongs to g-
transversal sets TS1 and TS2. If Z was True, then all the candidates in TS1 or TS2 or
in a g-label in TS1 or TS2 would be eliminated by ECP. This would leave only p-2
possibilities (in terms of candidates or g-candidates) for the remaining p-1 CSP
variables – which is contradictory, in the same way as if it was for a normal target.

As in the case of Sp-subsets, this is a very unusual kind of elimination. The
following theorem shows that, here also, this abnormality can be palliated. It also
justifies that we did not consider type-2 targets of gSp-subsets in section 10.1: these
abnormal targets can always be eliminated by a simpler pattern. An illustration of
the following theorem will appear in section 10.3 (for a “Franken Squirmbag”).

Theorem 10.16: A type-2 target of a gSp-subset is always the (normal) target of
a shorter gSp-2-z-whip of length p-1.

Proof: in a resolution state RS, let Z be a type-2 target of a gSp-subset with CSP
variables V1, … Vp and g-transversal sets TS1, … TSp. One can always suppose that
V1 is the CSP variable for which Z is a candidate (there can be only one in RS) and
that TS1 and TS2 are the two g-transversal sets to which Z belongs.

Firstly, each of the CSP variables V2, V3, … Vp must have at least one candidate
or g-candidate of the gSp-subset that is not in TS1 or TS2 (if it has several, choose
one arbitrarily and name it <V2, c2>, … <Vp, cp>, respectively). Otherwise, the gSp-
subset would be degenerated; more precisely, Z could be eliminated by a whip[1]
(or even by ECP after a Single) associated with (any of) the CSP variable(s) that has
no such candidate.

284 Pattern-Based Constraint Satisfaction and Logic Puzzles

Secondly, in TS1 or TS2, there must be at least one candidate for at least one of
the CSP variables V2, … Vp. Otherwise, the initial gSp-subset would be degenerated;
more precisely, it would contain, among others, the gSp-2-subset {{V3, …, Vp},
{TS3, …, TSp}}; this would allow to eliminate all the candidates for V1 and V2 that
are not in TS1 or TS2; Z could then be eliminated by a whip[1] associated with V2;
and V1 would have no candidate left. One can always suppose that there exists such
a candidate L2 for V2, i.e. L2 = <V2, l2>.

Modulo Z, we therefore have a gSp-2 subset R2 with CSP variables V2, … Vp-1
and g-transversal sets TS3, … TSp. Let cp* be cp if it is a candidate or any element in
cp if it is a g-candidate. Then, Z is a (normal) target of the following gSp-2-z-whip of
length p-1: gSp-2-z-whip[p-1]: V2{l2 R2} – Vp{cp .} ⇒ ¬candidate(Z). qed.

Theorem 10.16 allows to replace any elimination of a candidate Z as a type-2
target for a gSp-subset by the elimination of Z as a normal target for a gSp-2-z-
whip[p-1]. But, as was the case for Sp-subsets in section 9.3.6 and for similar
reasons, this is not enough to guarantee that type-2 targets of gSp-subsets, if allowed
to be used as left-linking candidates in the definitions of gSp-whips or gSp-braids,
could not lead to (slightly) more general patterns than those in our current
definitions, due to the (probably rare) cases similar to those evoked in section 9.3.6.
However, in the present case, one can prove the following:

Theorem 10.17: for any 1≤p≤∞ , for any n>2, if a RgSpC[n] (respectively a
gSpW[n], a gSpB[n]) has a left-linking candidate Lk that is a type-2 target of an
inner gSp-subset, then it can be seen as a normal (i.e. with no inner type-2 targets)
RgSqC[n] (resp. gSqW[n], gSqB[n]), for some q>p, i.e. with larger inner g-Subsets.

Proof: almost obvious. Every time a left-linking candidate appears as a type-2
target, it suffices to merge its g-Subset with the next pattern in the sequence. Notice
that this would not work for a “non-g” version of this theorem, because, even in this
case, the next pattern could be a g-candidate.

Unfortunately, g-Subsets obtained by this (rather artificial) method tend to be
very close to degeneracy.

10.3. A detailed example

We shall use the puzzle in Figure 10.1 (taken from the examples that go with the
Hodoku solver [Hodoku www]) for several purposes:

– it will provide an example of a gS5-subset and illustrate that, in conformance
with our definition, the g-transversal sets do not have to meet all its CSP variables;

– it will illustrate the application of theorem 10.16 to the type-2 targets of a gS5-
subset;

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 285

– it will provide an example of a Reversible-gS2-chain;
– it will illustrate alternative solutions using either gS5-subsets and Reversible

Chains or g-whips[5].

 8 4 2 5 9 7 1 6 3
 6 1 4 7 5 9 3 2 6 1 8 4 7
 4 8 5 2 7 6 1 3 4 8 9 5 2
 6 8 9 4 1 3 2 7 5
 1 5 2 6 3 1 5 7 8 2 4 9 6
 7 4 5 1 8 2 7 4 6 5 9 3 1 8
 4 3 7 1 2 6 5 8 9
 2 8 7 5 4 1 2 8 9 7 5 6 3 4
 5 6 3 4 2 1 9 5 6 8 3 4 7 2 1

Figure 10.1. A puzzle P with W(P) = 4, gW(P) = 5, gSW(P) = 5

10.3.1. Solution using only gSp-subsets and Reversible-gSp-chains

Let us first see what is obtained if we use the Hodoku software mentioned in
section 10.1.7, when only basic rules plus xy-chains, Subsets, Finned-Fish, Franken
Fish, Mutant Fish and Kraken Fish (a kind of Fish Chains to be discussed below) are
activated. We keep Hodoku’s self-explaining notation. In the first three patterns, the
Finned Swordfish, the various “f” indicate the fins. “Finned Swordfish” is a classical
variant of Swordfish with additional candidates linked to the target; in our view, it is
merely a “z-Swordfish” (or z-SHT); the eliminations allowed here by the three
instances of this pattern can also be done by g-whips[3] (see section 10.3.2).

*****	 Hodoku	 2.0.1	 *****	
Finned	 Swordfish:	 3	 c239	 r147	 fr2c2	 fr2c3	 fr3c2	 fr3c3	 =>	 r1c1≠3	
Finned	 Swordfish:	 9	 r239	 c147	 fr2c2	 fr2c3	 fr3c2	 fr3c3	 =>	 r1c1≠9	
Finned	 Swordfish:	 9	 c569	 r147	 fr5c5	 fr6c6	 =>	 r4c4≠9	
;;; Resolution state RS1

Now, Hodoku reaches a resolution state RS1 (displayed in Figure 10.2) with a
“Franken Squirmbag in columns” for Number 9: in the five Columns c2, c3, c5, c6
and c9 (in light grey), Number 9 appears only in Rows r1, r4 and r7 and in Blocks
b1 and b5 (in dark grey).

Franken	 Squirmbag:	 9	 c23569	 r147b15	 =>	 r1c23478,r2347c1,r4c5678,r567c4,r7c78≠9	

In the approach of this chapter, this is a gS5-subset: the five CSP variables are
Xc2n9, Xc3n9, Xc5n9, Xc6n9 and Xc9n9 (symbolised by light grey columns); the five g-
transversal sets are defined by CSP variables (considered as constraints) Xr1n9, Xr4n9,
Xr7n9, Xb1n9 and Xb5n9 (symbolised by three dark grey rows and two dark grey

286 Pattern-Based Constraint Satisfaction and Logic Puzzles

blocks). The targets of the gS5-subset are all the candidates (the fourteen ones in
bold underlined characters in Figure 10.1) S5-linked to one of the transversal sets,
i.e. all the Numbers 9 in r1, r4, r7, b1 or b5 but not in any of c2, c3, c5, c6 or c9.

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
n1 n2
n4 n5 n6
n7 n8

 n3
n4 n6
 n8 n9

n1 n2 n3

n7 n9

 n2 n3
 n5
n7 n9

 n2

 n9

 n3

n7 n9

n1 n3
 n6
 n8 n9

 n3
 n6
 n8 n9

 n3

 n9
r1

r2
 n2 n3

 n5
 n8 n9

 n3

 n8 n9

 n2 n3

 n9

 n2 n3
 n5
 n9

n6 n1
 n3

 n8 n9

n4 n7 r2

r3
n1 n3
 n6
n7 n9

 n3
 n6
 n9

n1 n3

n7 n9

 n3

n7 n9
n4 n8

n1 n3
 n6
 n9

n5 n2 r3

r4
 n2 n3
 n6
 n8 n9

 n3
 n6
 n8 n9

 n2 n3

 n9

n1 n3
n4 n6
n7 n8

n1

 n8 n9

 n3
 n6
n7 n9

 n2 n3
n4 n5
n7 n9

 n3

n7 n9

 n3
 n5
 n9

r4

r5
 n3

 n8 n9

n1 n5
 n3
n4
n7 n8 n9

 n8 n9
n2

 n3
n4
n7 n9

 n3

n7 n9
n6 r5

r6
 n2 n3
 n6
 n9

n7 n4
 n3
 n6
 n9

n5
 n3
 n6
 n9

 n2 n3

 n9
n1 n8 r6

r7
n1 n3
n4
n7 n9

 n3
n4
 n9

n1 n3

n7 n9

n1 n2
 n6
 n8 n9

n1 n2

 n8 n9

 n6
 n9

 n3
 n5 n6
n7 n8 n9

 n3
 n6
n7 n8 n9

 n3
 n5
 n9

r7

r8
n1 n3

 n9

n2 n8
n1
 n6
 n9

n7 n5
 n3
 n6
 n9

 n3
 n6
 n9

n4 r8

r9

n7 n9
n5 n6

 n8 n9
n3 n4

n7 n8 n9
n2 n1 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 10.2. Resolution state RS1 of P, in which there appears a Franken Squirmbag

At first sight, this Franken Squirmbag leads to a very impressive result: eighteen
eliminations done by a single pattern. Notice that, contrary to whips that generally
eliminate only one candidate at a time (though associated whips obtained by
permutations can often eliminate more candidates), a Subset often eliminates several
candidates; but eighteen is really exceptional.

However, a closer look shows some difference in the eliminations done by
Hodoku for its Franken Squirmbag and those done by our gS5-subset: in addition to
the fourteen candidates of the latter, the former eliminates the following four
candidates (in underlined but not bold characters): n9r1c2, n9r1c3, n9r4c5 and
n9r4c6. These are examples of the type-2 targets evoked in section 10.2.2.3. We
shall take advantage of them to illustrate how, according to theorem 10.8, they
could be eliminated by shorter gS-z-whips with smaller inner g-Subsets. Here, we
have p=5, so we find gS3-z-whip[4]:

10. g-Subsets, Reversible-gSp-chains, gSp-whips and gSp-braids 287

gS3-‐z-‐whip[4]:	 n9{r1c5	 gS3:{c5	 c6	 c9}{r4	 r7	 b5}}	 –	 c3n9{r4	 .}	 ==>	 r1c2	 ≠	 9	
gS3-‐z-‐whip[4]:	 n9{r1c5	 gS3:{c5	 c6	 c9}{r4	 r7	 b5}}	 –	 c2n9{r4	 .}	 ==>	 r1c3	 ≠	 9	
gS3-‐z-‐whip[4]:	 n9{r4c5	 gS3:{c2	 c3	 c9}{r1	 r7	 b1}}	 –	 c6n9{r1	 .}	 ==>	 r4c5	 ≠	 9	
gS3-‐z-‐whip[4]:	 n9{r4c5	 gS3:{c2	 c3	 c9}{r1	 r7	 b1}}	 –	 c6n9{r1	 .}	 ==>	 r4c6	 ≠	 9	

The end of the Hodoku resolution path has nothing noticeable:

XYZ-‐Wing:	 7/6/3	 in	 r4c68,r6c4	 =>	 r4c4≠3	 (a	 particular	 kind	 of	 z-‐whip[2])	
XYZ-‐Wing:	 9/3/6	 in	 r6c46,r7c6	 =>	 r4c6≠6	 (a	 particular	 kind	 of	 z-‐whip[2])	
Naked	 Pair:	 3,7	 in	 r4c68	 =>	 r4c12379≠3,	 r4c47≠7	
Locked	 Candidates	 Type	 1	 (Pointing):	 3	 in	 b4	 =>	 r2378c1≠3	 (i.e.	 whip[1])	
Locked	 Candidates	 Type	 1	 (Pointing):	 3	 in	 b7	 =>	 r7c789≠3	 (i.e.	 whip[1])	
Hidden	 Single:	 r1c9=3	
Locked	 Candidates	 Type	 1	 (Pointing):	 3	 in	 b2	 =>	 r56c4≠3	 (i.e.	 whip[1])	
Singles:	 r6c4=6,	 r7c6=6	
Locked	 Candidates	 Type	 1	 (Pointing):	 9	 in	 b3	 =>	 r5689c7≠9	 (i.e.	 whip[1])	
Locked	 Candidates	 Type	 2	 (Claiming):	 9	 in	 r1	 =>	 r23c4≠9	 (i.e.	 whip[1])	
Locked	 Candidates	 Type	 2	 (Claiming):	 9	 in	 c4	 =>	 r7c5≠9	 (i.e.	 whip[1])	
Naked	 Pair:	 7,8	 in	 r7c8,r9c7	 =>	 r7c7≠7,	 r7c7≠8	
Singles:	 r7c7=5,	 r7c9=9,	 r4c9=5,	 r5c8=9,	 r5c5=8,	 r5c1=3,	 r4c5=1,	 r4c4=4,	 r5c4=7,	 r5c7=4,	 r3c4=3,	
r4c6=3,	 r6c6=9,	 r1c6=7,	 r6c1=2,	 r6c7=3,	 r4c3=9,	 r4c7=2,	 r4c8=7,	 r7c5=2,	 r1c5=9,	 r7c8=8,	 r1c8=6,	
r8c8=3,	 r7c4=1,	 r8c4=9,	 r9c4=8,	 r8c1=1,	 r8c7=6,	 r9c7=7,	 r9c1=9	
Naked	 Triple:	 4,5,8	 in	 r1c12,r2c1	 =>	 r2c2≠8	
XY-‐Chain:	 5	 5-‐	 r1c4	 -‐2-‐	 r1c3	 -‐1-‐	 r3c3	 -‐7-‐	 r3c1	 -‐6-‐	 r4c1	 -‐8-‐	 r2c1	 -‐5	 =>	 r1c1,r2c4	 ≠	 5	
Singles	 to	 the	 end	

10.3.2. Solution using only g-whips

The resolution path with whips has nothing noticeable; it gives W(P) = 9. We
shall skip it. But the path with g-whips gives gW(P) = 5. The “SQ” comment at the
end of a line indicates that the elimination is one available with the Franken
Squirmbag; “SQ2” indicates that it is a type-2 target.

As can be seen, most of the Squirmbag eliminations can be done by shorter g-
whips or even shorter whips. The “<<<<” comment indicates a whip[4] elimination
not available to the Franken Squirmbag but that can be done before it.

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 gW	 	 *****	
28	 givens,	 201	 candidates,	 1425	 csp-‐links	 and	 1425	 links.	 Initial	 density	 =	 1.77	
g-‐whip[3]:	 b2n9{r1c5	 r123c4}	 –	 r9n9{c4	 c7}	 –	 b3n9{r1c7	 .}	 ==>	 r1c1	 ≠	 9	
g-‐whip[3]:	 b4n9{r4c3	 r456c1}	 –	 r9n9{c1	 c7}	 –	 r8n9{c7	 .}	 ==>	 r4c4	 ≠	 9	
g-‐whip[3]:	 b4n3{r5c1	 r4c123}	 –	 c9n3{r4	 r7}	 –	 r8n3{c8	 .}	 ==>	 r1c1	 ≠	 3	
;;; Resolution state RS1
g-‐whip[3]:	 b8n9{r7c6	 r789c4}	 –	 r2n9{c4	 c123}	 –	 r3n9{c3	 .}	 ==>	 r7c7	 ≠	 9	 ;	 SQ	
whip[4]:	 b2n3{r3c4	 r1c6}	 –	 c9n3{r1	 r7}	 –	 b7n3{r7c3	 r8c1}	 –	 b4n3{r4c1	 .}	 ==>	 r4c4	 ≠	 3	 ;	 <<<<	
g-‐whip[4]:	 b4n9{r6c1	 r4c123}	 –	 c9n9{r4	 r1}	 –	 c6n9{r1	 r6}	 –	 c5n9{r4	 .}	 ==>	 r7c1	 ≠	 9	 ;	 SQ	
g-‐whip[4]:	 b7n9{r8c1	 r7c123}	 –	 c9n9{r7	 r1}	 –	 c6n9{r1	 r6}	 –	 c5n9{r4	 .}	 ==>	 r4c1	 ≠	 9	 ;	 SQ	
g-‐whip[4]:	 b2n9{r1c5	 r123c4}	 –	 b8n9{r8c4	 r7c456}	 –	 c2n9{r7	 r4}	 –	 c9n9{r4	 .}	 ==>	 r1c3	 ≠	 9	 ;	 SQ2	

288 Pattern-Based Constraint Satisfaction and Logic Puzzles

g-‐whip[4]:	 b2n9{r1c5	 r123c4}	 –	 b8n9{r8c4	 r7c456}	 –	 c3n9{r7	 r4}	 –	 c9n9{r4	 .}	 ==>	 r1c2	 ≠	 9	 ;	 SQ2	
g-‐whip[4]:	 b4n9{r4c3	 r456c1}	 –	 b7n9{r8c1	 r7c123}	 –	 c6n9{r7	 r1}	 –	 c9n9{r1	 .}	 ==>	 r4c5	 ≠	 9	 ;	 SQ2	
g-‐whip[4]:	 b4n9{r4c3	 r456c1}	 –	 b7n9{r8c1	 r7c123}	 –	 c5n9{r7	 r1}	 –	 c9n9{r1	 .}	 ==>	 r4c6	 ≠	 9	 ;	 SQ2	
g-‐whip[4]:	 b3n9{r3c7	 r1c789}	 –	 b2n9{r1c5	 r123c4}	 –	 r9n9{c4	 c1}	 –	 b4n9{r5c1	 .}	 ==>	 r4c7	 ≠	 9	 ;	 SQ	
g-‐whip[4]:	 b2n9{r3c4	 r1c456}	 –	 b3n9{r1c8	 r123c7}	 –	 r6n9{c7	 c1}	 –	 r9n9{c1	 .}	 ==>	 r5c4	 ≠	 9	 ;	 SQ	
g-‐whip[4]:	 b7n9{r7c3	 r789c1}	 –	 b4n9{r5c1	 r4c123}	 –	 c9n9{r4	 r1}	 –	 b2n9{r1c4	 .}	 ==>	 r7c4	 ≠	 9	 ;	 SQ	
g-‐whip[4]:	 b8n9{r8c4	 r7c456}	 –	 c9n9{r7	 r4}	 –	 c3n9{r4	 r123}	 –	 c2n9{r3	 .}	 ==>	 r1c4	 ≠	 9	 ;	 SQ	
g-‐whip[5]:	 b2n9{r1c6	 r123c4}	 –	 r9n9{c4	 c1}	 –	 r8n9{c1	 c8}	 –	 c9n9{r7	 r4}	 –	 b4n9{r4c2	 .}	 ==>	
r1c7	 ≠	 9	 ;	 SQ	
g-‐whip[5]:	 b4n9{r4c3	 r456c1}	 –	 b7n9{r8c1	 r7c123}	 –	 c9n9{r7	 r1}	 –	 c6n9{r1	 r6}	 –	 c5n9{r5	 .}	 ==>	
r4c8	 ≠	 9	 ;	 SQ	
whip[3]:	 r5n4{c7	 c4}	 –	 r5n7{c4	 c8}	 –	 r4c8{n7	 .}	 ==>	 r5c7	 ≠	 3	 	
whip[4]:	 r4c8{n3	 n7}	 –	 r5n7{c8	 c4}	 –	 r5n3{c4	 c1}	 –	 b7n3{r8c1	 .}	 ==>	 r7c8	 ≠	 3	
whip[5]:	 b5n4{r4c4	 r5c4}	 –	 b5n7{r5c4	 r4c6}	 –	 r4c8{n7	 n3}	 –	 r5n3{c8	 c1}	 –	 b4n8{r5c1	 .}	 ==>	
r4c4	 ≠	 8	
whip[5]:	 c6n7{r1	 r4}	 –	 r4c8{n7	 n3}	 –	 c9n3{r4	 r7}	 –	 r8n3{c8	 c1}	 –	 b4n3{r4c1	 .}	 ==>	 r1c6	 ≠	 3	
whip[1]:	 c6n3{r6	 .}	 ==>	 r6c4	 ≠	 3,	 r5c4	 ≠	 3	
whip[4]:	 r6c4{n9	 n6}	 –	 b8n6{r8c4	 r7c6}	 –	 c6n9{r7	 r1}	 –	 b3n9{r1c9	 .}	 ==>	 r6c7	 ≠	 9	
whip[5]:	 r4c5{n1	 n8}	 –	 r5c5{n8	 n9}	 –	 b6n9{r5c7	 r4c9}	 –	 b6n5{r4c9	 r4c7}	 –	 r4n4{c7	 .}	 ==>	 r4c4	 ≠	 1	
hidden-‐single-‐in-‐a-‐block	 ==>	 r4c5	 =	 1	
whip[1]:	 r4n8{c1	 .}	 ==>	 r5c1	 ≠	 8	
whip[4]:	 b7n3{r7c3	 r8c1}	 –	 r5c1{n3	 n9}	 –	 b6n9{r5c8	 r4c9}	 –	 r1c9{n9	 .}	 ==>	 r7c9	 ≠	 3	
whip[5]:	 b1n4{r1c2	 r1c1}	 –	 b1n5{r1c1	 r2c1}	 –	 c1n8{r2	 r4}	 –	 c1n2{r4	 r6}	 –	 b4n6{r6c1	 .}	 ==>	
r1c2	 ≠	 6	
whip[5]:	 b1n5{r2c1	 r1c1}	 –	 c1n8{r1	 r4}	 –	 c1n2{r4	 r6}	 –	 r6c7{n2	 n3}	 –	 r5n3{c8	 .}	 ==>	 r2c1	 ≠	 3	
whip[5]:	 b6n4{r5c7	 r4c7}	 –	 c7n5{r4	 r7}	 –	 r7c9{n5	 n9}	 –	 c8n9{r8	 r1}	 –	 c5n9{r1	 .}	 ==>	 r5c7	 ≠	 9	
g-‐whip[3]:	 b7n9{r7c3	 r789c1}	 –	 b4n9{r5c1	 r4c123}	 –	 b6n9{r4c9	 .}	 ==>	 r7c8	 ≠	 9	
whip[5]:	 b6n9{r4c9	 r5c8}	 –	 c5n9{r5	 r7}	 –	 c6n9{r7	 r6}	 –	 b5n3{r6c6	 r4c6}	 –	 c9n3{r4	 .}	 ==>	 r1c9	 ≠	 9	
naked-‐single	 ==>	 r1c9	 =	 3	
whip[3]:	 c9n9{r7	 r4}	 –	 r5n9{c8	 c1}	 –	 b7n9{r9c1	 .}	 ==>	 r7c5	 ≠	 9	
whip[3]:	 r6c4{n9	 n6}	 –	 b8n6{r8c4	 r7c6}	 –	 b8n9{r7c6	 .}	 ==>	 r3c4	 ≠	 9,	 r2c4	 ≠	 9	
whip[1]:	 b2n9{r1c5	 .}	 ==>	 r1c8	 ≠	 9	
whip[1]:	 b3n9{r3c7	 .}	 ==>	 r9c7	 ≠	 9,	 r8c7	 ≠	 9	
whip[3]:	 r9n9{c4	 c1}	 –	 r5n9{c1	 c8}	 –	 r8n9{c8	 .}	 ==>	 r6c4	 ≠	 9	 ;	 SQ	
singles	 ==>	 r6c4	 =	 6,	 r7c6	 =	 6	
whip[2]:	 r9c7{n7	 n8}	 –	 r7c8{n8	 .}	 ==>	 r7c7	 ≠	 7	
whip[2]:	 r9c7{n8	 n7}	 –	 r7c8{n7	 .}	 ==>	 r7c7	 ≠	 8	
whip[2]:	 r4c8{n3	 n7}	 –	 r4c6{n7	 .}	 ==>	 r4c1	 ≠	 3,	 r4c2	 ≠	 3,	 r4c3	 ≠	 3	
whip[1]:	 b4n3{r6c1	 .}	 ==>	 r3c1	 ≠	 3,	 r7c1	 ≠	 3,	 r8c1	 ≠	 3	
whip[1]:	 r8n3{c8	 .}	 ==>	 r7c7	 ≠	 3	
singles	 ==>	 r7c7	 =	 5,	 r7c9	 =	 9,	 r4c9	 =	 5,	 r5c8	 =	 9,	 r5c1	 =	 3,	 r5c5	 =	 8,	 r7c5	 =	 2,	 r1c5	 =	 9,	 r1c6	 =	 7,	
r3c4	 =	 3,	 r4c6	 =	 3,	 r6c6	 =	 9,	 r6c1	 =	 2,	 r4c3	 =	 9,	 r6c7	 =	 3,	 r8c7	 =	 6,	 r8c8	 =	 3,	 r4c8	 =	 7,	 r5c7	 =	 4,	 r4c7	
=	 2,	 r5c4	 =	 7,	 r7c8	 =	 8,	 r9c7	 =	 7,	 r9c1	 =	 9,	 r8c1	 =	 1,	 r8c4	 =	 9,	 r9c4	 =	 8,	 r1c8	 =	 6,	 r7c4	 =	 1,	 r4c4	 =	 4	
whip[3]:	 r2c1{n8	 n5}	 –	 r1c1{n5	 n4}	 –	 r1c2{n4	 .}	 ==>	 r2c2	 ≠	 8	
whip[4]:	 r2c7{n8	 n9}	 –	 r2c2{n9	 n3}	 –	 r7c2{n3	 n4}	 –	 r1c2{n4	 .}	 ==>	 r2c1	 ≠	 8	
singles	 to	 the	 end	

11. Wp-whips, Bp-braids and the T&E(2) instances

In chapters 7, 9 and 10, we have extended the possibilities for right-linking
elements of whips and braids from candidates to respectively g-candidates, Subsets
and g-Subsets – whereas we always kept left-linking elements restricted to mere
candidates. In the present chapter, we shall show that whips and braids themselves
can be used as right-linking patterns. For each 1≤p≤∞, we shall define two
increasing sequences of resolution theories (WpWn and BpBn, 0≤n≤∞) and we shall
associate with them two new ratings, WpW and BpB.

We shall prove two main results for Bp-braids, similar to those proven for all our
previous generalised braid theories: the confluence property of all the BpBn
resolution theories (providing the BpB ratings with all the good properties of the
previous similar ratings) and a “T&E(Bp) vs Bp-braids” theorem.

We shall also prove that there is a close relationship, given by the “T&E(2) vs B-
braids” theorem, between B-braids and an iterated (depth 2) Trial-and-Error
procedure. As very fast programs can easily be written for T&E(2), this theorem
provides an easy way of checking if an instance of a CSP can be solved by B-braids,
without actually finding explicitly its B-braids resolution path and its BB rating. A
practical consequence for Sudoku is that, as all the known minimal puzzles can be
solved by T&E(2), they all have a finite BB rating.

11.1. Wp-labels and Bp-labels; Wp-whips and Bp-braids

11.1.1. Wp-labels and Bp-labels; Wp-links and Bp-links

When one wants to allow a pattern P as a right-linking object of a whip or a
braid, the first step is to explicit the P-label underlying its definition, independently
of any resolution state. The following definition of a W-label extracts from the
definition of a whip its structural part: only the part, but all the part, that does not
depend on the resolution state, i.e. that can be expressed with labels and links,
without referring to actual candidates.

Definition: for any n≥1, a Wn-label is a structured list (Z, (V1, L1, R1), …, (Vn-1,
Ln-1, Rn-1), (Vn, Ln)), such that:

– for any 1≤k≤n, Vk is a CSP variable;

290 Pattern-Based Constraint Satisfaction and Logic Puzzles

– Z, all the Lk’s and all the Rk’s are labels;
– in the sequence of labels (L1, R1, …, Ln-1, Rn-1, Ln), any two consecutive

elements are different;
– Z does not belong to {L1, R1, L2, R2, …. Ln};
– L1 is linked to Z;
– right-to-left continuity: for any 1<k≤n, Lk is linked to Rk-1;
– strong left-to-right continuity: for any 1≤k<n, Lk and Rk are labels for Vk;
– Ln is a label for Vn;
– Z is not a label for Vn.

Definition: a Bn-label is a structured sequence as above, with the right-to-left
continuity condition replaced by:

– for any 1<k≤n, Lk is linked to Z or to a previous Ri.

Definitions: a label l is Wn-linked [respectively Bn-linked] to a Wn-label [resp. a
Bn-label] (Z, (V1, L1, R1), …, (Vn-1, Ln-1, Rn-1), (Vn, Ln)) if l is equal to Z. The index
n in “Wn-linked” or “Bn-linked” may be dropped, as there can be no ambiguity. A
label l is compatible with the above Wn-label [resp. Bn-label] if it is not Wn-linked
[resp. Bn-linked] to it.

One can now give an alternative equivalent definition of a whip [or a braid], in
which the structural and non-structural conditions are completely separated:

Definition: in a resolution state RS, given a candidate Z (which will be the
target), a whip [respectively a braid] of length n (n ≥ 1) built on Z is a Wn-label
[resp. a Bn-label] (Z, (V1, L1, R1), …, (Vn-1, Ln-1, Rn-1), (Vn, Ln)), such that:

– all the Lk’s and all the Rk’s are candidates (not only labels);
– for any 1 ≤ k < n, Rk is the only candidate for Vk compatible with Z and with

all the previous right-linking candidates (i.e. with Z and with all the Ri, 1 ≤ i < k);
– Vn has no candidate compatible with Z and with all the previous right-linking

candidates (but Vn has more than one candidate – a non-degeneracy condition).

11.1.2. Equivalence of whips or braids

Until now, we have been very strict on the targets of whips [or braids]: a whip
[or a braid] has only one target, specified in its definition. But, sometimes there is
another whip [braid] with an underlying Wn-label [Bn-label] strongly equivalent
(definition below) to that of the first whip [braid] and allowing to eliminate its own
target. This entailed no problem until now, because the second whip [braid] could be
written after the first and it did not change the W [B] rating of an instance. But if a
whip [braid] is to be inserted into another one as a right-linking pattern, then it

11. Wp-whips, Bp-braids and the T&E(2) instances 291

should not be counted several times if it serves to justify several t-candidates. The
following definitions palliate this problem. Notice that, in the manual editing of all
our previous resolution paths, we have implicitly used them, every time two
eliminations appeared in the same line.

Definition (structural): two Wn-labels [Bn-labels] are strongly equivalent if they
differ only by their targets. This is obviously an equivalence relation.

Definition (non-structural): in a resolution state RS, two whips [braids] of length
n are strongly equivalent if their underlying Wn-labels [Bn-labels] are strongly
equivalent. This is an equivalence relation.

Remarks about strongly equivalent whips [resp. braids]:
– the definition entails that the whips [resp. braids] have the same t-candidates;
– it also supposes that, for each CSP variable of the common Wn- [resp. Bn-]

label, every candidate that is not a left-linking, t- or right- linking candidate must be
a z-candidate for both whips [braids] simultaneously (i.e. it is linked to their two
different targets);

– due to the second remark, there is no simple way of replacing this definition
by a purely structural one; but if it is satisfied in a resolution state RS, then it will be
satisfied in any posterior state in which both whips [braids] are still defined; we say
that it is persistent, which, for some purposes, is almost as good as being structural;

– having no z-candidates, as in t-whips [t-braids], gives rise to strongly
equivalent whips [braids]; but this is not a necessary condition;

– a Wn-label [Bn-label] can be interpreted as a potential whip [braid], waiting for
the elimination of some candidates from its CSP variables before it becomes an
actual one.

Definition (non-structural): an extended target of a whip W in a resolution state
RS is a target of any whip strongly equivalent to W in RS.

Remarks:
– there is an obvious correspondence between a W1-label and the set consisting

of a g-label and its targets (seen as whip[1] targets); and a label l is g-linked to a g-
label g if and only if l is an extended target of the W1-label corresponding to g;

– if Z’ is an extended target of a whip W in a resolution state RS, then it remains
one in any posterior resolution state in which W (or a strongly equivalent whip) is
still present and Z’ is still a candidate; being an extended target is a persistent
property;

– however, a candidate Z’ that is not an extended target for W in RS may
become one in a posterior resolution state RS’, in case all the z-candidates of W in
RS that are not t-candidates of W and that are not linked to Z’, have been eliminated
along the path between RS and RS’.

292 Pattern-Based Constraint Satisfaction and Logic Puzzles

Definition (non-structural): a candidate C is compatible with a whip W in a
resolution state RS if it is not an extended target of W in RS. Transposing the above
remarks: if C is incompatible with a whip W in RS, then it remains incompatible
with W in any posterior resolution state in which W is still present and C is still a
candidate; but if C is compatible with W in RS, it may become incompatible with W
in a posterior resolution state. It is therefore necessary to be always clear about the
resolution state under consideration. Said otherwise, incompatibility with a whip is
persistent, compatibility is not.

11.1.3. Definition of Wp-whips, Wp-braids and Bp-braids

Special care must be taken with the definition of whips accepting inner whips as
right-linking patterns:

– global variables of the global whip and inner variables of each of its inner sub-
whips must not be confused;

– similarly, global and inner left-to-right linking conditions must not be
confused;

– for a proper definition of the global size, the conditions must be written in a
form that does not allow degeneracy of the inner whips; fortunately, this is much
easier to do than for inner Subsets: one only has to make sure that contradictions in
the inner whips can only occur on their last CSP variables (i.e. not before);

– it must not be forgotten that, as is always the case for all the inner patterns of
generalised whips, inner whips will appear as “reversed” whips (modulo the target
and the previous right-linking objects), in the sense that their targets will have to
appear as the next left-linking candidate.

Definition: in any resolution state RS of any CSP, for any n≥1 and 1≤p<n, a Wp-
whip[n] is a structured list (Z, (V1, L1, R1, q1), …, (Vm-1, Lm-1, Rm-1, qm-1), (Vm, Lm,
qm)), with m≤n, that satisfies the following structural and non-structural conditions:

structural conditions (that could be considered as defining a “Wp-regular sequence
of length n”):

– all the qk’s are integers; 1≤qk≤p for all 1≤k≤m, qm = 1 and n = ∑1≤k≤m qk;
– for any 1≤k≤m, Vk is a CSP variable;
– for each 1≤k≤m, Lk is a label for Vk;
– for each 1≤k<m, Rk is a label or a W1-label if qk=1 and it is a Wqk-label if

qk>1;
– L1 is linked to Z;
– right-to-left continuity: for any 1≤k≤m, Lk is linked or Wk-1-linked to Rk-1;
– for any 1≤k<m, the following “strong continuity or strong W-continuity from

Lk to Rk”, implying “continuity or W-continuity from Lk to Rk”, is satisfied:

11. Wp-whips, Bp-braids and the T&E(2) instances 293

- if qk=1 and Rk is a label, then Rk (as well as Lk) is a label for Vk;
- if qk≥1 and Rk is a Wqk-label, then Vk is one of its CSP variables (it does not

have to be the last one – see the comments after Figure 11.4);
– Z is not a label for Vm;

non-structural conditions:

– Z and all the Lk’s are candidates (not only labels);
– for any 1≤k<m: if qk=1 and Rk is a label, then, Rk is the only candidate for Vk

compatible in RS with Z and with all the previous right-linking patterns Ri; if qk≥1
and Rk is a Wqk-label (Zk, (Vk,1, Lk,1, Rk,1), …, (Vk,i, Lk,i, Rk,i), …, (Vk,qk-1, Lk,qk-1,
Rk,qk-1), (Vk,qk, Lk,qk)), then:

- for each i<qk: Lk,i and Rk,i are candidates (not only labels) for CSP variable
Vk,i of Rk;

- for each i<qk: Rk,i is the only candidate for Vk,i compatible in RS with Z,
with the previous right-linking patterns Ri (i<k) of the global Wp-whip[n] being
defined, with the previous right-linking candidates Rk,i’ (i’<i) inside Rk, and with Zk;

- Lk,qk is a candidate for Vk,qk (not only a label); Vk,qk has no candidate
compatible in RS with Z, with the previous right-linking patterns Ri (i<k) of the
global Wp-whip[n] being defined, with the previous right-linking candidates Rk,i

(i<qk) inside Rk and with Zk (but Vk,qk has more than one candidate compatible in RS
with Z and with the previous right-linking objects Ri (i<k) of the global Wp-whip –
this is the non-degeneracy condition of the inner Rk whip);

– Vm has no candidate compatible in RS with the target and with all the previous
right-linking objects of the global Wp-whip (but Vm has more than one candidate –
the usual non-degeneracy condition of the global Wp-whip).

Remark: for all n, a W1-whip[n] is the same thing as a g-whip[n].

Definition: for any n≥1 and 1≤p<n, a Wp-braid[n] is a structured list as above,
with the structural right-to-left continuity condition of a Wp-whip[n] replaced by:

– for any 1≤k≤m, Lk is linked or W-linked to Z or to a previous Ri.

Definition: in the previous definition, if the inner Wqk-labels are replaced by
Bqk-labels, one obtains Bp-braids[n].

Definitions: in any of the above defined Wp-whips or Bp-braids, a candidate
other than Lk for any of the “global” CSP variables Vk is called a global t-
[respectively global z-] candidate if it is incompatible with a previous right-linking
pattern [resp. with the target Z]; a candidate for a “local” or “inner” CSP variable
Vk,i of an inner braid Rk is called a local (or inner) t- [respectively local (or inner) z-]

294 Pattern-Based Constraint Satisfaction and Logic Puzzles

candidate if it is incompatible with a previous local right-linking candidate Rk,j , j<i
[resp. with the local target Zk of Rk].

Notice that a candidate can be at the same time global and local, z- and t-. Notice
also that, as in all our previous definitions, the (global or local) z- and t- candidates
are not considered as being part of the Wp-whip or Bp-braid patterns.

Remarks:
– in the above definitions, as in any of the previously defined types of

generalised whips or braids, left-linking elements of the global Wp-whip [Bp-braid]
are mere candidates (and not more general patterns);

– as shown by the fact that inner whips or braids are “reversed” (see Figure 11.2
or the proof of the Wp-whip elimination theorem), the acceptance of whips[p] or
braids[p] as right-linking patterns amounts to accepting some form of look-ahead of
size p (a form different, globally less restricted than that accepted in Sp-whips or Sp-
braids);

– in the same way as all the types of braids we have met before, Bp-braids[n] are
interesting for the confluence property of the BpBn theories and for the “T&E(Bp) vs
BpB” theorem (see proofs below); and Wp-whips are interesting as a simpler (and
hopefully good) approximation of Bp-braids;

– one could also define Bp-whips[n]; a priori, there does not seem to be any
good reason for imposing an “outer” continuity condition if the inner bricks do not
enjoy their own inner continuity, but it may be useful as an approximation tool.

11.1.4. Graphico-symbolic representations

The symbolic representations in Figures 11.1 and 11.2 may help understand how
a partial W2-whip[3] differs from an ordinary partial whip[3]. In these Figures:

– black horizontal lines represent CSP variables; they are supposed to have
candidates only at their extremities or at their meeting points with arrows;

– dark grey straight oblique arrows represent links from Z to L1 or from Rk to
Lk+1 and also, in the second Figure, inner links from Ri,k to Li,k+1;

– light grey arrows represent links to z- or t- candidates in the global whip and
(in the second Figure) in an inner whip (the straight ones represent links to
candidates in the same g-label as the next left-linking candidate);

– the straight double-sided dark grey arrow in the second Figure represents the
double role of L2 as a target of the inner whip (descending arrow) and as the next
left-linking candidate (ascending arrow);

– the orientations of arrows represent the way links are used in the proof of the
whip or W2-whip rule; by themselves, links are not orientated; but these orientations
also illustrate the idea that inner whips correspond to some form of look-ahead.

11. Wp-whips, Bp-braids and the T&E(2) instances 295

L1,2

L1,1
L1

Z

V1=V1,2

V1,1 R1,1

L2 R2 V2

Figure 11.2. A graphico-symbolic representation of a partial W2-whip[3]. One can
see an inner whip[2] modulo Z, with target L2: (L2, (V1,1, L1,1, R1,1) (V1,2, L1,2)).

Figure 11.1. A graphico-symbolic representation of a partial whip[3]

L1 V1 R1

L3 V3 R3

Z

L2 V2 R2

296 Pattern-Based Constraint Satisfaction and Logic Puzzles

11.1.5. Elimination theorems

Theorem 11.1 (Wp-whip elimination theorem): given a Wp-whip, one can
eliminate its target.

Proof : obvious. The main point was having the correct definitions. If Z was
True, then L1 and all the candidates linked to Z (the global z-candidates) would be
eliminated by ECP; if R1 is a label, then it would be asserted by S; if R1 is a Wq1-
label, then, after these first series of eliminations, it would be a whip[q1] with target
L2 and L2 would be eliminated by rule Wq1. We can iterate until we reach Lm would
be eliminated by ECP or by rule Wqm-1. (As usual, the global t-candidates would be
progressively eliminated by ECP or some Wqk). The last condition implies that Vm
would have no possible value.

Theorem 11.2 (Bp-braid elimination theorem): given a Bp-braid, one can
eliminate its target.

Proof : almost the same as the proof for Wp-whips (with any reference to Wqk
replaced by one to Bqk), the main difference being the condition replacing right-to-
left continuity, which still implies that Lk would be eliminated by ECP.

11.1.6. Wp-whip and Bp-braid resolution theories; the WpW and BpB ratings

For each integer p with 1 ≤ p ≤ ∞, one can define an increasing sequence (WpWn,
n≥0) of resolution theories based on Wp-whips:

– WpW0 = BRT(CSP),
– WpW1 = WpW0 ∪{rules for Wp-whips of length 1} = W1,
– …
– WpWn = WpWn-1 ∪{rules for Wp-whips of length n},
– WpW∞ = ∪n≥0 WpWn.

One has obvious similar definitions for (BpBn, n≥0).

And, for each 1≤p≤∞, one can also define in the usual way the WpW
[respectively BpB] rating associated with the increasing sequence (WpWn, n≥0)
[resp. BpBn, n≥0] of resolution theories. It is obvious that, for any instance Q,
WpW(Q) [resp. BpB(Q)], considered as a function of p, is non-increasing.

One can also define the WW and BB ratings as being equal to W∞W and B∞B,
respectively, when no restriction is put a priori on the lengths of the inner whips
[resp. braids] (of course, in each W-whip [resp. B-braid], they can only be smaller
than its global length).

Remarks:

11. Wp-whips, Bp-braids and the T&E(2) instances 297

– it was important to properly define the length of a Wp-whip [or Bp-braid] in a
way that takes into account the lengths of all its elements, because some Wp-whips
[or Bp-braids] may be equivalent to (g)Sp-whips [or (g)Sp-braids]; for consistency of
the ratings, they must be given the same size, whichever way they are considered;

– with the confluence property of all the BpBn resolution theories (see section
11.2), the BpB ratings have the same good properties as those mentioned for
previous generalised braid theories; however, non-anticipativeness is no longer true;
it is replaced by a restricted form of look-ahead, controlled by the maximum size p
of the inner braids;

– as an obvious corollary to theorem 11.5 below, the BB rating is finite for any
instance of a CSP that can be solved by T&E(2). In Sudoku, this entails that all the
known minimal puzzles have a finite BB rating – a rating that is obviously
invariant under symmetry and supersymmetry.

11.1.7. gSpWn+WpWn and gSpWn+BpBn theories; associated ratings

Allowing gSp-subsets or whips[p] as right-linking patterns in different whips,
one can hope to get still more powerful resolution theories. For each 1≤p≤∞, one
can define an increasing sequence gSpWn+WpWn, 0≤n≤∞, of resolution theories:

– gSpW0+WpW0 = BRT(CSP),
– gSpW1+WpW1 = gSpW0+WpW0 ∪ gSpW1 ∪ WpW1 = W1,
– …
– gSpWn+WpWn = gSpWn-1+WpWn-1 ∪ gSpWn ∪ WpWn,
– …
– gSpW∞+WpW∞ = ∪n≥0 gSpWn+WpWn.

One can introduce obvious similar definitions for gSpBn +BpBn, 0≤n≤∞.

And, for each 1≤p≤∞, one can define in the usual way the gSpW+WpW
[respectively gSpB+WpB] rating associated with the increasing sequence
gSpWn+WpWn, n≥0, [resp. gSpBn+BpBn, n≥0] of resolution theories.

One can also define the gSW+WW and gSB+BB ratings in the usual way.

It is a straightforward corollary to lemma 4.1 and theorems 10.15 and 11.3
(below) that all the gSpBn+BpBn resolution theories are stable for confluence and
have the confluence property. A “simplest first” strategy can therefore be defined.
Or rather several “simplest first” strategies: the question is, for each n, do we give
precedence to gSp-braids[n] or to Bp-braids[n]? These definitions leave us the
freedom of choosing priorities between Subsets and whips. Moreover, the (probably
limited) increased resolution power of these combined theories (with respect to the
Bp-braids) is probably not worth its cost in terms of computational complexity.

298 Pattern-Based Constraint Satisfaction and Logic Puzzles

11.1.8. (gSp+Wp)-whip and (gSp+Bp)-braid theories; associated ratings

Going one step further, one can allow both gSp-subsets and whips[p] as right-
linking patterns in the same whips, in the hope of getting the most powerful theories.
For each 1≤p≤∞, one can define an increasing sequence (gSp+Wp)Wn, 0≤n≤∞, of
resolution theories:

– (gSp+Wp)W0 = BRT(CSP),
– (gSp+Wp)W1 = W1,
– …
– (gSp+Wp)Wn = (gSp+Wp)Wn-1 ∪ {rules for whips of total length n, with inner

gSp-subsets and Wp-whips},
– …
– (gSp+Wp)W∞ = ∪n≥0 (gSp+Wp)Wn.

One can introduce obvious similar definitions for (gSp+Bp)Bn, 0≤n≤∞.

And, for each 1≤p≤∞, one can define in the usual way the (gSp+Wp)W
[respectively (gSp+Bp)B] rating associated with the increasing sequence
(gSp+Wp)Wn, n≥0, [resp. (gSp+Wp)Bn, n≥0] of resolution theories.

One can also define the (gS+W)W and (gS+B)B ratings in the usual way.

Contrary to the previous case, the confluence property of the (gSp+Bp)Bn
resolution theories must now be proven directly; this can be done by combining the
proofs for the gSpBn and the BpBn theories (we leave it as an exercise for the reader).
A “simplest first” strategy can therefore be defined, or rather several “simplest first”
strategies, each providing all the (gSp+Bp)B ratings with good properties. But, as in
the previous case, the (probably limited) increased resolution power is probably not
worth the computational cost of so complex braids.

11.1.9. More graphico-symbolic representations

11.1.9.1. Similarities between Subsets and whips

As suggested by the proof of confluence in the next section, there is a
remarkable and deep similarity between Subsets and whips/braids of same size p.
The definitions of both concepts involve p different CSP variables and p sets of
candidates for these variables:

– for Sp-subsets: p transversal sets of candidates, defined by p fixed constraints;
– for whips/braids[p]: p sets consisting of candidates linked (by any constraint)

to the target or to one of the previous right-linking candidates (a total of p also!).

These similarities can be represented symbolically in Figure 11.3 (for p = 4).

11. Wp-whips, Bp-braids and the T&E(2) instances 299

Horizontal black lines represent CSP variables in {V1, V2, V3, V4}. In a Subset

(leftmost part of the Figure), each vertical grey line represents a fixed constraint in
{c1, c2, c3, c4}. In a whip or a braid (rightmost part of the Figure), each of these lines
represents the existence of a link (along any constraint) with the target or with a
determined element in the sequence of p-1 right-linking candidates. In horizontal
lines, candidates may exist only at the intersections with vertical lines; in the
whip/braid case, an intersection may represent several candidates (in the same g-
label for the corresponding CSP variable). In spite of their deep conceptual
differences, the ideas represented by “vertical lines” can be used in much the same
ways in several proofs, such as the confluence property and the “T&E(Bp) vs Bp-
braids” theorem.

For whips, the rightmost part of this Figure is an alternative view to that of
Figure 11.1. The latter stressed the various links the target or a right-linking
candidate can have with z- and/or t- candidates for various posterior CSP variables.
The present view abstracts from these differences, considering that only the
existence of a link is important. We insist that, contrary to the Subsets case in the
leftmost part of the Figure and contrary to what these vertical lines may intuitively
suggest, candidates in a vertical line do not have to be pairwise linked (and, in
general, they are not).

11.1.9.2. Another graphical representation of W-whips and B-braids

Based on the similarities between Subsets and whips or braids and on Figure
11.3, another type of graphical representation for a W-whip can be given in Figure
11.4, maybe more readable than that in Figure 11.2. Here, the conventions are the

V4

V3

V2

V1

c1 c2 c3 c4

V4

V3

V2

V1

Z

R1

R2

R3

Figure 11.3. A symbolic representation of the similarities between a Subset and a whip

300 Pattern-Based Constraint Satisfaction and Logic Puzzles

same as in Figure 11.3: a horizontal black line represents a CSP variable, a vertical
grey arrow represents the existence of a link (along any constraint) with the
candidate (target or right-linking) at the origin of the arrow. It is supposed that, in
the current resolution state, candidates for a CSP variable are present only at its
intersection with some vertical arrow (and an intersection may represent several
candidates in the same g-label for this CSP variable).

Read from left to right, this example starts with a standard partial whip[2] with

target Z, CSP variables V1, V2 and right-linking candidates R1, R2. Then, there
appears an inner whip[3] with target Z’=L4 (which will be the left-linking candidate
for the next part of a larger global W-whip), inner CSP variables V3,1, V3,2 and V3,3,
and inner right-linking candidates R3,1 and R3,2. Here, CSP variable V3,3 has no
candidate compatible with Z, R1, R2, Z’=L4, R3,1 and R3,2.

Notice that, if CSP variable V3,3 had no candidate linked to Z, R1 or R2, the final
contradiction in the inner whip would still occur in V3,3, but V3 could not be taken to
be V3,3. (This illustrates why, in our definition in section 11.1.3, Vk does not have to
be the last element of Wk).

Figure 11.4. A symbolic representation of a partial W3-whip[5]

V1

V2

Z

R1

R2

Z’, L4

V3,1

V3,2

V3,3

R3,1

R3,2

11. Wp-whips, Bp-braids and the T&E(2) instances 301

11.2. The confluence property of the BpBn resolution theories

We now prove the main property of Bp-braid resolution theories.

Theorem 11.3: each of the BpBn resolution theories (1 ≤ p ≤ ∞ , 0 ≤ n ≤ ∞) is
stable for confluence; therefore, it has the confluence property.

Proof: in order to keep the same notations as in the proofs for the g-braids
(section 7.5) and the Sr-braids (section 9.4), we prove the result for BrBn, r and n
fixed.

We must show that, if an elimination of a candidate Z could have been done in a
resolution state RS1 by a Br-braid B of length n’ ≤ n and with target Z, it will always
still be possible, starting from any further state RS2 obtained from RS1 by
consistency preserving assertions and eliminations, if we use a sequence of rules
from BrBn. Let B be: {L1 R1} – {L2 R2} – …. – {Lp Rp} – {Lp+1 Rp+1} – … – {Lm .},
with target Z, where the Rk’s are candidates or braids in Br modulo Z and the
previous Ri’s. For inner braids, we use the notations in the definition (section 11.1).

The proof follows the same general lines as that for g-braids and Sr-braids.
Indeed, it is remarkably close to that for Sr-braids, with transversal sets replaced by
the sets of candidates linked to some right-linking object (see the similarities in
Figure 11.3 and discussion in section 11.2.2). For technical reasons, we keep a
separate case for inner braids of length 1, i.e. g-whips.

Consider first the state RS3 obtained from RS2 by applying repeatedly the rules
in BRT until quiescence. As BRT has the confluence property by theorem 5.6, this
state is uniquely defined. (Notice that, thanks to theorem 5.6 and the inclusion
Bn ⊂ BrBn, we could use Bn instead of BRT, but, apart from dispensing us of
introducing marks, it does not seem to make the proof simpler.)

If, in RS3, target Z has been eliminated, the proof is finished. If target Z has been
asserted, then the instance of the CSP is contradictory; if not yet detected in RS3,
this contradiction can be detected by CD in a state posterior to RS3, reached by a
series of applications of rules from Br, following the Br-braid structure of B.

Otherwise, we must consider all the elementary events related to B that can have
happened between RS1 and RS3, as well as those we must provoke in posterior
resolution states RS. For this, we start from B’ = what remains of B in RS3 and we
let RS = RS3. At this point, B’ may not be an Sr-braid in RS. We progressively
update RS and B’ by repeating the following procedure, for p = 1 to p = m, until it
produces a new (possibly shorter) Br-braid B’ with target Z in resolution state RS –
a situation that is bound to happen. We return from this procedure as soon as B’ is a
Br-braid in RS. All the references below are to the current RS and B’.

302 Pattern-Based Constraint Satisfaction and Logic Puzzles

a) If, in RS, any candidate that had negative valence in B – i.e. the left-linking
candidate, or any t- or z- candidate, of CSP variable Vp, or any global or local t- or
z- candidate of Rp in case Rp is an inner braid – has been asserted (this can only be
between RS1 and RS3), then all the candidates linked to it have been eliminated by
relevant rules from BRT in RS3, in particular: Z and/or all the candidate(s) Rk (k<p)
to which it is linked, and/or all the elements of the g-candidate(s) Rk (k<p) to which
it is g-linked, and/or all the inner candidates to which it is linked of the inner Rk
braids (k<p) to which it is B-linked (by the definition of a Br-braid); if Z is among
them, there remains nothing to prove; otherwise, the procedure has already either
been successfully terminated by case f1 or f2α and/or dealt with by case d2 of the
previous such k’s for which Rk is an inner braid of length qk ≥ 2.

b) If, in RS3, left-linking candidate Lp has been eliminated (but not asserted), it
can no longer be used as a left-linking candidate in a Br-braid. Suppose that either
CSP variable Vp still has a z- or a t- candidate Cp, or that Rp is an inner braid of
length qp ≥ 2 and there is another CSP variable Vp’ in its Wp sequence of CSP
variables such that Vp’ still has a z- or a t- candidate Cp; then, in B’, replace Lp by Cp
and (in the latter case) Vp by Vp’. Now, up to Cp, B’ is a partial Br-braid in RS with
target Z. Notice that, even if Lp was linked or g-linked or B-linked to Rp-1 (e.g. if B
was a Br-whip) this may not be the case for Cp; therefore trying to prove along the
same lines a similar theorem for Br-whips would fail here.

c) If, in RS, any t- or z- candidate of Vp or of the inner braid Rp (if Rp is an inner
braid) has been eliminated (but not asserted), this has not changed the basic structure
of B (at stage p). Continue with the same B’.

d) Consider now assertions occurring in right-linking objects of the global Br-
braid. There are two cases instead of one for g-braids: assertions occurring in a
right-linking candidate or g-candidate (case d1) and assertions occurring anywhere
in an inner braid Rp of length qp ≥ 2 (case d2).

d1) If, in RS, right-linking candidate Rp or a candidate Rp’ in right-linking g-
candidate Rp has been asserted (p can therefore not be the last index of B’), Rp can
no longer be used as an element of a Br-braid, because it is no longer a candidate or
a g-candidate. As in the proof for Sr-braids, and only because of this d1 case, we
cannot be sure that this assertion occurred in RS3. We must palliate this. First
eliminate by ECP or W1 any left-linking or t- candidate for any CSP variable of B’
after p, including those in the inner braids, that is incompatible with Rp, i.e. linked or
g-linked to it, if it is still present in RS. Now, considering the Br-braid structure of B
upwards from p, more eliminations and assertions can be done by rules from Br.
(Notice that, as in the Sr-braids case, we are not trying to do more eliminations or
assertions than needed to get a Br-braid in RS; in particular, we continue to consider

11. Wp-whips, Bp-braids and the T&E(2) instances 303

Rp, not Rp’; in any case, it will be excised from B’; but, most of all, we do not have
to find the shortest possible Br-braid!)

Let q be the smallest number strictly greater than p such that CSP variable Vq or
some CSP variable Vq’ in Wq still has a global left-linking, t- or z- candidate Cq that
is not linked, g-linked or B-linked to any of the Ri for p ≤ i < q. (For index q, there is
thus a Vq’ in Wq and a candidate Cq for Vq’ such that Cq is linked, g-linked or B-
linked to Z or to some Ri with i < p.)

Apply the following rules from Br (if they have not yet been applied between
RS2 and RS) for each of the CSP variables Vu (and all the Vu,i in Wu if Ru is an inner
braid) with index (or first index) u increasing from p+1 to q-1 included:
- eliminate by ECP or W1 or some Br’ (r’≤r) any candidate for any CSP variable in
Wu that is incompatible with Ru-1;
- at this stage, CSP variable Vu has no left-linking, z- or t- candidate and there
remains no global t- or z- candidate in Wu if Ru is an inner braid;
- if Ru is a candidate, assert it by S and eliminate by ECP all the candidates for CSP
variables after u, including those in the inner braids, that are incompatible with Ru in
the current RS;
- if Ru is a g-candidate, it cannot be asserted; eliminate by W1 all the candidates for
CSP variables after u, including those in the inner braids, that are incompatible with
Ru in the current RS;
- if Ru is an inner braid in Bqu, it cannot be asserted by Bqu; eliminate by Bqu all the
candidates for CSP variables after u, including those in the inner braids, that are
incompatible with Ru in the current RS (this includes the target of Ru).

In the new RS thus obtained, excise from B’ the part related to CSP variables
and inner braids p to q-1 (included); if Lq has been eliminated in the passage from
RS2 to RS, replace it by Cq (and, if necessary, replace Vq by Vq’); for each integer
s ≥ p, decrease by q-p the index of CSP variable Vs, of its candidates and inner right-
linking pattern (g-candidate or braid) and of the set Ws, in the new B’. In RS, B’ is
now, up to p (the ex q), a partial Br-braid in BrBn with target Z.

d2) If, in RS, a candidate Cp in a right-linking braid Rp with qp≥2 has been
asserted or eliminated or marked in a previous step, Rp can no longer be used as
such as a right-linking inner braid of a Br-braid, because it may no longer be an
inner braid. Moreover, there may be several such candidates in Rp; consider them all
at once. Notice that candidates can only have been asserted as values in the
transition from RS1 to RS3 (the candidates asserted in case d1 are all excised from
B’) and that all the candidates for their CSP variables and all the (global or local) t-
candidates they justified in B have also been eliminated in this transition.

Delete from Rp the CSP variables and the local t-candidates corresponding to
these asserted candidates. Call Rp’ what remains of Rp and replace Rp by Rp’ in B’.
A few more questions must be dealt with:

304 Pattern-Based Constraint Satisfaction and Logic Puzzles

- is there still a candidate for one of the CSP variables of Rp’ that could play the role
of a left-linking candidate for Rp’? If not, Rp’ has already become an autonomous
braid in RS3; excise it from B’, together with a whole part of B’ after it, along the
same lines as in case d1;
- is Rp’ still linked to the next part of B’? If not, excise it from B’, together with a
whole part of B’ after it, as in the previous case;
- Rp’ may be degenerated (modulo Z and the previous Rk’s); this can easily be fixed
by replacing Rp’ with a sequence of right-linking candidates and/or smaller inner
braids (modulo Z and the previous Rk’s);
- Rp’ or the sequence of right-linking candidates and/or smaller inner braids
replacing it may have more targets than Rp; if any of these is a right-linking
candidate or an element of a right-linking g-candidate or of an inner Br’-braid of B’
for some index after p, then mark it so that the information can be used in cases d2,
f1, f2 or f3 of later steps.

In RS, B’ is now, up to p (the ex q), a partial Br-braid in BrBn with target Z.

e) If, in RS, a left-linking candidate Lp has been eliminated (but not asserted) and
CSP variable Vp has no t- or z- candidate in RS2 (complementary to case b), we now
have to consider three cases instead of the two we had for g-braids.

e1) If Rp is a candidate, then Vp has only one possible value, namely Rp; if Rp
has not yet been asserted by S somewhere between RS2 and RS, do it now; this case
is now reducible to case d1 (because the assertion of Rp also entails the elimination
of Lp); go back to case d1 for the same value of p (in order to prevent an infinite
loop, mark this case as already dealt with for the current step).

e2) If Rp is a g-candidate, then Rp cannot be asserted by S; however, it can still
be used, for any CSP variable after p, to eliminate by W1 any of its t-candidates that
is g-linked to Rp. Let q be the smallest number strictly greater than p such that, in
RS, CSP variable Vq still has a global left-linking, t- or z- candidate Cq that is not
linked or g-linked or B-linked to any of the Ri for p ≤ i < q. Replace RS by the state
obtained after all the assertions and eliminations similar to those in case d1 above
have been done. Then, in RS, excise the part of B’ related to CSP variables p to q-1
(included), replace Lq by Cq (if Lq has been eliminated in the passage from RS2 to
RS) and re-number the posterior elements of B’, as in case d1. In RS, B’ is now, up
to p (the ex q), a partial Br-braid in BrBn with target Z.

e3) If Rp is an inner braid, then Rp is no longer linked via Lp to a previous right-
linking element of the braid. If none of the CSP variables Vp’ in Wp has a z- or t-
candidate Cp that can be linked, g-linked or B-linked to Z or to a previous Ri,
(situation complementary to case b), it means that the elimination of Lp has turned
Rp into an unconditional braid. Let q be the smallest number strictly greater than p
such that, in RS, CSP variable Vq has a global left-linking, t- or z- candidate Cq that

11. Wp-whips, Bp-braids and the T&E(2) instances 305

is not linked or g-linked or B-linked to any of the Ri for p ≤ i < q. Replace RS by the
state obtained after all the assertions and eliminations similar to those in case d1
above have been done. Then, in RS, excise the part of B’ related to CSP variables p
to q-1 (included), replace Lq by Cq (if Lq has been eliminated in the passage from
RS2 to RS) and re-number the posterior elements of B’, as in case d1. In RS, B’ is
now, up to p (the ex q), a partial Br-braid in BrBn with target Z.

f) Finally, consider eliminations occurring in a right-linking object Rp. This
implies that p cannot be the last index of B’. There are three cases.

f1) If, in RS, right-linking candidate Rp of B has been eliminated (but not
asserted) or marked, then replace B’ by its initial part:
{L1 R1} – {L2 R2} – …. – {Lp .}. At this stage, B’ is in RS a (possibly shorter) Br-
braid with target Z. Return B’ and stop.

f2) If, in RS, a candidate in right-linking g-candidate Rp has been eliminated (but
not asserted) or marked, then:

f2α) either there remains no unmarked candidate of Rp in RS; then replace B’ by
its initial part: {L1 R1} – {L2 R2} – …. – {Lp .}; at this stage, B’ is in RS a (possibly
shorter) Br-braid with target Z; return B’ and stop;

f2β) or the remaining unmarked candidates of Rp in RS still make a g-candidate
and B’ does not have to be changed;

f2γ) or there remains only one unmarked candidate Cp of Rp; replace Rp by Cp in
B’. We must also prepare the next steps by putting marks. Any t-candidate of B that
was g-linked to Rp, if it is still present in RS, can still be considered as a t-candidate
in B’, where it is now linked to Cp instead of g-linked to Rp; this does not raise any
problem. However, this substitution may entail that candidates that were not t-
candidates in B become t-candidates in B’; if they are left-linking candidates of B’,
this is not a problem either; but if any of them is a right-linking candidate or an
element of a right-linking g-candidate or of an inner braid of B’, then mark it so that
the same procedure (i.e. f1, f2 or f3) can be applied to it in a later step.

f3) If, in RS, a candidate Cp in right-linking braid Rp of length qp ≥ 2 has been
eliminated (but not asserted) or marked, this has been dealt with in case d2.

Notice that this proof works only because the notions of being linked and g-
linked do not depend on the resolution state (they are structural) and the notion of
being B-linked is persistent.

306 Pattern-Based Constraint Satisfaction and Logic Puzzles

11.3. The “T&E(Bp) vs Bp-braids” and “T&E(2) vs B-braids” theorems

For Bp-braids, for any p≥1, we are now prepared to expect some extension of the
“T&E vs braids” theorem, a “T&E(Bp) vs Bp-braids”; it will be theorem 11.4. But,
the really new result (with respect to our above-mentioned expectations) is, if p is
infinite, there will also appear a new kind of extension, the “T&E(2) vs B-braids”
theorem (theorem 11.5), associated with the iteration of T&E at depth 2.

11.3.1. The “T&E(Bp) vs Bp-braids” theorem

As the T&E(T, Z, RS) procedure can been defined for any resolution theory T
with the confluence property (see section 5.6.1), T&E(Bp, Z, RS) can be defined for
every p. It is obvious that an elimination done by a Bp-braid can be done by
T&E(Bp). The converse is true:

Theorem 11.4: for any p≥1, any elimination done by T&E(Bp) can be done by
a Bp-braid. As a result, any puzzle solvable by T&E(Bp) can be solved by Bp-
braids.

Proof: it is an easy adaptation of that for g-braids (which are the case p=1 of Bp-
braids). As the above proof of confluence, it is also remarkably close to the proof for
Sp-braids, with transversal sets replaced by the sets of candidates linked to some
right-linking object (see the similarities in Figure 11.3).

Let RS be a resolution state and let Z be a candidate eliminated by T&E(Bp, Z,
RS), using some auxiliary resolution state RS’. Following the successive
applications of rules from resolution theory Bp in RS’, we progressively build a Bp-
braid in RS with target Z. First, remember that Bp contains only four types of rules:
ECP (which eliminates candidates), Bp’ (which eliminates targets of Bp’-braids,
p’≤p), S (which asserts a value for a CSP variable) and CD (which detects a
contradiction on a CSP variable).

Consider the sequence (P1, P2, …, Pk, …Pm) of rule applications in RS’ based on
rules from Bp different from ECP and suppose that Pm is the first occurrence of CD
(there must be at least one occurrence of CD if Z is eliminated by T&E(Bp, Z, RS)).
We first define the Rk, Vk, Wk and qk sequences, for k < m:
- if Pk is of type S, then it asserts a value Rk for some CSP variable Vk; let Wk =
{Vk} and qk=1;
- if Pk is of type Bp’, then define Rk as the non degenerated Bp’-braid used by the
condition part of Pk, as it appears at the time when Pk is applied; let Wk be the
sequence of CSP variables of Rk and qk=p’; in this case, Vk will be defined later.

We shall build a Bp-braid[n] in RS with target Z, with the Rk’s as its sequence of
right-linking candidates or Bqk-braids, with the Wk’s as its sequence of sequences of
CSP variables, with the qk’s as its sequence of sizes and with n= ∑1≤k≤m qk (setting

11. Wp-whips, Bp-braids and the T&E(2) instances 307

qm=1). We only have to define properly the Lk’s, qk’s and Vk’s with Vk ∈ Wk. We
do this by recursion, successively for k = 1 to k = m. As the proofs for k = 1 and for
the passage from k to k+1 are almost identical, we skip the case k = 1. Suppose we
have done it until k and consider the set Wk+1 of CSP variables.

Whatever rule Pk+1 is (S or Bqk+1), the fact that it can be applied means that,
apart from Rk+1 (if it is a candidate) or the labels contained in Rk+1 (if it is an Sqk+1-
braid), all the other labels for all the CSP variables in Wk+1 that were still candidates
in RS (and there must be at least one, say Lk+1, for some CSP variable Vk+1 of Wk+1)
have been eliminated in RS’ by the assertion of Z and the previous rule applications.
But these previous eliminations can only result from being linked or B-linked to Z
or to some Ri, i≤k. The data Lk+1, Rk+1 and Vk+1 ∈ Wk+1 therefore define a legitimate
extension for our partial Bp-braid.

End of the procedure: at step m, a contradiction is obtained by CD for a CSP
variable Vm. It means that all the candidates for Vm that were still candidates for Vm
in RS (and there must be at least one, say Lm) have been eliminated in RS’ by the
assertion of Z and the previous rule applications. But these previous eliminations
can only result from being linked or B-linked to Z or to some Ri, i<m. Lm is thus the
last left-linking candidate of the Bp-braid we were looking for in RS and we can take
Wm={Vm}. qed.

Here again (as in the proof of confluence), this proof works only because the
notions of being linked and g-linked are structural and the notion of being B-linked
is persistent. It is also again very unlikely that following the T&E(Bp) procedure to
produce a Bp-braid, as in the construction in this proof, would produce the shortest
available one in resolution state RS.

11.3.2. Definition of the T&E(T, P, n) procedure

In section 5.6.1, we defined the procedures T&E(T, Z, RS) and T&E(T, RS) for
any resolution theory T with the confluence property, any candidate Z and any
resolution state RS. We can now define the iterated versions of these procedures.

Definition: given a resolution theory T with the confluence property, a resolution
state RS and an integer n, the two procedures Trial-and-Error based on T at depth n
for Z in RS and Trial-and-Error based on T at depth n in RS [respectively T&E(T, Z,
RS, n) and T&E(T, RS, n)] are defined by mutual recursion as follows:

T&E(T, Z, RS, 1) = T&E(T, Z, RS) and T&E(T, RS, 1) = T&E(T, RS), where
the right-hand sides have been defined in section 5.6.1.

For n>1, T&E(T, Z, RS, n) is defined as follows:
- make a copy RS1 of RS; in RS1, delete Z as a candidate and assert it as a value;
- apply T&E(T, RS1, n-1);

308 Pattern-Based Constraint Satisfaction and Logic Puzzles

- if RS1 has become a contradictory state (detected by CD), then delete Z from RS
(sic: RS, not RS1); otherwise, do nothing (in particular if a solution is obtained in
RS1, merely forget it);
- return the (possibly) modified RS state.

For n>1, T&E(T, RS, n) is defined as follows:
a) in RS, apply the rules in T until quiescence; if the resulting RS is a solution or a
contradictory state, then return it and stop;
b) mark all the candidates remaining in RS as “not-tried”;
c) choose some “not-tried” candidate Z, un-mark it and apply T&E(T, Z, RS, n);
d) if Z has been eliminated from RS by this procedure,
 then goto a
 else if there remains at least one “not-tried” candidate in RS
 then goto c else return RS and stop.

Notice that every time a candidate is eliminated by step d of T&E(T, RS, n), all
the other candidates (remaining after step a) are re-marked as “not-tried” by step b.
Thus, the same candidate can be tried several times in different resolution states.
Even with T having the confluence property, this is necessary to guarantee that the
result does not depend on the order used to try the candidates (in step c).

Definition: given a resolution theory T with the confluence property and an
instance P with initial resolution state RSP, we define T&E(T, P, n) as
T&E(T, RSP, n).

Definition: for an instance P, the T&E-depth of P, d(P), is the smallest n≥0 such
that P can be solved by T&E(n), with the convention that T&E(0) = BRT(CSP).

11.3.3. The “T&E(2) vs B-braids” theorem

In the previous definition, taking T = BRT(CSP) and n = 2, and forgetting as
usual the reference to BRT(CSP), we get procedures T&E(Z, RS, 2), T&E(RS, 2)
and T&E(P, 2). We write T&E(2) when P is clear. It is obvious that an elimination
done by a Bp-braid of any length can be done by T&E(2). The converse is more
interesting:

Theorem 11.5: any elimination done by T&E(2) can be done by a Bp-braid[n]
for some p and some n. As a result, any instance solvable by T&E(2) can be solved
by B-braids.

The proof is a mere iteration of the previous proof. Let RS be a resolution state
and let Z be a candidate eliminated by T&E(Z, RS, 2), using some auxiliary
resolution state RS’. Following the successive events in RS’, we progressively build
a Bp-braid in RS with target Z. First, notice that there are only four types of such
events: three are applications of rules from BRT [ECP (which eliminates

11. Wp-whips, Bp-braids and the T&E(2) instances 309

candidates), S (which asserts a value for a CSP variable) and CD (which detects a
contradiction on a CSP variable)] and the fourth is a call to some T&E(Zk+1, RSk),
where RSk is the resolution state reached after the k-th event.

Consider the sequence (P1, P2, …, Pk, …Pm) of such events in RS’, forgetting
those associated with rule ECP, and suppose that Pm is the first occurrence of CD
(there must be at least one occurrence of CD if Z is eliminated by T&E(Z, RS, 2)).
We first replace the Pk sequence by a sequence of rule applications:
- if Pk is of type S, then we extend the B-braid under construction exactly as in the
T&E(1) case;
- if Pk is a call to T&E(Zk+1, RSk), then, applying theorem 5.7, we replace it in RSk
by a braid[qk] with target Zk+1 for some qk≥1. There remains only to notice that such
a braid in RSk is the same thing as a Bqk-braid with target Zk+1 in RS, modulo Z and
the previous right-linking candidates of the global B-braid under construction.

The rest of the proof is as in theorem 11.4. We skip it.

11.3.4. Application of the “T&E(2) vs B-braids” theorem to Sudoku

As the T&E(n) procedure is easy to code in efficient ways, it is also easy to
check that all the known minimal 9×9 Sudoku puzzles can be solved by T&E(2);
therefore they can all be solved by B-braids and they all have a finite BB rating.
This includes the hardest ones recently generated by “Eleven”, as introduced in
section 9.6; as we had previously checked that all the published “hardest” puzzles
(and conjectured that all the puzzles) could be solved by T&E(2), after he
announced his results, we asked him if it was true of his puzzles; Eleven kindly
checked this with his program and provided a positive answer; later, when the
sublist of his 26,370 hardest became available, we also checked them positively for
this property with our independent program. For details on their BpB classification
with respect to parameter p, see section 11.4.2.

In terms of the T&E-depth d(P), this means that there are only 3 possibilities for
any puzzle P:

– d(P) = 0 ⇔ no T&E is necessary ⇔ P is solvable by BSRT;
– d(P) = 1 ⇔ only one T&E hypothesis needs be considered at a time ⇔ P is

solvable by braids;
– d(P) = 2 ⇔ only two or fewer T&E hypotheses need be considered at a time

⇔ P is solvable by T&E(B) ⇔ P is solvable by B-braids.

Moreover, as there is only a finite (although huge) number of minimal puzzles, it
entails that there is some p (possibly large) such all the known minimal 9×9
Sudoku puzzles have a finite BpB rating.

310 Pattern-Based Constraint Satisfaction and Logic Puzzles

Two questions remain open: whether all the minimal puzzles (not only all the
known ones) can be solved by T&E(2) [we have strong reasons to believe that this is
true – our T&E(2) conjecture] and what the value of the smallest such p is [we have
strong reasons to believe that it is 7 – our B7B conjecture, see section 11.4].

Knowing for certain the smallest p would be interesting, because it would define
the maximum look-ahead necessary when one tries to find a solution by structured
search with only one hypothesis at a time and with no guessing. Whatever its actual
value, it is also clear that such a p would provide a universal rating for Sudoku, in
the restricted sense that it would ensure a finite rating to every puzzle (which the BB
rating already does, but without a predefined finite value of p).

However, these universal ratings (BB or this BpB) cannot be considered as
universal in the non-technical sense that they would be associated with the
“simplest” solution. As we have seen, although all the whip, braid and generalised
whip or braid ratings we have introduced are largely mutually compatible (only
rarely do they give different ratings to a puzzle), the cases where they differ also
prove that it is not possible to have a single formal definition of simplicity.

11.4. The scope of Bp-braids in Sudoku

As already mentioned many times in this book, 9×9 Sudoku puzzles that cannot
be solved by braids (or whips) are very rare (in percentage; less than one in ten
millions). The only available sources of such puzzles are biased, for various non
mutually exclusive reasons: they may have been created with particular patterns of
givens (e.g. various kinds of symmetries or quasi-symmetries in the given cells, as
in the 16×16 and 25×25 examples of section 11.5 below) and/or by algorithms
biased by construction for the particular purpose of finding hard instances.

This section can therefore have no more statistical pretension than section 9.6.
Instead, we shall review collections of extreme puzzles from different sources. The
main result here is that B-braids, i.e. braids accepting inner braids as their right-
linking elements, allow to solve all the known (standard, i.e. minimal 9×9) Sudoku
puzzles, giving strong credit to our old conjecture that all the puzzles (not only the
known ones) can be solved by T&E(2); this is a noticeable difference with S-braids,
i.e. braids with inner Subsets. Moreover, it will provide very good reasons for
making the stronger conjecture that all the minimal 9×9 Sudoku puzzles can be
solved by Bp-braids with p ≤ 7.

It may be useful to notice that the results reported in this section required
innumerable months of handcrafting and CPU time: depending on the source, more
or less of each (but in any case not ours) for puzzle creation; mainly CPU (ours) for
ratings.

11. Wp-whips, Bp-braids and the T&E(2) instances 311

11.4.1. Comparison of scope for Sp-braids and Bp-braids (gsf’s collection)

Table 11.1 is the analogue for Bp-braids of Table 9.1 (for Sp-braids); it is relative
to gsf’s collection mentioned in section 9.6, with the same slices of 500 puzzles. As
the last puzzles can all be solved by g-braids, we have restricted the list to the first
6,000. For easier comparison of the resolution powers of the two series of patterns,
small figures recall the values obtained in Table 9.1 (for p ≤ 4). This table shows
that all the puzzles in gsf’s list can be solved by Bp-braids with p ≤ 6 – and all but 4
(belonging to the first series of 500) can be solved by Bp-braids with p ≤ 5.

Considering the next sub-sections, Table 11.1 also shows that the top-level of
this list can no longer be considered as containing the hardest known puzzles. But
we keep it here, for two reasons: it has long been the reference and it is still
interesting for comparing the resolution power of Sp-braids and Bp-braids.

Resolution theory →
↓ slice of puzzles gB∞ B2B∞ B3B∞ B4B∞ B5B∞ B6B∞

1-500 187 369336 457414 482443 496 500
500-1000 178 364335 462415 496460 500

1001-1500 163 421382 492451 500486
1501-2000 168 437397 499476 500490
2001-2500 135 412367 498434 500474
2501-3000 116 386334 495443 500479
3001-3500 120 389335 496424 500473
3501-4000 113 372325 493426 500472
4001-4500 104 345298 475395 499448 500
4501-5000 231 433399 493450 500482
5001-5500 348 495487 500500
5501-6000 490 500500

Total solved /6000 2353 4923
4495

5860
5328

5977
5707

5996

6000

Total unsolved /6000 3647 1077
1505

140
672

23
293

4

0

Table 11.1. Cumulated number of puzzles solved by Bp’-braids, p’≤p, for each slice of 500
puzzles in gsf’s list. The second column here (for gB∞) corresponds to the third in Table 9.1.

11.4.2. Eleven’s collection of puzzles solvable by Bp-braids but not by Sp-braids

Let us now turn to the collection recently generated by “Eleven”, already
introduced at the end of section 9.6. Eleven has made public [Eleven 2011] a list of
26,370 puzzles that, by construction, cannot be solved by S4-braids (and therefore

312 Pattern-Based Constraint Satisfaction and Logic Puzzles

not by any S-braids), which recommends them for consideration among the hardest.
Needless to say, this list has been a great leap forward into the realm of the hardest
puzzles. We have already stated in section 11.3.4 that they can all be solved by
T&E(2) and therefore by B-braids; let us now be more precise about the maximum
value of p for which Bp-braids are enough.

As this collection has been generated with the explicit purpose of maximising
the SER, we have organised the distribution table (Table 11.2) by slices of constant
SER (notwithstanding all the possible criticisms about SER as a measure of
complexity). Contrary to the above presentation of gsf’s list, slices have variable
size. In a row, empty cells on the left or right mean that all the puzzles in the slice
can be solved by Bp’-braids for some of the p’ in the other cells. For the slices with
SER < 11.3, we restricted our analysis to the first hundred puzzles in each of them.

Table 11.2 shows that all the puzzles in Eleven’s “no Sp-braids” collection can
be solved by Bp-braids with p ≤ 7; moreover, only two of them cannot be solved by
Bp-braids with p ≤ 6 and only 36 cannot be solved by Bp-braids with p ≤ 5. It also
shows that there is some vague correlation but no systematic relationship between
the SER and the minimum p of a puzzle P.

Resolution theory →

B2B∞ B3B∞ B4B∞ B5B∞ B6B∞ B7B∞ # of puzzles in slice
SER ↓ puzzles tried in

this slice
4 1-4 (all) 11.9 375 0 125

20 5-24 (all) 11.8 15 840 1050 15
34 25-58 (all) 11.7 412 2059 1029
48 59-106 (all) 11.6 1736 2756 48

109 107-215 (all) 11.5 98 5651 4340 11
263 216-478 (all) 11.4 3513 13150 8834 93

1207 479-578 11.3 24 64 12
1689 1686-1785 11.2 3 45 44 8
2656 3375-3474 11.1 9 60 30 1
1818 6031-6130 11.0 23 70 7
2427 7849-7948 10.9 70 23 7
2931 10276-11275 10.8 22 49 28 1
4606 13207-13306 10.7 32 54 14
8558 17813-17912 10.6 50 46 4

Table 11.2. For each slice of puzzles of given SER (SER version 1.2.1) in Eleven’s collection,
non-cumulated number (and percentage, in small digits) of puzzles solved by Bp-braids.

11. Wp-whips, Bp-braids and the T&E(2) instances 313

[Additional comments on Table 11.2, for Sudoku experts:
– each slice with fixed SER has been ordered by Eleven according to secondary

and ternary criteria, respectively EP and ED, the Sudoku Explainer rating of the
hardest elimination step before the first assertion step (resp. of the first elimination
step); these ratings do not seem to have any impact on the B?B classification results;

– the discontinuity in behaviour between SER 10.9 and SER 10.8 is inherent in
the definitions of these SER values; in between them there are two discontinuities,
one in the types of “contradiction / forcing chains” it is based upon (this can easily
be noticed in their names, even though these types are defined only by their Java
code) and (an anomalous) one in the number of “nodes” used by these “chains”:
“10.8: Dynamic + Forcing Chains (289-384 nodes) CRCD Forcing Chains”;
10.9: Dynamic + Multiple Forcing Chains (73-96 nodes) CRCD Forcing

Chains; this discontinuity is only one of the many inconsistencies of the SER.]

Table 11.3 (which does not claim for exhaustivity beyond the sub-slices used in
Table 11.2) displays the most remarkable puzzles in Eleven’s collection, according
to the following criteria: they have either extreme SER (4 puzzles with SER=11.9
and 20 with SER=11.8) or extreme p (2 puzzles with p=7 and 34 with p=6). The
three occurrences (in bold), with values 4 or 7 for p, are unexpected. Considering
the values of SER between 11.8 and 11.4, it is also unexpected that only one percent
of the puzzles with SER=11.5 have p≥6; but this may be due to some bias in
Eleven’s collection and/or to some other obscure anomaly of the SER.

puzzle	
#	 in	

Eleven’s	
list	

SER	 p	

..3....8..5.1....66....74....8.9..4.7....5....1.6..8.....9...2.....2...8..2...3.4	 1	 11.9	 5	
.2.4...8.....8...68....71..2..5...9..95.......4..3.........1..7..28...4.....6.3..	 2	 11.9	 5	
..3....8..5....2.17...........5.8..6.9.12....8....3....6.9....5..4....7.....1.6.2	 3	 11.9	 7	
..3..6.8....1..2......7...4..9..8.6..3..4...1.7.2.....3....5.....5...6..98.....5.	 4	 11.9	 5	
1.......9..67...2..8....4......75.3...5..2....6.3......9....8..6...4...1..25...6.	 5	 11.8	 6	
1....6.8....7..1........5.6..9.4.....7.2...3.8....76..3....1..5.4.9.......2.7....	 6	 11.8	 5	
...4...89..7..92......3...526...1.....19.....7.....1..5...9..4...6..29.....8....3	 7	 11.8	 4	
........94....92......7..45..1.3.....7.6..9..8....7..2.3.7..8....6.1....9....5.2.	 8	 11.8	 5	
...4...8...7..92......3...526...1.....19......7....1..5......4..1.8....3..6..29..	 9	 11.8	 5	
.2.4..7....6.....17...3......5....6..4.2..9.......5..8..1..8....9..7.......92.3..	 10	 11.8	 5	
1.......9.5....2....87...4.2...3......48.5....8.6...7...6..4.5.........1....9.3..	 11	 11.8	 6	
..3.5.7..4....9...6..2.......5...8.3.9.....6.8..........8.1...75....4.2.....3.5.8	 12	 11.8	 6	
..34...8.......1.37........2...9.......5..8...6...7.4...51....8.7...5...9...62.5.	 13	 11.8	 6	
1......8......92....6.3...52....8.....5.7.....6.5....4..47...........91..3..6...7	 14	 11.8	 5	
......7.9...1...3..8...74...9....8.5.....5..75.6....2...2.6......13.....94...8...	 15	 11.8	 6	

314 Pattern-Based Constraint Satisfaction and Logic Puzzles

..34......5..89...78...2...2....5..7...6..41....9....5.......6.8...9...2..1...3..	 16	 11.8	 6	
.....6..94...8.2.....7...1.2.9...8....4.3.9...6.....5.3.8.4.......5......7...1...	 17	 11.8	 6	
.....6.8....1..2...9..7...5..5.4...734...8...97.........9...6..7...3...4...2...1.	 18	 11.8	 5	
..3..6.8....1......9..7...4...8..6..3...4...2.....5.1...2.9...37........94....5..	 19	 11.8	 5	
..34.........8...668..7.1.....5......9..1.6.......2..4..5.....28.....96.97.....1.	 20	 11.8	 6	
.2....78.4.......6.9..7..1....5....3.....1.......9.12..7..1.8..5....4.....67.3...	 21	 11.8	 5	
.2...67..4...8......9.......3.....7.5.8....4..1.3....2....9..5....6.1..3...2..6.7	 22	 11.8	 7	
.2.4..7...5...9.3.6...7......5..8.9.7...2.....4.6..3.......1..85......1...1...9.3	 23	 11.8	 6	
1....6.......8.2...9.7....5.7.3...5......16....4....73..59....48...2.....3.......	 24	 11.8	 6	
..34...8..........7....25..2..........49...1.9.....6.7.....5..6..9.1..3..8.34....	 26	 11.7	 6	
.2...6......1...3...9.7...5..5....78.3.....1.8...4.5....4.9.8...6...2...9.......7	 27	 11.7	 6	
.234.........8...36.....4.......5..6..19...3.....7.8...19....2.5.......7.4.3...9.	 29	 11.7	 6	
.2...67......8......91.....23.....7..7....34...1.....8....9...5..2..4...6....342.	 30	 11.7	 6	
....5.78....1.9......7....1.9...1..3..6.2.....4.9.3....7....3.48......6...2....5.	 34	 11.7	 6	
.....67...5.1...3.....3...4..8..4...3..52.....9..1..2.7.....6...3.9...1...5.....8	 45	 11.7	 6	
...4....9.5...9.3.......1.52..8.......6.4.....1...53....42...7.8...67....7......3	 46	 11.7	 6	
1......89....8..2...82..5....93....5.....4....7..6.3..6...1.....4...7.....28...5.	 53	 11.7	 6	
1.....7.9.57....3..8.7.....2...4......68......38....5......1..4....9...2...3..56.	 54	 11.7	 6	
1.....7.9.57....3..8.7.....2...4......68......38....5......1..2....9...4...3..56.	 55	 11.7	 6	
.2...67..4...8...2..9....5...8....4.5.........3.1..2.....89.....6.3.1..7.....73..	 85	 11.6	 6	
..3.....94...8.2...6.7...1.2...9...8..4...3.......1.5.3.8.4.......6......7...5...	 99	 11.6	 6	
..3.....9...1...63.....75....196.....4.......7....5......6...21..92...3.8.....4..	 100	 11.6	 6	
1.....7.9.57....3..8.7.....2....4.....68......38....5......1..2....9...4...3..56.	 103	 11.6	 6	
....5.7..4....9.....83....1.8.........12...6.9...7.....6.....18.3.8....2.....54..	 176	 11.5	 6	
1....6.8..5...9.....837........3...4..42....8.6.....1...2.4.8.....7....39......5.	 287	 11.4	 6	
1...5......7..9....8.3..4....5.1..6..6.8....4.....7....3.2...4...2...3.89.......2	 289	 11.4	 6	
....5..8...71..2.....2..1.4..4.....7......6.196.....3.3....5...5...9.....426.....	 335	 11.4	 6	
..34..7...5...9.......3..6.........8..4.7..2.91...........6.2....23...4.8..2.5..	 342	 11.4	 6	
.2..5......71.9...6...2....2.......8..4...91...9..3.4....76...5.....13........47.	 349	 11.4	 6	
1....67...5.........927......87...4.3....1...57....3.....9....8.6...75......4..2.	 357	 11.4	 6	
12.4.....4..1...6...8.3......5...9.7.6.....2.74...........9.3.......35.....7...12	 365	 11.4	 6	
...45..8......92.....7...452.....3....8........586..7.3..........6.7...4.9...1...	 391	 11.4	 6	
.2.4.......6......7....35....8.....63...91.7.9...........2....8....1.35.....75.9.	 441	 11.4	 6	

Table 11.3. Puzzles from Eleven’s collection with extreme SER or p

11.4.3. Other extreme puzzles are also solvable by Bp-braids with p ≤ 7

Finally, as much effort has been invested over the years by many people in the
search for extreme puzzles (according to various criteria, but mostly SER), let us

11. Wp-whips, Bp-braids and the T&E(2) instances 315

consider a few famous ones proposed as such by different creators. Our source here
is the meta-collection compiled by “Champagne” [Penet 2012], based on previously
known lists and on his own creations. However, as we have already considered
Eleven’s puzzles separately in the previous sub-section (mainly because he provided
some description of his generation process and he used the same one uniformly to
produce his whole collection), we have extracted them from the results in the Tables
below (this will also make further comparisons easier). For convenience, let us call
“Champagne-minus-Eleven” the resulting collection.

Tables 11.4 and 11.5 are the respective analogues of Tables 11.2 and 11.3 for
this complementary collection (but now limited to its puzzles with SER ≥ 11.6,
because it does not lead to anything new). Only one puzzle requires B7-braids.

Resolution theory → B2B∞ B3B∞ B4B∞ B5B∞ B6B∞ B7B∞ # of puzzles in slice SER
3 1-3 11.9 266 133 00

16 4-19 11.8 212 744 638 16
22 20-41 11.7 418 1046 836
49 42-90 11.6 510 2143 1327 1020

Table 11.4. For each slice of puzzles of given SER in Champagne-minus-Eleven’s meta-
collection, non-cumulated number (and percentage, in small digits) of puzzles solved by Bp-

braids.

puzzle	 creator	 name	 in	 list	 SER	 p	
98.7.....7.....6....6.5.....4...5.3...79..5......2...1..85..9......1...4.....3.2.	 GPenet	 Champagne_dry	 11.9	 6	
98.7.....6.....87...7.....5.4..3.5....65...9......2..1..86...5.....1.3.......4..2	 GPenet	 kz0_11523	 11.9	 5	
.......39.....1..5..3.5.8....8.9...6.7...2...1..4.......9.8..5..2....6..4..7.....	 Tarek	 Golden	 Nugget	 11.9	 5	
98.76....54.........7..59..4....75.....3...2.....1...6.9...87....4....1....2....3	 GPenet	 kz1a_15497	 11.8	 5	
.2...67..4...8......93........9..57..1...7..2......61.3...4..6...8.......6...5.2.	 Tarek	 tarx0075	 11.8	 5	
2.......6.5..8..1...4...9...7.3.1......82.......7.5.3...9...4...8..1..5.6.......2	 Tarek	 tarek-‐ultra-‐0203	 11.8	 5	
98.7.....6...5......4..93..5......6..7..8......9..24....1.....4....9.1.......1.32	 GPenet	 H1	 11.8	 5	
1.......2..94...5..6....7.....89..4....3.6.....8.4.....2....1..7.......6..5.8..3.	 gsf	 2007-‐05-‐24-‐003	 11.8	 5	
6.......2.9.4...5...1...7...5..84.......2.......3.5.4.2.....6...3...9.8...7.....1	 Coloin	 coloin-‐04-‐10_13	 11.8	 6	
1.......2.9.4...5...6...7...5.3.4.......6........58.4...2...6...3...9.8.7.......1	 Coloin	 coloin-‐04-‐10_14	 11.8	 5	
1.......2.3.4...5...6...7...5.8.4.......29......3...9...7.....1.9...8.4.2.....6..	 Hp54	 Hp54_4	 11.8	 6	
1.......2.3.4...5...6...7...5.9.4.......23......8...9...2...6...9...8.4.7.......1	 Hp54	 Hp54_1	 11.8	 6	
98.76....75....9....6......8...4..3..2......1..95..8....86..5......3...4.....1.2.	 GPenet	 KZ1C_23862	 11.8	 5	
..3.8....7..2......6...9.1.........3.....596..9.....54.1...45..8...3......27.....	 Tarek	 071223170000	 11.8	 6	
1.......6.5.7...8...3...4.....5.8.9.....3.....8.92....6.....3...7...5.2...4.....1	 Coloin	 H1	 11.8	 6	
5.......9.2.1...7...8...3...4.6.........5.......2.7.1...3...8...6...4.2.9.......5	 Metcalf	 no	 name	 11.8	 7	

316 Pattern-Based Constraint Satisfaction and Logic Puzzles

98.7.....6..89......5..4...7...3.9....6...7....2....51.6..8.3.......1.4.........2	 GPenet	 H3	 11.8	 6	
98.7.....6..89......5..4...7...3.9....6...7....2....41.6..8.3.......1..5.......2.	 GPenet	 H2	 11.8	 5	
98.7.......7.6.........57..4...3..2..1...6..3...9..8..2......4..3......1..86..5..	 GPenet	 cy4_9253	 11.8	 5	
1.......9.4...3.8...2...6...7..58.......2.......7.4.5...6...2...3.8...7.9.......1	 Tarek	 tarek-‐2803	 11.7	 6	
1.......2.9.4...5...6...7...5.3.4......96.........8.4...2...6...3...9.8.7.......1	 Coloin	 Coloin_04_10	 11.7	 6	
1.......2.3.4...5...6...7...5.8.3.......7.......95..8.7.....6...9...8.3...2.....1	 jpf	 jpf-‐04-‐08	 11.7	 6	
..34..7.......9..2....1..5.2.........38...6..6.43.........2..9......5..1.6.8..3..	 Tarek	 pearly6000-‐4268	 11.7	 6	
..34..7.......9..2....1..5.27........38...6....43.........2..9......5..1.6.8..3..	 Tarek	 pearly6000-‐3802	 11.7	 6	
1.......2..34...5..6....7.....85..9....3.6.....8.9.....2....1..7.......6..9.8..3.	 jpf	 jpf-‐04/14/84	 11.7	 6	
98.7.....7..6..8....5.4....37....6...6.........2....31...3..98.....1...2.....5..4	 GPenet	 H8	 11.7	 6	
..1...5...2.4...6.3....7....6.28........9..2.......4.65.....1...9.8...4...7.....3	 Coloin	 H2	 11.7	 6	
1.......2.3.4...5...6...7...5.8.3.......74......9...8.7.....6...9...8.3...2.....1	 jpf	 jpf-‐04/14/02	 11.6	 6	
..34...8..5....1..7.......6.1....5....8.9..2.6.......7..294........3..4....8.5...	 Tarek	 pearly6000-‐4143	 11.6	 6	
3.......8.7.5...1...6...4...9.2.1.......4.......97..2.4.....3...5...2.7...8.....6	 Tarek	 tarek-‐ultra-‐0313	 11.6	 6	
1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1	 jpf	 Easter	 Monster	 11.6	 6	
.......35.....2.6...3.5..8...5.9...6.7....9..1..4.......6.8..9..2.1.....4....7...	 Coloin	 H4	 11.6	 6	
..345.........9......2.34...1......7..4.2.8..9......6...28..5..6......9..7......1	 Tarek	 pearly6000-‐3238	 11.6	 6	
987......65.........49..8..5..8..7......3..4......2..1.6.7..5......4...3.....1.2.	 GPenet	 H10	 11.6	 6	
5.......9.2.1...7...8...3...4...2.......5.......7.6.1...3...8...6...4.2.9.......5	 StrmCkr	 StrmCkr_103	 11.6	 6	
.......8...6...12....2..6.5..15..9..8....3....4..7....3....8.....21....6.7..4....	 Coloin	 H5	 11.6	 6	
98.7.....6..89......5..4...7...3.9....6...7....2....41.6..8.3.......1.5.........2	 GPenet	 H15	 11.6	 6	

Table 11.5. Puzzles in Champagne-minus-Eleven’s meta-collection with extreme SER or p
(names of famous puzzles appear in bold; the only puzzle in B7B was not famous before).

11.5. Existence and classification of instances beyond T&E(2)

11.5.1. Existence of instances beyond T&E(2)

Anticipating on a question that might naturally arise now, let us notice that our
T&E(2) conjecture for the standard 9×9 Sudoku CSP cannot be extended to larger
Sudoku grids, let alone to any CSP. “Blue”, a participant of the Sudoku
Programmer’s Forum, reported12 that, using his generator – a priori biased towards
easier instances, because of the top-down kind (see chapter 6):

– 46% of his randomly generated 16×16 minimal puzzles required T&E(2),
although he could not find one requiring T&E(3) in 1.9 million random tries;

– 90% of his randomly generated 25×25 minimal puzzles required (at least)
T&E(3).

12 http://www.setbb.com/sudoku/viewtopic.php?t=2117&start=135&mforum=sudoku

11. Wp-whips, Bp-braids and the instances in T&E(2) 317

 . 4 . 9 . 2 6 . D . A
B . A . D . . . 4 . . . E . F .
. 3 . 5 . . . 1 . 7 . . . 4 . C
6 . 1 . . . 8 . F . 9 . . . 5 .
. C . . . 6 . 8 . 1 . F . . . 5
4 . . . B . C . 3 . 7 . 2 . . .
. . . 3 . A . 7 . E . 4 . 1 . .
. . 8 . F . 4 . C . 5 . 7 . B .
. . . G . C . 6 . 9 . B . 2 . .
9 . . . 1 . D . 2 . E . G . . .
. B . . . E . 3 . A . 5 . . . 7
C . 4 . . . 5 . 7 . 1 . . . 6 .
. D . 8 . . . A . 3 . . . B . G
5 . F . 6 . . . 9 . . . 1 . 8 .
. 9 . 2 . 8 7 . 6 . E
1 . 6 . C . E . . . D . 9 . 7 .

. . . 4 . E . 2 . 3 . F . . . 9

. . G . 4 . 7 . 6 . 8 . . . F .

. 5 . A . C . G . 7 . . . E . .
2 . 1 . A . D . 9 . . . C . . .
. F . B . 9 . 1 . . . 6 . . . G
G . A . 8 . B . . . E . . . 6 .
. 7 . 3 . D . . . 8 . . . F . 5
6 . C . 5 . . . 2 . . . 4 . 1 .
. A . C . . . B . . . 3 . 7 . 2
4 . D . . . 1 . . . A . G . 3 .
. 1 . . . 7 . . . C . 8 . 4 . B
3 . . . E . . . 4 . 6 . 9 . 5 .
. . . D . . . 3 . 4 . 2 . 6 . E
. . 9 . . . G . C . 1 . 7 . D .
. 2 . . . 5 . D . F . 9 . G . .
7 . . . F . C . 5 . 3 . 8 . . .

Figure 11.5. Two 16×16 puzzles with T&E-depth ≥ 3 (hexadecimal notation)

. . J E F 4 . . 3 . . A D 7 . G . . C . .
. . I 9 P . . 1 . . 4 6 . . J . . . 3 . . 8 . . K
C M 2 K . . E 6 . . O . . 3 . B G . . 5 .
8 L 1 . . D I . G K . . B . E . 4 F . 9
3 B . . . F . N J 5 . D . . M . . 2 . O L
1 . . B N . 7 G . . 5 . . . 6 . . D A J P
. . 8 O . 5 D . . J . I E . . 2 . L . 9 4
. J K . D A . . C . N . H . . 8 . . P . 5 3 . . 2
A 4 . 6 7 . . 3 . H . C . . K I B M O . .
. . 5 P . . F . K . 1 . . 2 G . . . 9 6 8 D N . .
. . 6 . . K . L . 4 . . 9 . . E . . D H I . . M F
M . . . I . 8 . 9 . . D . . P . 2 4 L 3 .
N 3 . B . . F . . 7 . M 8 P I . . K . . G
. . A . . . G . . D . . 4 . 5 N K 9 . . . C . B .
. 3 . G P . . 2 . I 8 7 6 . . C . . 1 . .
9 . . . 2 . . H . . 3 . 5 O N P . . K 4 . F . . .
. 6 . C B . G F 4 2 . . 1 A . P 9 . . E
D . F . . P J 6 L . . 9 G . B O . . K .
. 5 . . E . . 8 . . D B K . . I 3 . 6 . . . H . 7
. . . 1 . . N . F G . 7 . . 9 L . E 8 . . B . 2 .
. M . E D 2 . . . J A . B 3 . . L . 4 . 6
. I . . L . 4 . H F . . . 8 . 1 O . . J . E . N .
5 . . F . 6 L K B . . E . . O . . . 2 . 9 . 8 . .
. . E . B . 3 A . . 9 H F . L . G . 1 O
. 8 . 4 M O . . . I . . 3 F . . A . . . 2 . 5 P .

Figure 11.6. A 25×25 puzzle with T&E-depth ≥ 4

Blue also found a few minimal puzzles with symmetries in the pattern of given
cells; it is known that such symmetries often lead to harder puzzles in the mean
(although the hardest ones do not necessarily have any symmetries at all). T&E(d)

318 Pattern-Based Constraint Satisfaction and Logic Puzzles

computation times grow so fast with d that he computed only a lower bound for d,
but this is enough for our present purposes. He posted (in the same thread):

– fifteen 16×16 minimal puzzles requiring at least T&E(3) (two of them appear
in Figure 11.5, in hexadecimal notation),

– two 25×25 minimal puzzles requiring at least T&E(4) (one of them is given in
Figure 11.6).

What this suggests is that, as grid size n increases, the depth of T&E required by
the worst cases will also increase unboundedly (and this would probably remain true
of mean case analysis). At what speed it increases remains an open (and apparently
very difficult) question.

Even though, as remarked in the Introduction, any finite Constraint Satisfaction
Problem can be reformulated as a CSP with only binary constraints, one must
sometimes consider “implied” or “derived” constraints that are not binary. Indeed,
what this section has shown goes much further: there are naturally binary CSPs
(such as large size Sudoku) with minimal instances beyond T&E(2) and this
corresponds to the necessity of tackling contradictions among more than two labels.
How this can be done will be the topic of the next chapter.

11.5.2. Classification of instances beyond T&E(2)

In any CSP, instances P can be classified according to the minimum depth of
T&E, d(P), necessary to solve them – whatever the maximum value of d(P) may be
in this particular CSP. Moreover, as T&E(d) is equivalent to T&E(B, d-1), the
various instances P within each of the layers thus defined can be further sub-
classified, inside their layer d(P), according to the smallest p such that they can be
solved by T&E(Bp, d(P)-1). This is what we did with the 9×9 Sudoku CSP: for the
d(P)=1 case in chapter 6 and for the d(P)=2 case in section 11.4.

This is a reasonable classification, because the deepest level of T&E is also that
which entails the highest computational cost (roughly speaking, mean computation
times are close to exponential in d for a fixed size CSP). In line with our previous
remarks on the multiplicity of ratings, it seems to us that, for instances in and
beyond T&E(2), this is much more informative than what a single rating (some
counterpart of the BB or B7B ratings in case d=2) can provide.

At first sight, as T&E(d) is a procedure, the above classification may seem extra-
logical; but it could be shown that the “T&E vs braids” and “T&E(2) vs B-braids”
theorems can be generalised, so that being solvable by T&E(d) is equivalent to
being solvable by some resolution theory. However, the patterns necessary to do this
would be so complex (with several levels of inner braids) that this theoretical result
would probably be of no practical use.

11. Wp-whips, Bp-braids and the instances in T&E(2) 319

11.5.3. Depth of T&E versus backdoor-size

Finally, when speaking of T&E(d), the notion of a backdoor inevitably comes to
mind and a question immediately arises: is there a relationship between the
backdoor-size of an instance and the depth of T&E necessary to solve it?

Definition: given an instance P of a CSP, the backdoor-size of P, b(P), is the
smallest integer n≥0 such that there exists a set B of n labels (a backdoor set) that,
when added to the givens of P, allows to solve P within BRT(CSP). (As the CSP is
finite, there is always such an n.)

[More generally, one can also define the backdoor size b(T, P) of P for any
resolution theory T as the smallest n such that there exists a set B of n labels (the T-
backdoor set) that, when added to the givens of P, allows to solve P in T. And one
can ask about the relationship between b(T, P) and d(T, P), where d(T, P) is defined
similarly to d(P). For simplicity, we shall consider here only T = BRT(CSP), but
more on this topic can be found on our website. The notion of a strong T backdoor is
also introduced there, with an application to the famous EasterMonster puzzle.]

Now, given an instance P of the CSP, one can associate with it two intrinsic
constants: its backdoor size b(P) and its T&E-depth d(p). And our initial question
gets formalised as: is there a relationship between d(p) and b(p)? The answer is not
obvious because the backdoor-size b(P) is based on guessing b values (it is therefore
largely incompatible with our approach and with the usual requirements of Sudoku
players), whereas the T&E-depth d(P) is based on proving that some sets of d (or
fewer) hypotheses are contradictory. In particular, none of the relations d ≤ b or
b ≤ d or of their negations is obvious in the general CSP.

Let us therefore consider the Sudoku example again. It has long been believed
that all the puzzles P had backdoor size b(P) ≤ 2, but Easter Monster was the first
example with b(P) = 3. There are now strong reasons to conjecture that b(P) ≤ 3 for
any 9×9 puzzle (and this is true for all the known ones).

Consider first the question “d(P) ≤ b(P)?”. If a puzzle can be solved by T&E at
depth d, it does not mean that one can choose d fixed hypotheses to generate all the
auxiliary grids necessary to the T&E procedure: indeed, this procedure may make
hypotheses on any sets of d candidates. But we currently have no explicit counter-
example to d(P) ≤ b(P). Notice that, if we consider gsf’s lists related to backdoors
[gsf www], either his “FN-1” list of 1,183 puzzles P with b(P) = 1 or his “FN-2” list
of 28,948 puzzles P with b(P) = 2, all of them can be solved by ordinary T&E, i.e.
they have d(P) = 1, thus satisfying d(P) ≤ b(P).

As for the question “b(P) ≤ d(P)?”, it is easy to find counter-examples. If we
consider again gsf's FN-2 list of 28,948 puzzles P with b(P) = 2, all of them can be
solved by ordinary T&E, i.e. they satisfy 1 = d(P) < b(P) = 2.

320 Pattern-Based Constraint Satisfaction and Logic Puzzles

One can even find counter-examples to the question “b(P) ≤ d(P) + 1?”. If we
consider gsf's list [gsf www] of 14 puzzles P with b(P) = 3, reproduced below:

#1	 	 	 	 	 1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1	 ;	 Easter-‐Monster;	 SER=	 11.6	 	
#2	 	 	 	 	 9.......5.4.3...6...2...1...8.74........2.......8.6.7.1.....9...3...7.4...5.....2	 ;	 tarek-‐ultra-‐.3..;	 SER=	 11.3	 	
#3	 	 	 	 	 7.......4.2.6...1...5...8...3.91........5.......2.3.9.8.....7...6...9.2...4.....5	 ;	 tarek-‐ultra-‐.3.1;	 SER=	 11.3	 	
#4	 	 	 	 	 1......89.....91.2......4....76......3..4....9....2..5..4.7....5....8.1..6.3.....	 ;	 tarek-‐4/.8;	 SER=	 11.5	 	
#5	 	 	 	 	 1.......2..34...5..6....7.....89..4....3.6.....9.4.....2....1..7.......6..5.8..3.	 ;	 jpf-‐.4/14/.8;	 SER=	 11.2	 	
#6	 	 	 	 	 5.......3.2.6...1...8...9...4.7.1.......3.......42..7.9.....5...1...7.2...3.....8	 ;	 tarek-‐ultra-‐.3.2;	 SER=	 11.2	 	
#7	 	 	 	 	 1.......2..34...5..6....7......5..4....3.1.....894.....2....1..7.......6..5.9..3.	 ;	 jpf-‐.4-‐1.;	 SER=	 11.2	 	
#8	 	 	 	 	 1.......6.2.5...4...3...7...4.85........1........24.8...7...3...5...9.2.6.......1	 ;	 coloin;	 SER=	 11.3	 	
#9	 	 	 	 	 1.......6.2.5...4...3...7...4.89.......2.4.......15.8...7...3...5...9.2.6.......1	 ;	 coloin-‐.5/11/.1;	 SER=	 11.4	 	
#10	 	 	 	 ..1...2...3.....4.5...3...6...1.7....4.....8....9.2...3.......8.6..5..3...2...7..	 ;	 ocean-‐2..7-‐.5-‐29-‐1;	 SER=	 9.4	 	
#11	 	 	 	 3.....2.....54.......6.....1.2..3..........648.........9.7...5.......1.8.5..6....	 ;	 gfroyle-‐2..7-‐.5-‐3.-‐4;	 SER=	 3.6	 	
#12	 	 	 	 .8..9....3......6....3...4.....1...5..2...9....7...8..65....1.....2.7........4...	 ;	 gfroyle-‐2..7-‐.5-‐3.-‐3;	 SER=	 4.2	 	
#13	 	 	 	 2.58..4.3......1..........6...715.....2.....4.....2...59.........3.67........	 ;	 gfroyle-‐2..7-‐.5-‐3.-‐2;	 SER=	 5.7	 	
#14	 	 	 	 ...5....13.8......4....3......61....9.....8......5.....6.7...2..1....3........49.	 ;	 gfroyle-‐2..7-‐.5-‐3.-‐1;	 SER=	 6.6	

then four of them (numbers 10, 11, 12 and 14) can be solved by ordinary T&E(1),
i.e. they satisfy 1 = d(P) < b(P) - 1 = 2; [the remaining ten can be solved by T&E(2),
i.e. they satisfy d(P) = 2 and therefore d(P) = b(P) - 1].

The last four puzzles in this small collection are interesting because they show
that a large backdoor size can also be found in easy instances (i.e. with small SER)
and therefore backdoor size cannot have much to do with the difficulty of solving.

As a result, it does not seem that the notion of backdoor size (intrinsically based
on guessing) can shed much light on classifications of puzzles, like those based on
the resolution rules defined in this book, that reject a priori any form of guessing.
This conclusion is strengthened if we consider larger size grids: on the Sudoku
Programmer’s Forum13, Tarek has proposed a 16×16 puzzle P (Figure 11.7, in
hexadecimal notation) with backdoor size b(P) = 5. P can be solved by whips of
length 9 (which is relatively easy for a 16×16 puzzle). It entails that b(P) = 5 but
d(P) = 1.

We shall now give the full resolution path of this puzzle (as compacted as
possible) for the main purpose of suggesting a reason why 16×16 Sudoku has never
(and in our opinion will never) become popular: even for relatively easy puzzles,
with nothing special, there are always lots of tedious eliminations. It is essential to
understand that the length of the present path can in no way be compared to those
we gave in chapters 5 or 7 for whips or g-whips: those examples had very long paths
(and, for most of them, very long whips) because they were quite exceptional in
some respect; here the length is typical of all but the easiest 16×16 puzzles. This
also shows how our theoretical interpretations of the general requirements of

13 http://www.setbb.com/sudoku/viewtopic.php?t=2117&start=154&mforum=sudoku

11. Wp-whips, Bp-braids and the instances in T&E(2) 321

simplicity or explainability can be challenged by more pratical concerns of boredom
for instances of CSPs that are not really designed for human solving. It seems that
this concern will appear every time a CSP has many candidates (see also the
Numbrix® and Hidato® examples in chapter 16).

. . . . C B . 1 8 . 6 .
1 5 . E . . 7 4 D . . . C . B .
. . B . . 9 5
3 A G F 8 6 4 E
9 F 2 A E G .
. . 7 . . E 9 . . 3 . .
E . . G . . 1 B . 4 . . 7 . 8 .
. C . 8 6 . D F 5 . . .
. . . 6 E F . 9 1 . 2 .
G . . 3 . . 6 . . A . . D . . C
. . 5 . . 2 6 . . 4 . .
A 5 7 8 G
. 8 B 9 5 .
. . 1 . . 7 E . . B . .
. E . B 8 . 2 . . C . . 4 . A 9
. 7 . D . . 9 . . 3 . A 6 . C .

Figure 11.7. A 16×16 puzzle (from Tarek) with backdoor size = 5 and T&E-depth = 1

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 	 *****	
91	 givens,	 871	 candidates,	 8498	 csp-‐links	 and	 8498	 links.	 Initial	 density	 =	 0.56	
singles	 ==>	 r5c13	 =	 11,	 r12c14	 =	 6,	 r1c9	 =	 9	
whip[1]:	 c7n11{r12	 .}	 ==>	 r9c6	 ≠	 11,	 r10c5	 ≠	 11,	 r10c6	 ≠	 11,	 r11c5	 ≠	 11,	 r12c5	 ≠	 11,	 r12c6	 ≠	 11	
whip[1]:	 r1n14{c7	 .}	 ==>	 r3c8	 ≠	 14,	 r3c7	 ≠	 14	
whip[2]:	 r2n6{c3	 c6}	 –	 r2n8{c6	 .}	 ==>	 r2c3	 ≠	 2	
whip[2]:	 r2n8{c3	 c6}	 –	 r2n6{c6	 .}	 ==>	 r2c3	 ≠	 9	
singles	 ==>	 r2c14	 =	 9,	 r4c13	 =	 2,	 r8c15	 =	 9,	 r7c5	 =	 9,	 r8c14	 =	 14,	 r13c13	 =	 14,	 r16c8	 =	 14,	 r1c7	 =	 14	
whip[2]:	 c7n5{r6	 r14}	 –	 c10n5{r14	 .}	 ==>	 r6c5	 ≠	 5	
whip[2]:	 r4c11{n12	 n7}	 –	 r4c12{n7	 .}	 ==>	 r3c9	 ≠	 12,	 r3c12	 ≠	 12	
whip[1]:	 b3n12{r4c12	 .}	 ==>	 r4c4	 ≠	 12,	 r4c3	 ≠	 12	
whip[2]:	 r4c11{n7	 n12}	 –	 r4c12{n12	 .}	 ==>	 r4c14	 ≠	 7,	 r1c11	 ≠	 7,	 r3c10	 ≠	 7	
singles	 ==>	 r8c10	 =	 7,	 r5c5	 =	 7	
whip[2]:	 c10n1{r11	 r6}	 –	 b5n1{r6c2	 .}	 ==>	 r11c4	 ≠	 1	
whip[2]:	 r3c10{n16	 n2}	 –	 r2c10{n2	 .}	 ==>	 r14c10	 ≠	 16,	 r11c10	 ≠	 16,	 r6c10	 ≠	 16	
whip[1]:	 c10n16{r2	 .}	 ==>	 r1c11	 ≠	 16,	 r2c11	 ≠	 16,	 r2c12	 ≠	 16,	 r3c9	 ≠	 16,	 r3c12	 ≠	 16	
whip[2]:	 r3c10{n2	 n16}	 –	 r2c10{n16	 .}	 ==>	 r14c10	 ≠	 2,	 r6c10	 ≠	 2	
whip[1]:	 c10n2{r2	 .}	 ==>	 r1c11	 ≠	 2,	 r2c11	 ≠	 2,	 r2c12	 ≠	 2	
whip[1]:	 r1n2{c1	 .}	 ==>	 r3c1	 ≠	 2,	 r3c2	 ≠	 2,	 r3c4	 ≠	 2	
naked-‐single	 ==>	 r2c12	 =	 3	
whip[1]:	 c10n2{r2	 .}	 ==>	 r3c9	 ≠	 2,	 r3c12	 ≠	 2	
whip[2]:	 r2c11{n15	 n10}	 –	 r2c16{n10	 .}	 ==>	 r2c3	 ≠	 15	
whip[2]:	 r2c11{n10	 n15}	 –	 r2c16{n15	 .}	 ==>	 r2c5	 ≠	 10	
singles	 ==>	 r2c5	 =	 2,	 r2c10	 =	 16,	 r3c10	 =	 2	

322 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[2]:	 r2c11{n10	 n15}	 –	 r2c16{n15	 .}	 ==>	 r2c6	 ≠	 10	
whip[2]:	 r4c11{n7	 n12}	 –	 r4c12{n12	 .}	 ==>	 r3c12	 ≠	 7	
whip[1]:	 b3n7{r4c12	 .}	 ==>	 r4c4	 ≠	 7	
singles	 ==>	 r4c4	 =	 9,>	 r4c3	 =	 13,	 r14c2	 =	 9,	 r7c2	 =	 3	
whip[1]:	 b5n13{r6c1	 .}	 ==>	 r6c16	 ≠	 13,	 r6c15	 ≠	 13,	 r6c12	 ≠	 13,	 r6c10	 ≠	 13	
whip[1]:	 b13n16{r16c3	 .}	 ==>	 r1c3	 ≠	 16	
whip[2]:	 b9n9{r12c3	 r10c3}	 –	 b9n14{r10c3	 .}	 ==>	 r12c3	 ≠	 15,	 r12c3	 ≠	 12,	 r12c3	 ≠	 2,	 r12c3	 ≠	 4	
whip[2]:	 b9n9{r10c3	 r12c3}	 –	 b9n14{r12c3	 .}	 ==>	 r10c3	 ≠	 15,	 r10c3	 ≠	 2,	 r10c3	 ≠	 4,	 r10c3	 ≠	 8	
whip[2]:	 c4n5{r5	 r14}	 –	 c10n5{r14	 .}	 ==>	 r6c1	 ≠	 5	
whip[1]:	 c1n5{r16	 .}	 ==>	 r14c4	 ≠	 5	
whip[3]:	 c7n5{r6	 r14}	 –	 c10n5{r14	 r6}	 –	 r7n5{c12	 .}	 ==>	 r5c6	 ≠	 5	
whip[3]:	 r7n5{c12	 c6}	 –	 c7n5{r6	 r14}	 –	 c10n5{r14	 .}	 ==>	 r5c12	 ≠	 5,	 r6c9	 ≠	 5,	 r6c12	 ≠	 5	
whip[3]:	 r6c10{n1	 n5}	 –	 b5n5{r6c4	 r5c4}	 –	 b5n1{r5c4	 .}	 ==>	 r6c9	 ≠	 1,	 r6c15	 ≠	 1	
singles	 ==>	 r6c15	 =	 15,	 r6c13	 =	 10,	 r7c6	 =	 15,	 r7c3	 =	 10,	 r3c15	 =	 1,	 r4c14	 =	 5,	 r9c16	 =	 5,	
r11c16	 =	 11,	 r9c14	 =	 10,	 r10c14	 =	 8,	 r10c5	 =	 15,	 r1c6	 =	 5,	 r14c15	 =	 13,	 r14c10	 =	 5,	 r6c10	 =	 1,	
r11c10	 =	 13,	 r11c2	 =	 1,	 r5c4	 =	 1,	 r8c16	 =	 1,	 r6c4	 =	 5,	 r5c7	 =	 5,	 r15c1	 =	 5,	 r16c5	 =	 5,	 r16c6	 =	 11,	
r4c6	 =	 1,	 r10c6	 =	 4,	 r4c5	 =	 11	
whip[1]:	 b6n4{r6c7	 .}	 ==>	 r6c16	 ≠	 4	
singles	 ==>	 r5c16	 =	 4,	 r5c3	 =	 6,	 r2c3	 =	 8,	 r2c6	 =	 6,	 r3c2	 =	 6,	 r1c2	 =	 16	
whips[1]:	 b6n4{r6c7	 .}	 ==>	 r6c1	 ≠	 4,	 r6c2	 ≠	 4;	 	 	 	 	 c2n4{r12	 .}	 ==>	 r9c3	 ≠	 4	
naked-‐single	 ==>	 r9c3	 =	 12	
whips[1]:	 c2n4{r12	 .}	 ==>	 r9c1	 ≠	 4,	 r12c4	 ≠	 4;	 	 	 	 	 c15n3{r11	 .}	 ==>	 r12c13	 ≠	 3,	 r11c13	 ≠	 3	
whip[1]:	 b12n15{r12c13	 .}	 ==>	 r14c13	 ≠	 15,	 r3c13	 ≠	 15	
whip[2]:	 b16n3{r14c16	 r13c16}	 –	 r1n3{c16	 .}	 ==>	 r14c8	 ≠	 3	
whip[4]:	 r10n7{c15	 c8}	 –	 b10n9{r10c8	 r11c8}	 –	 r11c13{n9	 n15}	 –	 r11c4{n15	 .}	 ==>	 r11c15	 ≠	 7	
hidden-‐single-‐in-‐a-‐block	 ==>	 r10c15	 =	 7	
whip[4]:	 r12c15{n3	 n14}	 –	 b9n14{r12c3	 r10c3}	 –	 r10n9{c3	 c8}	 –	 b10n1{r10c8	 .}	 ==>	 r12c5	 ≠	 3	
whip[5]:	 r12n1{c11	 c5}	 –	 r10c8{n1	 n9}	 –	 r11n9{c8	 c13}	 –	 b12n15{r11c13	 r12c13}	 –	 r12c4{n15	 .}	
==>	 r12c11	 ≠	 2	
whip[5]:	 c6n8{r9	 r5}	 –	 r6n8{c8	 c12}	 –	 b7n11{r6c12	 r8c11}	 –	 c1n11{r8	 r6}	 –	 c1n13{r6	 .}	 ==>	
r9c1	 ≠	 8	
hidden-‐single-‐in-‐a-‐block	 ==>	 r11c1	 =	 8	
whip[1]:	 b9n15{r12c4	 .}	 ==>	 r14c4	 ≠	 15,	 r13c4	 ≠	 15,	 r1c4	 ≠	 15,	 r3c4	 ≠	 15	
whip[3]:	 r11n7{c8	 c4}	 –	 r11n15{c4	 c13}	 –	 r11n9{c13	 .}	 ==>	 r11c8	 ≠	 16,	 r11c8	 ≠	 12,	 r11c8	 ≠	 10,	
r11c8	 ≠	 3	
whip[6]:	 b11n5{r10c12	 r10c9}	 –	 r10n14{c9	 c3}	 –	 r12c3{n14	 n9}	 –	 r12c13{n9	 n15}	 –	
r12c4{n15	 n2}	 –	 r10c2{n2	 .}	 ==>	 r10c12	 ≠	 11	
whip[2]:	 b7n11{r6c12	 r8c11}	 –	 r10n11{c11	 .}	 ==>	 r6c2	 ≠	 11	
whip[1]:	 c2n11{r12	 .}	 ==>	 r9c1	 ≠	 11	
whip[4]:	 b10n11{r9c7	 r12c7}	 –	 c12n11{r12	 r6}	 –	 r6n8{c12	 c8}	 –	 b2n8{r3c8	 .}	 ==>	 r9c7	 ≠	 8	
whip[4]:	 c6n8{r9	 r5}	 –	 r6n8{c8	 c12}	 –	 r6n11{c12	 c1}	 –	 c1n13{r6	 .}	 ==>	 r9c6	 ≠	 13	
whip[5]:	 r9n7{c8	 c1}	 –	 c1n13{r9	 r6}	 –	 r6n11{c1	 c12}	 –	 r6n8{c12	 c7}	 –	 b2n8{r3c7	 .}	 ==>	 r9c8	 ≠	 8	
hidden-‐single-‐in-‐a-‐block	 ==>	 r9c6	 =	 8	
whip[1]:	 b6n8{r6c8	 .}	 ==>	 r6c12	 ≠	 8	
whip[4]:	 c8n12{r14	 r6}	 –	 r6n8{c8	 c7}	 –	 c7n4{r6	 r13}	 –	 b14n15{r13c7	 .}	 ==>	 r14c7	 ≠	 12	
whip[4]:	 c8n12{r14	 r6}	 –	 r6n8{c8	 c7}	 –	 c7n4{r6	 r14}	 –	 b14n15{r14c7	 .}	 ==>	 r13c7	 ≠	 12	

11. Wp-whips, Bp-braids and the instances in T&E(2) 323

whip[7]:	 b10n16{r11c5	 r9c8}	 –	 b6n16{r6c8	 r8c6}	 –	 b6n10{r8c6	 r8c8}	 –	 b6n3{r8c8	 r5c6}	 –	
r15c6{n3	 n13}	 –	 b10n13{r12c6	 r12c5}	 –	 c5n1{r12	 .}	 ==>	 r13c5	 ≠	 16	
whip[8]:	 r6n11{c12	 c1}	 –	 c1n13{r6	 r9}	 –	 r9n7{c1	 c8}	 –	 b10n16{r9c8	 r11c5}	 –	 r11c12{n16	 n14}	 –	
r10n14{c12	 c3}	 –	 r10n9{c3	 c8}	 –	 r11c8{n9	 .}	 ==>	 r6c12	 ≠	 12	
whip[8]:	 r10c2{n11	 n2}	 –	 b11n2{r10c9	 r12c12}	 –	 r12c4{n2	 n15}	 –	 b12n15{r12c13	 r11c13}	 –	
r11n9{c13	 c8}	 –	 r10c8{n9	 n1}	 –	 b11n1{r10c9	 r12c11}	 –	 r12n4{c11	 .}	 ==>	 r12c2	 ≠	 11	
whip[9]:	 b8n2{r7c14	 r6c16}	 –	 r6c2{n2	 n13}	 –	 b9n13{r12c2	 r9c1}	 –	 r9n7{c1	 c8}	 –	
r11c8{n7	 n9}	 –	 r10c8{n9	 n1}	 –	 r10c11{n1	 n11}	 –	 b7n11{r8c11	 r6c12}	 –	 r6c1{n11	 .}	 ==>	
r7c11	 ≠	 2	
whip[3]:	 b8n13{r7c16	 r5c14}	 –	 b8n12{r5c14	 r7c14}	 –	 r7c11{n12	 .}	 ==>	 r7c12	 ≠	 13	
whip[3]:	 r7c11{n12	 n13}	 –	 b8n13{r7c16	 r5c14}	 –	 b8n12{r5c14	 .}	 ==>	 r7c12	 ≠	 12,	 r7c9	 ≠	 12	
whip[9]:	 r6n11{c12	 c1}	 –	 c1n13{r6	 r9}	 –	 b9n7{r9c1	 r11c4}	 –	 b9n15{r11c4	 r12c4}	 –	
r12n2{c4	 c2}	 –	 r12n4{c2	 c11}	 –	 r12n1{c11	 c5}	 –	 r10c8{n1	 n9}	 –	 r11c8{n9	 .}	 ==>	 r12c12	 ≠	 11	
singles	 ==>	 r6c12	 =	 11,	 r8c1	 =	 11,	 r8c3	 =	 4	
whips[1]:	 r8n2{c11	 .}	 ==>	 r7c12	 ≠	 2,	 r7c9	 ≠	 2;	 	 	 	 	 r7n2{c16	 .}	 ==>	 r6c16	 ≠	 2	
naked-‐single	 ==>	 r6c16	 =	 6	
whip[1]:	 r8n2{c11	 .}	 ==>	 r6c9	 ≠	 2	
whip[7]:	 r12n11{c11	 c7}	 –	 r9c7{n11	 n3}	 –	 b11n3{r9c11	 r11c9}	 –	 c9n12{r11	 r6}	 –	
b6n12{r6c7	 r5c6}	 –	 r12c6{n12	 n13}	 –	 r12c5{n13	 .}	 ==>	 r12c11	 ≠	 1	
singles	 ==>	 r12c5	 =	 1,	 r10c8	 =	 9,	 r11c8	 =	 7,	 r11c4	 =	 15,	 r12c4	 =	 2,	 r10c2	 =	 11,	 r11c13	 =	 9,	
r12c13	 =	 15,	 r10c3	 =	 14,	 r12c3	 =	 9,	 r6c2	 =	 2,	 r6c1	 =	 13,	 r9c1	 =	 7	
whip[5]:	 c6n16{r15	 r8}	 –	 c6n10{r8	 r13}	 –	 b14n12{r13c6	 r14c8}	 –	 b14n6{r14c8	 r15c8}	 –	
c8n1{r15	 .}	 ==>	 r13c8	 ≠	 16	
whip[5]:	 c6n16{r15	 r8}	 –	 c6n10{r8	 r13}	 –	 b14n12{r13c6	 r13c8}	 –	 b14n6{r13c8	 r15c8}	 –	
c8n1{r15	 .}	 ==>	 r14c8	 ≠	 16	
whip[5]:	 c8n1{r15	 r13}	 –	 b14n6{r13c8	 r14c8}	 –	 b14n12{r14c8	 r13c6}	 –	 c6n16{r13	 r8}	 –	
c6n10{r8	 .}	 ==>	 r15c8	 ≠	 16	
whip[5]:	 c8n16{r6	 r9}	 –	 b10n13{r9c8	 r12c6}	 –	 r15c6{n13	 n3}	 –	 b6n3{r5c6	 r8c8}	 –	 b6n10{r8c8	 .}	
==>	 r8c6	 ≠	 16	
whip[1]:	 c6n16{r15	 .}	 ==>	 r14c5	 ≠	 16	
whip[4]:	 b10n10{r11c7	 r11c5}	 –	 c5n16{r11	 r6}	 –	 b6n4{r6c5	 r6c7}	 –	 c7n8{r6	 .}	 ==>	 r3c7	 ≠	 10	
whip[5]:	 c9n3{r11	 r8}	 –	 b7n2{r8c9	 r8c11}	 –	 b7n16{r8c11	 r6c9}	 –	 b11n16{r11c9	 r11c12}	 –	
c5n16{r11	 .}	 ==>	 r9c11	 ≠	 3	
whip[5]:	 r6c9{n12	 n16}	 –	 c5n16{r6	 r11}	 –	 r11c12{n16	 n14}	 –	 r12c12{n14	 n4}	 –	 r3c12{n4	 .}	 ==>	
r5c12	 ≠	 12,	 r11c9	 ≠	 12	
singles	 ==>	 r6c9	 =	 12,	 r7c11	 =	 13,	 r5c12	 =	 8,	 r5c11	 =	 3,	 r5c6	 =	 12,	 r5c14	 =	 13,	 r7c16	 =	 2,	 r7c14	 =	 12,	
r16c11	 =	 8,	 r16c16	 =	 15,	 r2c16	 =	 10,	 r2c11	 =	 15,	 r1c11	 =	 10,	 r14c16	 =	 8	
whip[1]:	 b3n4{r3c12	 .}	 ==>	 r3c4	 ≠	 4,	 r3c1	 ≠	 4	
whip[1]:	 b7n16{r8c11	 .}	 ==>	 r8c8	 ≠	 16	
whip[2]:	 r1n3{c16	 c8}	 –	 r1n13{c8	 .}	 ==>	 r1c16	 ≠	 7	
whip[3]:	 c8n1{r13	 r15}	 –	 b14n6{r15c8	 r14c8}	 –	 b14n12{r14c8	 .}	 ==>	 r13c8	 ≠	 13,	 r13c8	 ≠	 10,	
r13c8	 ≠	 3	
whip[3]:	 c8n1{r15	 r13}	 –	 b14n6{r13c8	 r14c8}	 –	 b14n12{r14c8	 .}	 ==>	 r15c8	 ≠	 13,	 r15c8	 ≠	 3	
whip[3]:	 b14n12{r14c8	 r13c8}	 –	 b14n1{r13c8	 r15c8}	 –	 b14n6{r15c8	 .}	 ==>	 r14c8	 ≠	 10	
whip[3]:	 r12c6{n13	 n3}	 –	 b6n3{r8c6	 r8c8}	 –	 r1c8{n3	 .}	 ==>	 r9c8	 ≠	 13	
singles	 ==>	 r12c6	 =	 13,	 r12c2	 =	 4,	 r9c2	 =	 13,	 r13c5	 =	 13,	 r15c12	 =	 13	
whip[3]:	 r15c6{n16	 n3}	 –	 r14n3{c5	 c13}	 –	 r14n16{c13	 .}	 ==>	 r15c11	 ≠	 16,	 r15c9	 ≠	 16	

324 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[4]:	 r1n7{c14	 c4}	 –	 b1n4{r1c4	 r1c1}	 –	 r16c1{n4	 n2}	 –	 b16n2{r16c14	 .}	 ==>	 r13c14	 ≠	 7	
whip[4]:	 b2n10{r3c5	 r3c8}	 –	 b2n8{r3c8	 r3c7}	 –	 r6c7{n8	 n4}	 –	 b14n4{r14c7	 .}	 ==>	 r14c5	 ≠	 10	
whip[3]:	 b14n4{r14c7	 r13c7}	 –	 b14n15{r13c7	 r14c7}	 –	 r14n10{c7	 .}	 ==>	 r14c4	 ≠	 4	
whip[4]:	 r6n4{c7	 c5}	 –	 r14c5{n4	 n3}	 –	 c13n3{r14	 r3}	 –	 r3c7{n3	 .}	 ==>	 r6c7	 ≠	 8	
singles	 ==>	 r6c7	 =	 4,	 r6c5	 =	 16,	 r6c8	 =	 8,	 r3c7	 =	 8,	 r9c8	 =	 16,	 r14c5	 =	 4	
whip[5]:	 r14n16{c12	 c13}	 –	 c14n16{r16	 r3}	 –	 c14n15{r3	 r1}	 –	 r1c3{n15	 n2}	 –	 r16c3{n2	 .}	 ==>	
r16c9	 ≠	 16	
whip[5]:	 c11n16{r13	 r8}	 –	 r8c9{n16	 n2}	 –	 r16c9{n2	 n1}	 –	 b11n1{r10c9	 r10c11}	 –	 c11n2{r10	 .}	
==>	 r13c11	 ≠	 4	
singles	 ==>	 r9c11	 =	 4,	 r9c9	 =	 3,	 r9c7	 =	 11,	 r12c11	 =	 11,	 r4c11	 =	 12,	 r4c12	 =	 7	
whip[3]:	 r14n16{c12	 c13}	 –	 b16n3{r14c13	 r13c16}	 –	 r13n7{c16	 .}	 ==>	 r13c11	 ≠	 16	
singles	 ==>	 r8c11	 =	 16,	 r8c9	 =	 2	
whip[3]:	 b16n2{r13c14	 r16c14}	 –	 r16c1{n2	 n4}	 –	 b15n4{r16c9	 .}	 ==>	 r13c12	 ≠	 2	
whip[4]:	 b16n2{r13c14	 r16c14}	 –	 r16n1{c14	 c9}	 –	 b11n1{r10c9	 r10c11}	 –	 c11n2{r10	 .}	 ==>	
r13c3	 ≠	 2,	 r13c1	 ≠	 2	
whip[4]:	 r15c11{n1	 n7}	 –	 r13c11{n7	 n2}	 –	 b16n2{r13c14	 r16c14}	 –	 r16n1{c14	 .}	 ==>	 r15c9	 ≠	 1	
whip[4]:	 b15n4{r13c12	 r16c9}	 –	 c9n1{r16	 r10}	 –	 b11n5{r10c9	 r10c12}	 –	 r7c12{n5	 .}	 ==>	
r13c12	 ≠	 6	
whip[3]:	 c12n2{r14	 r10}	 –	 c12n5{r10	 r7}	 –	 c12n6{r7	 .}	 ==>	 r14c12	 ≠	 16	
whip[3]:	 r15n15{c3	 c9}	 –	 r15n6{c9	 c8}	 –	 r13n6{c8	 .}	 ==>	 r13c1	 ≠	 15	
whip[4]:	 r15n15{c9	 c3}	 –	 b13n3{r15c3	 r13c3}	 –	 b16n3{r13c16	 r14c13	 r14n16{c13	 .}	 ==>	
r14c9	 ≠	 15	
singles	 to	 the	 end	

12. Patterns of proof and associated classifications

Until now, our approach has been based on the resolution paradigm introduced
in section 1.2 and formalised in chapter 4. The fundamental confluence property of
the various T-braid theories and the “T&E(T) vs T-braids” theorems together show
that this paradigm applies well, in theory, to instances in T&E(1) or T&E(2): in each
case, a “simplest first” strategy and a universal rating [respectively B or BB] can be
defined. Moreover, the many concrete examples provided in this book show that, for
instances in T&E(1) or gT&E(1), it also applies well in practice to CSP’s as varied
as Sudoku, N-Queens, Futoshiki, Kakuro, Numbrix® and Hidato® (for the latter, see
chapters 14 to 16). For small values of p, this practical aspect could be extended to
instances in T&E(Sp).

Now, for the general instances in T&E(2) and beyond gT&E(1), even though the
paradigm still applies in theory, resolution paths for most of them require B-braids
(even S-braids are generally not enough). But the structure of B-braids is rather
complex, as it relies on “contextual” indirect contradictions between two candidates.
Considering our general readability requirement, one may legitimately wonder
whether a solution based on such patterns can satisfy it. The first two sections below
will introduce apparently simpler patterns; they will finally be shown to have the
same resolution power, but they correspond to very different views of resolution.

Beyond the technicalities associated with these new extended whip and braid
patterns, our main point here is thus of a more epistemological nature. Re-assessing
our initial resolution paradigm, it revolves around the notion of a pattern of proof.

Because the fuzzy borderline of complexity that may compel us to switch from
the extreme requirement of finding the “simplest” solution to the relaxed one of
finding a “readable” solution seems to cut through the T&E(2) land, this chapter
starts by exploring various ways of dealing with such instances. Even the possibility
of defining the notion of a “simplest solution” becomes much more questionable in
T&E(2). Moreover, beyond gT&E(1), the simplicity and the understandability
requirements may be at strong variance; we thus discuss various options for their
interpretation. In particular, we show that “equivalent” structures (e.g. B*-braids vs
B-braids) can correspond to viewpoints that lead to very different classifications.
Finally, we show that a pure logic approach along the same lines as above, is still
possible in theory, even for instances beyond T&E(2), although it may require some

326 Pattern-Based Constraint Satisfaction and Logic Puzzles

extensions to our initial resolution paradigm and the computational complexity may
be much higher, depending on which patterns of proof one is willing to accept.

12.1. Bi-whips, bi-braids, confluence and bi-T&E

From a purely abstract logical point of view, given a single-solution instance of a
CSP, if a candidate for some CSP variable is not its final value, then it is
contradictory with anything, including itself. As shown by the various resolution
theories we had to define, this does not imply that it can be proven to be
contradictory either “easily” or in an “understandable” way or in a “constructive”
way or in a “pattern-based” way. When one deals with T&E(2) instances, one has to
consider contradictions arising from pairs of candidates in addition to contradictions
arising from a single candidate; but the previous remarks also apply to pairs of
candidates; as a result, when saying that two candidates are incompatible, one
should always specify how this incompatibility is supposed to be proven.

In order to catch by constructive logical patterns some types of indirect pairwise
contradictions between candidates, we shall first introduce the concepts of a bi-whip
and a bi-braid. For each integer n≥1, the bi-whip[n] and bi-braid[n] incompatibility
relations between candidates Z1 and Z2 will be two different constructive restricted
forms of the abstract logical nand2 predicate defined by:

nand2(Z1, Z2) ≡ ¬[candidate(Z1) ∧ candidate(Z2)].

As should now be expected from all the generalised whips and braids we have
met in the previous chapters, we shall show that bi-braids have a smooth theory (one
can prove a form of stability for confluence and a “bi-braid vs bi-T&E” theorem)
and bi-whips are a structurally nicer and easier to compute (hopefully good) logical
approximation of bi-braids. In the next section, we shall see how each of these
patterns can be used to define new extended whip or braid patterns (namely W*-
whips and B*-braids) that have a significantly simpler structure than W-whips and
B-braids, although they are also based on indirect pairwise contradictions.

12.1.1. Definition of bi-whips and bi-braids

Apart from being based on two candidates instead of one, bi-whips and bi-braids
are very much like whips and braids, respectively. But, instead of leading to
eliminations, they prove contradictions between pairs of candidates.

Definition: given a resolution state RS and two different candidates Z1 and Z2 in
RS that are not linked, for any n≥1, a bi-whip[n] built on Z1 and Z2 is a structured
list ({Z1, Z2}, (V1, L1, R1), …, (Vn-1, Ln-1, Rn-1), (Vn, Ln)), such that:

– for any 1≤k≤n, Vk is a CSP variable;
– Z1, Z2, all the Lk’s and all the Rk’s are candidates in RS;

12. Patterns of proof and associated classifications 327

– in the sequence (L1, R1, …, Ln-1, Rn-1, Ln), any two consecutive elements are
different;

– Z1 and Z2 do not belong to {L1, R1, L2, R2, …. Ln};
– L1 is linked to Z1 or Z2;
– right-to-left continuity: for any 1<k≤n, Lk is linked to Rk-1;
– strong left-to-right continuity: for any 1≤k<n, Lk and Rk are candidates for Vk;
– Ln is a candidate for Vn;
– at least one of Z1 and Z2 is not a label for Vn;
– for any 1≤k<n, Rk is the only candidate for Vk compatible with Z1, Z2 and all

the previous Ri (i<k);
– Vn has no candidate compatible with Z1, Z2 and all the previous Ri (i<n); (but

Vn has more than one candidate – the usual non-degeneracy condition).

Definition: a bi-braid[n] built on Z1 and Z2 is a structured list as above, with the
right-to-left continuity condition replaced by:

– for any 1<k≤n, Lk is linked to Z1 or Z2 or a previous Ri.

Definitions: given a resolution state RS and n ≥ 1, two different candidates Z1
and Z2 in RS that are not linked are said bi-whip[n] (respectively bi-braid[n])
incompatible or contradictory in RS if there is in RS some bi-whip[n] (resp. some
bi-braid[n]) built on Z1 and Z2. Z1 and Z2 are said bi-whip (respectively bi-braid)
incompatible or contradictory in RS if they are bi-whip[n] (resp. bi-braid[n])
incompatible in RS for some n ≥ 1. We also say that they are bi-whip (resp. bi-braid)
contradictory.

Remarks:
– in order to avoid confusion with B-braids, the “bi” in “bi-whip” and “bi-braid”

should be pronounced [ai] as in “bye bye”;
– in a bi-whip[n] or a bi-braid[n], n is called the length; notice that, according to

the above definitions, as was the case with those for whips or braids and all their
generalisations, no initial structured strict sublist ({Z1, Z2}, (V1, L1, R1), …, (Vn-1,
Lk-1, Rk-1), (Vk, Lk)) of ({Z1, Z2}, (V1, L1, R1), …, (Vn-1, Ln-1, Rn-1), (Vn, Ln)), with
k < n, is a bi-whip[n] or a bi-braid[n] based on Z1 and Z2 in RS; this is our usual
non-degeneracy condition for whip-like or braid-like structures;

– we use the same terminology of z- and t- candidates as for whips; here, a z-
candidate is a candidate linked to (at least) one of Z1 and Z2;

– in any CSP, for any bi-braid[2] built on Z1 and Z2 there is a bi-whip[2] built on
Z1 and Z2 (the proof is similar to that for ordinary braids – see theorem 5.5);

– if, in a resolution state RS, W is a partial whip [respectively a partial braid]
based on Z and C is a left-linking or a t-candidate of W, then Z and C are obviously
bi-whip [resp. bi-braid] incompatible in RS, unless C is linked to Z: the final CSP

328 Pattern-Based Constraint Satisfaction and Logic Puzzles

variable through which the bi-whip [resp. bi-braid] contradiction is made explicit is
the first Vk such that C is linked to Rk;

– if the present definitions were extended to the case Z1 = Z2, a bi-whip [resp. a
bi-braid] built on Z1 and Z2 would merely be a whip [resp. a braid] of same length
built on Z1; as usual in our approach, we exclude this case because it is degenerated.

12.1.2. Bi-whips[1] in Sudoku

In Sudoku, a typical bi-whip[1] contradiction occurs between Z1 and Z2 when, in
a row r, number n appears as a candidate in only two blocks b1 and b2 and when Z1
[respectively Z2] is a candidate for number n in an rc-cell situated in b1 [resp. b2] but
not in r (as in the leftmost part of Figure 12.1); as usual, the role of rows and blocks
can be permuted (as in the rightmost part of Figure 12.1); and rows can be replaced
by columns.

Figure 12.1. Two typical types of bi-whips[1] in Sudoku

But there are other possibilities: when, in a row r, number n is a candidate in
only two columns c1 and c2 and Z1 and Z2 are candidates for n, respectively in c1 and
c2, anywhere outside r; or when a 2D cell is bivalue and each of Z1 and Z2 is linked
to a different candidate for this cell. See section 12.3.5 for more examples.

12.1.3. Definition of the bi-braid logical theories

Let us now define an increasing sequence of logical theories for bi-braids. Notice
that we speak of logical theories, not of resolution theories; only later (in section
12.2) will bi-braids be used in resolution theories.

We first define, for each n ≥ 1, an auxiliary predicate:
bi-braid[n](z1, z2, l1, r1, V1, l2, r2, V2, …, ln-1, rn-1, Vn-1, ln, Vn), with signature (label,
label, [label, label, CSP-variable]n-1, label, CSP-Variable). Formally, it is the
description of a bi-braid[n] in terms of candidates and links, in the style of what was
written for whips in section 5.2.2.

b

r1

r2

Z1

Z2

Z1

r

b2 b1

Z2

12. Patterns of proof and associated classifications 329

We also introduce a new constant “bi-braid” in the domain of Constraint or
Constraint-Type (depending on which modelling choice has been made for the CSP
under consideration). We correlatively allow predicate “linked-by” to accept this
constant as its last argument. Predicate “linked” is still obtained from “linked-by” by
existentially quantifying its last argument (of type Constraint or Constraint-Type).
Notice that, contrary to all the links considered until now, links of type bi-braid are
not structural, they may be dynamically created, but this will not be a problem in the
sequel, because they are persistent.

We can now define BRT*(CSP) as the usual BRT(CSP), but with the domain of
its Constraint or Constraint-Type extended as described above; as a result, its ECP
rule is naturally extended into ECP* so as to take care of the corresponding new
constraints; compared with BRT, it can be described as containing the additional
rule:
ECP-bi-braid: ∀≠l1,l2{[value(l1) ∧ linked(l1, l2, bi-braid)] ⇒ ¬candidate(l2)}.

Definition: a bi-braid[n] contradiction rule is a formula in the “condition =>
action” form, where “condition” is a bi-braid[n] for two different candidates Z1 and
Z2 and “action” is the assertion of ground atomic formula “linked-by(Z1, Z2, bi-
braid)”.

Definition: for any n ≥ 0, let biBn be the following logical theory:
– biB0 = BRT*(CSP);
– biB1 = biB0 ∪ { bi-braid[1] contradiction rules },
– biB2 = biB1 ∪ { bi-braid[2] contradiction rules },
–
– biBn = biBn-1 ∪ { bi-braid[n] contradiction rules },
– biB∞ = ∪n≥0 biBn.

Notice that, in and of itself, none of the biBn theories allows any elimination that
could not be done in the original BRT(CSP).

12.1.4. Stability for confluence of the bi-braid logical theories

We have not defined the biBn as resolution theories (as such they would be no
more than BRT(CSP)), but the definition (in section 4.5) of stability for confluence
can be extended to them as follows.

Definition: a logical bi-braid theory T is stable for confluence if, for any instance
P of the CSP, for any resolution state RS1 of P and for any rule R in T applicable in
state RS1 for asserting a bi-braid contradiction for two different candidates Z1 and Z2
– in the form of a “linked-by(Z1, Z2, bi-braid)” ground atomic formula – , if any set
Y of consistency preserving assertions and/or eliminations is done before R is

330 Pattern-Based Constraint Satisfaction and Logic Puzzles

applied, leading to a resolution state RS2, and if it destroys the pattern of R (R can
therefore no longer be applied for asserting a bi-braid link between Z1 and Z2), then
there always exists a sequence of rules in T that will allow the assertion of a bi-braid
link between Z1 and Z2 (possibly based on a shorter bi-braid).

The following theorem is mainly a preamble to the proof of the confluence
property of the B*pBm resolution theories defined in section 12.2.

Theorem 12.1: for any 0 ≤ n ≤ ∞ , bi-braid theory biBn is stable for confluence.

Proof: the following proof is a straightforward adaptation of that of theorem 5.6,
with only very slight changes.

Let n<∞ be fixed (the case n=∞ is an obvious corollary to all the cases n<∞). We
shall show that, if there is a bi-braid B of length m ≤ n built on Z1 and Z2 in some
resolution state RS1, then, for any further resolution state RS2 obtained from RS1 by
consistency preserving assertions and eliminations, in the resolution state RS3
obtained from RS2 by applying all the rules in BRT until quiescence, if both Z1 and
Z2 are still candidates in RS3, there will always be in RS3 a bi-braid of length m’ ≤ m
built on Z1 and Z2.

Let B be: {L1 R1} – {L2 R2} – …. – {Lp Rp} – {Lp+1 Rp+1} – … – {Lm .}.

First notice that, as BRT has the confluence property (theorem 4.1), state RS3 is
uniquely defined, independently of the way we apply the rules in BRT.

If any of Z1 or Z2 has been eliminated or asserted in RS3, there remains nothing
to prove. Otherwise, we must consider all the elementary events related to B that can
have happened between RS1 and RS3 (all the possibilities are marked by the same
letter as in the proof of theorem 5.6). For this, we start from B’ = what remains of B
in RS3. At this point, B’ may not be a bi-braid in RS3. We repeat the following
procedure, for p = 1 to p = m, producing in the end a new (possibly shorter) bi-braid
B’ built on Z1 and Z2 in RS3. All the references below are to the current B’.

a) If, in RS3, the left-linking or any t- or z- candidate of CSP variable Vp has
been asserted, then Z1 or Z2 and/or the previous Rk(’s) to which Lp is linked must
have been eliminated by ECP in the passage from RS2 to RS3 (if it was not yet
eliminated in RS2); if Z1 or Z2 is among these eliminations, there remains nothing to
prove; otherwise, the procedure has already been successfully terminated by case f
of the first such k.

b) If, in RS3, left-linking candidate Lp has been eliminated (but not asserted) (it
can therefore no longer be used as a left-linking candidate in a bi-braid) and if CSP
variable Vp still has a z- or a t- candidate Cp, then replace Lp by Cp; now, up to Cp,
B’ is a partial bi-braid built on Z1 and Z2 in RS3. Notice that, even if Lp was linked

12. Patterns of proof and associated classifications 331

to Rp-1 (as it would if B was a bi-whip), this may not be the case for Cp; therefore
trying to prove a similar theorem for bi-whips would fail here, as in the whips case.

c) If, in RS3, any t- or z- candidate of Vp has been eliminated (but not asserted),
this has not changed the basic structure of B (at stage p). Continue with the same B’.

d) If, in RS3, right-linking candidate Rp has been asserted (p can therefore not be
the last index of B’), it can no longer be used as an element of a bi-braid, because it
is no longer a candidate. Notice that all the left-linking and t- candidates for CSP
variables of B after p that were incompatible in B with Rp, i.e. linked to it, if still
present in RS2, must have been eliminated by ECP somewhere between RS2 and
RS3. But, considering the bi-braid structure of B upwards from p, more eliminations
and assertions must have been done by rules from BRT between RS2 and RS3.

Let q be the smallest number strictly greater than p such that, in RS3, CSP
variable Vq still has a (left-linking, t- or z-) candidate Cq that is not linked to any of
the Ri for p ≤ i < q (by definition of a bi-braid, Cq is therefore linked to Z1 or to Z2 or
to some Ri with i < p). Between RS2 and RS3, the following rules from BRT must
have been applied for each of the CSP variables Vu of B with index u increasing
from p+1 to q-1 included: eliminate its left-linking candidate (Lu) by ECP, assert its
right-linking candidate (Ru) by S, eliminate by ECP all the left-linking and t-
candidates for CSP variables after u that were incompatible in B with the newly
asserted candidate (Ru).

In RS3, excise from B’ the part related to CSP variables p to q-1 (included) and
(if Lq has been eliminated in the passage from RS1 to RS3) replace Lq by Cq; for each
integer s ≥ p, decrease by q-p the index of CSP variable Vs and of its candidates in
B’; in RS3, B’ is now, up to p (the ex q), a partial bi-braid in Bn built on Z1 and Z2.

e) If, in RS3, left-linking candidate Lp has been eliminated (but not asserted) and
if CSP variable Vp has no t- or z- candidate in RS3 (complementary to case b), then
Vp has only one possible value in RS3, namely Rp; Rp must therefore have been
asserted by S somewhere between RS1 and RS3; this case has therefore been dealt
with by case d (because the assertion of Rp also entails the elimination of Lp).

f) If, in RS3, right-linking candidate Rp of B has been eliminated (but not
asserted), in which case p cannot be the last index of B’, then replace B’ by its initial
part: {L1 R1} – {L2 R2} – …. – {Lp .}. At this stage, B’ is in RS3 a shorter bi-braid
built on Z1 and Z2. Return B’ and stop.

Notice that, as was the case for ordinary braids, for the bi-braid thus obtained, its
sequence of CSP variables is a sub-sequence W’ of those of B, its right-linking
candidates are those of B belonging to the sub-sequence W’, its left-linking
candidates are those of B belonging to the sub-sequence W’, each of them possibly
replaced by a t-candidate of B for the same CSP variable.

332 Pattern-Based Constraint Satisfaction and Logic Puzzles

12.1.5. Definition of the bi-T&E(Z1, Z2, RS) procedure

Definition: given a resolution state RS and two different non-linked candidates
Z1 and Z2 in RS, bi-T&E(Z1, Z2, RS) or bi-Trial-and-Error(Z1, Z2, RS) is the
following procedure:
- make a copy RS’ of RS; in RS’, delete Z1 and Z2 as candidates and assert them as
values;
- in RS’, apply repeatedly all the rules in BRT(CSP) until quiescence;
- if RS’ has become a contradictory state (detected by axiom CD), then assert
linked-by(Z1, Z2, bi-braid) in RS (sic: in RS, not in RS’).

Remarks:
– this definition is meaningful only because BRT(CSP) has the confluence

property for any CSP: otherwise, the result of “applying repeatedly in RS’ all the
rules in BRT until quiescence” may not be uniquely defined;

– if we extended this definition to the degenerated case Z1 = Z2, bi-T&E(Z1, Z1,
RS) would assert “linked-by(Z1, Z1, bi-braid)” in RS if and only if T&E(Z1, RS)
eliminates Z1 from RS;

– in case Z1 ≠ Z2, but Z1 would be eliminated by T&E(Z1, RS) or Z2 by
T&E(Z2, RS), then bi-T&E(Z1, Z2, RS) would assert linked-by(Z1, Z2, bi-braid); in
the sequel, we shall avoid such situations by systematically applying T&E before bi-
T&E.

12.1.6. The bi-T&E(Z1, Z2, RS) procedure vs bi-braid incompatibilities

It is obvious that, for any bi-braid incompatibility obtained via a bi-braid B built
on two different candidates Z1 and Z2 in some resolution state RS, procedure bi-
T&E(Z1, Z2, RS) will assert “linked-by(Z1, Z2, bi-braid)” in RS; this can easily be
seen by applying in RS’ a sequence of rules from BRT following the bi-braid
structure of B. The converse is more interesting.

Theorem 12.2 (“bi-T&E vs bi-braid”): for any instance of any CSP, for any
resolution state RS and for any pair of different non-linked candidates Z1 and Z2
in RS, if bi-T&E(Z1, Z2, RS) asserts “linked-by(Z1, Z2, bi-braid)” in RS, then there
is in RS a bi-braid (of undefined length) built on Z1 and Z2.

Proof: it is a straightforward adaptation of the corresponding proof for braids
(theorem 5.7).

Let RS’ be the auxiliary resolution state used by bi-T&E(Z1, Z2, RS). Following
the steps of BRT in RS’, we progressively define a bi-braid in RS built on Z1 and Z2.
First, remember that BRT contains three types of rules: ECP (which eliminates
candidates), S (which asserts a value for a CSP variable) and CD (which detects a
contradiction on a CSP variable).

12. Patterns of proof and associated classifications 333

Consider the first step of BRT in RS’ that is an application of rule S, asserting
some label R1 as a value. As R1 was not a value in RS, there must have been in RS’
some elimination of a candidate, say L1, for a CSP variable V1 of which R1 is a
candidate, and the elimination of L1 (which made the assertion of R1 by S possible
in RS’) can only have been made possible in RS’ by the assertion of Z1 and Z2. But
if L1 has been eliminated in RS’, it can only be by ECP and because it is linked to Z1
or Z2. Then {L1 R1} is the first pair of candidates of our bi-braid in RS and V1 is its
first CSP variable. (Notice that there may be other z-candidates for V1, but this is
pointless, we can choose any of them as L1 and consider the remaining ones as z-
candidates).

The sequel is done by recursion. Suppose we have built a bi-braid in RS
corresponding to the part of the BRT resolution in RS’ up to its k-th assertion step.
Let Rk+1 be the next candidate asserted by BRT in RS’. As Rk+1 was not a value in
RS, there must have been in RS’ some elimination of a candidate, say Lk+1, for a
CSP variable Vk+1 of which Rk+1 is a candidate, and the elimination of Lk+1 (which
made the assertion of Rk+1 possible in RS’) can only have been made possible in RS’
by the assertion of Z1 and/or Z2 and/or of some of the previous Ri. But if Lk+1 has
been eliminated in RS’, it can only be by ECP and because it is linked to Z1 or Z2 or
to some of the previous Ri, say C. Then our partial bi-braid in RS can be extended to
a longer one, with {Lk+1 Rk+1} added to its candidates, Lk+1 linked to C, and Vk+1
added to its sequence of CSP variables.

End of the procedure: a contradiction is supposed to be obtained by BRT in RS’.
As, in BRT, only ECP can eliminate a candidate, a contradiction is obtained if a
value asserted in RS’, i.e. if Z1 or Z2 or one of the Ri, i<n, eliminates in RS’ (via
ECP) a candidate, say Ln, that was the last one for a corresponding variable Vn and
that is linked to Z1 or Z2 or one of the Ri, i<n. Ln and Vn are thus the last left-linking
candidate and CSP variable of the bi-braid we were looking for in RS.

Nothing can guarantee that both Z1 and Z2 have effectively been used in this
construction, but this is not a problem: if one of them has not, it only means that we
are in the special case mentioned in the second remark at the end of section 12.1.5.

12.2. W*p-whips and B*p-braids

We now introduce W*p-whips and B*p-braids. Basically, they are like ordinary
whips or braids in which indirect, but non-contextual (contrary to W-whips and B-
braids), bi-whip or bi-braid contradications between candidates are allowed
wherever direct links can appear in whips or braids. We shall show that every B*-
braid can be considered as a B-braid and conversely (surpringly) – if we forget any
notion of length. We shall also define associated resolution theories and show that
they have the confluence property, thereby allowing to define a B*B rating. It is

334 Pattern-Based Constraint Satisfaction and Logic Puzzles

interesting to notice that different views of “equivalent” structures (B-braids vs B*-
braids) lead to very different ratings and classifications.

12.2.1. Definition of W*p-whips and B*p-braids

Definition: given a resolution state RS of any CSP, an integer p with 1 ≤ p ≤ ∞,
an integer m≥1 and a candidate Z in RS, a W*p-whip[m] built on Z is a structured
list (Z, (V1, L1, R1), …, (Vm-1, Lm-1, Rm-1), (Vm, Lm)) that satisfies the following
conditions:

– for any 1≤k≤m, Vk is a CSP variable;
– Z, all the Lk’s and all the Rk’s are candidates;
– in the sequence of labels (L1, R1, …, Lm-1, Rm-1, Lm), any two consecutive

elements are different;
– Z does not belong to {L1, R1, L2, R2, …. Lm};
– either L1 is linked to Z or L1 and Z are bi-whip[p’] incompatible in RS for

some p’ ≤ p;
– extended right-to-left continuity: for any 1<k≤m, either Lk is linked to Rk-1 or

Lk and Rk-1 are bi-whip[p’] incompatible in RS for some p’ ≤ p;
– strong left-to-right continuity: for any 1≤k<m, Lk and Rk are candidates for Vk;
– Z is not a label for Vm;
– for any 1≤k<m: Rk is the only candidate for Vk that is compatible and not bi-

whip[p’] incompatible in RS for any p ’≤ p with Z and with all the previous right-
linking candidates Ri;

– Vm has no candidate compatible and not bi-whip[p’] incompatible in RS for
any p’ ≤ p with Z and with all the previous right-linking candidates (but Vm has
more than one candidate – our usual non-degeneracy condition of the global
structure being defined).

Definition: a B*-braid[m] is a structured list as above, with “bi-whip
[in]compatible” replaced everywhere by “bi-braid [in]compatible” and with the
extended right-to-left continuity condition replaced by:

– for any 1≤k≤m, Lk is linked to Z1 or to Z2 or to a previous Ri or Lk is bi-
braid[p’] incompatible in RS for some p ’≤ p with Z1 or with Z2 or with a previous
Ri.

In both cases, Z is called the target and m the pseudo-length (“pseudo” because it
does not take into account the lengths of the inner bi-whip/bi-braid contradictions).
If p = ∞, we discard as usual the p index and we write W*-whip and B*-braid.

The case m = 1 is worth some comment. Recalling our definition of forcing-
whips in section 5.9, condition patterns of rules in W*pW1 (respectively B*pB1)

12. Patterns of proof and associated classifications 335

could also be named forcing-bi-whips (resp. forcing-bi-braids), because the target Z
of a W*p-whip[1] (resp. a B*p-braid[1]) is bi-whip (resp. bi-braid) incompatible
with all the candidates of CSP variable V1: using the symmetry of bi-whips (resp.
bi-braids) with respect to their {Z1, Z2} pair and looking backwards towards Z from
the first CSP variable V1, all the candidates for V1 contradict Z.

Theorem 12.3 (W*-whip and B*-braid elimination theorem): given a W*-whip
[respectively a B*-braid] built on candidate Z, its target Z can be eliminated.

Proof: obvious.

Figure 12.2 is a graphico-symbolic representation of a W*-whip[4] built on Z.
Vertical lines represent the sequence of its CSP variables, from left to right; all the
other lines represent direct links or bi-whip contradictions (undifferentiated); curved
ones represent distant contradictions (corresponding to global z- and t- candidates);
a candidate for a CSP variable can only exist at an endpoint of another line.

Figure 12.2. A graphico-symbolic representation of a W*-whip[4] built on Z

By comparing the definitions or the graphico-symbolic representations, it
appears that B*p-braids are a particular case of Bp-braids and W*-whips are a
particular case of W*-whips (they are even the same pattern, length
notwithstanding, in the m=0 case, if we extend the above definition to this case).

The main difference between a Bp-braid and a B*p-braid (still apart from not
taking into account the lengths of the inner structures) is that the inner bi-braids of a
B*p-braid rely on no global z- or t- candidates, contrary to the inner braids used in
a Bp-braid. Said otherwise, the indirect contradictions between two candidates
appearing in a B-braid may be contextual (they may depend on Z and the previous
right-linking candidates), while they may not in a B*-braid. It makes the structure of
a B*-braid apparently much simpler. However, there is a surprising “equivalence”.

Z

R1
R2 R3

V1 V2 V3 V4

336 Pattern-Based Constraint Satisfaction and Logic Puzzles

Theorem 12.4 (pseudo-equivalence of B*-braids and B-braids): in any
resolution state RS of any CSP, for any candidate Z in RS, if there is in RS a B*-
braid based on Z, then there is also in RS a B-braid based on Z. Conversely, if
there is in RS a B-braid[m] based on Z, then there is in RS a B*m-1-braid[1], i.e. a
forcing bi-braid[m-1], based on Z.

Proof: the first part is a result of the preceding remarks. As for the converse,
consider a B-braid[m] B with target Z. It is easy to see that, for any global left-
linking or t- candidate C of B, the part of B before C is a bi-braid of length less than
m based on Z and C. Taking all such bi-braids for all the candidates of the last CSP
variable of B, we get the desired B*-braid[1] (or forcing bi-braid).

Remarks:
– although the first part of the theorem remains true when we replace B*-braids

by W*-whips and B-braids by W-whips, the converse does not;
– in our view, in spite of this theorem, B*-braids and B-braids cannot be

considered as the “same” pattern: the notion of length [or pseudo-length] that we
have always introduced at the same time as each of our patterns is an integral and an
essential part of their definition;

– as all the (known) Sudoku puzzles are in T&E(2) or less, they can all be solved
by forcing bi-braids; but this is not a very interesting result, as it gives no indication
on the maximum length of the necessary bi-braids;

– the smallest p such that an instance Q is in B*pB may be much larger than the
smallest p such that Q is in BpB;

– in the Sudoku community, vague notions of a “contradiction chain” and a
“nested contradiction chain” have been in existence for a long time (with vaguely
contradictory variants of each). As far as any precise interpretation can be given
(based e.g. on the outputs of Sudoku Explainer), a “contradiction chain” is a
sequence of applications of Single and ECP rules, i.e. of rules from BRT, based on
the assumption of some candidate (if Z is True, then …); said otherwise, it is a proof
in BRT. It has also been argued that whips and braids are “the same thing as”
contradiction chains; this claim is based on too vague definitions of contradiction
chains to be refuted, but such a chain is much more closer to our T&E procedure (or
to some version of it that partly controls the total number of inferences) than to a
whip or a braid. In the same view, W-whips, B-braids, W*-whips and B*-braids
would all be “the same thing as” nested contradiction chains, although the latter are
much closer to our T&E(2) procedure. Notwithstanding all this, our main point here
is, the “same-thing” view completely forgets the notion of length inherently
associated with each of our patterns, the confluence property of the braid resolution
theories that can only be defined with this specific notion of length, the “simplest-
first” strategy it justifies and the associated ratings. The “same-thing” view could as
well be applied to the various types of “contradiction chains” on which Sudoku

12. Patterns of proof and associated classifications 337

Explainer is based (and to its associated measure of complexity, basically the
number of inference steps, of which we have already mentioned that it cannot be
defined by any logical theory – see note 5 of chapter 6); accordingly, the “same”
pattern would thus be assigned three different ratings.

12.2.2. The W*pWm and B*pBm resolution theories; confluence property of B*pBm

Definition: given an integer p with 1 ≤ p ≤ ∞, we define in the now usual way
the following increasing sequence of resolution theories:

– W*pW0 = BRT(CSP),
– W*pW1 = W*pW0 ∪ W1 ∪ {rules for W*p-whips of pseudo-length 1},
– …
– W*pWm = W*pWm-1 ∪ Wm ∪ {rules for W*p-whips of pseudo-length m},
– W*pW∞ = ∪m≥0 W*pWm.

One has obvious similar definitions for (B*pBm, m≥0).

W*pWm [respectively B*pBm] is based on W*-whips [resp. B*-braids] of
maximum pseudo-length m with inner bi-whips [resp. bi-braids] of maximum length
p. As for all our previous patterns, we also define W*Wm [resp. B*Bn] as W*∞Wm
[resp. B*∞Bm], in which inner bi-whips [resp. bi-braids] may have unrestricted
length.

Similarly to the whip, g-whip, S-whip, W-whip cases, or to the corresponding
braid cases, one can associate a W*pW [resp. a B*pB] rating with these families of
resolution theories. Using theorem 12.1, it is easy to prove the following confluence
property, so that the B*pB rating has good computational properties. However, it
should be stressed that these ratings neglect all the inner bi-whips [resp. bi-braids]
and their meaning is therefore something queer, like “rating modulo the inner bi-
whips [resp. bi-braids]”. In particular, the B*pB rating of any instance in T&E(1) is
always 0.

Theorem 12.5: for any p and n with 1 ≤ p, m ≤ ∞ , resolution theory B*pBm has
the confluence property.

Proof: as it is an easy combination of the proofs of theorems 5.6 and 12.1, we
leave it as an exercise for the reader.

12.2.3. The T&E* and T&E*p procedures

Remember from section 12.1.3 the definitions of the extended basic resolution
theory BRT* (the analogue of BRT, but in the language with an additional constant
“bi-braid” in Constraint or Constraint-Type) and of the logical theories biBp for

338 Pattern-Based Constraint Satisfaction and Logic Puzzles

p ≥ 1; remember also that, after theorem 12.1, all of these theories are stable for
confluence (an essential property for the following definition to be meaningful).

Definition: for any p with 1≤p≤∞, given a resolution state RS of a CSP, in the
above-defined extended language, procedure T&E*2

p(RS) is defined as follows:
- loop until a solution or a contradiction is found or until quiescence:
 - in RS, apply repeatedly the rules of Bp (braids of length ≤ p) until quiescence;
 if a solution is found, return it and stop;
 - loop until a solution or a contradiction is found or until quiescence:
 . in RS, apply the rules of biBp to all the candidate pairs; (this step can only
 add links for the “bi-braid” constraint);
 . in RS, apply repeatedly the rules of BRT* (now use the bi-braid links
 produced in the previous step); if a solution is found, return it and stop;
 - end loop;
- end loop.

In case p = ∞, this is equivalent to T&E*2(RS):
- loop until a solution or a contradiction is found or until quiescence:
 - set RS = T&E(RS); if a solution or a contradiction is found, return it and stop;
 - loop until a solution or a contradiction is found or until quiescence:
 . set RS = bi-T&E(RS); (this step can only add links for the “bi-braid”
 constraint);
 . set RS = T&E(BRT*); (now use the bi-braid links produced in the previous
 step);
 - end loop;
- end loop.

Theorem 12.6 (“T&E*2
p vs B*p-braids”): for any CSP and any p with 1≤p≤∞ ,

if, in some resolution state RS in the extended language of BRT*, procedure
T&E*2

p(RS) deletes a candidate Z, then there exists in RS either a braid[p] with
target Z or a B*p-braid with target Z using only inner bi-braids no longer than p.
For any p with 1≤p≤ ∞ , an instance P of a CSP can be solved by T&E*2

p if and
only if it can be solved by B*p-braids.

Proof: obvious, along the same lines as for all the previous similar theorems.

As all the previous similar theorems, this provides an easy means of checking
whether an instance is in B*pB.

In case p = ∞ and as a corollary to theorems 11.5 [T&E(2) vs B-braid], 12.4
[pseudo-equivalence of B*-braids and B-braids] and 12.6, one has the following
theorem. (Exercise: write a direct proof.)

Theorem 12.7: T&E*2 ≡ T&E(2) – only in the limited sense that these two very
different procedures always produce the same result.

12. Patterns of proof and associated classifications 339

12.3. Patterns of proof and associated classifications

Given an instance in T&E(2), we have seen that it can be solved in very different
ways with generic generalised chain patterns. It is one of the purposes of this section
to review the various possibilities in the general case and to show how they work in
practice. But, for the sake of providing this analysis with a broader perspective, we
shall first reassess the general readability requirements one can reasonably put on
the solution of instances beyond T&E(1) or gT&E(1); this will lead to the informal
notion of a pattern of proof.

12.3.1. Rating versus classification

As shown by the multitude of possible ratings introduced in this book – all
logically grounded –, rating or classification of instances cannot be primary goals in
themselves, even in a context restricted by the sole purpose of pattern-based solving;
they have to be justified by higher level requirements such as simplicity or
readability of a possible solution. Conversely, such vague requirements can only be
made precise if there is some objective way of measuring how they are satisfied. So,
rating and classification principles on the one hand and requirements analysis on the
other, are intimately related. As a preamble to the sequel, let us clarify the difference
we have implicitly made since chapter 11 between classification and rating:

– in a rating system (e.g. in any of the W, gW, B, gB, SB, BB or BpB systems),
every instance is assigned a unique, possibly infinite value; it is supposed to
represent its complexity (with respect to the corresponding family of resolution
rules); any two instances can thus be directly compared;

– in a classification system, e.g. in the very broad T&E(?) or in B?B or in a
similar B*?B, one has several levels and sublevels of complexity (think of the
classification of electrons in an atom, with the various s, p, d, f … layers and sub-
layers) and one does not necessarily try to compare directly instances from different
levels (even if the BpB and the BqB ratings of an instance are indeed comparable, the
smallest value of p such that BpB is finite is often more interesting than the BpB
rating itself).

In this book, broad classifications have always been easier to compute than
ratings; this may not be a general a priori difference between classification and
rating, but a result of less stringent requirements; ratings have always supposed that
we could exhibit a resolution path, whereas classifications allowed the use of the
“T&E(T) vs T-braids” theorem; this is a clear advantage of classifications. As
shown in chapter 13, a broad classification system such as the B?B can be enough
(with no explicit computation of any rating) when one wants to analyse the worth of
introducing a new resolution rule.

340 Pattern-Based Constraint Satisfaction and Logic Puzzles

As for the relationship between the two approaches, given a rating system, a one-
level classification system can obviously be obtained from it, based on the different
values of the rating. But, conversely, given a classification system, there may be no
unique rating compatible with it. However, in both cases, our minimal a priori
requirements for a classification or a rating system are the same:

– it should be purely logical, i.e. it should be defined by an increasing sequence
of CSP resolution theories (preferably with the confluence property, for better
computational properties, although this is not necessary in theory);

– it should be invariant under all the logical symmetries of the CSP (which
should be a consequence of the previous condition if predicate “linked” is correctly
defined); by “logical symmetries”, we mean more than just the obvious geometric
ones (e.g., in Sudoku, we include in them the analogies between rows and blocks).

As for ratings, considering all those that have been defined in this book, one
could add an a posteriori requirement: any rating should somehow be based on the
number of CSP variables necessary to formulate the patterns in the resolution rules;
as a result, the most natural ratings satisfying these conditions are those introduced
until now (there is no reason to use any function of this number rather than the
number itself).

12.3.2. The first two generic ways of solving a T&E(2) instance

Given an instance Q in T&E(2) [and not in gT&E(1)], the concrete question is,
how can one present its solution in a readable form, as simply as possible? After
chapter 11, there seemed to be only two theoretical options for simplicity,
corresponding respectively to the rating and classification views: either one wants to
find a resolution path leading to the smallest BB rating of Q or one wants a BpB
solution of Q with the smallest p (and then, optionally, with the shortest possible Bp-
braids, or Wp-whips if any, for this fixed value of p).

The first case corresponds to the idea that we want the hardest elimination to be
globally as simple as possible (including in it all that is necessary to prove it); it is
conceptually clear although it seems computationally intractable for instances
beyond gT&E(1) [or T&E(Sp) for small values of p].

In the second case, the first step is to find the smallest p; this can easily be done
by applying the T&E(Bp) procedure to Q for increasing values of p until it is able to
solve Q. Having found the smallest p, we know that Q has a Bp-braids solution. If
p = 1, this means a g-whip solution. For higher values of p, one can (at least in
theory) look for the “simplest” Bp-braids solution (i.e. the solution with the smallest
BpB rating) by applying the simplest-first strategy within resolution theory BpB.
How this works in practice has been illustrated in section 11.5 for p = 2.

12. Patterns of proof and associated classifications 341

In each of these approaches, the limits of readability are reached. Contrary to the
puzzles in T&E(1) or gT&E(1), that have readable solutions with whips or g-whips
(sometimes, they also require braids and g-braids), we consider that the BpB
classification for p > 2 is more interesting from an abstract classification point of
view (as in section 11.4) than for actually producing the simplest resolution path in
BpB (in the sense of the BpB rating). In any event, it is likely that, for such instances,
the readability requirement could hardly be met by any approach, unless the
meanings of “readable” or “simplest” are significantly extended beyond those we
have assigned them until now. It is our next goal to explore how this could be done.

12.3.3. The need to reassess our requirements for instances beyond gT&E(1)

It should first be recalled that, when it faces really new problems, any scientific
discipline seldom progresses by keeping untouched the current formulation of its
most general principles. Such principles can also be considered as requirements of
“ultimate” understandability, because everything else (relevant to this discipline)
should be explained by them. In parallel with a constant tendency to increased
rigour or formalisation, there is in science a tendency to generalisation (and
experience shows that, most of the time, these tendencies go hand in hand). Thus,
the principle of mass conservation had to be extended to a principe of mass-energy
conservation, Galilean symmetry to Poincaré symmetry and so on. Similarly, in
evolution theory, the natural selection paradigm had to be extended from Darwin’s
initial view of “best” fitness in some niche to a more opportunistic view of fitness.

Many people with little scientific practice believe that science has general a
priori Laws; but this is a very wrong view of science; from the outside, the “laws”
of a scientific discipline may seem to be a priori, perhaps because they generally
evolve only on long time scales, but they are indeed the result of its historical
development. They are the super structure built to present all of its results in a
unified framework.

There does not seem to be any general way of specifying how the general laws
of a scientific discipline should be defined or interpreted or modified when
necessary. However, they should be absolute and universal; although they are
subject to (rare) change, the very notion of a general law would be meaningless
without these two properties: they are absolute and universal in the current state of
development of the discipline. But they should first of all also satisfy a
complementary commonsense “principle of reasonableness” (or principle of
submission to reality). In a not so different context, this has best been expressed in
everyday terms by the King in “The Little Prince” (we added the italics):

– Sire… over what do you rule?
– Over everything, said the king, with magnificent simplicity.
– Over everything?

342 Pattern-Based Constraint Satisfaction and Logic Puzzles

The king made a gesture, which took in his planet, the other planets, and all the stars.
– Over all that? asked the little prince.
– Over all that, the king answered.
For his rule was not only absolute: it was also universal.
– And the stars obey you?
– Certainly they do, the king said. They obey instantly. I do not permit
insubordination.
Such power was a thing for the little prince to marvel at. […] he plucked up his
courage to ask the king a favor:
– I should like to see a sunset… Do me that kindness… Order the sun to set…
– If I ordered a general to fly from one flower to another like a butterfly, or to write a
tragic drama, or to change himself into a sea bird, and if the general did not carry out
the order that he had received, which one of us would be in the wrong?, the king
demanded. The general, or myself?
– You, said the little prince firmly.
– Exactly. One must require from each one the duty which each one can perform, the
king went on. Accepted authority rests first of all on reason. If you ordered your
people to go and throw themselves into the sea, they would rise up in revolution. I
have the right to require obedience because my orders are reasonable.

Although in a much less grandiose context, instances of a CSP beyond T&E(1)
or gT&E(1) challenge the universality of our initial views of simplicity and rating. It
is then time for a little more thinking about our requirements and our interpretations
of them. Instead of sticking too strictly to these views, let us analyse, based on the
concrete results of the previous sections, what could be considered as “reasonable”
alternative interpretations of the vague requirements of simplicity, understandability,
explanainability or readability for the resolution paths of such extreme instances.

12.3.4. The B*B and B*pB approaches

For instances in T&E(2), the present chapter has introduced two new alternative
ways of presenting a solution: compute either the bi-braid contradictions or the bi-
braid[p’] contradictions for all the p’ with 1≤p’≤p, and use them in addition to the
direct contradiction links to find either the shortest B*-braids or the shortest B*p-
braids – shortest with respect to the pseudo-lengths of these B*-braids or B*p-braids,
i.e. when these indirect bi-braid contradiction links are considered as being no more
complex than the direct ones.

Logically speaking, this amounts to considering as lemmas all the necessary bi-
braid contradictions (resp. bi-braid[p’] contradictions for any p’≤p) and not counting
their complexity in the proofs of the eliminations. From a technical point of view, as
these contradictions are not structural, they may have to be continuously updated,
with potentially new instances created every time a candidate is deleted during the
resolution process. But this is not an unknown situation in mathematics: they can be
considered as lemmas, intertwined with theorems (here the eliminations).

12. Patterns of proof and associated classifications 343

From a rating point of view, this approach consists of hiding part of the
complexity of each elimination step (possibly the main part, as p is taken larger and
larger). It does not allow to define ratings compatible with the previously defined
ones, because it reduces to the same complexity (zero) all the inner bi-braid or bi-
braid[p’] pairwise contradictions. It is equivalent to allowing a hidden level of T&E
(possibly restricted by p), namely bi-T&E.

In the examples in the next two subsections, especially the first, if one considers
without caution the resolution paths thus obtained, these instances may seem to be
easy or relatively easy; but this kind of presentation obviously hides the main part of
complexity.

One possibility for less cheating with complexity is to use these quasi resolution
paths only as guides to a complete solution and to justify each of the B*-braids or
B*p-braids they contain by the precise bi-braids on which it relies: once Z1 and Z2
are given and it is known that they are bi-braid incompatible (e.g. because we have
first found it by applying the fast bi-T&E procedure), it is not very difficult to find
the shortest bi-braid that can actually prove this in the current resolution state.

If eliminations are considered as theorems and bi-braid contradictions as
lemmas, this approach provides the shortest theorems, at the cost of lemmas of
uncontrolled complexity or of complexity bounded by p: even if, afterwards, we find
the shortest bi-braid contradictions for each (Z1, Z2) pair used in the path, there is no
reason why the B*-braids or B*p’-braids in the path would globally use the shortest
possible inner bi-braids; on the contrary, complexity evacuated from the B*-braids
has to be compensated by complexity in the inner bi-braids.

What the above two approaches suggest, together with the two (BB and BpB) of
chapter 11, is that, for such T&E(2) instances, our initial requirement of simplicity
cannot be understood in the simple terms of a unique rating or classification system.
This raises more difficult questions that are relevant to automatic theorem proving in
general: what does one really want in terms of readability or understandability of the
proofs, e.g. what type of global pattern of proof does one allow these proofs to
respect? Here, B*-braids or B*p-braids and the corresponding whip versions, can be
considered as general patterns of proof, the inner bi-whips and/or bi-braids being
there to fill in the details. We shall soon see that there are many alternative
possibilities, but let us first illustrate these two B*B and B*pB approaches.

12.3.5. Two examples of the B*B approcah

For instances in T&E(2), possibly after applying more elementary rules (such as
braids or g-braids), one can look for a solution with B*-braids of shortest pseudo-
lengths, based on all the possible inner bi-braid contradictions (with no a priori limit
on their lengths). If one is not interested in the exact bi-braids used (in the “details”

344 Pattern-Based Constraint Satisfaction and Logic Puzzles

of the proof), one can even start by computing the bi-braid contradictions via the
much faster bi-T&E procedure.

Whether the bi-braids are continuously updated or updated when needed is an
option that cannot change the final result; if they are updated at least when no more
B*-braid[1] is available, theorem 12.4 guarantees that a solution in terms of forcing
bi-braids will be found. However, if they are not updated at all, a B*-braid solution
may not be found: for instance, it will not for the first puzzle in Eleven’s collection.

12.3.5.1 EasterMonster

Consider first the famous EasterMonster puzzle (see Figure 13.1 in the next
chapter). EasterMonster is in B6B, but it has a very specific pattern allowing a series
of thirteen eliminations, after which it is in B2B – see definition and discussion of
this pattern (a “belt of crosses”) in chapter 13.

*****	 	 SudoRules	 16.2	 	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B*B	 	 	 *****	
21	 givens,	 239	 candidates,	 1546	 csp-‐links	 and	 1546	 links.	 Initial	 density	 =	 1.36	
belt[4]	 made	 of	 crosses:	
	 	 	 	 	 cross	 in	 block	 b1	 with	 center	 r2c2	
	 	 	 	 	 	 	 	 	 	 horizontal	 outer	 candidates:	 3	 8;	 vertical	 outer	 candidates:	 4	 8;	 inner	 candidates:	 2	 7	
	 	 	 	 	 cross	 in	 block	 b3	 with	 center	 r2c8	
	 	 	 	 	 	 	 	 	 	 horizontal	 outer	 candidates:	 3	 8;	 vertical	 outer	 candidates:	 3	 9;	 inner	 candidates:	 1	 6	
	 	 	 	 	 cross	 in	 block	 b9	 with	 center	 r8c8	
	 	 	 	 	 	 	 	 	 	 horizontal	 outer	 candidates:	 4	 5;	 vertical	 outer	 candidates:	 3	 9;	 inner	 candidates:	 2	 7	
	 	 	 	 	 cross	 in	 block	 b7	 with	 center	 r8c2	
	 	 	 	 	 	 	 	 	 	 horizontal	 outer	 candidates:	 4	 5;	 vertical	 outer	 candidates:	 4	 8;	 	 inner	 candidates:	 1	 6	
	 ==>	 	 	
	 	 	 	 	 eliminations	 in	 rows:	 r2c5	 ≠	 3,	 r2c5	 ≠	 8,	 r2c6	 ≠	 8,	 r8c4	 ≠	 5,	 r8c5	 ≠	 4	
	 	 	 	 	 eliminations	 in	 columns:	 r5c2	 ≠	 4,	 r5c2	 ≠	 8,	 r5c8	 ≠	 3,	 r5c8	 ≠	 9	
	 	 	 	 	 eliminations	 in	 blocks:	 r1c3	 ≠	 7,	 r3c1	 ≠	 2,	 r7c3	 ≠	 1,	 r9c1	 ≠	 6	

After these eliminations, there is no available g-braid but the last part of theorem
12.4 guarantees that there is a solution with B*-braids[1] (or forcing bi-braids),
using inner bi-braids of unrestricted length. At this point, we computed the set of
6,166 direct + bi-braid contradictions (via the bi-T&E procedure, using the “bi-braid
vs bi-T&E” theorem, which is enough when we do not want to take the lengths of
the inner bi-braids into account); this set does not even need to be updated before
the solution is obtained by a relatively short sequence of B*-braids[1]. Remember
however what we said above: giving this resolution path without providing any
details about the inner bi-braids of unrestricted length is obviously cheating with
complexity.

b*-‐braid[1]:	 r6c3{n9	 .}	 ==>	 r9c1	 ≠	 4	
b*-‐braid[1]:	 b7n4{r9c2	 .}	 ==>	 r8c9	 ≠	 5	
b*-‐braid[1]:	 b7n8{r9c2	 .}	 ==>	 r8c9	 ≠	 4	
singles	 ==>	 r8c9	 =	 7,	 r4c8	 =	 7	

12. Patterns of proof and associated classifications 345

b*-‐braid[1]:	 r9c8{n9	 .}	 ==>	 r8c7	 ≠	 2	
hidden-‐single-‐in-‐a-‐block	 ==>	 r7c8	 =	 2	
b*-‐braid[1]:	 r8c7{n5	 .}	 ==>	 r8c5	 ≠	 6	
b*-‐braid[1]:	 r9c1{n9	 .}	 ==>	 r8c4	 ≠	 6	
hidden-‐single-‐in-‐a-‐row	 ==>	 r8c1	 =	 6	
b*-‐braid[1]:	 r8c4{n2	 .}	 ==>	 r9c6	 ≠	 8	
b*-‐braid[1]:	 r8c4{n2	 .}	 ==>	 r9c6	 ≠	 5	
b*-‐braid[1]:	 r8c4{n2	 .}	 ==>	 r9c4	 ≠	 5	
b*-‐braid[1]:	 r8c4{n2	 .}	 ==>	 r9c4	 ≠	 3	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r8c4	 ≠	 1	
singles	 ==>	 r8c4	 =	 2,	 r8c5	 =	 1,	 r7c2	 =	 1	
b*-‐braid[1]:	 r5c4{n6	 .}	 ==>	 r9c6	 ≠	 7	
hidden-‐single-‐in-‐a-‐block	 ==>	 r9c4	 =	 7	
b*-‐braid[1]:	 r9c6{n6	 .}	 ==>	 r9c7	 ≠	 4	
b*-‐braid[1]:	 b8n6{r9c6	 .}	 ==>	 r9c5	 ≠	 8	
b*-‐braid[1]:	 b8n6{r9c6	 .}	 ==>	 r9c5	 ≠	 4	
b*-‐braid[1]:	 c4n1{r5	 .}	 ==>	 r8c3	 ≠	 4	
singles	 ==>	 r8c3	 =	 5,	 r8c7	 =	 4,	 r3c9	 =	 4,	 r3c1	 =	 5,	 r9c7	 =	 5,	 r5c9	 =	 5	
b*-‐braid[1]:	 r1c7{n9	 .}	 ==>	 r9c2	 ≠	 8	
singles	 to	 the	 end	

12.3.5.2 Eleven#3 (a puzzle in B7B)

In order to show that the B*B approach does not exclude the hardest instances
(hardest according to the B?B classification), consider now the first of Eleven’s
puzzles in B7B (#3 in his list, Figure 12.3), one of the three hardest known ones in
this classification, as mentioned in section 11.4.2.

 3 8
 5 2 1

7
 5 8 6
 9 1 2
8 3
 6 9 5
 4 7
 1 6 2

Figure 12.3. Puzzle Eleven#3

The same technique as for EasterMonster works, although it now requires B*-
braids of greater pseudo-lengths, up to six, if we never update the initial bi-braid
contradictions. There are 4,518 initial direct links plus bi-braid contradictions. In the
forthcoming resolution path, only B*-braids are active. The following can be
considered as the general lines of a proof of the solution based on only bi-braid

346 Pattern-Based Constraint Satisfaction and Logic Puzzles

contradictions available in the initial resolution state (and not giving the details is
again cheating with complexity).

*****	 	 SudoRules	 16.2	 	 	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B*B	 	 	 *****	
22	 givens,	 238	 candidates,	 1609	 csp-‐links	 and	 1609	 links.	 Initial	 density	 =	 1.43	
b*-‐braid[1]:	 r9n8{c4	 .}	 ==>	 r6c8	 ≠	 4	
b*-‐braid[1]:	 r5n4{c9	 .}	 ==>	 r6c3	 ≠	 7	
b*-‐braid[1]:	 r9n8{c4	 .}	 ==>	 r4c8	 ≠	 4	
b*-‐braid[1]:	 r9n9{c8	 .}	 ==>	 r4c8	 ≠	 3	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r3c6	 ≠	 6	
b*-‐braid[1]:	 r2c8{n9	 .}	 ==>	 r3c6	 ≠	 5	
b*-‐braid[1]:	 b5n7{r6c5	 .}	 ==>	 r3c6	 ≠	 4	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r3c5	 ≠	 9	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r2c5	 ≠	 9	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r1c6	 ≠	 7	
b*-‐braid[1]:	 b5n7{r6c5	 .}	 ==>	 r1c6	 ≠	 4	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r1c5	 ≠	 9	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r1c5	 ≠	 7	
b*-‐braid[1]:	 b9n9{r9c8	 .}	 ==>	 r1c4	 ≠	 7	
b*-‐braid[2]:	 c6n4{r2	 r5}	 –	 b8n7{r9c4	 .}	 ==>	 r3c3	 ≠	 6	
b*-‐braid[2]:	 b1n9{r1c1	 r2c1}	 –	 c3n7{r9	 .}	 ==>	 r5c7	 ≠	 5	
b*-‐braid[2]:	 r7c3{n1	 n7}	 –	 r9n7{c3	 .}	 ==>	 r8c1	 ≠	 3	
b*-‐braid[3]:	 c1n9{r1	 r8}	 –	 r4c8{n9	 n2}	 –	 r6c8{n2	 .}	 ==>	 r3c8	 ≠	 4	
b*-‐braid[4]:	 r2n4{c4	 c1}	 –	 c1n9{r2	 r8}	 –	 r4c8{n9	 n2}	 –	 r6c8{n2	 .}	 ==>	 r3c8	 ≠	 3	
b*-‐braid[4]:	 c3n1{r3	 r4}	 –	 c2n1{r4	 r1}	 –	 c2n4{r1	 r6}	 –	 b4n7{r6c2	 .}	 ==>	 r4c2	 ≠	 2	
b*-‐braid[4]:	 c2n3{r4	 r8}	 –	 b7n8{r7c3	 r9c3}	 –	 r8n1{c1	 c7}	 –	 r6c7{n1	 .}	 ==>	 r4c2	 ≠	 1	
b*-‐braid[4]:	 r5c3{n5	 n6}	 –	 r2c6{n4	 n9}	 –	 r1c6{n9	 n1}	 –	 r3c6{n1	 .}	 ==>	 r2c4	 ≠	 6	
b*-‐braid[5]:	 r2c8{n3	 n6}	 –	 r2c1{n6	 n4}	 –	 c8n4{r2	 r5}	 –	 r7n3{c5	 c1}	 –	 r4c1{n3	 .}	 ==>	 r5c1	 ≠	 5	
b*-‐braid[1]:	 c1n5{r9	 .}	 ==>	 r9c3	 ≠	 5	
b*-‐braid[3]:	 b1n6{r2c1	 r1c1}	 –	 r5c1{n6	 n3}	 –	 b6n3{r5c9	 .}	 ==>	 r6c7	 ≠	 5	
b*-‐braid[1]:	 b6n5{r6c8	 .}	 ==>	 r3c8	 ≠	 5	
b*-‐braid[4]:	 c8n5{r5	 r6}	 –	 r5c1{n3	 n6}	 –	 b1n6{r1c1	 r2c3}	 –	 c6n4{r9	 .}	 ==>	 r5c8	 ≠	 4	
b*-‐braid[4]:	 r6n6{c4	 c3}	 –	 r5n5{c8	 c3}	 –	 c8n4{r2	 r9}	 –	 b8n4{r9c6	 .}	 ==>	 r2c6	 ≠	 7	
b*-‐braid[4]:	 r3c8{n9	 n6}	 –	 r2c8{n6	 n4}	 –	 r1n9{c1	 c6}	 –	 r2c6{n9	 .}	 ==>	 r3c7	 ≠	 9	
b*-‐braid[4]:	 r2n7{c5	 c4}	 –	 r2n4{c4	 c1}	 –	 r5n4{c1	 c7}	 –	 c5n3{r8	 .}	 ==>	 r7c3	 ≠	 8	
b*-‐braid[5]:	 r2n4{c4	 c1}	 –	 r5c1{n4	 n3}	 –	 r4c1{n2	 n1}	 –	 b1n9{r3c3	 r2c3}	 –	 r2c6{n9	 .}	 ==>	 r2c5	 ≠	 6	
b*-‐braid[5]:	 r3n9{c6	 c3}	 –	 r9c3{n9	 n7}	 –	 b4n1{r4c1	 r4c3}	 –	 r7c3{n1	 n2}	 –	 c1n2{r8	 .}	 ==>	 r1c6	 ≠	 2	
b*-‐braid[5]:	 c4n8{r2	 r3}	 –	 c3n6{r2	 r5}	 –	 r5c1{n6	 n3}	 –	 c2n3{r4	 r8}	 –	 b8n7{r9c4	 .}	 ==>	 r5c9	 ≠	 4	
b*-‐braid[5]:	 r5c1{n3	 n6}	 –	 b1n6{r1c1	 r2c3}	 –	 r2c6{n4	 n9}	 –	 r2c8{n9	 n3}	 –	 r5c8{n3	 .}	 ==>	 r6c3	 ≠	 1	
b*-‐braid[5]:	 r5c1{n3	 n6}	 –	 b1n6{r1c1	 r2c3}	 –	 r2c6{n4	 n9}	 –	 r2c8{n9	 n3}	 –	 r5c8{n3	 .}	 ==>	 r6c3	 ≠	 2	
b*-‐braid[6]:	 c1n6{r1	 r2}	 –	 c1n9{r2	 r8}	 –	 r7c5{n4	 n8}	 –	 b7n8{r8c2	 r9c2}	 –	 r9n3{c2	 c4}	 –	
r8n3{c5	 .}	 ==>	 r2c8	 ≠	 4	
b*-‐braid[1]:	 c8n4{r9	 .}	 ==>	 r7c7	 ≠	 4	
b*-‐braid[5]:	 r7n4{c5	 c8}	 –	 r6n1{c7	 c8}	 –	 c3n2{r4	 r7}	 –	 c6n2{r7	 r8}	 –	 c6n6{r8	 .}	 ==>	 r1c6	 ≠	 5	
b*-‐braid[1]:	 c6n5{r9	 .}	 ==>	 r8c5	 ≠	 5	
b*-‐braid[6]:	 b9n3{r7c7	 r9c8}	 –	 b7n8{r8c2	 r9c2}	 –	 r5n7{c3	 c6}	 –	 r5n4{c6	 c1}	 –	 r2n4{c1	 c6}	 –	
b8n4{r9c6	 .}	 ==>	 r8c1	 ≠	 2	

12. Patterns of proof and associated classifications 347

b*-‐braid[6]:	 c3n6{r2	 r6}	 –	 c8n5{r5	 r6}	 –	 r7n4{c8	 c5}	 –	 r7n3{c5	 c1}	 –	 c1n2{r7	 r1}	 –	 r8c2{n1	 .}	
==>	 r2c6	 ≠	 4	

From this point on, the solution can be found by similar B*-braids of maximum
pseudo-length 3. But it can also be found by g-braids or even by g-whips of
maximum length 8; in the context of this chapter, this can be considered as easy and
we shall skip the end of the path.

12.3.6. An example of the B*pB approach, p fixed

Instead of looking for a solution with B*-braids with the shortest pseudo-lengths,
with no restriction on the lengths of the inner bi-braids, as in the previous examples,
one can restrict these to some length p (possibly after choosing the smallest possible
p) and look for a solution with B*p-braids with the shortest pseudo-lengths.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 n1
 n2 n3
n4 n5 n6

 n8

 n3
n4 n6
n7 n8

 n2
n4 n5 n6
 n9

 n2 n3
n4 n5
 n9

 n3
 n5 n6
 n9

 n2

n7 n8 n9

 n3
n4
 n8 n9

 n2 n3
n4
 n9

r1

r2
 n2 n3
n4 n5
n7

 n2 n3
n4 n5

 n3
n4
n7

n1 n8
 n3

 n5
 n9

 n2

n7 n9

 n3
n4
 n9

n6 r2

r3
 n2 n3
n4 n6

 n8

 n2 n3
n4 n6

 n8
n9

 n2
n4 n6

 n2 n3
n4

n7

n1 n2

 n8
n5

n1 n2 n3
n4

r3

r4
 n2

n4
n7

n1 n2
n4
 n9

n1
n4
n7

 n2
 n5

n7 n9
n6

n1
 n5

 n9
n3

n1
n4
 n9

n8 r4

r5
 n2 n3
 n6

 n8

n1 n2 n3
 n6
 n8 n9

n5
 n2

 n8 n9

n1 n2

 n9
n4

n1 n2
 n6
 n9

n7
n1 n2

 n9

r5

r6
 n2

n4 n6
n7 n8

n1 n2
n4 n6
 n8 n9

n1
n4 n6
n7 n8

n3
n1 n2

n7 n9

n1

 n8 n9
n5

n1
n4 n6
 n9

n1 n2
n4
 n9

r6

r7
 n3
n4 n5 n6

 n8

n1 n3
n4 n5 n6

 n8

n1 n3
n4 n6

 n8

n4 n6
 n8 n9

n1 n3
n4
 n9

n2
n1
 n6
 n8 n9

n1 n3
 n6
 n8 n9

n7 r7

r8
 n3
 n6

 n8

n1 n3
 n6

 n8
n2

 n6
n7 n8 n9

n1 n3

n7 n9

n1 n3
 n6
 n8 n9

n4
n1 n3
 n6
 n8 n9

n5 r8

r9 n9 n7
n1 n3
n4 n6

 n8

n4 n5 n6

 n8

n1 n3
n4 n5

n1 n3
 n5 n6

 n8

n1
 n6

 n8
n2

n1 n3

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 12.4. Resolution state RS1 of puzzle (eleven #26370) in T&E(2)

The last puzzle (#26370) in Eleven’s collection, obtainable from Figure 12.4 by
deleting n5r6c7 as a given, provides an example of the B*pB approach for p = 2. It
can easily be checked that it is in T&E(B2) and therefore in B2B. We shall now

348 Pattern-Based Constraint Satisfaction and Logic Puzzles

prove that it is also in B*2B and even in W*2W, mainly for the sake of showing how
a solution based on B*2-braids or W*2-whips can look like.

*****	 	 SudoRules	 16.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W*2W	 *****	
22	 givens,	 245	 candidates,	 1708	 csp-‐links	 and	 1708	 links.	 Initial	 density	 =	 1.43	
hidden-‐single-‐in-‐a-‐column	 ==>	 r6c7	 =	 5	
whip[1]:	 r9n5{c6	 .}	 ==>	 r7c4	 ≠	 5,	 r7c5	 ≠	 5	

;;; resolution state RS1, displayed in Figure 12.4.

After these obvious steps, there is no whip or g-whip and we enter the realm of
bi-braids and B*2-braids (actually the simpler realm of bi-whips and W*2-whips).
There are now three W*2-whip eliminations; each of the last two is made possible
by the previous one (in the present case, the new bi-whips that may appear after
each of these steps play no role in the last two eliminations):

w*2-‐whip[8]:	 c3n8{r7	 r9}	 –	 r8n8{c1	 c8}	 –	 c6n8{r8	 r6}	 –	 r5n6{c1	 c7}	 –	 r9c7{n6	 n1}	 –
r5n1{c7	 c5}	 –	 r7c5{n1	 n3}	 –	 c3n3{r7	 .}	 ==>	 r7c4	 ≠	 8	
w*2-‐whip[4]:	 c3n3{r7	 r9}	 –	 c8n3{r1	 r8}	 –	 r7c4{n9	 n6}	 –	 c3n6{r7	 .}	 ==>	 r7c5	 ≠	 3	
w*2-‐whip[4]:	 c3n6{r7	 r9}	 –	 r8n6{c1	 c8}	 –	 r7c5{n9	 n1}	 –	 c8n1{r7	 .}	 ==>	 r7c4	 ≠	 6	

After this point, the resolution path is entirely in B1B = gB and it can even be
expressed by short g-whips of maximum length 5; as it has nothing noticeable and it
can be considered as easy in the context of this chapter, we skip it.

The above W*2-whips can be considered as defining the (in the present case,
very simple) general pattern of proof or the main lines of a forthcoming full proof.
Let us now fill in the details of this proof. For this purpose, for each of the CSP
variables involved, we first mark its right-linking candidate with an integer between
brackets, its standard z- and t- candidates with our usual * and # symbols, and its
remaining candidates with the capital letters associated with the following bi-whips,
if they must be justified either as left-linking candidates or as additional ones that
are bi-whip incompatible with the target or with a previous right-linking one:

w*2-‐whip[8]:	 c3n8{r7	 r9(1)	 r1M	 r6A}	 –	 r8n8{c1	 c8(2)	 c2#1	 c4*	 c6*}	 –	 c6n8{r8	 r6(3)	 r9*}	 –	
r5n6{c1N	 c7(4)	 c2P	 }	 –	 r9c7{n6	 n1(5)	 n8#1}	 –	 r5n1{c7	 c5(6)	 c2Q	 c9B}	 –	 r7c5{n1	 n3(7)	 n4C	 n9D}	 –	
c3n3{r7	 .	 r1R	 r2S	 r9}	 ==>	 r7c4	 ≠	 8	
w*2-‐whip[4]:	 	 c3n3{r7	 r9(1)	 r1R	 r2S}	 –	 c8n3{r1E	 r8(2)	 r2F	 r7*}	 –	 r7c4{n9G	 n6(3)	 n4H}	 –	
c3n6{r7	 .	 r1J	 r6T	 r9}	 ==>	 r7c5	 ≠	 3	 (made	 possible	 by	 the	 elimination	 of	 n8r7c4)	
w*2-‐whip[4]:	 c3n6{r7	 r9(1)	 r1J	 r6T}	 –	 r8n6{c1	 c8(2)	 c2#1	 c4*	 c6*}	 –	 r7c5{n9K	 n4L	 }	 –	
c8n1{r7	 .	 	 r4U	 r6V	 r8#2}	 ==>	 r7c4	 ≠	 6	 (made	 possible	 by	 the	 elimination	 of	 n3r7c5)	

The following twenty bi-whips, necessary to justify these three W*2-whips, are
only a small subset of the 677 bi-whips[1] and 300 bi-whips[2] available in RS1 – to
be compared also with the 1,374 direct links between the candidates remaining in
RS1. We mark them with the letters corresponding to those used for indexing the
W*2-whips. Taken individually, none of them is very complex, but their number

12. Patterns of proof and associated classifications 349

shows that the solution is far from being as simple as would falsely be suggested if
we gave no more detail than the above three W*2-whips in bold.

A:	 bi-‐whip[1]:	 c6n8{r9	 .}	 ==>	 bi-‐whip-‐contrad(n8r6c3	 n8r7c4)	
B:	 bi-‐whip[1]:	 c8n1{r8	 .}	 ==>	 bi-‐whip-‐contrad(n1r5c9	 n1r9c7)	
C:	 bi-‐whip[1]:	 r9n4{c5	 .}	 ==>	 bi-‐whip-‐contrad(n4r7c5	 n8r9c3)	
D:	 bi-‐whip[1]:	 b9n9{r8c8	 .}	 ==>	 bi-‐whip-‐contrad(n8r8c8	 n9r7c5)	
E:	 bi-‐whip[1]:	 b9n3{r9c9	 .}	 ==>	 bi-‐whip-‐contrad(n3r1c8	 n3r9c3)	
F:	 bi-‐whip[1]:	 b9n3{r9c9	 .}	 ==>	 bi-‐whip-‐contrad(n3r2c8	 n3r9c3)	
G:	 bi-‐whip[1]:	 b9n9{r8c8	 .}	 ==>	 bi-‐whip-‐contrad(n3r8c8	 n9r7c4)	
H:	 bi-‐whip[1]:	 r9n4{c5	 .}	 ==>	 bi-‐whip-‐contrad(n3r9c3	 n4r7c4)	
J:	 bi-‐whip[1]:	 c6n6{r9	 .}	 ==>	 bi-‐whip-‐contrad(n6r1c3	 n6r7c4)	
K:	 bi-‐whip[1]:	 b9n9{r8c8	 .}	 ==>	 bi-‐whip-‐contrad(n6r8c8	 n9r7c5)	
L:	 bi-‐whip[1]:	 r9n4{c5	 .}	 ==>	 bi-‐whip-‐contrad(n4r7c5	 n6r9c3)	
M:	 bi-‐whip[2]:	 b3n8{r1c7	 r3c7}	 –	 r9n8{c7	 .}	 ==>	 bi-‐whip-‐contrad(n8r1c3	 n8r7c4)	
N:	 bi-‐whip[2]:	 b4n3{r5c1	 r5c2}	 –	 r5n8{c2	 .}	 ==>	 bi-‐whip-‐contrad(n6r5c1	 n8r7c4)	
P:	 bi-‐whip[2]:	 b4n3{r5c2	 r5c1}	 –	 r5n8{c1	 .}	 ==>	 bi-‐whip-‐contrad(n6r5c2	 n8r7c4)	
Q:	 bi-‐whip[2]:	 b4n3{r5c2	 r5c1}	 –	 b4n8{r5c1	 .}	 ==>	 bi-‐whip-‐contrad(n1r5c2	 n8r6c6)	
R:	 bi-‐whip[2]:	 r3n3{c1	 c9}	 –	 r9n3{c9	 .}	 ==>	 bi-‐whip-‐contrad(n3r1c3	 n3r7c5)	
S:	 bi-‐whip[2]:	 r3n3{c1	 c9}	 –	 r9n3{c9	 .}	 ==>	 bi-‐whip-‐contrad(n3r2c3	 n3r7c5)	
T:	 bi-‐whip[2]:	 r5n6{c1	 c7}	 –	 r9n6{c7	 .}	 ==>	 bi-‐whip-‐contrad(n6r6c3	 n6r7c4)	
U:	 bi-‐whip[2]:	 r5n1{c5	 c2}	 –	 r8n1{c2	 .}	 ==>	 bi-‐whip-‐contrad(n1r4c8	 n1r7c5)	
V:	 bi-‐whip[2]:	 r5n1{c5	 c2}	 –	 r8n1{c2	 .}	 ==>	 bi-‐whip-‐contrad(n1r6c8	 n1r7c5)	

Exercise: re-write the above W*2-whips as W2-braids and compute their lengths
as W2-braids (notice that these may not be the smallest possible W2-braids).

In this example – relatively simple for a puzzle in T&E(2) –, three W*2-whip
eliminations are enough to bring the puzzle to a much easier situation (in gW). But,
this was the last puzzle in Eleven’s list [one of the easiest in T&E(2) and not in
gT&E(1)] and, for harder puzzles, many more eliminations based on much longer
bi-braid contradictions will generally be necessary. Moreover, there is no guarantee
that a puzzle in BpB has a solution in B*pB.

12.3.7. Theorems and lemmas of equal complexity: the [B*B] classification

There appears to be a compromise between the above two options:
– minimising the complexity of the theorems (eliminations), at the cost of

lemmas of unrestricted complexity, as in the B*B approach illustrated in section
12.3.5,

– minimising the complexity of the lemmas (bi-braid contradictions) they rely
on, at the cost of theorems of unrestricted complexity, as in the B*?B approach
illustrated in section 12.3.6 (in which the smallest p such that there is a solution in
B*pB is first looked for).

350 Pattern-Based Constraint Satisfaction and Logic Puzzles

Indeed, as each B*pBm has the confluence property, one can vary p and m
arbitrarily and many compromises are possible. In particular, one can require that
theorems and lemmas have the same maximum complexity. This amounts to setting
p = m. Considering then the increasing sequence (B*pBp, p≥0) of resolution theories,
one can define the [B*B] rating in the usual way.

Definition: given an instance Q of a CSP, its [B*B] rating is the smallest p such
that Q can be solved in B*pBp, i.e. by B*-braids of maximum pseudo-length p
relying on inner bi-braids of maximum length p. Having an infinite [B*B] rating
means that Q cannot be solved by B*-braids, i.e. that it is not in T&E(2).

As this rating is mainly intended for instances in T&E(2) beyond gT&E
(although it could in theory apply to any instance), we prefer considering it as a sub-
classification of instances in T&E(2).

Such a compromise may be justified in logical puzzles or from an abstract
logical point of view. However, if we tried to extend it to automated theorem
proving in general, it would be, from a mathematical point of view, at variance with
the usual implicit and non formalisable requirement that lemmas should be
“meaningful”; whether lemmas are harder to prove than theorems is irrelevant. This
leaves aside the question of deciding in general what should be called a lemma and
what a theorem: the difference cannot be formalised in logic; it is based on meaning,
on the possibility of a non-contextual (or, at least, not too much contextual)
formulation and on more or less arbitrary choices; however, in the context of this
chapter, considering binary contradictions as lemmas and eliminations as theorems
and considering both as “meaningful” sounds quite natural, so that this general
question can be skipped.

Moreover, although accepting theorems and lemmas of equal complexity may
seem to be a rational choice, it does not take into account considerations about the
complexity of choosing which lemmas to use. If there are n candidates, then there
are n(n-1)/2 candidate pairs. As a result, the number of potential bi-braid
contradictions is much larger than the number of potential braids of same length. So
that it may seem better to define a rating based on the (B*pBp(p-1)/2, p≥0) or even a
(B*pBf(p), p≥0) sequence of resolution theories, where f is a function increasing
(much) faster than p. As the possibilities for such f functions are almost unlimited,
and there does not seem to be any really good choice, we shall not dwell on them.

12.3.8. Different patterns of proof involved in the above approaches

Perhaps the simplest way of analysing the differences between the above
approaches consists of exhibiting their respective global patterns of proof. Recalling
the remarks in section 5.7.7 about the no OR-branching in any of the patterns
introduced in this book, they can be considered to refer to the local patterns of proof

12. Patterns of proof and associated classifications 351

used in each elimination step; we are now dealing with the pattern of the whole
proof. In the following patterns of proof, we use a standard notation for patterns in
general, where the vertical bar “⏐” means “or”, “*” means zero or more
occurrences, and (…)p = 1, … means a sequence indexed by values of p increasing
from 1 to infinity (i.e. to an a priori unbounded finite value).

For easier comparison with the harder theories under discussion here, let us first
mention the global pattern of a proof in the “elementary” Bp or gBp (including B =
B∞ or gB = gB∞) resolution theories:

[Ep⏐A]*, with:
 Ep = candidate elimination in Bp or gBp
 A = assertion by Single

We can now write the patterns of proof underlying the various approaches
analysed in this chapter:

– for the BpB (including BB = B∞B) approach, p fixed:

[Ep⏐A]*, with:
 Ep = candidate elimination in BpB
 A = assertion by Single

– for the B*pB and B*B (= B*∞B) approach, p fixed:

[[Ep⏐A]*Lp*]*, with:
 Ep = candidate elimination in B*pB
 A = assertion by Single
 Lp = assertion of a bi-braid contradiction in biBp

– for the [B*B]? approach:

 ([Ep⏐A]*Lp*)p = 1, …, with:
 Ep = candidate elimination in [B*B]p
 A = assertion by Single
 Lp = assertion of a bi-braid contradiction in biBp

In the BpB case (p = 2, … ∞), this apparently simple description must however
be completed by recalling that each proof of a candidate-elimination theorem in BpB
relies on a much more complex structure than in the other cases: as Bp-braids
include inner braids that may depend on the target and on previous right-linking
candidates, these should be considered as “contextual lemmas”, i.e. lemmas whose
scopes are restricted to very particular situations. In all the other cases, each theorem
or lemma is valid in the current resolution state with no further restriction. Ep, a
candidate elimination in BpB, with its contextual lemmas (= inner braids) made

352 Pattern-Based Constraint Satisfaction and Logic Puzzles

explicit, obeys the following pattern, in which “⏐⏐” means that both actions should
be done in parallel and freely intertwined. As before, this should be considered as a
general pattern of proof, not as a procedure.

 start proof (find a partial-braid[1])
 Loop until a full B-braid is found
 continue main proof (extend the current partial B-braid) ⏐⏐
 find a contextual elimination (inner braid)
 end loop

12.4. d-whips, d-braids, W*d-whips and B*d-braids

Most of what has been done in the previous sections can be further generalised
so as to take into account the indirect contradictions between more than two
candidates that inevitably appear for instances in T&E(3) and beyond. As the
various possible requirements on solutions and on how to mix d-contradictions with
various values of d are still more numerous but they also are straightforward
extensions of the above, we shall give precise definitions but we shall leave the
theorems and their proofs as exercises.

Indeed, more than all the technical possibilities suggested below, what is
remarkable here, as mentioned in the Introduction, is that the existence of instances
requiring T&E(d) with d ≥ 3, together with the equivalence of T&E(d) with Bd-braid
contradictions, shows that, in order to get a constructive solution, it is sometimes
necessary to consider derived constraints among more than two labels, even though
the given CSP was initially supposed to have only binary constraints. The gap
between the what and the how is still more impressive than suggested by the unary
and binary derived constraints we had to introduce with resolution rules for whips,
braids, W-whips, B-braids, W*-whips and B*-braids.

12.4.1. d-whips and d-braids

Definition: given d ≥ 1 and given d different candidates Z1, Z2, …, Zd in a
resolution state RS, with no two of them linked, for any n ≥ 1, a d-whip[n] built on
Z1, Z2, …, Zd is a structured list ({Z1, Z2, …, Zd}, (V1, L1, R1), …, (Vn-1, Ln-1, Rn-1),
(Vn, Ln)), such that:

– for any 1≤k≤n, Vk is a CSP variable;
– Z1, Z2, …, Zd, all the Lk’s and all the Rk’s are candidates in RS;
– in the sequence (L1, R1, …, Ln-1, Rn-1, Ln), any two consecutive elements are

different;
– none of Z1, Z2, … and Zd belongs to {L1, R1, L2, R2, …, Ln};
– L1 is linked to Z1, Z2, … or Zd;

12. Patterns of proof and associated classifications 353

– right-to-left continuity: for any 1<k≤n, Lk is linked to Rk-1;
– strong left-to-right continuity: for any 1≤k<n, Lk and Rk are candidates for Vk;
– Ln is a candidate for Vn;
– at least one of Z1, Z2, … and Zd is not a label for Vn;
– for any 1≤k<n: Rk is the only candidate for Vk compatible with Z1, Z2, …, Zd

and all the previous Ri (i<k);
– Vn has no candidate compatible with Z1, Z2, …, Zd and all the previous Ri

(i<n); (but Vn has more than one candidate).

Remark: 2-whips[n] are the same thing as the bi-whips[n] defined in section
11.4.1.

Definition: given d≥1 and d candidates Z1, Z2, …, Zd in a resolution state RS,
with no two of them linked, for any n≥1, a d-braid[n] built on Z1, Z2, …, Zd is a
structured list as above, with the right-to-left continuity condition replaced by:

– for any 1<k≤n, Lk is linked to Z1, Z2, …, or Zd or a previous Ri.

Definitions: given a resolution state RS, d different candidates Z1, Z2, … and Zd
in RS, such that no two of them are linked, are said d-whip[n] (respectively d-
braid[n]) incompatible or contradictory in RS if there exists in RS some d-whip[n]
(resp. some d-braid[n]) built on Z1, Z2, … and Zd. Z1, Z2, … and Zd are said d-whip
(respectively d-braid) incompatible or contradictory in RS if there is some n such
that, in RS, they are d-whip[n] (resp. d-braid[n]) incompatible.

Now defining the nandd(Z1, Z2, …, Zd) predicate as
nandd(Z1, Z2, …, Zd) ≡ ¬[candidate(Z1) ∧ candidate (Z2) ∧ … ∧ candidate(Zd)],
it is obvious that all the d-whip[n] and d-braid[n] contradiction relations between
d candidates are constructive restricted forms of this pure logic nandd predicate.
Moreover, all these relations are symmetric in all their arguments.

Exercise: define d-braid[m] logical theories and prove their stability for
confluence; define a procedure d-T&E(Z1, Z2, …, Zd) and prove its equivalence with
the existence of a d-braid of unrestricted length built on Z1, Z2, …, Zd.

12.4.2. W*d-whips and B*d-braids

These d-whips and d-braids can now be used in a way very close to the way bi-
whips and bi-braids have been used in section 12.2.

Definition: given a resolution state RS of any CSP and a candidate Z in RS, a
B*d-1-braid based on Z is a structured list (Z, (V1, L1, R1), …, (Vm-1, Lm-1, Rm-1),
(Vm, Lm)) that satisfies the following conditions:

– for any 1≤k≤m, Vk is a CSP variable;

354 Pattern-Based Constraint Satisfaction and Logic Puzzles

– Z, all the Lk’s and all the Rk’s are candidates;
– in the sequence of labels (L1, R1, …, Lm-1, Rm-1, Lm), any two consecutive

elements are different;
– Z does not belong to {L1, R1, L2, R2, …. Lm};
– L1 is linked to Z;
– for any 1<k≤m, there is some d’, 0≤d’<d, such that Lk is d’-braid incompatible

in RS with a subset of d’ elements taken from {Z} ∪ {Rj, j<k};
– strong left-to-right continuity: for any 1≤k<m, Lk and Rk are candidates for Vk;
– Z is not a label for Vm;
– for any 1≤k<m: Rk is the only candidate for Vk that is not d’-braid

incompatible in RS with a subset of d’ elements taken from {Z} ∪ {Rj, j<k} for
some d’, 0≤d’<d;

– Vm has no candidate that is not d’-braid incompatible in RS with a subset of d’
elements taken from {Z} ∪ {Rj, j<k} for some d’, 0≤d’<d; (but Vm has more than
one candidate – the usual non-degeneracy condition).

We can now define the following increasing sequence of resolution theories:
– B*0 = BRT(CSP);
– B*1 = B∞ = ∪n≥0 Bn, the now familiar braids resolution theory; …
– B*d = Bd-1 ∪ rules for B*d-1-braids.

Exercise: prove that all these theories have the confluence property, define the
appropriate T&E*d procedure and prove an equivalence theorem.

Notice that the passage from B*d-1 to B*d could be replaced by the addition of a
single formula with precondition the existence of a d-braid and with conclusion the
assertion of a nandd about d candidates (this is not a standard resolution rule, but it is
still a logic formula with no disjunction):

B*d = B*d-1 ∪ ∀l1∀l2…∀ld[Bi-T&E-contradd(l1, l2, …, ld) ⇒ nandd(l1, l2, …, ld)]
such nandd would then be used inside B*d by the standard laws of constructive logic.

Notice also that, if the above definitions took care of the lengths of the various
d’-braids used in the d’-braid contradiction relations, the total length of a B*d-braid
could be defined; and a “universal” rating B*∞B could also be defined. However, the
computational complexity of B*d-braids may make them computationally
intractable. Alternatively, for an instance in T&E(d), one could define, upwards
from deeper to shallower layers, a sequence (pd, …, p2, p1) of the minimal sizes
necessary for each of the sets of d’-braid contradictions, assuming at each level all
the deeper Bi-T&E-contradd’’ contradictions obtainable with the previous maximal
allowed pd’’ lengths.

Part Four

MATTERS OF MODELLING

13. Application-specific rules (the sk-loop in Sudoku)

As a counterpoint to the first chapter about modelling a Constraint Satisfaction
Problem, the present one will tackle the problem of modelling resolution rules. Until
now, we have been little concerned with modelling questions relative to rules
(exceptions are the discussion about how to define g-labels or to express the non-
degeneracy conditions of Subsets): all our rules were progressively derived from the
two most basic types of rules for the Sudoku CSP, namely xy-chains (i.e. bivalue-
chains restricted to rc-space) and Subset rules. In the process, our guiding principles
have been theoretical: they rested on the analysis of how to transpose them to the
general CSP, how to prove them and how to generalise these proofs further and
further (of course, these are also modelling principles). In this respect, the approach
followed in this book is very close to that we first applied in HLS.

However, over the years, participants of Sudoku forums have kept following a
very different, example-based approach. Various types of rules have been proposed,
in application-specific forms and usually in very informal presentations. Here, we
shall examine a single example of such a tentative rule for the following purposes:

– we shall illustrate how putting a few examples together and saying they have
the same pattern is a good start for defining a new resolution rule for a given CSP
but it is very far from enough for doing this in a non-ambiguous way; at some point,
a theoretical analysis is needed; in other terms, the example-based and the theory-
based approaches are more complementary than opposite;

– we shall also show how new kinds of rules can be formalised, starting from
examples; this will raise the delicate question of boundary cases;

– finally, we shall show how our general B?B classification allows to measure
the impact of application-specific rules on hard instances.

It should be stressed that our purposes are only illustrative of what can be done
when a new rule is suspected to have been discovered; this chapter is in no case
intended as a review of the “exotic” patterns that may have appeared in forums.

We shall start from the famous EasterMonster Sudoku puzzle (created by jpf). It
has long been considered as the hardest puzzle and the first pattern-based
elimination of candidates for it was obtained by Steven Kurzhals with a rule he
introduced in several Sudoku forums (in a rather sketchy way). Since then, this (now
classical) pattern has been known under several names: hidden-pairs loop, sk-loop…

358 Pattern-Based Constraint Satisfaction and Logic Puzzles

13.1. The EasterMonster family of puzzles and the sk-loop

Consider Figure 13.1. Informally, given the content of the four grey cells in each
of the blocks at the four corners of the grid, the sk-loop rule says that the following
thirteen candidates (crossed in the Figure) can be eliminated:
- in row r2 outside blocks b1 and b3, numbers n3 and n8: n3r2c5, n8r2c5, n8r2c6,
- in row r8 outside blocks b7 and b9, numbers n4 and n5: n4r8c5, n5r8c4,
- in column c2 outside blocks b1 and b7, numbers n4 and n8: n4r5c2, n8r5c2,
- in column c8 outside blocks b3 and b9, numbers n3 and n9: n3r5c8, n9r5c8,
- in block b1 outside the four grey cells, numbers n2 and n7: n2r3c1, n7r1c3,
- in block b3 outside the four grey cells, numbers n1 and n6: nothing,
- in block b7 outside the four grey cells, numbers n1 and n6: n1r7c3, n6r9c1,
- in block b9 outside the four grey cells, numbers n2 and n7: nothing.

From Table 11.5, we know that EasterMonter is in B6B; after these eliminations,
it can be solved in B2B. Being in B2B is far from being easy, but this is clearly much
better than being in B6B. So, undoubtedly, the sk-loop is worth some consideration.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 n1

n4
n7 n8

 n3
n4 n5
n7 n8

 n3
 n5 n6
n7

 n3
 n6
 n8 n9

 n5 n6
n7 n8

 n3
n4
 n8 n9

 n3
 n6
 n9

n2 r1

r2
 n2 n3

 n8

n9
 n3

n7 n8

n4
n1 n2 n3
 n6

 n8

n1 n2
 n6
n7 n8

n1 n3

 n8
n5

 n3
 n6

 n8
r2

r3
 n2 n3
n4 n5
 n8

 n2
n4

 n8
n6

n1 n2 n3
 n5

n1 n2 n3

 n8 n9

n1 n2
 n5
 n8

n7
n1 n3

 n9

 n3
n4
 n8 n9

r3

r4
 n2
n4 n6
 n8

n5
n1
n4
n7 n8

n9
n1 n2
n4 n6

n3

n1 n2

 n8

n1 n2
 n6
n7

 n6
n7 n8

r4

r5
 n2 n3
n4 n6
 n8 n9

n1 n2
n4 n6

 n8

n1 n3
n4
 n8 n9

n1 n2
 n6

n7

n1 n2
n4 n6

n1 n2 n3
 n5

 n8 n9

n1 n2 n3
 n6
 n9

 n3
 n5 n6
 n8 n9

r5

r6
 n2 n3
 n6
 n9

n1 n2
 n6
n7

n1 n3

n7 n9
n8 n5

n1 n2
 n6

n1 n2 n3

 n9
n4

 n3
 n6
n7 n9

r6

r7 n7
n1
n4

 n8

n1
n4 n5
 n8 n9

n1 n2 n3
 n5

n1 n2 n3
n4

 n8

n1 n2
n4 n5

 n8
n6

 n2 n3

 n9

 n3
n4 n5
 n9

r7

r8

n4 n5 n6

n3
n1
n4 n5

n1 n2
 n5 n6
n7

n1 n2
n4 n6

n9

 n2
n4 n5

n8

n4 n5
n7

r8

r9

n4 n5 n6
 n8 n9

n4 n6

 n8
n2

 n3
 n5 n6
n7

 n3
n4 n6

 n8

n4 n5 n6
n7 n8

 n3
n4 n5
 n9

 n3

n7 n9
n1 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 13.1. EasterMonster (outer candidates in bold), from B6B to B2B

13. Application-specific rules (the sk-loop in Sudoku) 359

Soon after this pattern was discovered, many variants of EasterMonster were
found; they all displayed the same set of four blocks forming a rectangle, each with
a “cross” of four cells, each of these cells having three numbers, more or less as in
EasterMonster. It should be noted that the clues in the central block have no
influence on the contents of the 16 cells of the sk-loop, so that many variants can
easily be obtained by merely changing them; the only condition is keeping the
puzzle minimal (or at least ensuring it has a unique solution).

 x x
 x x x
 x x

 x x
 x
 x x x
 x x
 x x x
x x

Figure 13.2. The pattern of given cells in Metcalf’s puzzle

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 n5
n1 n3

n7

n1
n4 n6
n7

 n3
n4
n7 n8

 n2 n3
n4 n6
n7 n8

 n2 n3
 n6

 n8

n1 n2
n4 n6

n4 n6

 n8
n9 r1

r2
 n3
n4 n6

n2

n4 n6
 n9

n1
 n3
n4 n6
n7 n8 n9

 n3
 n5 n6
 n8 n9

n4 n5 n6

n7

n4 n6

 n8
r2

r3
n1
n4 n6
n7

n1

n7 n9
n8

n4 n5
n7 n9

 n2
n4 n6
n7 n9

 n2
 n5 n6
 n9

n3

n4 n5 n6

n1 n2
n4 n6

r3

r4
n1 n2 n3

n7 n8

n4
n1 n2

 n5
n7 n9

n6
n1 n3

 n8 n9

n1 n3

 n8 n9

 n2
 n5

n7 n9

 n3
 n5

 n8 n9

 n2 n3

n7 n8
r4

r5
n1 n2 n3
 n6
n7 n8

n1 n3

n7 n8 n9

n1 n2
 n6
n7 n9

 n3
n4
 n8 n9

n5
n1 n3

 n8 n9

 n2
n4 n6
n7 n9

 n3
n4 n6
 n8 n9

 n2 n3
n4 n6
n7 n8

r5

r6
 n3
 n6

 n8

 n3
 n5

 n8 n9

 n5 n6
 n9

n2
 n3
n4
 n8 n9

n7

n4 n5 n6
 n9

n1
 n3
n4 n6

 n8
r6

r7
n1 n2
n4
n7

n1
 n5

n7
n3

 n5

n7 n9

n1 n2
 n6
n7 n9

n1 n2
 n5 n6
 n9

n8

n4 n6
 n9

n1
n4 n6
n7

r7

r8
n1

n7 n8

n6
n1

 n5
n7

 n3
 n5

n7 n8 n9

n1 n3

n7 n8 n9
n4

n1

n7 n9
n2

n1 n3

n7
r8

r9 n9
n1

n7 n8

n1 n2
n4
n7

 n3

n7 n8

n1 n2 n3
 n6
n7 n8

n1 n2 n3
 n6

 n8

n1
n4 n6
n7

 n3
n4 n6

n5 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 13.3. Metcalf’s puzzle (outer candidates in bold), from B7B to B4B

360 Pattern-Based Constraint Satisfaction and Logic Puzzles

Even before the sk-loop was found in it, EasterMonster was famous not only for
its high SER (11.6, the highest known at that time) but also for the quasi-symmetries
in its pattern of clues. However, there is another minimal puzzle of still higher SER,
with both an sk-loop and a more beautifully symmetric pattern of clues (shown in
Figure 13.2). It is Metcalf’s puzzle (with its initial resolution state given in Figure
13.3). We have already met it in Table 11.5 as one of the only three known (as of
this writing) puzzles in B7B; it also has the highest known SER (11.8) for a puzzle
with an sk-loop. It should be noted that, contrary to EasterMonster, there are two
blocks in which the pairs of numbers in bold appear in the four grey cells.

The eliminations allowed by the sk-loop are: r5c2≠7, r5c2≠1, r2c6≠6, r2c5≠6,
r2c5≠4, r5c8≠6, r5c8≠4, r8c5≠7, r8c5≠1, r8c4≠7. After this, Metcalf’s puzzle can be
solved in B4B. Again, this is not easy, but still easier than B7B. (Later, we shall see
an sk-loop puzzle for which the eliminations do not change its B3B classification).

13.2. How to define a resolution rule from a set of examples

Several descriptions and several proofs of an sk-loop rule have been proposed
soon after it was introduced, but as we were no more satisfied by them than by the
overall description of the pattern, we have tried to write our own formalisation.
However, it is not obvious to define a resolution rule corresponding to a given
example or set of examples. We shall ask a few questions that must be answered
during this process. This will lead us to provide not one but two non a priori
equivalent formal interpretations of the sk-loop. (There is a positive aspect of using
computers in Sudoku solving: when programming a rule, one has to answer each of
these questions. Conversely, the logical conditions that will be defined below for our
formal interpretations can be understood as specifications for an implementation.)

The first question is about transforming the constants appearing in one or several
examples into variables. It may seem easy to replace specific numbers, rows,
columns and blocks by generic variables, but the relations they should have may be
ambiguous; the question is, which of the relations present in the examples (e.g. the
equality of two candidate-Numbers) are actually meaningful and which are purely
coincidental? In our opinion, this can only be settled while trying to prove the rule.

A second group of two non-obvious questions is: which candidates present in the
example(s) can be made optional and which additional candidates can be allowed as
optional candidates in each of the cells? In chapter 8, we have already seen
examples of how to deal with this when we defined the non-degeneracy conditions
for Subset rules. Even with this elementary case, it was far from obvious for Subsets
of size greater than three. The two interpretations of sk-loops introduced in the next
subsections answer these two questions. In the EasterMonster example and in all the
variants that first appeared, each of the sixteen cells concerned by the sk-loop had

13. Application-specific rules (the sk-loop in Sudoku) 361

exactly three candidates. With the following definitions, they may have 2, 3 or 4.
Therefore, each of these interpretations is already a non obvious generalisation of
the first known examples. The puzzle in Figure 13.4 shows that this is indeed useful.

Third question: what conditions do ensure that the pattern will not degenerate
into something simpler? Anticipating on the definition of a belt of crosses in the
next subsection, if all the sets of inner candidates in the 2k crosses are the same and
all the sets of horizontal + vertical candidates are the same, then the whole belt
degenerates into a set of k Naked-Quads in rows, k Naked-Quads in columns and 2k
Naked-Quads in blocks (whether this can really happen is another question).

Fourth question: can the overall structure be generalised? Can it be included in a
whole family of patterns (e.g. in the sense that xy-chains or whips of different
lengths form a family)? The following two interpretations in terms of belts of
crosses or of x2y2-chains both allow a priori larger patterns, each with more
different physical shapes than the “standard” one. None has been found until now
for the 9×9 puzzle (there does not seem to be room enough for them), but there is no
obvious reason for not finding any in larger grids.

Fifth question, intimately related to the previous one: what are the building
blocks of the overall structure? The following two interpretations rely on different
building blocks (crosses versus x2y2-segments). The second is easily seen to be a
priori more “atomic” and more general than the first; it also provides a better
understanding of how the rule can be proven. Nevertheless, none of the known
examples satisfies the second but not the first.

Sixth question: where should the pattern be classified in a complexity hierarchy?
Notice that this is not an abstract question that could be independent of the tentative
formulation of the rule. In order to state the rule precisely, such classification
decisions have to be made (be it implicitly). For instance, the non-degeneracy
condition we formulated for Quads in chapter 8 supposes that Quads are more
complex than Triplets and Pairs (in this case, it is not really open to discussion, but
it is nonetheless necessary for making the non-degeneracy condition meaningful). In
the rating or classification approach of this book, as the sk-loop involves sixteen rc-
cells, i.e. sixteen CSP variables, it should be ranked somewhere close to W16, B16,
gW16, gB16, SB16 or BB16.

13.3. First interpretation of an sk-loop: crosses and belts of crosses

Let us now introduce our first interpretation (the most straightforward one) of
the sk-loop by defining its building blocks (“crosses”) and the ways (via crosses
“aligned” along “spines”) they can be combined into a full pattern (“a belt of
crosses”) allowing eliminations. Our definitions try to be as general as possible,

362 Pattern-Based Constraint Satisfaction and Logic Puzzles

considering the way we shall prove the rule; they go a priori much beyond the mere
EasterMonster case (and they are meaningful for any grid size).

Definition: a cross is defined by the following two sets of data and conditions:

1) a pattern of cells:
– a block b;
– a row r and a column c that both intersect b; the intersection of r and c will be

called the “center” of the cross;
– two different cells, each in both row r and block b, and none equal to the

center of the cross; they will be called the horizontal ends of the cross;
– two different cells, each in both column c and block b, and none equal to the

center of the cross; they will be called the vertical ends of the cross.

The “center” of a cross is a conceptual center, it does not have to be the physical
center of block b. However, by a proper puzzle isomorphism, any “cross” can be
made to look like a physical cross (whence the name we have chosen for them); in
the examples below, they will appear directly as physical crosses in EasterMonster
(Figure 13.1), in Metcalf’s puzzle (Figure 13.3) and in Tarek’s puzzle (Figure 13.4),
and only indirectly (i.e. after an iso) in Ronk’s puzzle (Figure 13.6). Notice that the
above conditions imply that the four “ends of the cross” are different cells (they will
be drawn in light grey in the forthcoming Figures).

2) a pattern of candidates in the four ends of the cross:
– two different “horizontal outer” candidate-Numbers;
– two different “vertical outer” candidate-Numbers; (each of them may be equal

to an horizontal outer one);
– two different “inner” candidate-Numbers, each different from any of the

(horizontal and vertical) outer candidate-Numbers;
– none of the four ends is decided;
– each of the two horizontal ends of the cross contains only inner and horizontal

outer candidate-Numbers; each of the inner and horizontal outer candidate-Numbers
appears in at least one of the two horizontal ends of the cross;

– each of the two vertical ends of the cross contains only inner and vertical outer
candidate-Numbers; each of the inner and vertical outer candidate-Numbers appears
in at least one of the two horizontal ends of the cross.

Forgetting the condition on the four undecided ends would lead to invalid
eliminations; it is not a consequence of all the other assumptions (not even a
practical one), as shown by the following six puzzles from Eleven’s collection:

......7..4..18...6.....2.1..4..9...3..9..15.....7...2..6.......83.5.......4.3...8	 	 ER/EP/ED=10.8/10.8/9.9	 #10526	
12.........6.8...2.8...3...2...65..8...9...4...7...5.......4.9....5..3...6..7...1	 	 ER/EP/ED=10.7/10.7/9.4	 #13852	

13. Application-specific rules (the sk-loop in Sudoku) 363

..34......5...92..6...7.....1......8.....1.259..5..1...9...58....4.6.....6.3...7.	 	 ER/EP/ED=10.6/1.2/1.2	 #23210	
1....6.8....7....2.8..3.......9....7....2.3....5..1.4...4..56...9......36......1.	 	 ER/EP/ED=10.6/1.2/1.2	 #24974	
1..45..8.........6.....75..2.4.......1.2...9...9.3........6...7..18...2..8...53..	 	 ER/EP/ED=10.6/1.2/1.2	 #26051	
12..5...9...7.....7.....5..2.1.4.9...9......4.4.6...2.3.2.1........6..92.....81..	 	 ER/EP/ED=10.6/1.2/1.2	 #26342	

Notice that in the set of 1,662 known (as of this writing) puzzles with an sk-loop,
we have found none in which one of the four ends of a cross did not contain any of
the outer candidate-Numbers and we have found only one (Tarek’s puzzle,
displayed in Figure 13.4) in which one of the four ends of a cross did not contain
any of the inner candidate-Numbers. Because of this example (and only because the
same elimination proof is valid for it), the definition we give here for the pattern of
candidates in a cross is slightly more general than that available on our website.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 n4

 n5 n6
 n9

 n2 n3
 n6
 n9

 n2
 n5 n6
n7 n8

 n2 n3
 n5
 n8

 n3
 n5

n7 n8

 n3
 n6
n7 n8 n9

 n3

 n8 n9
n1 r1

r2
 n3
 n5 n6

n7

n1 n3
 n6

n1
n4 n5 n6

 n8
n9

n1 n3
n4 n5

 n8

 n3
 n6

 n8
n2

 n3
n4 n6

r2

r3
 n2 n3
 n6
 n9

n1
 n6
 n9

n8
n1 n2
n4 n6
n7

n1 n2 n3
n4

n1 n3
n4
n7

n5
 n3
n4
 n9

 n3
n4 n6
n7 n9

r3

r4
 n2
 n5

n7 n8
n3

n1 n2
n4
n7

n9
n1
n4 n5

 n8
n6

n1 n2

n7 n8

n1
n4 n5

 n8

 n2
n4 n5
n7

r4

r5
 n2

 n5 n6
 n8 n9

n1
n4 n5 n6
 n8 n9

n1 n2
n4 n6
 n9

n1
n4 n5

 n8
n7

n1
n4 n5

 n8

n1 n2 n3

 n8 n9

n1 n3
n4 n5
 n8 n9

 n2 n3
n4 n5
 n9

r5

r6

 n5
n7 n8 n9

n1
n4 n5
 n8 n9

n1
n4
n7 n9

n3
n1
n4 n5

 n8
n2

n1

n7 n8 n9
n6

n4 n5
n7 n9

r6

r7
 n3
 n6
n7 n8 n9

n4 n6
 n8 n9

n5
n1 n2
n4
n7 n8

n1 n2 n3
n4

 n8

n1 n3
n4
n7 n8 n9

n1 n2 n3
 n6
 n9

n1 n3

 n9

 n2 n3
 n6
 n9

r7

r8
 n3

 n8 n9

n2
 n3
n4
 n9

n1
n4 n5

 n8
n6

n1 n3
n4 n5
 n8 n9

n1 n3

 n9

n7
 n3

 n5
 n9

r8

r9 n1

 n6
 n9

 n3
 n6
n7 n9

 n2
 n5

n7

 n2 n3
 n5

 n3
 n5

n7 n9
n4

 n3
 n5

 n9
n8 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 13.4. Tarek’s puzzle (#071223170000, outer candidates in bold), from B6B to B3B

Definitions: two crosses are row-aligned [respectively column-aligned] if they
are in different blocks, they are centred in the same row [resp. column] and they
have the same set of horizontal [resp. vertical] outer candidate-Numbers.

Definition: a spine for a belt of even length 2k is defined by a sequence of 2k
cells in different blocks such that, when repeating the first at the end of the list, two

364 Pattern-Based Constraint Satisfaction and Logic Puzzles

consecutive cells are alternatively in the same row and in the same column (these
cells define the global structure of the belts to be defined below).

Definition: a belt of crosses of even length 2k is defined by the following data
and conditions:

– a spine for a belt of length 2k;
– for each of the cells in the spine, a cross centred on this cell;
– when repeating the first cross at the end of the list, consecutive crosses are

alternatively row-aligned and column-aligned;
– the 2k sets of inner candidate-Numbers of the 2k crosses are not all equal; the

sets of horizontal + vertical candidates-Numbers of the 2k crosses are not all equal
(non-degeneracy condition).

In the EasterMonster, Metcalf’s and Tarek’s examples, the spine is (r2c2, r2c8,
r8c8, r8c2); it forms a square. As of now, no minimal 9×9 puzzle has been found
with a belt of crosses based on a spine longer than 4: it is easy to find such spines,
but when it comes to placing the clues in such a way that the proper candidate
patterns appear in the crosses, it seems there is not enough room on the grid for such
structures. On the other hand, there does not seem to be any reason for not finding
any in larger grids.

Theorem 13.1: Given a belt of crosses, one can eliminate:
- in each of its blocks: any inner candidate-Number of this block that is not in any
end of the cross in this block,
- in each “central” row of consecutive row-aligned crosses: any horizontal outer
candidate-Number (they are the same for the two crosses) that is not in any end of
the crosses in the two blocks,
- in each “central” column of consecutive column-aligned crosses: any vertical
outer candidate-Number (they are the same for the two crosses) that is not in any
end of the crosses in the two blocks.

Proof: Let us call C1, C2, … C2k the 2k crosses and b1, b2, … b2k their blocks.
Suppose we start with two row-aligned crosses. We shall only prove that the inner
candidate-Numbers in block b1 outside the ends of C1 can be eliminated; the proofs
for the other parts of the theorem are similar.

If none of the horizontal ends of C1 contains any of the inner candidate-Numbers
of C1, then one has successively:
- the horizontal ends of C1 together contain both of the horizontal outer candidate-
Numbers of C1;
- the horizontal ends of C2 (which are row-aligned with those of C1) contain none of
the horizontal outer candidate-Numbers of C2 (which are the same as those of C1);
- the horizontal ends of C2 contain both of the inner candidate-Numbers of C2 (only
two candidate-Numbers for two cells);

13. Application-specific rules (the sk-loop in Sudoku) 365

- the vertical ends of C2 contain none of the inner candidate-Numbers of C2 (block
constraint);
- the vertical ends of C2 together contain both of the vertical outer candidate-
Numbers of C2 (only two candidate-Numbers for two cells);
…
- the horizontal ends of C2k contain both of the inner candidate-Numbers of C2k;
- the vertical ends of C2k contain none of the inner candidate-Numbers of C2k;
- the vertical ends of C2k together contain both of the vertical outer candidate-
Numbers of C2k;
- the vertical ends of C1 contain none of the vertical outer candidate-Numbers of C1;
- the vertical ends of C1 together contain both of the inner candidate-Numbers of C1.

Similarly, if none of the vertical ends of C1 contains any of the inner candidate-
Numbers of C1, then the horizontal ends of C1 together contain both of the inner
candidate-Numbers of C1. Combining these two results, if there is a branch of C1
whose two ends contain none of the inner candidate-Numbers of C1, then these two
candidate-Numbers must be in the ends of the other branch. Finally, using
contraposition, if there is a branch of C1 that contains one and only one of the inner
candidate-Number of C1, then the other inner candidate-Number of C1 must be in
the other branch.

In any case, given the whole belt of crosses, each of the two inner candidate-
Numbers must be in one of the four ends of C1. Whence the eliminations of the
inner candidate-Numbers in b1 outside the four ends of C1. Qed.

Notice that, if the inner candidates appeared somewhere in the row of a cross in
a block, outside the ends of this cross, they could also be eliminated (this is probably
pointless in 9×9 puzzles because in all the known examples the center of the block is
occupied by a clue, but it might happen in larger grids).

Figure 13.5. A possible spine for a belt of length 6.

Remarks on the shape of the spine: with belts of length 4, the spine can only be a
rectangle; moreover, as floors and towers can be permuted, there is essentially one

366 Pattern-Based Constraint Satisfaction and Logic Puzzles

spine. However, with belts of length 6, the spine can (must) have different shapes
(but always with spine ends in different blocks), e.g. as shown in Figure 13.5.

Finally, in anticipation of section 13.5, notice that a belt of crosses of length 4
can always be seen as a g-Subset of size sixteen, with its sixteen CSP variables
defined by the sixteen rc-cells forming the ends of the four crosses and its sixteen
transversal sets defined by four rn constraints (the two rows of the centers combined
with the two horizontal Number-candidates), four cn constraints (the two columns of
the centers combined with the two horizontal Number-candidates) and eight bn
constraints (the four blocks of the centers, each combined with its two inner
Number-candidates). It is easy to check that this view allows the same eliminations
as the belt-of-crosses view, but it is not consistent with the original view of the
pattern as a loop (i.e. some kind of closed chain).

13.4. Second interpretation of an sk-loop: x2y2-chains

The above interpretation of the sk-loop is the simplest one from the player’s
point of view, because crosses can easily be seen inside a block; but it hides the
symmetrical roles played by blocks and rows or columns in our proof. Whence our
second interpretation based on the remark that the proof in the previous section
illustrates the x2y2-transfer principle to be enunciated below. Our building blocks
will now be "x2y2-segments".

Definitions (classical): a rowblock is the intersection of a row and a block; a
colblock is the intersection of a column and a block; a segment is either a rowblock
or a colblock.

Definition: an x2y2-segment of type row [respectively col] is defined by the
following data and conditions:

– a rowblock [resp a colblock] with two distinguished non-decided cells called
its ends (as before, they do not have to be the physical ends, they are the conceptual
ends);

– two different “left-linking” candidate-Numbers;
– two different “right-linking” candidate-Numbers, each different from any of

the left-linking candidate-Numbers;
– each of the two ends of the x2y2-segment contains only left-linking and right-

linking candidate-Numbers;
– each of the left-linking and each of the right-linking candidate-Numbers

appears in at least one of the two ends of the x2y2-segment.

Definition: two x2y2-segments are chainable if:

13. Application-specific rules (the sk-loop in Sudoku) 367

– the set of right-linking candidate-Numbers of the first is equal to the set of left-
linking candidate-Numbers of the second;

– they have no end in common;
– they satisfy either of the following conditions:

- they are both of type row, they lie in the same row but in different blocks,
- they are both of type column, they lie in the same column but in different blocks,
- the first is of type row, the second of type col and they lie in the same block,
- the first is of type col, the second of type row and they lie in the same block,
- they are both of type row, they lie in the same block but in different rows,
- they are both of type col, they lie in the same block but in different columns.

Remarks:
– two chainable x2y2-segments always share a single unit: respectively row and

column for the first two cases listed above, and block for the remaining four cases;
– the last two cases introduce completely new possibilities that were not

available in the “belt of crosses” view;
– given an x2y2-segment, its reverse can be defined as the x2y2-segment based

on the same rowblock [or colblock] and ends, but with the roles of left-linking and
right-linking candidate-Numbers interchanged;

– if two x2y2-segments are chainable, then the reversed segments taken in
reversed order are chainable.

The basic (and obvious) property of an x2y2-segment is that if none of its left-
linking candidate-Numbers is true in any of its two cells, then each of its right-
linking candidate-Numbers must be true in one of its two cells.

This readily extends to a basic property of chainable x2y2-segments, where it
constitutes what we call the x2y2-transfer principle (a natural generalisation of the
classical xy-transfer principle for bivalue chains): if none of the left-linking
candidate-Numbers of the first x2y2-segment is true in any of its two cells, then
each of the right-linking candidate-Numbers of the second x2y2-segment must be
true in one of its two cells. This can in turn be extended to any sequence of
chainable x2y2-segments as described below:

xy-transfer principle x2y2-transfer principle
if not x1 then y1
 then not x2
 then y2
 then not x3
 then y3 ...

if neither of x1 and x'1 then both of y1 and y'1
 then neither of x2 and x'2
 then both of y2 and y'2
 then neither of x3 and x'3
 then both of y3 and y'3

368 Pattern-Based Constraint Satisfaction and Logic Puzzles

Definition: an x2y2-belt of length n is a sequence of n different x2y2-segments,
S1, S2, ..., Sn, all different, such that (setting Sn+1 = S1) for each j in {1, 2, ..., n}, Sk
and Sk+1 are chainable.

Remarks:
– notice the circularity condition (as for belts of crosses);
– the length n does not have to be even;
– if one defines the reversed belt as being the sequence of the reversed segments

taken in the reversed order, then it is an x2y2-belt (this is needed in the proof of the
following theorem).

Definition: Given an x2y2-belt, the targets of one of its couples of consecutive
(therefore chainable) x2y2-segments (still setting Sn+1 = S1) are the candidate-
Numbers equal to the right-linking candidates of the first segment (or the left-
linking candidates of the second) and belonging to their unique common unit but to
none of their ends.

Definition: The targets of an x2y2-belt are the targets of any of its couples of
consecutive (therefore chainable) x2y2-segments (still setting Sn+1 = S1).

Theorem 13.2: Given an x2y2-belt, any of its targets can be eliminated.

The proof is essentially the same as that we gave above for belts of crosses. It is
based on iterating the x2y2-transfer principle in both directions and concluding in
the same way as in that proof.

Remarks on the shape of the spine:
– given an x2y2-belt, we can define its spine more or less as previously (details

are left to the reader);
– with x2y2-belts of length 4, the spine can only be a rectangle, but it can now

be “flat”, e.g. with four rowblocks in two different rows and two different blocks;
– with belts of length 6, the spine can have new different shapes, e.g. as in

Figure 13.5, but with the horizontal or the vertical branch, or both, flattened as in the
previous case;

– a question remains open: can one build a (9×9 or larger) puzzle with an x2y2-
belt with any of these spines? As of today, no example has been found, but there
does not seem to be any reason why this would not be possible for larger grids.

13.5. Should the above definitions be generalised further?

Consider the example in Figure 13.6. In blocks b5, b6 and b9, the conditions for
a belt of crosses seem to be satisfied with the possible outer candidates in these

13. Application-specific rules (the sk-loop in Sudoku) 369

blocks written in bold (this is the only possibility for a belt). But there is a problem
for extending this to block b8: there is only one horizontal outer candidate-Number
(n8), only one vertical outer candidate-Number (n3), and there are too many inner
candidate-Numbers (either n4 in r7c5 and r8c4 or n9 in r7c6 and r9c4).

Supposing none of n1 and n2 was in r4c5 or r4c6, we can proceed as in section
13.4 until we show that n5 and n8 must be in r7c8 and r7c9. But afterwards, the
chain-like reasoning used in the standard case does not allow to conclude than none
of n3 and n5 can be in any of r5c4 and r6c4. The x2y2 chain of reasoning is broken;
it can only be patched with a piece of reasoning very specific to this situation.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 n9 n8
n1 n2 n3

n7
n1 n2 n3
n4 n6

 n2 n3
 n5 n6

n1 n2
n4 n5 n6

n1 n3
n4 n5 n6

 n2 n3
 n5 n6

r1

r2 n7
n1 n2

n6
n1 n2 n3
n4 n5
 n9

n1 n2 n3
n4

 n2 n3
 n5

 n9
n8

n1 n3
n4 n5

 n2 n3
 n5

 n9
r2

r3
n1 n2 n3

n5 n4
n1 n2 n3

 n9

n1 n2 n3
 n6

 n8

 n2 n3
 n6
 n8 n9

n1 n2
 n6
 n9

n1 n3
 n6
n7

 n2 n3
 n6
n7 n9

r3

r4 n6
n1 n2
n4
n7 n9

n1 n2
 n5

n7 n9
n8

n1 n2

n7

 n2
 n5

n7
n3

n4 n5
n7

 n5
n7 n9

r4

r5
n1 n3
n4 n5

 n8

n1
n4
n7

n1 n3
 n5

n7 n8

n1 n3
 n5

n9

 n3
 n5 n6
n7

n4 n5 n6

n2

 n5 n6
n7 n8

r5

r6
 n2 n3

 n5
 n8

 n2

n7 n9

 n2 n3
 n5

n7 n8 n9

 n2 n3
 n5

 n2 n3
 n6
n7

n4

 n5 n6
 n9

 n5 n6
n7 n8

n1 r6

r7
n1 n2
n4 n5

 n8
n3

n1 n2
 n5

 n8 n9
n6

 n2
n4

 n8

 n2

 n8 n9
n7

n1
 n5
 n8

 n2
 n5
 n8

r7

r8
n1 n2
n4

 n8

n1 n2
n4 n6
n7

n1 n2

n7 n8

 n2 n3
n4

n5

 n2 n3

n7 n8

n1 n2
 n6

n9

 n2 n3
 n6

 n8
r8

r9
 n2
 n5

 n8

 n2
 n6
n7 n9

 n2
 n5

n7 n8 n9

 n2 n3

 n9

 n2 n3

n7 n8
n1

 n2
 n5 n6

 n3
 n5 n6

 n8
n4 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 13.6. Ronk’s puzzle (outer candidates in bold), from B3B to B3B

An alternative approach is to give a definition in terms of g-Subsets, with:
– sixteen CSP variables associated with the sixteen rc-cells at the ends of the

crosses and pseudo-crosses (in light grey): Xr4c5, Xr4c6, Xr5c4, Xr6c4; Xr4c8,
Xr4c9, Xr5c7, Xr6c7; Xr7c5, Xr7c6, Xr8c4, Xr9c4; Xr7c8, Xr7c9, Xr8c7, Xr9c7;

– and sixteen g-transversal sets defined by the following sixteen g-transversal
constraints: two of type rn (r4n7, r7n8), two of type cn (c4n3, c7n6) and twelve of
type bn (b5n1, b5n2, b5n5, b6n4, b6n5, b6n9, b8n2, b8n4, b8n9, b9n1, b9n2, b9n5);

370 Pattern-Based Constraint Satisfaction and Logic Puzzles

one can then eliminate the following sixteen candidates: r4c2≠7, r4c3≠7, r5c6≠5,
r5c9≠5, r7c1≠8, r7c3≠8, r8c6≠2, r8c9≠2, r2c4≠3, r3c4≠3, r6c5≠2, r9c5≠2, r1c7≠6,
r3c7≠6, r6c8≠5, r9c8≠5 (the number of eliminations is also sixteen by mere chance).

Four of these eliminations would not be justified by a belt of crosses: r5c6≠5,
r5c9≠5, r6c8≠5 and r9c8≠5. On the other hand, the following eight eliminations that
would have been allowed by a belt of crosses are not justified by the present g-
Subset[16]: r4c3≠5, r7c1≠5, r7c3≠5, r2c4≠ 5, r1c7≠5, r8c1≠5, r8c3≠5, r8c3≠2.

The question now is: should the informal sk-loop rule be extended beyond its
initial scope and beyond our interpretations in terms of belts of crosses or x2y2-
chains, so that it applies to this puzzle? The only obvious way this could be done is
by redefining it as a particular kind of g-Subset[16] based on sixteen CSP variables
associated with cells forming a pattern of crosses on the grid, as described above; it
does not seem that any general condition on the g-transversal sets could be added to
that defined by the general concept of a g-Subset[16]. As shown by the statistics in
Tables 8.1 and 11.1, Subsets are very inefficient compared to braids of same size;
so, one should find very good reasons (such as the frequency of occurrence of this
generalised pattern – but it seems to be very rare) before swapping to such a new
definition. In any case, if such an extension was adopted, the name sk-loop should
certainly have to be changed (at least to “generalised sk-loop” or “mutant sk-loop”),
as the initial loop idea that led to its definition would be completely lost. Our
purpose here is not to provide a final answer, but only to illustrate the kind of
questions that arise when trying to formalise new resolution rules.

13.5.1. Another S2-braid example

Incidentally, as mentioned in section 9.7.1, this puzzle provides nice examples of
S2-braids. From the initial state in Figure 13.6, no elimination can be done by a braid
or a g-braid. The first patterns we find are sixteen S2-braids, corresponding to the
eliminations allowed by the g-Subset[16] and then nothing more can be done with
S2-braids (the puzzle being in B3B, the next elimination must be an S3-braid).
	
S2-‐braid[14]:	 b9n3{r9c8	 r8c9}	 –	 b9n6{r8c9	 r789c7}	 –	 b9n8{r8c9	 r7c789}	 –	 {n8r7c5	 NP:	 b8{r7c5	
r8c4}{n2	 n4}}	 –	 r7c6{n2	 n9}	 –	 r9c4{n9	 n3}	 –	 {n3r5c4	 HP:	 b5{r5c6	 r6c5}{n3	 n6}}	 –	 b5n7{r5c6	
r4c456}	 –	 r4c8{n7	 n4}	 –	 r5c7{n4	 n5}	 –	 r4c9{n5	 n9}	 –	 r6c7{n9	 .}	 ==>	 r9c8	 ≠	 5	

Let us now provide some explanatory detail, after introducing a few markers:
– a number between brackets after each right-linking object in the braid;
– independent numberings of these candidates or patterns for different branches

of the braid, each of them starting after the number from which it branches out; here,
there is only one main branch (1, 2, ... 11) plus a small secondary branch (2'); this
S2-braid is almost an S2-whip;

13. Application-specific rules (the sk-loop in Sudoku) 371

– explicit addition of z- and t- candidates, with symbol “*” for a z-candidate and
with symbol “#n” for a t-candidate (with n = the number of the previous right-
linking candidate or pattern to which it is linked); remember however that these
candidates are not part of the braid.

S2-‐braid[14]:	 b9n3{r9c8	 r8c9(1)}	 –	 b9n6{r8c9	 r789c7(2')	 r9c8*}	 –	 b9n8{r8c9	 r7c789(2)	 r9c8*}	 –	
{n8r7c5	 NP:	 b8{r7c5	 r8c4}{n2	 n4}(3)	 n3r8c4#1}	 –	 r7c6{n2	 n9(4)	 n8#2}	 –	 r9c4{n9	 n3(5)	 n2#3}	 –	
{n3r5c4	 	 HP:	 b5{r5c6	 r6c5}{n3	 n6}(6)	 n3r6c4#5}	 –	 b5n7{r5c6	 r4c456(7)	 r6c5#6}	 –	 r4c8{n7	 n4(8)	 n5*}	 –	
r5c7{n4	 n5(9)	 n6#2'}	 –	 r4c9{n5	 n9(10)	 n7#7}	 –	 r6c7{n9	 .	 n5#9	 n6#2'}	 ==>	 r9c8	 ≠	 5	

Remember that, by definition, Sp-braids may include g-candidates as right-
linking objects. They appear here in cells (2'), (2) and (7).

It can be checked that all the other eliminations allowed by the g-Subset[16] can
be done by similar S2-braids.

13.6. Measuring the impact of an application-specific rule

Three complementary aspects of the impact of a specific rule can be considered:
– How often does it appear in instances of the CSP? The answer obviously

depends on how we classify the specific rule with respect to the general purpose
ones, but all the known cases of Sudoku-specific rules appear very rarely if we put
them after whips or braids (g-whips, g-braids) of same size. This can be verified for
sk-loops (which rarely interact with generic rules) and even for the nonspecific rules
for Subsets (where it is a consequence of the general subsumption theorems).

– For instances in T&E(1) or gT&E(1), how much can it modify their W, B, gW
or gB ratings? We have already seen examples in Sudoku of how allowing Subsets
can (very rarely) either slightly decrease the W rating of a puzzle or make it solvable
by whips when it was not without the Subset rules.

– For instances in T&E(2), the previous question becomes: how much can it
change their B?B classification? In this section, we shall concentrate on this type of
impact and we shall consider the sk-loop example (in its belt-of-crosses
formalisation).

As shown by the Subset examples in chapter 8, there does not seem to be much
correlation between the intrinsic complexity of a new rule and its possible impact on
rating. The reason is that there seems to be no limit to the possible modifications the
elimination of a single candidate or a few ones can entail. The same goes for the
impact on classification: in this chapter, we have seen that, after eliminating all their
sk-loop targets, Metcalf’s puzzle moves from B7B down to B4B, EasterMonster
from B6B to B2B, Tarek’s puzzle from B6B to B3B, while Ronk’s puzzle remains in
B3B; the example in Figure 13.7 (SER 10.5, obtained by adding a diagonal clue to
Metcalf’s puzzle, thus making it non-minimal, but looking like a snowflake) moves

372 Pattern-Based Constraint Satisfaction and Logic Puzzles

from B3B to gB. As a result, the impact of an application-specific rule can only be
evaluated either statistically (when unbiased collections of instances are available)
or on individual instances. For Subsets, we could give statistical evaluations; but, as
of this writing, for the sk-loop, we can only analyse its individual impact.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 n5
n1 n3

n7

n1
n4 n6
n7

 n3
n4
n7 n8

 n2 n3
n4 n6
n7 n8

 n2 n3
 n6

n1 n2
n4 n6

n4 n6

 n8
n9 r1

r2
 n3
n4 n6

n2

n4 n6
 n9

n1
 n3
n4 n6
n7 n8 n9

 n3
 n5 n6
 n9

n4 n5 n6

n7

n4 n6

 n8
r2

r3
n1
n4 n6
n7

n1

n7 n9
n8

n4 n5
n7 n9

 n2
n4 n6
n7 n9

 n2
 n5 n6
 n9

n3

n4 n5 n6

n1 n2
n4 n6

r3

r4
n1 n2 n3

n7

n4
n1 n2

 n5
n7 n9

n6
n1 n3

 n9

n8
 n2
 n5

n7 n9

 n3
 n5

 n9

 n2 n3

n7
r4

r5
n1 n2 n3
 n6
n7 n8

n1 n3

n7 n8 n9

n1 n2
 n6
n7 n9

 n3
n4
 n9

n5
n1 n3

 n9

 n2
n4 n6
n7 n9

 n3
n4 n6
 n8 n9

 n2 n3
n4 n6
n7 n8

r5

r6
 n3
 n6

 n8

 n3
 n5

 n8 n9

 n5 n6
 n9

n2
 n3
n4
 n9

n7

n4 n5 n6
 n9

n1
 n3
n4 n6

 n8
r6

r7
n1 n2
n4
n7

n1
 n5

n7
n3

 n5

n7 n9

n1 n2
 n6
n7 n9

n1 n2
 n5 n6
 n9

n8

n4 n6
 n9

n1
n4 n6
n7

r7

r8
n1

n7 n8

n6
n1

 n5
n7

 n3
 n5

n7 n8 n9

n1 n3

n7 n8 n9
n4

n1

n7 n9
n2

n1 n3

n7
r8

r9 n9
n1

n7 n8

n1 n2
n4
n7

 n3

n7 n8

n1 n2 n3
 n6
n7 n8

n1 n2 n3
 n6

n1
n4 n6
n7

 n3
n4 n6

n5 r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 13.7. Snowflake, a non-minimal variant of Metcalf’s puzzle, from B3B to gB

13.7. Can an (apparently) application-specific rule be made general?

In the first parts of this book, we have shown that many rules that originated in
Sudoku could be re-written in such a way that they are meaningful for any CSP:

– all our (standard and generalised) whip and braid rules,
– the classical Subset rules (and the finned fish, which are mere S-whips),
– the classical Franken and Mutant Fish (which now appear as g-Subset rules).

Can an application-specific resolution rule be made general? The sk-loop
example and the discussion in section 13.5 together indicate that if such is the case,
it may have to be at the cost of loosing much of the general idea at the origin of the
rule (in the present case, even if the basic geometrical structure is kept unchanged).

14. Transitive constraints and Futoshiki

Futoshiki (literally “inequality” in Japanese), another logic puzzle, appeared a
few years ago and is becoming relatively popular in Japan (but still much less than
Sudoku). It is interesting in the context of this book for the following reasons:

– contrary to our main Sudoku example, it has more constraints (inequality
constraints between the contents of adjacent cells) than the “strong” ones due to its
CSP variables;

– in its “pure” form, it has no clue other than such inequality constraints (i.e. it
has no predefined value for any of the cells);

– contrary to the Sudoku constraints, the inequality constraints are asymmetric;
– although the set of CSP variables is fixed as in LatinSquare or Sudoku, the set

of the inequality constraints depends on the set of given inequalities;
– Futoshiki has g-labels that, given an instance, do not depend on its resolution

state, in conformance with our general definition (g-labels are structural); but, unlike
Sudoku, they depend on the instance under consideration (unless one wants to
introduce a whole set of universal but useless g-labels);

– contrary to Sudoku, g-labels involve sets of values instead of sets of cells.

In spite of all these noticeable differences, we shall show that our approach is
quite relevant to it, even for very hard instances.

14.1. Introducing Futoshiki and modelling it as a CSP

14.1.1. Definition of Futoshiki

Like an n×n Sudoku, an n×n Futoshiki is a special kind of n×n Latin Square. An
n×n Futoshiki puzzle requires the placement of numbers from 1 to n in the cells of
an n×n square grid in such a way that each of these numbers appears only once [and
therefore exactly once] in each row and in each column. Unlike Sudoku, grid size n
does not have to be the square of some integer m (n = m2) and there are no m×m or
any other block constraints (in this respect, it is much closer to LatinSquare than to
Sudoku).

However, in any instance of Futoshiki, there are specific inequality constraints
between elements in rows and columns, as in the example of Figure 14.1. A strict

374 Pattern-Based Constraint Satisfaction and Logic Puzzles

inequality sign between two contiguous cells in a row [respectively a column]
means that the values in these two cells must be related by this inequality. These
signs can appear graphically in four different shapes (<, >, ∧, ∨), but it should be
stressed that they all have the same “strictly less than” meaning, they define only
one new type of constraint; their appearance is only used to state graphically in
which order the two cells are involved in the inequality. 14

 c1 c2 c3 c4 c5 c6

r1 < > < r1

∧

∨

∧

∧

r2 > r2

∧

∨

r3 < r3

∨

r4 < r4

r5 r5

∨

∧

∧

r6 > > > r6

 c1 c2 c3 c4 c5 c6

Figure 14.1. A 6×6 Futoshiki puzzle (clues of #M5121, from atksolutions.com)

As in Sudoku or in any logic puzzle with a reasonable definition, a “well-
formed” puzzle is supposed to have a unique solution. Sometimes, clues are given in
some of the cells (with the obvious meaning that they should be their final values, as
in Sudoku); but this is not compulsory: inequality constraints can be enough to
ensure uniqueness of a solution, as in Figure 14.1.

14 There is a variant of Futoshiki (also unnamed, as far as we know) in which inequality signs
are supposed to relate any two cells in different contiguous sectors in the same row [or
column] – where a sector is defined as a contiguous set of cells delimited by two such signs.
As it does not call for a radical change to the analyses of this chapter, we shall not consider it
here.

14. Transitive constraints and Futoshiki 375

We shall call “pure Futoshiki” a puzzle with no other clue than inequalities,
although we are not aware of any name being currently used to make such a
distinction. In the following, all our examples will be pure Futoshikis, but this does
not change anything to their discussion. Our personal preference for pure Futoshiki
is related to its pure geometric aspect (and also to the fact that, in the context of this
book, this makes it look more complementary to our main Sudoku example);
however, this will remain abstract, as we shall not investigate the kinds of geometric
properties of the set of inequality signs that might have implications on the solution
(and which type of implications, if any).

(In the “impure” case, i.e. if both digits and inequalities can be given, from a
theoretical or CSP point of view, especially if one wants to define minimal
instances, both predefined values and inequality constraints should be put on the
same footing and considered as clues. Without this precision, there might be an
ambiguity on the interpretation of “minimal”: should one consider minimality with
respect to a fixed set of inequalities or should one consider both types of clues as
one set – each choice raises a few questions of its own.)

Futoshiki has obvious symmetries, some from LatinSquare (row-column
symmetry, reflection) and some related to inequalities. If P is an n×n Futoshiki
puzzle [or complete grid] and if P’ is obtained from P by reversing all the inequality
signs and replacing every Number k by n-k+1, then P’ is an n×n Futoshiki puzzle [or
complete grid]. But rows [or columns] can obviously not be permuted.

14.1.2. The sorts, CSP variables, labels and constraint types of Futoshiki

Futoshiki has Number, Row and Column sorts similar to those of Sudoku, but
with ranges corresponding to the grid size. There is a predicate “<” with signature
(Number, Number), with the axiom of transitivity and with axiom n1 < n2 < n3 < …

The “natural” CSP variables of k×k Futoshiki are the k2 Xrc variables, with r in
{r1, …, rk} and c in {c1, …, ck}: in the original formulation, one value in {1, …, k}
must be found for each of them; in the formalisation, one value of sort Number must
be found. However, as in Sudoku, one can define the rn and cn representations and
corresponding Xrn and Xcn CSP variables, bringing the total number of CSP
variables to 3×k2. Notice that there are no “block-number”, i.e. no Xbn, CSP
variables. Accordingly, one can define an extended Futoshiki board, with rc, rn and
cn cells representing the Xrc, Xrn and Xcn variables, respectively.

Labels are defined as (n, r, c) triplets (also notated nrc), as in Sudoku or
LatinSquare. There are thus k3 labels. Label nrc or (n, r, c) is the equivalence class
of the three pre-labels: <Xrc, n>, <Xrn, c>, <Xcn, r>. For details, see chapter 2, the
only difference being the absence of pre-labels corresponding to Xbn CSP variables.

376 Pattern-Based Constraint Satisfaction and Logic Puzzles

There are four Constraint-Types: rc, rn, cn, < (not to be confused with predicate
“<” on Numbers). In a graphical representation, the < constraint may appear in four
different shapes: (<, >, ∧, ∨) but this is one and only one Constraint-Type.

Constraints of type rc, rn, cn between labels are exactly as in Sudoku. As for the
inequality Constraint-Type, it may seem to introduce essentially asymmetric
relations and one may wonder how it can be modelled as a set of symmetric links
between labels, as required by our CSP modelling approach. But this is
straightforward:

– for each row r°, for each pair of cells r°c1° and r°c2° related by the inequality
sign < in r° (in any of the two shapes it can take in a row: <, >), the inequality
constraint between these two cells is completely taken into account by the set of
ground atomic formulæ “linked-by(n1°r°c1°, n2°r°c2°, <)” for all the Numbers n1°
and n2° such that n1° ≥ n2°.

– for each column c°, for each pair of cells r1°c° and r2°c° related by the
inequality sign < in c° (in any of the two shapes it can take in a column: ∧, ∨), the
inequality constraint between these two cells is completely taken into account by the
set of ground atomic formulæ “linked-by(n1°r1°c°, n2°r2°c°, <)” for all the Numbers
n1° and n2° such that n1° ≥ n2°.

Futoshiki has the same (Naked, Hidden and Super-Hidden) Subsets and Subset
rules as LatinSquare (said otherwise, it has the same Subset rules as Sudoku, except
those based on blocks). Futoshiki has whips of length 1 (as shown by the
forthcoming example) and therefore it has g-labels (see section 14.5 for details).

Finally, there is nothing special to say about its Basic Resolution Theory, except
that, in its “pure” form (i.e. with no predefined values), contrary to Sudoku, its
elementary constraint propagation rules (ECP), which take into account not only the
rc, rn and cn constraints, but also the < constraint, can eliminate no candidate at the
start; all the k3 labels will therefore appear as candidates in the initial resolution state
RSP of any puzzle P. As a result, no minimal “pure” Futoshiki puzzle can be solved
in BRT(Futoshiki); but this in itself entails no other significant difference.

14.2. Ascending chains and whips

Futoshiki has a very simple and well known rule that does not seem to have any
standard name; we shall call it the ascending-chain rule; it is usually considered as a
rule of its own and, as far as we know, it has never before been noticed that it
corresponds to the interaction rules of Sudoku and that it can be simulated by a mere
repetition of the whip[1] rule.

14. Transitive constraints and Futoshiki 377

14.2.1. The weak and strong forms of the ascending chain rule

Definition: in n×n Futoshiki, an ascending chain of length k (1 < k < n) is a
sequence of k+1 cells, each adjacent in its row or column to the next one and related
to it by the “<” sign.

Notice that these cells may all be in the same row [such as (r3c3, r3c4) in Figure
14.1], or in the same column [such as (r1c1, r2c2, r2c3)], but they may also be
spread on several rows and columns [such as (r3c2, r2c2, r1c2, r1c3) or (r5c2, r6c2,
r6c3, r5c3)]. The definition of length (k if the chain lies on k+1 cells) will be
justified by theorem 14.2.

The ascending chain rule (weak version): in n×n Futoshiki, if (C0, C1, …, Ck) is
an ascending chain of length k, then, for any i with 0 ≤ i ≤ k, k candidate-Numbers
can be deleted from Ci, namely:
- the i candidate-Numbers j with 1 ≤ j ≤ i;
- the k-i candidate-Numbers j with n-(k-i)+1 ≤ j ≤ n.

There are several obvious consequences. In a well-formed n×n Futoshiki puzzle:
- there can be no ascending chain of length n or greater;
- an ascending chain of length n-1 completely determines the values of all its cells.

Indeed, this is the (more or less) standard formulation of the rule, but a stronger
version is often needed in practice.

The ascending chain rule (strong version): in n×n Futoshiki, if (C0, C1, …, Ck)
is an ascending chain of length k and if, in the current resolution state, m0 is the
smallest candidate for C0 and Mk is the largest candidate for Ck, then:
- for any i with 0 < i ≤ k, all the candidate-Numbers j with 1 ≤ j ≤ m0+i-1 can be
deleted from Ci;
- for any i with 0 ≤ i < k, all the candidate-Numbers j with Mk-(k-i)+1 ≤ j ≤ n can be
deleted from Ci.

The proof of both versions is straightforward, either directly (by counting the
number of smaller / greater values there must be in the other cells of the chain) or as
a corollary to theorem 14.1 below.

Exercise (easy): write the proof of the strong version.

Besides taking into consideration the minimum or maximum values still present
in the endpoints in the current resolution state, the strong version of the ascending
chain rule differs from the weak one by one more point. The latter could be
restricted with no damage to maximal ascending chains, but the former gets its full
strength only if it can be applied to non-maximal ones. Consider for instance the
chain in Figure 14.2 (the cells C0, C1, …, C5 do not have to be in the same row or
column, they only have to be related by <). Each cell is displayed with the

378 Pattern-Based Constraint Satisfaction and Logic Puzzles

candidates remaing after the weak rule has been applied. Suppose now that some
other rule application deletes n3 in C2. Then, by considering the sub-chain C3, …,
C5, the strong rule can delete n4 in C3, n5 in C4 and n6 in C5. Similarly, if n6 was
deleted from C2 by another rule, then the strong rule could delete n5 from C2 and n4
from C1. Of course, these eliminations could also be done by whips[1] (using
theorem 14.1), but this example shows that only the strongest form of the ascending
chain rule captures its full power.

n1 n2 n3
n4

<

 n2 n3
n4 n5

<

 n3
n4 n5 n6

<

n4 n5 n6
n7

<

 n5 n6
n7 n8

<

 n6
n7 n8 n9

Figure 14.2. A symbolic representation of the strong ascending chain rule.

14.2.2. Ascending chains vs whips[1]

Theorem 14.1: Any elimination done by the ascending chain rule (weak or
strong version) can be obtained by a sequence of applications of the whip[1] rule.

 c1 c2 c3 c4 c5 c6

r1
n1 n2 n3
n4

 n3
n4 n5

<

n4 n5 n6

 n2 n3
n4 n5

>
n1 n2 n3
n4

<

 n2 n3
n4 n5

r1

 ∧ ∨ ∧ ∧

r2
 n2 n3
n4 n5

 n2 n3
n4

n1 n2 n3
n4 n5 n6

 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

 n3
n4 n5 n6

r2

 ∧ ∨

r3
 n3
n4 n5 n6

n1 n2 n3

n1 n2 n3
n4 n5

<
 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

 n2 n3
n4 n5 n6

r3

 ∨

r4
n1 n2 n3
n4 n5

<
 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5

r4

r5
n1 n2 n3
n4 n5 n6

n4 n5 n6

n1 n2 n3

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

n1 n2 n3

r5

 ∨ ∧ ∧

r6
n1 n2 n3
n4 n5 n6

 n3
n4 n5

>
 n2 n3
n4

n4 n5 n6

>
 n3
n4 n5

>
 n2 n3
n4

r6

 c1 c2 c3 c4 c5 c6

Figure 14.3. Resolution state RS1 of the puzzle in Figure 14.1

14. Transitive constraints and Futoshiki 379

Conversely, it is not true that any whip[1] comes in this way from an ascending
chain. Without entering into details, think of a puzzle with constraint r1c4 < r1c5
and a resolution state with the following kind of whip[1]: r1n3{c4 .} ==> r1c5 ≠ 2.

Proof for the weak version: for the first series of eliminations described in the
definition of the ascending-chain rule, proceed upwards from number 1 to number k
and for each of these numbers backwards from cell Ck to cell C1; for the second
series of eliminations, proceed downwards from number n down to number n-(k-
i)+1 and for each of these numbers forwards from cell C0 to cell Ck-1.

The proof of theorem 14.1 will be better understood after reading the following
example, in which we show how the whip[1] rule applies to the easy puzzle in
Figure 14.1 to make a lot of ascending-chain eliminations (we choose the whips[1]
in the order mentioned in the proof).

*****	 Manual	 solution	 *****	
;;;	 concentrating	 first	 on	 the	 upper-‐left	 corner	
whip[1]:	 r1c6{n1	 .}	 ==>	 r2c6	 ≠	 1;	 whip[1]:	 r1c5{n1	 .}	 ==>	 r1c6	 ≠	 1;	 whip[1]:	 r1c6{n2	 .}	 ==>	 r2c6	 ≠	 2	
whip[1]:	 r1c6{n6	 .}	 ==>	 r1c5	 ≠	 6;	 whip[1]:	 r2c6{n6	 .}	 ==>	 r1c6	 ≠	 6;	 whip[1]:	 r1c6{n5	 .}	 ==>	 r1c5	 ≠	 5	
whip[1]:	 r1c4{n1	 .}	 ==>	 r2c4	 ≠	 1;	 whip[1]:	 r1c5{n1	 .}	 ==>	 r1c4	 ≠	 1;	 whip[1]:	 r1c4{n2	 .}	 ==>	 r2c2	 ≠	 2	
whip[1]:	 r2c4{n6	 .}	 ==>	 r1c4	 ≠	 6	
…	 lots	 of	 similar	 eliminations	 related	 to	 the	 remaining	 ascending	 chains	

Figure 14.3 shows the state RS1 reached after all these rules have been applied.
Starting from resolution state RS1, we now have the following resolution path.
Notice that, if RS1 was not merely taken as our starting state, some of the following
Single rules could be applied earlier in the path. As usual, we do not write the ECP
rule firings, but they are applied whenever possible, immediately after the Singles.
They include not only constraint propagation according to the rc, rn and cn
constraints, but also according to the inequality constraint, in conformance with the
general definition of BRT(CSP) in section 4.3.

*****	 	 	 	 	 	 FutoRules	 1.2	 	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 	 *****	
singles:	 r6c1	 =	 1,	 r1c5	 =	 1,	 r1c3	 =	 6,	 r3c2	 =	 1,	 r2c3	 =	 1,	 r6c4	 =	 6	
whip[1]:	 r1c1{n2	 .}	 ==>	 r2c1	 ≠	 2;	 whip[1]:	 r2c1{n3	 .}	 ==>	 r3c1	 ≠	 3;	 whip[1]:	 r3c2{n5	 .}	 ==>	 r3c4	 ≠	 5	
whip[1]:	 r5c3{n2	 .}	 ==>	 r6c3	 ≠	 2;	 whip[1]:	 r6c3{n3	 .}	 ==>	 r6c2	 ≠	 3;	 whip[1]:	 r6c2{n4	 .}	 ==>	 r5c2	 ≠	 4	
whip[1]:	 r3c4{n5	 .}	 ==>	 r3c3	 ≠	 5	
singles:	 r4c3	 =	 5,	 r6c6	 =	 2,	 r5c6	 =	 1,	 r4c4	 =	 1,	 r2c2	 =	 2	
whip[1]:	 r1c6{n3	 .}	 ==>	 r2c6	 ≠	 3;	 whip[1]:	 r4c6{n3	 .}	 ==>	 r3c6	 ≠	 3;	 whip[1]:	 r4c1{n1	 .}	 ==>	 r4c2	 ≠	 1	
whip[1]	 r2c4{n5	 .}	 ==>	 r1c4	 ≠	 5	

;;; Resolution state RS2, displayed in Figure 14.4. After RS2 is reached, the simplest
rules are short whips[2].

whip[2]:	 c2n3{r1	 r4}	 –	 c6n3{r4	 .}	 ==>	 r1c1	 ≠	 3,	 r1c4	 ≠	 3	 (this	 is	 also	 an	 XWing)	
whip[2]:	 r1n5{c2	 c6}	 –	 r1n3{c6	 .}	 ==>	 r1c2	 ≠	 4	
whip[2]:	 r1c1{n4	 n2}	 –	 r1c4{n2	 .}	 ==>	 r1c6	 ≠	 4	 (this	 is	 also	 a	 Naked	 Pair)	

380 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[2]:	 c6n5{r2	 r3}	 –	 c6n6{r3	 .}	 ==>	 r2c6	 ≠	 4	
whip[2]:	 c1n5{r3	 r5}	 –	 c1n6{r5	 .}	 ==>	 r3c1	 ≠	 4	
whip[2]:	 r3n3{c3	 c5}	 –	 r3n2{c5	 .}	 ==>	 r3c3	 ≠	 4	
singles	 to	 the	 end	

Exercise: check these whips on Figure 14.4.

 c1 c2 c3 c4 c5 c6

r1
 n2 n3
n4

 n3
n4 n5

<

n6

 n2 n3
n4

>

n1

<
 n3
n4 n5

r1

 ∧ ∨ ∧ ∧

r2
 n3
n4 n5

n2

n1

 n3
n4 n5

 n2 n3
n4 n5 n6

n4 n5 n6

r2

 ∧ ∨

r3

n4 n5 n6

n1

 n2 n3
n4

<
 n2 n3
n4 n5

 n2 n3
n4 n5 n6

n4 n5 n6

r3

 ∨

r4
 n2 n3
n4

<
 n3
n4 n6

n5

n1

 n2 n3
n4 n6

 n3
n4

r4

r5
 n2 n3
n4 n5 n6

 n5 n6

 n2 n3

 n2 n3
n4 n5

 n2 n3
n4 n5 n6

n1

r5

 ∨ ∧ ∧

r6

n1

n4 n5

>
 n3
n4

n6

>
 n3
n4 n5

>

n2

r6

 c1 c2 c3 c4 c5 c6

Figure 14.4. Resolution state RS2 of the puzzle in Figure 14.1

14.2.3. Remarks on the rating of ascending chains

Depending on how we consider the ascending-chain rule, we may be tempted to
assign it different ratings. If we decompose it as above – as a sequence of whips[1] –
the W rating of this part of the resolution path is 1; otherwise, if we consider it as an
independent rule, it seems we should assign it a rating equal to the length of the
chain. This reflects an unavoidable difference in viewpoints:

– either one prefers “atomic” rules (here whips[1]) to which more complex ones
can be reduced and one has to apply them multiple times (this is the approach
followed in this book);

14. Transitive constraints and Futoshiki 381

– or one prefers to define more complex rules (here the ascending-chain rule)
each application of which leads to a large sets of eliminations.

The good solution in our view is that one can use the ascending chain rule in its
original form (which is much easier to apply systematically), but remember that it is
equivalent to a sequence of whips[1] and therefore grant it rating 1, independent of
length. This is an interesting example of rule reduction, because the real underlying
complexity (supposing our view of rating is still based on the hardest step) is
drastically less than might appear from a quick look at the usual formulation of the
rule. This is also more consistent with our intuition of simplicity.

Notice also that, in a pure Futoshiki puzzle, there always are initial ascending-
chain eliminations and that these could be considered as obvious domain
restrictions; one could decide to systematically choose as initial resolution state for a
puzzle P the RS1 (obtained immediately after all these restrictions) instead of the
usual RSP of the general theory (consisting of all the candidates in all the undecided
cells).

As a result of the ascending chain rule, many extreme values (1 and n and those
close to them) will often be eliminated before the medium ones. This introduces an
interesting asymmetry between extreme and medium values and it suggests the
heuristics of trying to place or eliminate first the extreme values. However, as any
heuristics, its efficiency should be tested by statistical studies, for which this chapter
can have no pretension: there is no available generator of Futoshiki puzzles, a
fortiori no controlled-bias one. Notice that, in “pure” n×n Futoshiki, as long as only
this rule (and the hill and valley rules) is applied, the set of candidates for any cell
can have no “hole”: it can only be a full sub-interval [k1, …, k2] of [1, …, n].

14.3. Hills, valleys and S-whips

One can obtain more eliminations by combining two different ascending chains
that both live completely in a single row or column, provided that they form a
“valley” or a “hill” in this row or column; these eliminations can only be done at
the top of the hill or at the bottom of the valley. It seems these classical rules have
no standard name, but “hill” and “valley” sound appropriate.

14.3.1. The hill rule and the valley rule

Definitions: a hill is a pair of ascending chains (C0, C1, …, Ck) and (C’0, C’1, …,
C’k’) of lengths k and k’, all completely in the same row [or column], such that
Ck = C’k’ and (C0, C1, …, Ck-1) and (C’0, C’1, …, C’k’-1) are disjoint. A valley of
length l is a pair of ascending chains (C0, C1, …, Ck) and (C’0, C’1, …, C’k’) of
lengths k and k’, all completely in the same row [or column], such that C’0 = C0 and

382 Pattern-Based Constraint Satisfaction and Logic Puzzles

(C1, C2, …, Ck) and (C’1, C’2, …, C’k’) are disjoint. The length of the hill or valley is
defined as l = k + k’.

The hill rule (weak form): in n×n Futoshiki, if (C0, C1, …, Ck) and (C’0, C’1, …,
C’k’) form a hill, then one can eliminate from Ck the k+k’ candidate-Numbers
between 1 and k+k’ included.

The valley rule (weak form): in n×n Futoshiki, if (C0, C1, …, Ck) and (C0, C’1,
…, C’k’) form a valley, then one can eliminate from C0 the k+k’ candidate-Numbers
between n-(k+k’)+1 and n included.

Proof: by counting the number of cells that must have a smaller value than Ck
[respectively a larger value than C0].

n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

>
n1 n2 n3
n4 n5 n6
n7 n8

>
n1 n2 n3
n4 n5 n6
n7 n8

<
n1 n2 n3
n4 n5 n6
n7 n8

<
n1 n2 n3
n4 n5 n6
n7 n8

<
n1 n2 n3
n4 n5 n6
n7 n8

 n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

 n3
n4 n5 n6
n7 n8

>
 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5

<

 n2 n3
n4 n5 n6

<

 n3
n4 n5 n6
n7

<

n4 n5 n6
n7 n8

 n1 n2 n3
n4 n5 n6
n7 n8

Figure 14.5. Illustration of the valley rule in an 8×8 Futoshiki, n = 8, k = 2, k’=3, k+k’ = 5,
n-(k+k’)+1 = 4; candidates 8 to 4 can be eliminated from the fourth cell. First line, before
any elimination. Second line, after the whip[1] (or ascending chain) eliminations of section

14.2.1. In the second line, the two crossed candidates are eliminated by the valley rule.

The hill rule (strong form): in n×n Futoshiki, if (C0, C1, …, Ck) and (C0, C’1, …,
C’k’) form a hill and if, in the current resolution state, m is the smallest candidate-
Number still present in C0 or C’0, then one can eliminate from Ck the m+k+k’
candidate-Numbers between 1 and m+k+k’-1 included.

The valley rule (strong form): in n×n Futoshiki, if (C0, C1, …, Ck) and (C0, C’1,
…, C’k’) form a valley and if, in the current resolution state, M is the largest
candidate-Number still present in Ck or C’k’, then one can eliminate from C0 the
M+k+k’ candidate-Numbers between n-M-(k+k’)+1 and n included.

The proofs of the strong forms are similar to those of their weak forms.
Moreover, the remarks we made about the two forms of ascending chains can be
transposed in an obvious way to hills and valleys.

14.3.2. Hills, valleys and S-whips

Theorem 14.2: Any elimination done by the hill or the valley rule using
ascending chains of lengths k and k’ can be obtained by the application of

14. Transitive constraints and Futoshiki 383

whips[1] and/or S-whips of total length no more than k+k’ with a single inner
Subset of size no more than k+k’-1. If k = 1 (or k’ = 1), it can be obtained by a
whip[k+k’].

Proof: it is enough to prove the hill or valley eliminations that cannot be done by
the simpler ascending chain rule. The case k = 1 or k’ = 1 is obvious. For clarity, we
shall prove the general case (k ≠ 1 and k’ ≠ 1) only in the example of Figure 14.4,
i.e. the eliminations rc4 ≠ 5 and rc4 ≠ 4:

whip[4]:	 rc5{n5	 n6}	 –	 rc6{n6	 n7}	 –	 rc7{n7	 n8}	 –	 rc3{n8	 .}	 ==>	 rc4	 ≠	 5	
S4-‐whip[5]:	 r{c5n4	 S4{c5	 c6	 c7	 c3}{n5	 n6	 n7	 n8}}	 –	 rc2{n8	 .}	 ==>	 rc4	 ≠	 4	

Notice that, contrary to the ascending chain rule, the hill or valley rules cannot in
general be reduced to combinations of elementary rules. Therefore, their place in the
complexity hierarchy should be defined by their length. However, as our purposes in
this chapter are only illustrative, we put them all just after whip[1], i.e. just after
(both weak and strong) ascending chains.

This theorem justifies our definition of the “length” of a hill or valley: whether
we consider it as such or as an S-whip, we get the same length. In Sudoku, an S-
whip is a relatively complex pattern. It is interesting that Futoshiki provides very
natural and easy to find instances of it (but there may be more complex ones, similar
to those in Sudoku).

14.4. A detailed example using the hill rule, the valley rule and Subsets

Let us now illustrate this rule with the (relatively hard) pure 7×7 Futoshiki
puzzle defined by its <, >, ∧ and ∨ inequality symbols in Figure 14.6. Contrary to
the example in section 14.2, we now use explicit ascending chain rules, both their
weak version, notated e.g. asc[3]: r3c7<r2c7<r1c7<r1c6), and their strong version,
notated e.g. str-asc[2]: r6c3<r6c2<r5c2. We write their apparent length, but both are
fundamentally mere whips[1]. The reason for making a distinction between weak
and strong cases is only contingent: the weak version can only be used for
initialisation purposes leading to state RS1 while the strong one can only be used
later; this is easily done in FutoRules by assigning them different priorities.

In the (easy but tedious) part of the resolution path leading to RS1, the initial
ascending chains are applied in a random order, independent of their apparent
lengths; the application of Singles has been suspended during this first phase.

The path was generated by FutoRules, our Futoshiki solver based on our general
CSP-Rules solver. What we needed to add to CSP-Rules is input-output functions
(most of which are the same as in SudoRules) as well as functions for defining the
inequality constraints from the data given in the form described in the next

384 Pattern-Based Constraint Satisfaction and Logic Puzzles

paragraph. In order to identify ascending chains, hills and valleys, even in cases
where they are subsumed by whips, we also added specific rules for them.15
	

 c1 c2 c3 c4 c5 c6 c7

r1
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4

<
 n2 n3
n4 n5

>
n1 n2 n3
n4

n4 n5 n6
n7

>
 n3
n4 n5 n6

r1

 ∧ ∨

r2
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

 n3
n4 n5 n6

<

n4 n5 n6
n7

 n3
n4 n5 n6
n7

>
 n2 n3
n4 n5

r2

 ∨ ∨

r3
n1 n2 n3
n4 n5 n6
n7

 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6

<
 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4

r3

 ∨ ∨ ∨

r4
 n3
n4 n5 n6
n7

>
 n2 n3
n4 n5 n6

>

n1 n2 n3
n4 n5

n1 n2 n3
n4 n5

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

 n2 n3
n4 n5 n6
n7

r4

 ∧ ∨

r5
 n2 n3
n4 n5 n6
n7

 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6

r5

 ∨ ∨ ∨ ∨ ∧

r6
n1 n2 n3
n4 n5

<
 n2 n3
n4 n5 n6

>
n1 n2 n3
n4 n5

<
 n2 n3
n4 n5 n6

>
n1 n2 n3
n4

n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7

r6

 ∧ ∨

r7
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

 n2 n3
n4 n5

<
 n3
n4 n5 n6

>
n1 n2 n3
n4 n5

r7

 c1 c2 c3 c4 c5 c6 c7

Figure 14.6. State RS1 of a 7×7 Futoshiki puzzle (clues of #H662, from atksolutions.com)

The second, third and fourth lines in the output display the compact
representation we use and we recommend for any type (pure or not) of n×n
Futoshiki (this is how we feed FutoRules with puzzles). It is made of three series of
symbols. The first sequence is for the n×n clues in the cells, exactly as in Sudoku.
The second and the third represent inequalities. The second is the sequence of (n-
1)×n inequality signs present in the n successive rows, from top to bottom. The third

15 To give a rough idea of what is needed for using CSP-Rules to solve another CSP, the total
time it took us was two days, including extensive testing. Of course, as grid geometry is the
same, forgetting blocks, we could re-use much of what we had done for SudoRules; for very
different types of CSPs, in particular with a different geometry, it may take longer. In
SudoRules or FutoRules, the specific part (of source code) is about 3% of the generic CSP-
Rules part.

14. Transitive constraints and Futoshiki 385

is the sequence of the same number (n-1)×n of inequality signs present in the n
successive colums, from left to right. The symbols “.” and “-” are placeholders,
meaning respectively the absence of any digit or inequality sign. In case one only
wants to deal with “pure” Futoshiki, the first sequence can be discarded.
	
*****	 	 FutoRules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W+S	 	 	 *****	
...
--<>->---<->---<-->>----->----<><>---->-<>
---->--->->-------<->->--->-><->-<->>>-><-
0	 givens,	 343	 candidates,	 3087	 csp-‐links	 and	 3759	 links.	 Initial	 density	 =	 1.60	
asc[1]:	 r5c7<r6c7	 ==>	 r6c7	 ≠	 1,	 r5c7	 ≠	 7	
asc[1]:	 r5c7<r4c7	 ==>	 r4c7	 ≠	 1	
asc[3]:	 r3c7<r2c7<r1c7<r1c6	 ==>	 r3c7	 ≠	 7,	 r3c7	 ≠	 6,	 r3c7	 ≠	 5,	 r2c7	 ≠	 7,	 r2c7	 ≠	 6,	 r2c7	 ≠	 1,	 r1c7	 ≠	 7,	
r1c7	 ≠	 2,	 r1c7	 ≠	 1,	 r1c6	 ≠	 3,	 r1c6	 ≠	 2,	 r1c6	 ≠	 1	
asc[2]:	 r3c7<r2c7<r2c6	 ==>	 r2c6	 ≠	 2,	 r2c6	 ≠	 1	
asc[1]:	 r4c6<r5c6	 ==>	 r5c6	 ≠	 1,	 r4c6	 ≠	 7;	 asc[1]:	 r3c6<r2c6	 ==>	 r3c6	 ≠	 7	
asc[3]:	 r6c5<r7c5<r7c6<r6c6	 ==>	 r7c6	 ≠	 7,	 r7c6	 ≠	 2,	 r7c6	 ≠	 1,	 r7c5	 ≠	 7,	 r7c5	 ≠	 6,	 r7c5	 ≠	 1,	 r6c6	 ≠	 3,	
r6c6	 ≠	 2,	 r6c6	 ≠	 1,	 r6c5	 ≠	 7,	 r6c5	 ≠	 6,	 r6c5	 ≠	 5	
asc[1]:	 r6c5<r5c5	 ==>	 r5c5	 ≠	 1;	 asc[1]:	 r4c5<r3c5	 ==>	 r4c5	 ≠	 7,	 r3c5	 ≠	 1	 	
asc[2]:	 r4c4<r3c4<r3c5	 ==>	 r4c4	 ≠	 7,	 r4c4	 ≠	 6,	 r3c5	 ≠	 2,	 r3c4	 ≠	 7,	 r3c4	 ≠	 1	
asc[1]:	 r6c1<r5c1	 ==>	 r6c1	 ≠	 7,	 r5c1	 ≠	 1;	 asc[2]:	 r7c7<r7c6<r6c6	 ==>	 r7c7	 ≠	 7,	 r7c7	 ≠	 6	
asc[1]:	 r7c4<r7c3	 ==>	 r7c4	 ≠	 7,	 r7c3	 ≠	 1	
asc[2]:	 r6c5<r6c4<r5c4	 ==>	 r6c4	 ≠	 7,	 r6c4	 ≠	 1,	 r5c4	 ≠	 2,	 r5c4	 ≠	 1	
asc[2]:	 r6c3<r6c4<r5c4	 ==>	 r6c3	 ≠	 7,	 r6c3	 ≠	 6	 	
asc[2]:	 r6c3<r6c2<r5c2	 ==>	 r6c2	 ≠	 7,	 r6c2	 ≠	 1,	 r5c2	 ≠	 2,	 r5c2	 ≠	 1	
asc[2]:	 r6c1<r6c2<r5c2	 ==>	 r6c1	 ≠	 6	 	
asc[1]:	 r5c3<r5c2	 ==>	 r5c3	 ≠	 7	 	
asc[2]:	 r4c3<r4c2<r3c2	 ==>	 r4c3	 ≠	 7,	 r4c3	 ≠	 6,	 r4c2	 ≠	 7,	 r4c2	 ≠	 1,	 r3c2	 ≠	 2,	 r3c2	 ≠	 1	 	
asc[2]:	 r4c3<r4c2<r4c1	 ==>	 r4c1	 ≠	 2,	 r4c1	 ≠	 1	
asc[3]:	 r1c5<r1c4<r2c4<r2c5	 ==>	 r2c5	 ≠	 3,	 r2c5	 ≠	 2,	 r2c5	 ≠	 1,	 r2c4	 ≠	 7,	 r2c4	 ≠	 2,	 r2c4	 ≠	 1,	 r1c5	 ≠	 7,	
r1c5	 ≠	 6,	 r1c5	 ≠	 5,	 r1c4	 ≠	 7,	 r1c4	 ≠	 6,	 r1c4	 ≠	 1	
asc[3]:	 r1c3<r1c4<r2c4<r2c5	 ==>	 r1c3	 ≠	 7,	 r1c3	 ≠	 6,	 r1c3	 ≠	 5	

;;; Resolution state RS1, displayed in Figure 14.6. Starting from RS1, after a Single
and a few ascending chains (strong form, just enabled by the Single), we find our
first hills and valleys.

hidden-‐single-‐in-‐a-‐column:	 r5c4	 =	 7	
str-‐asc[1]:	 r5c3<r5c2	 ==>	 r5c3	 ≠	 6;	 str-‐asc[1]:	 r6c2<r5c2	 ==>	 r6c2	 ≠	 6	
str-‐asc[1]:	 r6c1<r6c2	 ==>	 r6c1	 ≠	 5	
str-‐asc[2]:	 r6c3<r6c2<r5c2	 ==>	 r6c3	 ≠	 5	

valley[2]:	 r4c7>r5c7<r6c7	 ==>	 r5c7	 ≠	 6	
hill[2]:	 r6c3<r6c4>r6c5	 ==>	 r6c4	 ≠	 2	
hill[2]:	 r6c1<r6c2>r6c3	 ==>	 r6c2	 ≠	 2	
str-‐asc[1]:	 r6c2<r5c2	 ==>	 r5c2	 ≠	 3	
hill[2]:	 r1c3<r1c4>r1c5	 ==>	 r1c4	 ≠	 2	

386 Pattern-Based Constraint Satisfaction and Logic Puzzles

The rest of the resolution path has nothing noticeable; from the outside, it looks
exactly like one for Sudoku. However, it is worth checking the t-candidates in the
various whips, because many of them rely on the inequality constraints. As for the
presence of Subsets, it is here for illustration purposes only: all these instances are
subsumed by whips.

 c1 c2 c3 c4 c5 c6 c7

r1
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4

<
 n3
n4 n5

>
n1 n2 n3
n4

 n5 n6
n7

>
 n3
n4 n5 n6

r1

 ∧ ∨

r2
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

n4 n5 n6

<

 n5 n6
n7

 n3
n4 n5 n6
n7

>
 n2 n3
n4 n5

r2

 ∨ ∨

r3
n1 n2 n3
n4 n5 n6
n7

 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6

<

n4 n5 n6
n7

n1 n2 n3

n1 n2 n3
n4

r3

 ∨ ∨ ∨

r4

 n5 n6
n7

>

n4 n5 n6

>
 n3
n4 n5

n1 n2

 n3
n4 n5 n6

n1 n2

 n3
n4 n5 n6
n7

r4

 ∧ ∨

r5
 n2 n3
n4 n5 n6

n4 n5 n6

>
n1 n2 n3
n4 n5

n7

 n2 n3
n4 n5 n6

 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5

r5

 ∨ ∨ ∨ ∨ ∧

r6
n1 n2 n3
n4

<
 n3
n4 n5

>
n1 n2 n3

<
 n3
n4 n5 n6

>
n1 n2

n4 n5 n6
n7

 n6
n7

r6

 ∧ ∨

r7
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

 n2 n3
n4 n5

<
 n3
n4 n5 n6

>
n1 n2 n3
n4 n5

r7

 c1 c2 c3 c4 c5 c6 c7

Figure 14.7. State RS2 of the 7×7 Futoshiki puzzle in Figure 14.5.

str-‐asc[1]:	 r1c4<r2c4	 ==>	 r2c4	 ≠	 3;	 str-‐asc[1]:	 r2c4<r2c5	 ==>	 r2c5	 ≠	 4	
whip[2]:	 c4n2{r4	 r7}	 –	 c4n1{r7	 .}	 ==>	 r4c4	 ≠	 3,	 r4c4	 ≠	 4,	 r4c4	 ≠	 5	
whip[2]:	 r4c3{n2	 n1}	 –	 r4c4{n1	 .}	 ==>	 r4c2	 ≠	 2	
str-‐asc[1]:	 r4c2<r4c1	 ==>	 r4c1	 ≠	 3;	 str-‐asc[1]:	 r4c2<r3c2	 ==>	 r3c2	 ≠	 3	
whip[2]:	 c6n2{r4	 r3}	 –	 c6n1{r3	 .}	 ==>	 r4c6	 ≠	 3,	 r4c6	 ≠	 4,	 r4c6	 ≠	 5	
naked-‐pairs-‐in-‐a-‐row	 r4{c4	 c6}{n1	 n2}	 ==>	 r4c5	 ≠	 1,	 r4c5	 ≠	 2,	 r4c7	 ≠	 2	
str-‐asc[1]:	 r4c5<r3c5	 ==>	 r3c5	 ≠	 3	
naked-‐pairs-‐in-‐a-‐row	 r4{c4	 c6}{n1	 n2}	 ==>	 r4c3	 ≠	 1,	 r4c3	 ≠	 2	
str-‐asc[1]:	 r4c3<r4c2	 ==>	 r4c2	 ≠	 3;	 str-‐asc[1]:	 r4c2<r3c2	 ==>	 r3c2	 ≠	 4	
str-‐asc[1]:	 r4c2<r4c1	 ==>	 r4c1	 ≠	 4	

14. Transitive constraints and Futoshiki 387

whip[2]:	 c5n1{r6	 r1}	 –	 c5n2{r1	 .}	 ==>	 r6c5	 ≠	 4,	 r6c5	 ≠	 3	
whip[4]:	 c7n7{r6	 r4}	 –	 c7n6{r4	 r1}	 –	 r1c6{n6	 n7}	 –	 r6n7{c6	 .}	 ==>	 r6c7	 ≠	 5,	 r6c7	 ≠	 4,	 r6c7	 ≠	 3,	
r6c7	 ≠	 2	
whip[3]:	 r6n3{c2	 c1}	 –	 r6n1{c1	 c5}	 –	 r6n2{c5	 .}	 ==>	 r6c3	 ≠	 4	
whip[6]:	 c6n1{r3	 r4}	 –	 c6n2{r4	 r5}	 –	 c6n3{r5	 r7}	 –	 r7c5{n3	 n2}	 –	 r7c7{n2	 n1}	 –	 c4n1{r7	 .}	 ==>	
r3c6	 ≠	 4,	 r3c6	 ≠	 5,	 r3c6	 ≠	 6	
whip[10]:	 r1c7{n4	 n3}	 –	 r1c4{n3	 n5}	 –	 r2c4{n5	 n6}	 –	 r2c5{n6	 n7}	 –	 c6n7{r2	 r6}	 –	 r6n5{c6	 c2}	 –	
r5c2{n5	 n6}	 –	 r3c2{n6	 n7}	 –	 r1n7{c2	 c1}	 –	 r1n6{c1	 .}	 ==>	 r1c6	 ≠	 4	

;;; Resolution state RS2, displayed in Figure 14.7. After RS2 is reached, the longest
whip in the path appears.

whip[12]:	 r6n7{c6	 c7}	 –	 r6n6{c7	 c4}	 –	 r6n5{c4	 c2}	 –	 r5c2{n5	 n6}	 –	 r3c2{n6	 n7}	 –	 c5n7{r3	 r2}	
–	 c3n7{r2	 r7}	 –	 r7n6{c3	 c1}	 –	 r7c6{n6	 n3}	 –	 r7n5{c6	 c4}	 –	 r7n4{c4	 c2}	 –	 r4c2{n4	 .}	 ==>	
r6c6	 ≠	 4	
whip[4]:	 r6n4{c1	 c4}	 –	 r6n5{c4	 c6}	 –	 r6n7{c6	 c7}	 –	 r6n6{c7	 .}	 ==>	 r6c2	 ≠	 3	
str-‐asc[1]:	 r6c2<r5c2	 ==>	 r5c2	 ≠	 4	
whip[2]:	 r4c2{n6	 n4}	 –	 r6c2{n4	 .}	 ==>	 r3c2	 ≠	 5	
whip[2]:	 r3c5{n6	 n7}	 –	 r3c2{n7	 .}	 ==>	 r3c4	 ≠	 6	
naked-‐triplets-‐in-‐a-‐column	 c2{r4	 r5	 r6}{n4	 n5	 n6}	 ==>	 r3c2	 ≠	 6,	 r7c2	 ≠	 6,	 r7c2	 ≠	 5,	 r7c2	 ≠	 4	
singles	 :	 r3c2	 =	 7,	 r2c5	 =	 7,	 r7c3	 =	 7	
str-‐asc[1]:	 r4c5<r3c5	 ==>	 r4c5	 ≠	 6	
whip[2]:	 r4n7{c1	 c7}	 –	 r4n6{c7	 .}	 ==>	 r4c1	 ≠	 5	
naked-‐triplets-‐in-‐a-‐column	 c2{r4	 r5	 r6}{n4	 n5	 n6}	 ==>	 r1c2	 ≠	 6,	 r2c2	 ≠	 4,	 r2c2	 ≠	 5,	 r2c2	 ≠	 6	
whip[2]:	 r1n7{c6	 c1}	 –	 r1n6{c1	 .}	 ==>	 r1c6	 ≠	 5	
whip[2]:	 r6c6{n6	 n7}	 –	 r1c6{n7	 .}	 ==>	 r7c6	 ≠	 6	
str-‐asc[1]:	 r7c7<r7c6	 ==>	 r7c7	 ≠	 5;	 str-‐asc[2]:	 r6c5<r7c5<r7c6	 ==>	 r7c5	 ≠	 5	
whip[2]:	 c5n6{r3	 r5}	 –	 c5n5{r5	 .}	 ==>	 r3c5	 ≠	 4	
naked-‐triplets-‐in-‐a-‐column	 c2{r4	 r5	 r6}{n4	 n6	 n5}	 ==>	 r1c2	 ≠	 4,	 r1c2	 ≠	 5	
whip[3]:	 r7c5{n3	 n2}	 –	 r7c7{n2	 n1}	 –	 r7c2{n1	 .}	 ==>	 r7c6	 ≠	 3	
whip[5]:	 r2c6{n3	 n6}	 –	 r2c4{n6	 n4}	 –	 r1c4{n5	 n3}	 –	 r1n4{c5	 c1}	 –	 r1n5{c1	 .}	 ==>	 r2c7	 ≠	 5	
str-‐asc[1]:	 r3c7<r2c7	 ==>	 r3c7	 ≠	 4	
whip[3]:	 c7n7{r4	 r6}	 –	 c7n6{r6	 r1}	 –	 c7n5{r1	 .}	 ==>	 r4c7	 ≠	 4,	 r4c7	 ≠	 3	
whip[2]:	 r4n4{c2	 c5}	 –	 r4n3{c5	 .}	 ==>	 r4c3	 ≠	 5	
whip[4]:	 c3n6{r2	 r3}	 –	 c5n6{r3	 r5}	 –	 r5c2{n6	 n5}	 –	 c3n5{r5	 .}	 ==>	 r2c3	 ≠	 1,	 r2c3	 ≠	 2,	 r2c3	 ≠	 3,	
r2c3	 ≠	 4	

;;; Resolution state RS3

whip[6]:	 r2n1{c1	 c2}	 –	 r2n2{c2	 c7}	 –	 r3c7{n3	 n1}	 –	 c6n1{r3	 r4}	 –	 c4n1{r4	 r7}	 –	 r7n6{c4	 .}	 ==>	
r2c1	 ≠	 6	
whip[6]:	 c3n6{r3	 r2}	 –	 c3n5{r2	 r5}	 –	 r5c2{n5	 n6}	 –	 c5n6{r5	 r3}	 –	 c5n5{r3	 r4}	 –	 r4n3{c5	 .}	 ==>	
r3c3	 ≠	 3	
whip[7]:	 r2c4{n5	 n6}	 –	 r7n6{c4	 c1}	 –	 r7n5{c1	 c6}	 –	 r6n5{c6	 c2}	 –	 r5c2{n5	 n6}	 –	 c5n6{r5	 r3}	 –	
c3n6{r3	 .}	 ==>	 r1c4	 ≠	 5	
str-‐asc[1]:	 r1c3<r1c4	 ==>	 r1c3	 ≠	 4	
str-‐asc[1]:	 r1c5<r1c4	 ==>	 r1c5	 ≠	 4	
naked-‐triplets-‐in-‐a-‐row	 r1{c2	 c3	 c5}{n1	 n2	 n3}	 ==>	 r1c4	 ≠	 3,	 r1c7	 ≠	 3	

388 Pattern-Based Constraint Satisfaction and Logic Puzzles

naked-‐single:	 r1c4	 =	 4	
naked-‐pairs-‐in-‐a-‐row	 r2{c3	 c4}{n5	 n6}	 ==>	 r2c6	 ≠	 5,	 r2c6	 ≠	 6	
str-‐asc[2]:	 r3c7<r2c7<r2c6	 ==>	 r3c7	 ≠	 3,	 r2c7	 ≠	 4	
naked-‐pairs-‐in-‐a-‐row	 r2{c3	 c4}{n5	 n6}	 ==>	 r2c1	 ≠	 5	
naked-‐triplets-‐in-‐a-‐column	 c7{r1	 r4	 r6}{n6	 n5	 n7}	 ==>	 r5c7	 ≠	 5	
naked-‐triplets-‐in-‐a-‐row	 r1{c2	 c3	 c5}{n1	 n2	 n3}	 ==>	 r1c1	 ≠	 1,	 r1c1	 ≠	 2,	 r1c1	 ≠	 3	
whip[3]:	 r3c5{n5	 n6}	 –	 c3n6{r3	 r2}	 –	 r2n5{c3	 .}	 ==>	 r3c4	 ≠	 5	
naked-‐triplets-‐in-‐a-‐row	 r3{c4	 c6	 c7}{n2	 n3	 n1}	 ==>	 r3c1	 ≠	 1,	 r3c1	 ≠	 2,	 r3c1	 ≠	 3,	 r3c3	 ≠	 1,	 r3c3	 ≠	 2	
whip[3]:	 c4n1{r7	 r4}	 –	 c6n1{r4	 r3}	 –	 r3n3{c6	 .}	 ==>	 r7c4	 ≠	 3	
whip[3]:	 r4n2{c4	 c6}	 –	 c6n1{r4	 r3}	 –	 r3n3{c6	 .}	 ==>	 r3c4	 ≠	 2	
naked-‐single:	 r3c4	 =	 3	
naked-‐pairs-‐in-‐a-‐column	 c4{r2	 r6}{n5	 n6}	 ==>	 r7c4	 ≠	 6	
singles:	 r7c1	 =	 6,	 r4c1	 =	 7,	 r1c1	 =	 5	
str-‐asc[1]:	 r6c1<r5c1	 ==>	 r6c1	 ≠	 4	
naked-‐single	 :	 r3c1	 =	 4	
str-‐asc[1]:	 r6c1<r5c1	 ==>	 r6c1	 ≠	 3	
singles:	 r1c7	 =	 6,	 r4c7	 =	 5,	 r6c7	 =	 7,	 r1c6	 =	 7,	 r4c2	 =	 6	
str-‐asc[2]:	 r6c3<r6c2<r5c2	 ==>	 r6c2	 ≠	 5	 	
str-‐asc[1]:	 r5c3<r5c2	 ==>	 r5c3	 ≠	 5	
singles:	 r6c2	 =	 4,	 r5c2	 =	 5,	 r3c5	 =	 5,	 r3c3	 =	 6,	 r2c3	 =	 5,	 r2c4	 =	 6,	 r6c4	 =	 5,	 r6c6	 =	 6,	 r5c5	 =	 6,	 r7c6	 =	
5,	 r6c3	 =	 3,	 r4c3	 =	 4,	 r4c5	 =	 3,	 r1c2	 =	 3,	 r7c7	 =	 3,	 r2c7	 =	 2,	 r3c7	 =	 1,	 r5c7	 =	 4,	 r3c6	 =	 2,	 r4c6	 =	 1,	 r4c4	
=	 2,	 r7c4	 =	 1,	 r7c2	 =	 2,	 r7c5	 =	 4,	 r5c6	 =	 3	
str-‐asc[1]:	 r6c1<r5c1	 ==>	 r6c1	 ≠	 2	
nine	 naked-‐singles	 to	 the	 end:	 r6c1	 =	 1,	 r2c1	 =	 3,	 r6c5	 =	 2,	 r1c5	 =	 1,	 r1c3	 =	 2,	 r5c3	 =	 1,	 r2c6	 =	 4,	
r5c1	 =	 2,	 r2c2	 =	 1	

This puzzle also provides an example of braids in Futoshiki. Indeed, if we
activate braids, we get the same resolution path upto state RS2. But, the elimination
done by the whip[12] coming immediately after RS2 in the path with whips can now
be done by a braid[10], which leads to a B rating of 10 for this puzzle. We did not
investigate whether the whip[12] for this elimination is due to some non-confluence
phenomenon in this puzzle or if its W rating is effectively 12.

braid[10]:	 r6n7{c6	 c7}	 –	 r6n6{c7	 c4}	 –	 r6n5{c4	 c2}	 –	 r5c2{n5	 n6}	 –	 r4c2{n6	 n4}	 –	 r7c6{n4	 n3}	
–	 r3c2{n5	 n7}	 –	 r7c5{n3	 n2}	 –	 r7c2{n2	 n1}	 –	 r7c7{n5	 .}	 ==>	 r6c6	 ≠	 4	

The next steps of the path are the same as in the above resolution path without
braids, upto state RS3. We do not repeat them here. After RS3, there is a braid[5]
eliminating a candidate that was not eliminated by whips. After it, the two paths
diverge, even though they share many patterns (such as pairs and triplets).

braid[5]:	 r3c5{n6	 n5}	 –	 c3n6{r3	 r2}	 –	 c3n5{r2	 r5}	 –	 r5c2{n5	 n6}	 –	 c5n6{r5	 .}	 ==>	 r3c1	 ≠	 6	
braid[5]:	 r3n6{c3	 c5}	 –	 r4n3{c3	 c5}	 –	 c5n5{r4	 r5}	 –	 c3n5{r5	 r2}	 –	 c3n6{r3	 .}	 ==>	 r3c3	 ≠	 3	
whip[6]:	 r2n1{c1	 c2}	 –	 r2n2{c2	 c7}	 –	 r3c7{n3	 n1}	 –	 c6n1{r3	 r4}	 –	 c4n1{r4	 r7}	 –	 r7n6{c4	 .}	 ==>	
r2c1	 ≠	 6	
braid[6]:	 c5n6{r5	 r3}	 –	 r5c2{n6	 n5}	 –	 c5n5{r5	 r4}	 –	 r6c2{n5	 n4}	 –	 r4n4{c5	 c3}	 –	 r4n3{c5	 .}	 ==>	
r5c6	 ≠	 6	

14. Transitive constraints and Futoshiki 389

braid[6]:	 c5n6{r5	 r3}	 –	 r5c2{n6	 n5}	 –	 c5n5{r5	 r4}	 –	 r4c1{n6	 n7}	 –	 c2n6{r5	 r4}	 –	 r4c7{n7	 .}	 ==>	
r5c1	 ≠	 6	
whip[7]:	 r2c4{n5	 n6}	 –	 r7n6{c4	 c1}	 –	 r7n5{c1	 c6}	 –	 r6n5{c6	 c2}	 –	 r5c2{n5	 n6}	 –	 c5n6{r5	 r3}	 –	
c3n6{r3	 .}	 ==>	 r1c4	 ≠	 5	
str-‐asc[1]:	 r1c3<r1c4	 ==>	 r1c3	 ≠	 4;	 str-‐asc[1]:	 r1c5<r1c4	 ==>	 r1c5	 ≠	 4	
naked-‐triplets-‐in-‐a-‐row	 r1{c2	 c3	 c5}{n1	 n2	 n3}	 ==>	 r1c4	 ≠	 3	
naked-‐single:	 r1c4	 =	 4	
naked-‐pairs-‐in-‐a-‐row	 r2{c3	 c4}{n5	 n6}	 ==>	 r2c6	 ≠	 6,	 r2c6	 ≠	 5	
str-‐asc[2]:	 r3c7<r2c7<r2c6	 ==>	 r3c7	 ≠	 3,	 r2c7	 ≠	 4	
naked-‐pairs-‐in-‐a-‐row	 r2{c3	 c4}{n5	 n6}	 ==>	 r2c1	 ≠	 5	
hidden-‐pairs-‐in-‐a-‐column	 c6{n6	 n7}{r1	 r6}	 ==>	 r6c6	 ≠	 5	
naked-‐pairs-‐in-‐a-‐row	 r6{c6	 c7}{n6	 n7}	 ==>	 r6c4	 ≠	 6	
naked-‐triplets-‐in-‐a-‐column	 c7{r1	 r4	 r6}{n6	 n5	 n7}	 ==>	 r5c7	 ≠	 5	
naked-‐triplets-‐in-‐a-‐row	 r1{c2	 c3	 c5}{n1	 n2	 n3}	 ==>	 r1c1	 ≠	 3,	 r1c1	 ≠	 2,	 r1c1	 ≠	 1	
whip[3]:	 r3c5{n5	 n6}	 –	 c3n6{r3	 r2}	 –	 r2n5{c3	 .}	 ==>	 r3c4	 ≠	 5	
naked-‐triplets-‐in-‐a-‐row	 r3{c4	 c6	 c7}{n2	 n3	 n1}	 ==>	 r3c3	 ≠	 2,	 r3c3	 ≠	 1,	 r3c1	 ≠	 3,	 r3c1	 ≠	 2,	 r3c1	 ≠	 1	
whip[2]:	 r5c1{n2	 n5}	 –	 r3c1{n5	 .}	 ==>	 r6c1	 ≠	 4	
singles:	 r6c2	 =	 4,	 r6c4	 =	 5,	 r2c4	 =	 6,	 r2c3	 =	 5,	 r7c1	 =	 6,	 r4c1	 =	 7,	 r1c1	 =	 5,	 r3c1	 =	 4,	 r3c3	 =	 6,	
r3c5	 =	 5,	 r1c7	 =	 6,	 r4c7	 =	 5,	 r4c2	 =	 6,	 r5c2	 =	 5,	 r6c7	 =	 7,	 r6c6	 =	 6,	 r1c6	 =	 7,	 r7c6	 =	 5,	 r5c5	 =	 6,	
r2c6	 =	 4	
str-‐asc[1]:	 r6c1<r5c1	 ==>	 r6c1	 ≠	 3	
singles	 ==>	 r6c3	 =	 3,	 r4c3	 =	 4,	 r4c5	 =	 3,	 r1c2	 =	 3,	 r5c7	 =	 4,	 r7c5	 =	 4,	 r5c3	 =	 1,	 r1c3	 =	 2,	 r1c5	 =	 1,	
r6c5	 =	 2,	 r6c1	 =	 1,	 r2c2	 =	 1,	 r7c2	 =	 2	
whip[3]:	 c6n1{r3	 r4}	 –	 c4n1{r4	 r7}	 –	 c4n3{r7	 .}	 ==>	 r3c	 	 ≠	 3	
eleven	 singles	 to	 the	 end:	 r5c6	 =	 3,	 r5c1	 =	 2,	 r2c1	 =	 3,	 r2c7	 =	 2,	 r3c7	 =	 1,	 r7c7	 =	 3,	 r7c4	 =	 1,	 r4c4	 =	 2,	
r3c4	 =	 3,	 r4c6	 =	 1,	 r3c6	 =	 2	

14.5. g-labels, g-whips and g-braids in Futoshiki

In n×n Futoshiki, let us define the following sets of Numbers:
k+ = {k, k+1, …, n} for any k < n and k- = {1, 2 …, k} for any k > 1.

We can now define the g-labels of Futoshiki. For any Xrc CSP variable:
– there is a g-label < Xrc, k+>, or k+rc for short, provided that cell rc is adjacent

in a row [respectively in a column] to at least one cell r’c’ such that there is a <
[resp. a ∧] inequality sign between rc and r’c’. It is easy to see that label k’r’c’ for
this adjacent cell is g-linked to g-label k+rc according to the general definition in
chapter 7 if and only if k’ ≤ k.

– there is a g-label < Xrc, k
->, or k-rc for short, provided that cell rc is adjacent in

a row [respectively in a column] to at least one cell r’c’ such that there is a > [resp. a
∨] inequality sign between rc and r’c’. It is easy to see that label k’r’c’ for this
adjacent cell is g-linked to g-label k-rc according to the general definition in chapter
7 if and only if k’ ≥ k.

390 Pattern-Based Constraint Satisfaction and Logic Puzzles

Remark: the set of g-labels is fixed in the sense that it does not vary during the
resolution process, i.e. it does not depend on the resolution state of a given instance,
but, contrary to Sudoku, it is different for each instance. Alternatively, one could
move the < condition between cells from the definition of g-labels to the definition
of predicate g-linked. This would introduce lots of useless g-labels, but it would not
change anything in theory or in practice. [From a programming point of view, it may
be easier to have a set of g-labels independent of the instance; but one can also have
a universal set of “potential” g-labels and a subset of real g-labels for each instance.]

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n6
n7 n8

<

n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8

<
 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6

r1

 ∧ ∨ ∧

r2
 n2 n3
n4 n5 n6
n7 n8 n9

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8

 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n4 n5 n6
n7 n8 n9

>
 n3
n4 n5 n6
n7 n8

>
 n2 n3
n4 n5 n6
n7

r2

 ∨ ∧ ∨

r3

n4 n5 n6
n7 n8 n9

>
 n3
n4 n5 n6
n7 n8

 n2 n3
n4 n5 n6
n7 n8 n9

n4 n5 n6

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8

<
 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4 n5 n6
n7 n8 n9

r3

 ∨ ∨ ∨ ∨ ∨

r4
n1 n2 n3
n4 n5 n6

<

 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n3
n4 n5

 n3
n4 n5 n6
n7 n8

>
 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8

r4

 ∨ ∨ ∧ ∨ ∧

r5
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6

 n2 n3
n4 n5 n6
n7 n8 n9

>
n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8 n9

r5

 ∧ ∨

r6
 n2 n3
n4 n5 n6
n7 n8

n7 n8 n9
>

 n6
n7 n8

n1 n2 n3

<
 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

 n3
n4 n5 n6
n7 n8 n9

>
 n2 n3
n4 n5 n6
n7 n8

>
n1 n2 n3
n4 n5 n6
n7

r6

 ∧ ∨ ∧ ∧ ∧

r7

 n5 n6
n7 n8 n9

>

n4 n5 n6

<

 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8

<
 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4 n5 n6
n7 n8 n9

>
n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4 n5 n6
n7 n8 n9

r7

 ∨ ∨ ∨

r8
n1 n2 n3
n4

<

 n3
n4 n5

 n2 n3
n4 n5 n6
n7

<
 n3
n4 n5 n6
n7 n8

>
 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8

r8

 ∨ ∨ ∧ ∧ ∧

r9
n1 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4

>

n1 n2 n3

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4 n5 n6
n7 n8

<
 n3
n4 n5 n6
n7 n8 n9

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 14.8. State RS1 of a 9×9 Futoshiki puzzle (clues of H1117 from atksolutions.com)

14. Transitive constraints and Futoshiki 391

Let us now see how g-labels appear in practice in g-whips and g-braids. These
are the means by which ascending (or “descending”) chains can both be made
“contextual” (depending on the target and the previous right-linking candidates) and
be included as parts of whip-like or braid-like patterns.

Consider the puzzle defined by the set of inequality signs in Figure 14.8. This
hard puzzle cannot be solved by whips, braids or g-whips, even taken together; it
requires g-braids. We conjecture that, as in Sudoku, this is an exceptional instance,
but there is no available large collection of Futoshiki puzzles that would allow to
test this. Figure 14.8 displays the state RS1 reached after all the obvious weak
ascending chain eliminations have been done.

After RS1, one has, as is usual, a series of singles, strong ascending chains, hills
and valleys, due to the interactions between different chains.

*****	 	 FutoRules	 1.2	 based	 on	 CSP-‐Rules	 1.2	 ,	 config:	 gB+S	 	 	 *****	
...	 	
-‐-‐-‐<-‐<-‐-‐-‐-‐-‐-‐-‐-‐>>>-‐-‐-‐-‐<>-‐<-‐-‐-‐>-‐-‐-‐-‐-‐-‐-‐-‐-‐>-‐-‐>-‐<-‐-‐>>><-‐<-‐-‐>-‐<-‐<>>-‐-‐-‐-‐>-‐-‐-‐-‐-‐<	 	
<-‐-‐-‐<<-‐-‐-‐>>>-‐-‐>>-‐<-‐-‐-‐>-‐>>>>>>-‐-‐<-‐-‐><-‐<-‐-‐-‐-‐-‐>-‐<><-‐-‐><-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐<<-‐>-‐-‐<>-‐	
0	 givens,	 729	 candidates,	 8748	 csp-‐links	 and	 10728	 links.	 Initial	 density	 =	 1.01	
… Starting from resolution state RS1
singles	 ==>	 r9c4	 =	 9,	 r8c7	 =	 9,	 r6c2	 =	 9	
str-‐asc[1]:	 r1c6<r1c7	 ==>	 r1c6	 ≠	 8;	 str-‐asc[1]:	 r3c6<r3c7	 ==>	 r3c6	 ≠	 8	
str-‐asc[1]:	 r3c8<r3c7	 ==>	 r3c8	 ≠	 8;	 str-‐asc[1]:	 r3c2<r2c2	 ==>	 r3c2	 ≠	 8	
str-‐asc[2]:	 r4c1<r4c2<r3c2	 ==>	 r4c2	 ≠	 7;	 str-‐asc[2]:	 r4c1<r4c2<r3c2	 ==>	 r4c1	 ≠	 6	
str-‐asc[1]:	 r5c8<r5c7	 ==>	 r5c8	 ≠	 8	 ;	 str-‐asc[1]:	 r6c8<r6c7	 ==>	 r6c8	 ≠	 8	
str-‐asc[1]:	 r6c9<r6c8	 ==>	 r6c9	 ≠	 7;	 str-‐asc[1]:	 r7c8<r7c7	 ==>	 r7c8	 ≠	 8	
str-‐asc[2]:	 r5c2<r4c2<r3c2	 ==>	 r5c2	 ≠	 6;	 str-‐asc[1]:	 r4c7<r3c7	 ==>	 r4c7	 ≠	 8	
str-‐asc[1]:	 r9c8<r9c9	 ==>	 r9c8	 ≠	 8;	 str-‐asc[1]:	 r8c8<r9c8	 ==>	 r8c8	 ≠	 7	
str-‐asc[1]:	 r2c8<r2c7	 ==>	 r2c8	 ≠	 8;	 str-‐asc[2]:	 r1c9<r2c9<r2c8	 ==>	 r2c9	 ≠	 7	
str-‐asc[2]:	 r1c9<r2c9<r2c8	 ==>	 r1c9	 ≠	 6	
hill[2]:	 r6c9<r7c9>r8c9	 ==>	 r7c9	 ≠	 2	
hill[2]:	 r6c6<r7c6>r8c6	 ==>	 r7c6	 ≠	 2	
valley[2]:	 r3c5>r4c5<r5c5	 ==>	 r4c5	 ≠	 8	
str-‐asc[2]:	 r5c6<r4c6<r4c5	 ==>	 r5c6	 ≠	 6,	 r4c6	 ≠	 7	
hill[3]:	 r8c3<r8c4>r8c5>r8c6	 ==>	 r8c4	 ≠	 3	
hill[2]:	 r3c6<r3c7>r3c8	 ==>	 r3c7	 ≠	 2	
str-‐valley[2]:	 r3c7>r4c7<r5c7	 ==>	 r4c7	 ≠	 7	

;;; Resolution state RS2, displayed in Figure 14.9. Notice that, until now, there is no
“hole” in any of the sets of candidates for a cell.

Following RS2, there appears a series of strong ascending chains, subsets, whips
and braids, in the same vein as in the previous example.

hidden-‐pairs-‐in-‐a-‐column	 c8{n8	 n9}{r1	 r4}	 ==>	 r4c8	 and	 r1c8	 ≠	 7,	 6,	 5,	 4,	 3,	 2,	 1	
whip[2]:	 r1c5{n8	 n9}	 –	 r1c8{n9	 .}	 ==>	 r1c4	 ≠	 8	

392 Pattern-Based Constraint Satisfaction and Logic Puzzles

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n6
n7 n8

<

n7 n8 n9

n1 n2 n3
n4 n5 n6
n7

<
 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5

r1

 ∧ ∨ ∧

r2
 n2 n3
n4 n5 n6
n7 n8 n9

n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8 n9

n4 n5 n6
n7 n8

>
 n3
n4 n5 n6
n7

>
 n2 n3
n4 n5 n6

r2

 ∨ ∧ ∨

r3

n4 n5 n6
n7 n8 n9

>
 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7 n8 n9

n4 n5 n6

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7

<
 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6
n7

 n2 n3
n4 n5 n6
n7 n8 n9

r3

 ∨ ∨ ∨ ∨ ∨

r4
n1 n2 n3
n4 n5

<

 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n3
n4 n5

 n3
n4 n5 n6
n7

>
 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8

r4

 ∨ ∨ ∧ ∨ ∧

r5
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5

 n2 n3
n4 n5 n6
n7 n8

>
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8 n9

r5

 ∧ ∨

r6
 n2 n3
n4 n5 n6
n7 n8

n9

>

 n6
n7 n8

n1 n2 n3

<
 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

 n3
n4 n5 n6
n7 n8

>
 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

r6

 ∧ ∨ ∧ ∧ ∧

r7

 n5 n6
n7 n8 n9

>

n4 n5 n6

<

 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8

<
 n3
n4 n5 n6
n7 n8 n9

 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4 n5 n6
n7 n8

>
n1 n2 n3
n4 n5 n6
n7

 n3
n4 n5 n6
n7 n8 n9

r7

 ∨ ∨ ∨

r8
n1 n2 n3
n4

<

 n3
n4 n5

 n2 n3
n4 n5 n6
n7

<

n4 n5 n6
n7 n8

>
 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

n9

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7 n8

r8

 ∨ ∨ ∧ ∧ ∧

r9
n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4

>

n1 n2 n3

n9

n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4 n5 n6
n7

<
 n3
n4 n5 n6
n7 n8

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 14.9. State RS2 of the 9×9 Futoshiki puzzle of Figure 14.8.

str-‐asc[5]:	 r6c4<r5c4<r4c4<r3c4<r2c4<r1c4	 ==>	 r6c4	 ≠	 3,	 r5c4	 ≠	 4,	 r4c4	 ≠	 5,	 r3c4	 ≠	 6,	 r2c4	 ≠	 7	
whip[2]:	 r6c4{n2	 n1}	 –	 r6c9{n1	 .}	 ==>	 r6c8	 ≠	 2	
str-‐asc[1]:	 r6c8<r6c7	 ==>	 r6c7	 ≠	 3	
whip[2]:	 c2n7{r2	 r1}	 –	 c2n8{r1	 .}	 ==>	 r2c2	 ≠	 6,	 5,	 4	
whip[2]:	 r2c2{n7	 n8}	 –	 r2c7{n8	 .}	 ==>	 r2c8	 ≠	 7	
str-‐asc[2]:	 r1c9<r2c9<r2c8	 ==>	 r2c9	 ≠	 6,	 r1c9	 ≠	 5	
whip[2]:	 r2c4{n5	 n6}	 –	 r2c8{n6	 .}	 ==>	 r2c9	 ≠	 5	
str-‐asc[1]:	 r1c9<r2c9	 ==>	 r1c9	 ≠	 4	
whip[2]:	 r7n2{c8	 c4}	 –	 r7n1{c4	 .}	 ==>	 r7c8	 ≠	 3,	 4,	 5,	 6,	 7	
whip[2]:	 r7c8{n2	 n1}	 –	 r8c8{n1	 .}	 ==>	 r9c8	 ≠	 2	

14. Transitive constraints and Futoshiki 393

str-‐asc[1]:	 r9c8<r9c9	 ==>	 r9c9	 ≠	 3	
whip[2]:	 r8n7{c4	 c9}	 –	 r8n8{c9	 .}	 ==>	 r8c4	 ≠	 6,	 5,	 4	
whip[3]:	 c4n8{r8	 r7}	 –	 r7c5{n8	 n9}	 –	 r7c9{n9	 .}	 ==>	 r8c9	 ≠	 8	
hidden-‐single-‐in-‐a-‐row	 ==>	 r8c4	 =	 8	
whip[3]:	 r1c7{n7	 n8}	 –	 r1c5{n8	 n9}	 –	 r1c8{n9	 .}	 ==>	 r1c6	 ≠	 7	
whip[3]:	 r6c8{n6	 n7}	 –	 r6c7{n7	 n8}	 –	 r6c3{n8	 .}	 ==>	 r6c9	 ≠	 6	

;;; this is now the first place a “hole” is introduced in a cell:
whip[4]:	 r5c4{n3	 n2}	 –	 r5c8{n2	 n1}	 –	 r7n1{c8	 c4}	 –	 r6c4{n1	 .}	 ==>	 r5c7	 ≠	 3	 	
whip[4]:	 r1c4{n6	 n7}	 –	 r1c7{n7	 n8}	 –	 r1c5{n8	 n9}	 –	 r1c8{n9	 .}	 ==>	 r1c6	 ≠	 6	
whip[4]:	 c2n8{r2	 r1}	 –	 c8n8{r1	 r4}	 –	 r4n9{c8	 c3}	 –	 r3c3{n9	 .}	 ==>	 r2c3	 ≠	 8	

;;; this is the second place a “hole” is introduced in a cell (exercise: find the next
ones)
whip[5]:	 r3n1{c6	 c8}	 –	 r7n1{c8	 c4}	 –	 c4n5{r7	 r2}	 –	 c4n6{r2	 r1}	 –	 c4n7{r1	 .}	 ==>	 r3c6	 ≠	 5	 	
braid[6]:	 c2n8{r1	 r2}	 –	 r2c1{n8	 n9}	 –	 r1c8{n8	 n9}	 –	 r1c5{n8	 n7}	 –	 c2n7{r1	 r3}	 –	 r3c1{n9	 .}	 ==>	
r1c1	 ≠	 8	
whip[7]:	 r3c4{n4	 n5}	 –	 r2c4{n5	 n6}	 –	 r1c4{n6	 n7}	 –	 c2n7{r1	 r2}	 –	 c2n8{r2	 r1}	 –	 r1c5{n8	 n9}	 –	
r1c8{n9	 .}	 ==>	 r3c1	 ≠	 4,	 r3c2	 ≠	 4	 ;;;	 third	 hole	 (in	 r3c2)	
whip[7]:	 r4c4{n4	 n3}	 –	 r4c6{n3	 n2}	 –	 r5c6{n2	 n1}	 –	 r3n1{c6	 c8}	 –	 r7n1{c8	 c4}	 –	 r6c4{n1	 n2}	 –	
r5c4{n2	 .}	 ==>	 r4c5	 ≠	 4	
whip[3]:	 r3c4{n5	 n4}	 –	 r4c4{n4	 n3}	 –	 r4c5{n3	 .}	 ==>	 r3c5	 ≠	 5	
whip[7]:	 r3n1{c6	 c8}	 –	 r7n1{c8	 c4}	 –	 c4n7{r7	 r1}	 –	 c2n7{r1	 r2}	 –	 c2n8{r2	 r1}	 –	 r1c5{n8	 n9}	 –	
r1c8{n9	 .}	 ==>	 r3c6	 ≠	 7	
whip[3]:	 c6n9{r7	 r2}	 –	 c6n8{r2	 r9}	 –	 c6n7{r9	 .}	 ==>	 r7c6	 ≠	 6,	 5,	 4,	 3	
braid[7]:	 r4n9{c3	 c8}	 –	 r4n8{c8	 c9}	 –	 r4n7{c9	 c5}	 –	 r1c8{n9	 n8}	 –	 r1c5{n7	 n9}	 –	 r3c5{n4	 n8}	 –	
r5c5{n9	 .}	 ==>	 r4c3	 ≠	 6,	 5,	 4,	 3,	 2,	 1	
braid[7]:	 r7n1{c4	 c8}	 –	 r7n2{c8	 c7}	 –	 r7n3{c7	 c9}	 –	 c4n1{r7	 r6}	 –	 r6c9{n5	 n2}	 –	 r1c9{n2	 n1}	 –	
r8c9{n7	 .}	 ==>	 r7c4	 ≠	 7	
hidden-‐single-‐in-‐a-‐column	 ==>	 r1c4	 =	 7	
naked-‐pairs-‐in-‐a-‐row	 r1{c5	 c8}{n8	 n9}	 ==>	 r1c7	 ≠	 8,	 r1c3	 ≠	 9,	 r1c3	 ≠	 8,	 r1c2	 ≠	 8	
singles	 ==>	 r2c2	 =	 8,	 r3c2	 =	 7	
whip[2]:	 r7c1{n8	 n9}	 –	 r3c1{n9	 .}	 ==>	 r6c1	 ≠	 8	
str-‐asc[1]:	 r5c1<r6c1	 ==>	 r5c1	 ≠	 7	
whip[2]:	 r7c5{n8	 n9}	 –	 r1c5{n9	 .}	 ==>	 r6c5	 ≠	 8	

;;; Resolution state RS3, displayed in Figure 14.10. This is where this example
becomes really interesting, because the first g-whips and g-braids appear now (g-
labels appear in cells r3c5 and r3c9).

g-‐whip[6]:	 r3c1{n8	 n9}	 –	 r3c9{n9	 n7-‐}	 –	 r4n8{c9	 c8}	 –	 r4n9{c8	 c3}	 –	 r4n7{c3	 c5}	 –	 r3c5{n4	 .}	
==>	 r3c3	 ≠	 8	
g-‐whip[5]:	 r3c3{n2	 n9}	 –	 r3c1{n9	 n8}	 –	 r3c5{n8	 n7-‐}	 –	 r4n7{c5	 c9}	 –	 r3c9{n2	 .}	 ==>	 r2c3	 ≠	 7	
g-‐braid[6]:	 r3c1{n9	 n8}	 –	 r3c9{n8	 n7-‐}	 –	 r4n9{c3	 c8}	 –	 r4n8{c9	 c3}	 –	 r4n7{c9	 c5}	 –	 r3c5{n9	 .}	
==>	 r3c3	 ≠	 9	
str-‐asc[1]:	 r2c3<r3c3	 ==>	 r2c3	 ≠	 6	
g-‐braid[6]:	 r3c1{n8	 n9}	 –	 r3c5{n9	 n7-‐}	 –	 r3c9{n9	 n7-‐}	 –	 r4n7{c9	 c3}	 –	 r4n8{c9	 c8}	 –	
r4n9{c8	 .}	 ==>	 r3c7	 ≠	 8	

394 Pattern-Based Constraint Satisfaction and Logic Puzzles

Exercise: check all the z- and t-candidates of these g-whips and g-braids; also
check their right-to-left links.

 c1 c2 c3 c4 c5 c6 c7 c8 c9

r1
n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7

n7

<

 n8 n9

n1 n2 n3
n4 n5

<
 n2 n3
n4 n5 n6

 n8 n9

n1 n2 n3

r1

 ∧ ∨ ∧

r2
 n2 n3
n4 n5 n6
n7 n9

n8

n1 n2 n3
n4 n5 n6
n7

 n5 n6

n1 n2 n3
n4 n5 n6
n7 n9

n1 n2 n3
n4 n5 n6
n7 n9

n4 n5 n6
n7

>
 n3
n4 n5 n6

>
 n2 n3
n4

r2

 ∨ ∧ ∨

r3

 n8 n9
>

n7

 n2 n3
n4 n5 n6
 n8 n9

n4 n5

n4 n6
 n8 n9

n1 n2 n3
n4 n6

<
 n3
n4 n5 n6

>
n1 n2 n3
n4 n5 n6

 n2 n3
n4 n5 n6
 n8 n9

r3

 ∨ ∨ ∨ ∨ ∨

r4
n1 n2 n3
n4 n5

<

 n2 n3
n4 n5 n6

n7 n8 n9

 n3
n4

 n3
n4 n6
n7

>
 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6

 n8 n9

n1 n2 n3
n4 n5 n6
n7 n8

r4

 ∨ ∨ ∧ ∨ ∧

r5
n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5

n1 n2 n3
n4 n5 n6
n7 n8 n9

 n2 n3

n4 n5 n6
n7 n8 n9

n1 n2 n3
n4 n5

 n2
n4 n5 n6
n7 n8

>
n1 n2 n3
n4 n5 n6
n7

n1 n2 n3
n4 n5 n6
n7 n8 n9

r5

 ∧ ∨

r6
 n2 n3
n4 n5 n6
n7

n9

>

 n6
n7 n8

n1 n2

<
 n2 n3
n4 n5 n6
n7

n1 n2

n7 n8

n4 n5 n6
n7 n8

>
 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5

r6

 ∧ ∨ ∧ ∧ ∧

r7

 n5 n6
n7 n8 n9

>

n4 n5 n6

<

 n5 n6
n7

n1 n2 n3
n4 n5 n6

<
 n3
n4 n5 n6
n7 n8 n9

 n3
n4 n5 n6
n7 n8 n9

 n2 n3
n4 n5 n6
n7 n8

>
n1 n2

 n3
n4 n5 n6
n7 n8 n9

r7

 ∨ ∨ ∨

r8
n1 n2 n3
n4

<

 n3
n4 n5

 n2 n3
n4 n5 n6
n7

<

n8

>
 n2 n3
n4 n5 n6
n7

>
n1 n2 n3
n4 n5 n6

n9

n1 n2 n3
n4 n5 n6

n1 n2 n3
n4 n5 n6
n7

r8

 ∨ ∨ ∧ ∧ ∧

r9
n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4

>

n1 n2 n3

n9

n1 n2 n3
n4 n5 n6
n7 n8

 n2 n3
n4 n5 n6
n7 n8

n1 n2 n3
n4 n5 n6
n7 n8

 n3
n4 n5 n6
n7

<

n4 n5 n6
n7 n8

r9

 c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 14.10. State RS3 of the 9×9 Futoshiki puzzle of Figure 14.8. The g-candidates n7
-
r3c5

and n7
-
r3c9 used in the subsequent g-whips and g-braids are underlined

str-‐asc[1]:	 r4c7<r3c7	 ==>	 r4c7	 ≠	 6;	 str-‐asc[1]:	 r3c8<r3c7	 ==>	 r3c8	 ≠	 6	
str-‐asc[1]:	 r3c6<r3c7	 ==>	 r3c6	 ≠	 6	
braid[7]:	 r7n1{c4	 c8}	 –	 r7n2{c8	 c7}	 –	 r7n3{c7	 c9}	 –	 c4n1{r7	 r6}	 –	 r6c9{n5	 n2}	 –	 r1c9{n2	 n1}	 –	
r8c9{n7	 .}	 ==>	 r7c4	 ≠	 6	
hidden-‐single-‐in-‐a-‐column	 ==>	 r2c4	 =	 6	

14. Transitive constraints and Futoshiki 395

whip[7]:	 c4n5{r3	 r7}	 –	 r7n1{c4	 c8}	 –	 r7n2{c8	 c7}	 –	 r7n3{c7	 c9}	 –	 c9n9{r7	 r5}	 –	 c9n6{r5	 r9}	 –	
c9n8{r9	 .}	 ==>	 r3c9	 ≠	 5	
braid[7]:	 r7n1{c4	 c8}	 –	 r7n2{c8	 c7}	 –	 r7n3{c7	 c9}	 –	 c4n1{r7	 r6}	 –	 r6c9{n5	 n2}	 –	 r1c9{n2	 n1}	 –	
r8c9{n7	 .}	 ==>	 r7c4	 ≠	 5	
hidden-‐single-‐in-‐a-‐column	 ==>	 r3c4	 =	 5	
whip[7]:	 c4n4{r4	 r7}	 –	 r7n1{c4	 c8}	 –	 r7n2{c8	 c7}	 –	 r7n3{c7	 c9}	 –	 r2c9{n3	 n2}	 –	 r1c9{n3	 n1}	 –	
r8c9{n1	 .}	 ==>	 r4c9	 ≠	 4	
braid[7]:	 r7n1{c4	 c8}	 –	 r7n2{c8	 c7}	 –	 r7n3{c7	 c9}	 –	 c4n1{r7	 r6}	 –	 r6c9{n5	 n2}	 –	 r1c9{n2	 n1}	 –	
r8c9{n7	 .}	 ==>	 r7c4	 ≠	 4	
hidden-‐single-‐in-‐a-‐column	 ==>	 r4c4	 =	 4	
g-‐braid[7]:	 r3c1{n9	 n8}	 –	 r3c9{n8	 n7-‐}	 –	 r1n9{c5	 c8}	 –	 r4n9{c8	 c3}	 –	 r4n7{c9	 c5}	 –	
r1c5{n9	 n8}	 –	 r5c5{n9	 .}	 ==>	 r3c5	 ≠	 9	
whip[3]:	 r3c5{n4	 n8}	 –	 r5c5{n8	 n9}	 –	 r1c5{n9	 .}	 ==>	 r4c5	 ≠	 7	
str-‐asc[2]:	 r5c6<r4c6<r4c5	 ==>	 r5c6	 ≠	 5,	 r4c6	 ≠	 6	
hidden-‐triplets-‐in-‐a-‐row	 r4{n7	 n8	 n9}{c3	 c9	 c8}	 ==>	 r4c9	 ≠	 6,	 5,	 3,	 2,	 1	
str-‐asc[1]:	 r4c9<r3c9	 ==>	 r3c9	 ≠	 6,	 4,	 3,	 2	
naked-‐pairs-‐in-‐a-‐row	 r3{c1	 c9}{n8	 n9}	 ==>	 r3c5	 ≠	 8	
str-‐asc[1]:	 r4c5<r3c5	 ==>	 r4c5	 ≠	 6	
hidden-‐single-‐in-‐a-‐row	 ==>	 r4c2	 =	 6	
str-‐asc[2]:	 r8c1<r8c2<r7c2	 ==>	 r8c2	 ≠	 5,	 r8c1	 ≠	 4;	 str-‐asc[2]:	 r9c3<r9c2<r8c2	 ==>	 r9c3	 ≠	 3,	 4	
str-‐asc[2]:	 r5c6<r4c6<r4c5	 ==>	 r5c6	 ≠	 4,	 5;	 str-‐asc[1]:	 r5c6<r4c6	 ==>	 r5c6	 ≠	 3	
whip[2]:	 r5c8{n2	 n1}	 –	 r5c6{n1	 .}	 ==>	 r5c7	 ≠	 2	
whip[2]:	 r8c6{n2	 n1}	 –	 r5c6{n1	 .}	 ==>	 r9c6	 ≠	 2	
whip[2]:	 r2c3{n2	 n1}	 –	 r9c3{n1	 .}	 ==>	 r3c3	 ≠	 2	
hidden-‐pairs-‐in-‐a-‐row	 r3{n1	 n2}{c6	 c8}	 ==>	 r3c8	 ≠	 4,	 3	
naked-‐pairs-‐in-‐a-‐column	 c8{r3	 r7}{n1	 n2}	 ==>	 r8c8	 ≠	 2,	 1	
str-‐asc[1]:	 r8c8<r9c8	 ==>	 r9c8	 ≠	 3;	 str-‐asc[1]:	 r9c8<r9c9	 ==>	 r9c9	 ≠	 4	
naked-‐pairs-‐in-‐a-‐column	 c8{r3	 r7}{n1	 n2}	 ==>	 r5c8	 ≠	 2,	 1	
hidden-‐pairs-‐in-‐a-‐row	 r3{n1	 n2}{c6	 c8}	 ==>	 r3c6	 ≠	 4,	 3	
naked-‐pairs-‐in-‐a-‐column	 c6{r3	 r5}{n1	 n2}	 ==>	 r8c6	 ≠	 2,	 1	
str-‐asc[1]:	 r8c6<r8c5	 ==>	 r8c5	 ≠	 3,	 2;	 str-‐asc[1]:	 r8c6<r9c6	 ==>	 r9c6	 ≠	 3	
naked-‐pairs-‐in-‐a-‐column	 c6{r3	 r5}{n1	 n2}	 ==>	 r6c6	 ≠	 2,	 1,	 r4c6	 ≠	 2	
singles:	 r4c6	 =	 3,	 r4c5	 =	 5,	 r3c5	 =	 6	
str-‐asc[1]:	 r2c3<r3c3	 ==>	 r2c3	 ≠	 5,	 4;	 str-‐asc[1]:	 r8c6<r9c6	 ==>	 r9c6	 ≠	 4	
str-‐asc[1]:	 r8c6<r8c5	 ==>	 r8c5	 ≠	 4	
naked-‐single	 ==>	 r8c5	 =	 7	
naked-‐pairs-‐in-‐a-‐column	 c5{r1	 r5}{n8	 n9}	 ==>	 r9c5	 ≠	 8,	 r7c5	 ≠	 9,	 8	
str-‐asc[1]:	 r6c5<r7c5	 ==>	 r6c5	 ≠	 4	
naked-‐pairs-‐in-‐a-‐column	 c5{r1	 r5}{n8	 n9}	 ==>	 r2c5	 ≠	 9	
naked-‐pairs-‐in-‐a-‐column	 c6{r3	 r5}{n1	 n2}	 ==>	 r2c6	 ≠	 2,	 1,	 r1c6	 ≠	 2,	 1	
str-‐asc[1]:	 r1c6<r1c7	 ==>	 r1c7	 ≠	 4,	 3,	 2	
whip[2]:	 r5c1{n2	 n1}	 –	 r4c1{n1	 .}	 ==>	 r6c1	 ≠	 2	
whip[2]:	 r1c1{n2	 n1}	 –	 r4c1{n1	 .}	 ==>	 r2c1	 ≠	 2	
whip[2]:	 r1c6{n5	 n4}	 –	 r8c6{n4	 .}	 ==>	 r9c6	 ≠	 5	
swordfish-‐in-‐columns	 n9{c3	 c5	 c8}{r4	 r5	 r1}	 ==>	 r5c9	 ≠	 9	
whip[3]:	 r9c3{n2	 n1}	 –	 c7n1{r9	 r4}	 –	 r4n2{c7	 .}	 ==>	 r9c1	 ≠	 2	
whip[3]:	 r6c5{n3	 n2}	 –	 r6c9{n2	 n1}	 –	 r6c4{n1	 .}	 ==>	 r6c8	 ≠	 3	

396 Pattern-Based Constraint Satisfaction and Logic Puzzles

str-‐asc[1]:	 r6c8<r6c7	 ==>	 r6c7	 ≠	 4	
whip[4]:	 c4n3{r5	 r7}	 –	 r7n1{c4	 c8}	 –	 r3n1{c8	 c6}	 –	 c6n2{r3	 .}	 ==>	 r5c4	 ≠	 2	
naked-‐single	 ==>	 r5c4	 =	 3	
str-‐asc[1]:	 r5c8<r5c7	 ==>	 r5c7	 ≠	 4	
naked-‐pairs-‐in-‐a-‐row	 r7{c4	 c8}{n1	 n2}	 ==>	 r7c7	 ≠	 2	
hidden-‐pairs-‐in-‐a-‐column	 c7{n1	 n2}{r4	 r9}	 ==>	 r9c7	 ≠	 8,	 7,	 6,	 5,	 4,	 3	
naked-‐pairs-‐in-‐a-‐row	 r9{c3	 c7}{n1	 n2}	 ==>	 r9c5	 ≠	 2,	 1	
singles:	 r2c5	 =	 1,	 r6c5	 =	 2,	 r6c4	 =	 1,	 r7c4	 =	 2,	 r7c8	 =	 1,	 r3c8	 =	 2,	 r3c6	 =	 1,	 r5c6	 =	 2	
str-‐asc[1]:	 r6c9<r7c9	 ==>	 r7c9	 ≠	 3	
naked-‐pairs-‐in-‐a-‐row	 r9{c3	 c7}{n1	 n2}	 ==>	 r9c2	 ≠	 2	
singles:	 r9c2	 =	 3,	 r8c2	 =	 4,	 r7c2	 =	 5,	 r5c2	 =	 1,	 r1c2	 =	 2,	 r9c5	 =	 4,	 r7c5	 =	 3,	 r3c7	 =	 3,	 r3c3	 =	 4	
str-‐asc[1]:	 r9c8<r9c9	 ==>	 r9c9	 ≠	 5;	 str-‐asc[1]:	 r5c1<r6c1	 ==>	 r6c1	 ≠	 4,	 3	
singles:	 r6c9	 =	 3,	 r1c9	 =	 1,	 r8c1	 =	 1,	 r4c1	 =	 2,	 r4c7	 =	 1,	 r9c7	 =	 2,	 r9c3	 =	 1	
str-‐asc[1]:	 r1c1<r2c1	 ==>	 r2c1	 ≠	 3	
singles:	 r1c1	 =	 3,	 r1c6	 =	 4,	 r6c8	 =	 4,	 r5c7	 ≠	 5,	 r6c3	 ≠	 6	
hidden-‐pairs-‐in-‐a-‐column	 c3{n2	 n3}{r2	 r8}	 ==>	 r8c3	 ≠	 6,	 5	
whip[2]:	 r2c8{n5	 n3}	 –	 r8c8{n3	 .}	 ==>	 r9c8	 ≠	 5	
hidden-‐single-‐in-‐a-‐row	 ==>	 r9c1	 =	 5	
str-‐asc[1]:	 r6c1<r7c1	 ==>	 r7c1	 ≠	 6;	 str-‐asc[1]:	 r9c8<r9c9	 ==>	 r9c9	 ≠	 6	
naked-‐pairs-‐in-‐a-‐column	 c9{r4	 r9}{n7	 n8}	 ==>	 r7c9	 ≠	 8,	 7,	 r5c9	 ≠	 8,	 7,	 r3c9	 ≠	 8	
singles:	 r3c9	 =	 9,	 r3c1	 =	 8	
str-‐asc[1]:	 r8c9<r7c9	 ==>	 r8c9	 ≠	 6	
x-‐wing-‐in-‐rows	 n6{r8	 r9}{c6	 c8}	 ==>	 r6c6	 ≠	 6,	 r5c8	 ≠	 6	
whip[2]:	 r7c9{n6	 n4}	 –	 c9n5{r8	 .}	 ==>	 r5c9	 ≠	 6	
singles	 and	 a	 whip[2]	 (r2n3{c8	 c3}	 –	 r2n2{c3	 .}	 ==>	 r2c9	 ≠	 4)	 to	 the	 end	

14.6. Modelling transitive constraints

Let us now discuss our modelling of Futoshiki and see how it can be generalised
to transitive constraints in any CSP.

Definition: a constraint c is transitive if, whenever one has linked-by(l1, l2, c)
and linked-by(l2, l3, c) for labels l1, l2 and l3, then one also has linked-by(l1, l3, c).

An ascending chain has been given the same rating as a whip[1], independently
of its length, but, in the current approach, if it appears as a part of a whip or a braid,
it still contributes to the length of the whip by its real length. (This did not appear in
the example of section 14.5, because all the g-whips and g-braids included only
inequality sub-chains of length one.) This may seem inconsistent. However, there is
a very simple way out of this dilemma: instead of modelling the inequality
constraints by defining direct contradiction links only between candidates in
adjacent cells related by an inequality sign, one can define contradiction links
between candidates in any two cells belonging to an ascending chain.

14. Transitive constraints and Futoshiki 397

Thus, in an n×n Futoshiki, if C0, C1, …, Ck, is an ascending chain and ni is any
Number, niC0 would not only be linked by < to n1C1, n2C1, …, niC1, but also to
n1C2, n2C2, …, ni+1C2, to n1C3, n2C3, …, ni+2C3 and so on.

As a result of using these new direct links, the whole notion of an ascending
chain could disappear from the resolution paths (but not the notions of a hill and a
valley). What is used here is only the transitivity property of the < constraint; the
underlying order does not even have to be total. Obviously, this technique can be
applied to any transitive constraint in any CSP and it may seem to be an appropriate
general way of dealing with the propagation of such constraints.

However, which of the above two representations one should choose for a
transitive constraint, with the consequence of modifying in possibly radical ways the
rating of all the chain patterns relying partly on such constraints, is ultimately a
modelling decision. In the Futoshiki CSP, the decision should take into account
which kinds of readers or players are aimed at: keeping in mind our requirement that
each step in the resolution path should be understandable, it would certainly be a
very bad idea for beginners; but for advanced players, it may be compulsory in order
to avoid the boredom of displaying so many obvious steps.

Notice that, even if these additional links are adopted as primary constraints, it
does not entail that a g-whip or g-braid will never have to consider several parts of
an ascending chain: it may need to justify t-candidates in its subsequent parts by the
explicit presence of an intermediate right-linking candidate.

14.7. Hints for further studies on Futoshiki

As an abstract CSP, pure n×n Futoshiki could become an interesting topic for a
detailed case study in the same vein as what we have done for Sudoku, with two
additional possibilities: 1) as grid size n can take any value (it does not have to be a
square m2), it should be easier to analyse how its statistical properties vary with it, in
particular what the ratios of minimal instances having various T&E depths are; 2)
for any fixed size n, the “geometry” of constraints and therefore their initial density
and tightness can be varied with much more freedom. (See section 17.2.2 for a
definition and a discussion of these two notions.) We shall leave all this to
motivated readers, but let us make a few remarks on the generation of minimal
puzzles.

Given a complete n×n Latin Square LS (all the cells filled with values), it can be
completed further into a complete “impure” Futoshiki grid by adding the correct
inequality sign between any pair of cells adjacent in a row or a column; there are
N = 2n(n-1) such signs. Now forgetting all the values in the cells, one gets a
complete “pure” Futoshiki grid FP. FP is guaranteed by construction to have a

398 Pattern-Based Constraint Satisfaction and Logic Puzzles

Futoshiki solution, but it is not guaranteed to have a unique one. It would be nice to
have some theorem like: “an n×n pure Futoshiki puzzle in which all the inequalities
between adjacent cells are specified has a unique solution”. But we have not been
able to find a simple proof of this. Indeed, we did not try hard, because we can
merely discard such an instance if it does not have a unique solution.

In any case, any minimal pure Futoshiki puzzle can be obtained from a complete
LatinSquare by applying this process followed by a top-down algorithm similar to
that described in chapter 6.

Given such a top-down generator, it would be easy to adapt it as in chapter 6 to
make it controlled-bias (but there is currently no available source code). A formula
similar to that in chapter 6 can be proven; in n×n Futoshiki, the number of inequality
signs in a complete grid is N = 2n(n-1) and N plays the role of the number of cells in
Sudoku. If k is the number of remaining clues, one has the “controlled-bias”
formula: P(k+1) / P(k) = (k+1) / (N-k), which allows to compute unbiased statistics
from those obtained with collection provided by the controlled-bias generator.

14.7.1. Combining the Sudoku and Futoshiki constraints: Sudoshiki

We think Futoshiki, as a game, will never become as popular as Sudoku:
– an inequality constraint is too weak; it entails too few consequences when a

candidate is asserted (contrary to a Sudoku constraint of bn type), unless it is
included in a long ascending chain. The maximal length of ascending chains is n-1
(in which case all the cells in the chain are completely solved). If the length is close
to this value, the chain will “most of the time” make parts of the puzzle close to
trivial. As a result, there cannot be many long chains in a non easy puzzle and
having to use repeatedly the inequality constraint (even if written in the extended
form introduced in section 14.6) for many short ones is quite tedious.

– g-labels also are too weak; their action is too local (only between cells
connected by an inequality). g-labels in Sudoku or N-Queens are more exciting.

– besides ascending chains, hills and valleys, there does not seem to be many
possibilities of finding Futoshiki-specific resolution rules.

In this perspective, another game we think worth exploring could be called
“Sudoshiki” in fake-japanese: restrict grid size in the same way as in Sudoku
(n=m2) and combine the constraints of Sudoku and Futoshiki, i.e. add to Futoshiki
the block constraints. This should palliate the above-mentioned weakness of the
inequality constraints. Sudoshiki has all the g-labels of Sudoku plus those of
Futoshiki. Probably, for better complementarity with Sudoku, the most interesting
form would be “pure” Sudoshiki, in which clues can only be inequalities. Pure
Sudoshiki has the same controlled-bias formula as Futoshiki, which opens the door
to statistical analyses.

15. Non-binary arithmetic constraints and Kakuro

The logico-arithmetic game of Kakuro (abbreviation of japanese “kasan kurosu”,
best translated as “cross sums”, by analogy with crosswords) is often presented as
the numerical, “cross-cultural” analogue of crosswords. Obviously, this can only
apply to the structure of the grid, not to the game itself: deprived of any linguistic or
cultural aspect similar to wordplay and knowledge about vocabulary, it may look to
crosswords addicts as a very poor analogue. Nevertheless, this is irrelevant to our
purposes. In the context of the present book, Kakuro is indeed worth some
consideration, for the following two main reasons:

– unlike all our previous examples, in its natural formulation, it has non-binary
arithmetic constraints; in the first page of the Introduction we only alluded to the
possibility of reducing such constraints to binary ones by introducing new CSP
variables; we shall now show how this general idea can be made to work in practice;
notice that this must be done as far as possible in such a way that the additional CSP
variables do not have too large domains – i.e. in an application-specific way;

– it has g-labels that are more complex than in our previous examples and that
require some theoretical analysis in order to provide them with a simplified
representation; above all, these g-labels illustrate the importance of the “saturation”
condition introduced in the definition of chapter 7 with respect to efficiency.

There are also more technical reasons:
– in addition to its set of “natural” ones, Kakuro has additional CSP variables

that depend on the instance under consideration; (in all our previous examples, the
CSP variables were not concerned by such dependency, even if the other constraints
were); these variables are intrinsically related to the non-binary constraints;

– the links between the labels for the “natural” CSP variables and for the
additional ones may seem to be non-symmetric (they are based on set-theoretic
membership), but this will allow to illustrate the difference between the abstract
relation “linked” (which must be symmetric) and the semantic relations on which it
may be based; (in Futoshiki, the initial “<” relation between two cells was also non-
symmetric but it was replaced in a rather obvious way by an equivalent set of
symmetric non-equality links between labels for these cells);

– given an instance, g-labels do not depend on its resolution state, in
conformance with our general definition (g-labels are structural); but they depend on
the instance under consideration;

400 Pattern-Based Constraint Satisfaction and Logic Puzzles

– it has Naked Subsets, but it does not have systematically corresponding
Hidden ones; and it has no Super-Hidden ones if we strictly apply the general
definitions of chapter 8, although more complex similar patterns could be defined.

Notice that there is a straightforward translation of a Kakuro puzzle into a linear
programming problem, a kind of problem for which there are very efficient (widely
and freely available) programs – much more efficient in this case than any general
CSP solving program. As mentioned in the general CSP case, if solving efficiency
was our only requirement, all of this chapter would be totally irrelevant.

15.1. Introducing Kakuro

15.1.1. Definition of Kakuro

Kakuro is played on a k×k square grid (with arbitrary k), with two types of cells,
called “black” and “white”. As in crosswords, black cells are used both as separators
and as clue holders (in crosswords, they hold references to the clues rather than the
clues themselves, but this is irrelevant). The upper row and the leftmost column
contain only black cells.

Figure 15.1 shows the (standard) graphical representation of a Kakuro puzzle
that will be used in this book. “Black” cells are in light grey; they are either empty
or separated into two parts by a descending diagonal. A horizontal [respectively a
vertical] clue, if any, occupies the upper rightmost [resp. lower leftmost] half of the
cell. As in all our previous examples, the white cells can be pre-filled with small
digits representing their possible values, i.e. with candidate-Numbers. Why we have
underlined some of the clues will be explained in section 15.1.3.

In the following definitions, although “block” is often used instead, we adopt the
word “sector”, in order to avoid confusion with blocks in Sudoku: sectors in Kakuro
cannot be used in the same ways as blocks in Sudoku and they do not have the same
relationship with g-labels and whips[1].

Definitions: a horizontal sector [respectively a vertical sector] is a maximal set
of contiguous white cells in the same row [resp. column].

A horizontal [resp. vertical] sector is thus always delimited by two black cells or
by one black cell and the right end of a row [resp. the bottom of a column];
“contiguous” means that there is no black cell between any two of its white cells.

Definition: The black cell horizontally [resp. vertically] just before the first cell
of a sector is called the horizontal [resp. vertical] controller of this sector; we also
say it is the controller of each cell in the sector.

15. Non-binary arithmetic constraints and Kakuro 401

As far as we know, this notion of a controller has not been made explicit before,
but we find it very convenient for many of our forthcoming definitions. Obviously,
each white cell belongs to one and only one horizontal [resp. vertical] sector and it
has one and only one horizontal [resp. vertical] controller, whether or not this
controller contains a clue (as defined below) for it.

 K

 11

 45

 11

 7

 10

 13

 12
 16

 4

 15
 45

 35

 11

 19

 11

 7

 11
 34

 7

 15

 38

 9

 4

 12
 13

 18

 4

 15

 24

 25

 7

 8

 24

 25

 5

 7
 13

 16

 21
 7

 15

 17

 11

 29

Figure 15.1. An 11×11 Kakuro puzzle (clues of #M72601, from atksolutions.com)

In a Kakuro puzzle, all the white cells are initially empty and the goal is to find
for each of them a value in the set of digits {1, …, 9} (independent of grid size)
such that these values satisfy the following two types of constraints:

– the constraints of “mutual exclusion” in each sector: in any (horizontal or
vertical) sector, the same digit may not appear twice; but, contrary to all our
previous examples, there is no such constraint globally in each row or column (in
any case, it would be impossible to satisfy it for grids of size larger than nine –
unless the set of digits is extended beyond 9);

– the sum constraints defined by the clues in the black cells, as follows.

402 Pattern-Based Constraint Satisfaction and Logic Puzzles

A black cell C may contain zero, one or two types of clues:
– a horizontal clue S is an integer in the uppermost right corner of C meaning

that the sum of the digits in the horizontal sector it controls must be equal to S;
– a vertical clue S is an integer in the lowermost left corner of C meaning that

the sum of the digits in the vertical sector it controls must be equal to S.

As a result of the above definitions, the maximal size of any sector is nine. If
there is a horizontal [resp. vertical] clue S in a black cell, we also say that this clue
controls the horizontal [resp. vertical] sector controlled by the black cell. If p is the
size of the sector, we call (S, p) the parameters of the sector or of the clue. We say
that a digit is (S, p)-compatible if there exists at least one combination of p digits
with sum S.

15.1.2. Miscellaneous remarks on Kakuro

As in all our previous examples, a well-formed Kakuro puzzle is supposed to
have one and only one solution. This is “guaranteed” by most of the websites
proposing Kakuro puzzles and all the examples we shall deal with do satisfy it (but
no minimality condition is ever evoked).

Even if the global grid is square, the “real” one, i.e. the set of white cells, can
have any shape one may want: it suffices to put enough black cells in the rightmost
columns and/or in the lower rows. In particular, rectangular grids will often appear.
The grid does not have to be simply connected (i.e. it may have an ulimited number
of holes, made of isolated or grouped black cells). However, it must be connected (if
black cells are considered as the ocean, it may have neither separate “continents”
nor “islands” in the holes), otherwise it would be equivalent to several independent
grids (see section 15.7 for a more formal definition).

A horizontal or vertical clue cannot be greater than 45. In case it is 45 (which
implies that it controls 9 cells), considering the general constraint that all the
candidate-Numbers in the sector must be different, it does not convey any content
beyond the boundary information. Some websites adopt the convention of
discarding it, but a few things will be easier to formulate if, on the contrary, we
make it compulsory.

There is often a convention that no clue bears on only one white cell; we adopt it
for definiteness, but this does not have much impact on our forthcoming analyses. In
any case, this situation would fall under those examined in section 15.7.

There is also sometimes an implicit convention that every sector has an explicit
clue; the reason is that sectors with no clue allow many more possibilities for their
cells (with no sum restriction in a sector of size p, any of the 9!(9-p)!/p!

15. Non-binary arithmetic constraints and Kakuro 403

combinations of p different values is allowed), which makes the puzzle much more
difficult to solve. As it has no impact on our theoretical analyses, we do not adopt it.

There is a total of 120 different legitimate clues in a puzzle, i.e. of (S, p)
compatible pairs. As these are easily computable or available on many websites, we
do not list them here. Following the vocabulary used on some websites, we shall
also speak of an (S, p) clue as an “S-in-p”.

15.1.3. “Magic” sectors

Combinations of digits that can appear in a sector will play a major role in the
sequel. For certain clues, depending on the (S, p) pair of the sector they control,
there is only one possible combination of Numbers fulfilling the sum constraint
(notwithstanding all the possible permutations of these Numbers within the
controlled cells). There are thirty four such “magic” cases (that can easily be
computed or found on several Kakuro websites). By abuse of language, when the
context is clear, we shall speak of “magic” sectors and “magic” sums, but what’s
“magic” is only the (S, p) pair.

Sector Sum Combination
size
2 3 12
2 4 13
2 16 79
2 17 89
3 6 123
3 7 124
3 23 689
3 24 78 9
4 10 1234
4 11 1235
4 29 5789
4 30 6789
5 15 12345
5 16 12346
5 34 46789
5 35 56789
6 21 123456

Sector Sum Combination
size
6 22 123457
6 38 356789
6 39 456789
7 28 1234567
7 29 1234568
7 41 2456789
7 42 3456789
8 36 12345678
8 37 12345679
8 38 12345689
8 39 12345789
8 40 12346789
8 41 12356789
8 42 12456789
8 43 13456789
8 44 23456789
9 45 123456789

Table 15.1. The 34 “magic” combinations

As these cases are the main starting points for the solution of many puzzles and
they will play a particular role in our modelling choices, they will always be

404 Pattern-Based Constraint Satisfaction and Logic Puzzles

underlined in our graphical representations (as in Figure 15.1). Table 15.1 gives the
full list of these thirty four “magic” cases, ordered by sector size. Notice that the 34
corresponding combinations constitute only a very small part of all the possible
combinations (502), for sector-size p varying from 2 to 9 and sum S from 3 to 45.

Of course, the only “magic” here is no more than pure arithmetic – typical
examples of propositions that Kant would have classified as synthetic a priori. In
modern philosophy, especially after the development of formal logic since the
beginning of the twentieth century, there has been a strong resistance to the idea that
some mathematical propositions could be synthetic a priori. This is often based on
both an implicit overly formalistic ideology and a misunderstanding of the meaning
of these words in Kant’s view.

For Kant, synthetic means that these propositions increase knowledge (with
respect to the original concepts); a priori means that they are anterior to experience
(i.e. they are logically anterior to observation or experimentation, they can be
reached without them). From this logical anteriority, formalists argue that these
propositions are analytic, because they can be (formally) deduced from the axioms.
But what “analytic” means for Kant cannot be expressed in such anachronically
formalistic terms as “provable from the definitions and axioms by a more or less
complex proof”. It means included in the very idea of the concepts involved,
reachable by mentally analysing this very idea. [This is not to suggest that the “very
idea” of these concepts should be construed as some eternal essence (a meaningless
notion in our view); perhaps the best way of approximating it in modern terms is to
say that it should be intuitively conceivable to choose it as an axiom in some
reasonable axiom system.]

Depending on how arithmetic and addition are conceived, it may be debated
whether commutativity of addition should be considered as analytic or synthetic.
But why, for some values of S and p, there is only one possible combination of p
different digits with sum S, and why there are exactly 34 such cases, this is
undoubtedly not included in the “very idea” of addition, even though this can easily
be proven from (any formalisation of) the definition of addition.

Similarly, the very idea of addition, in and of itself, does not include any reason
why there are exactly one hundred and twenty (S, p) pairs such that there is at least
one combination of p digits with sum S. Or why, for any value of q with 2 ≤ q ≤ 12,
there exist (S, p) pairs allowing exactly q different combinations of p different digits
with sum S, except for q = 10, in which case there is no such (S, p) pair (see
subsection 15.1.4). Generally speaking, theorems (or such exotic properties as above
or as those that will appear when we study g-labels) have a cost (in terms of proof
complexity) and the most interesting ones are generally not “mentally included” in
the basic concepts and axioms of the theories.

15. Non-binary arithmetic constraints and Kakuro 405

15.1.4. Non-magic sectors

For our forthcoming modelling of Kakuro as a CSP, it must be noted that,
beyond the above “magic” cases admitting only one combination, the number q of
different combinations of p different digits having sum S remains bounded by 12 for
any consistent (S, p) pair. The largest numbers of combinations are obtained when
p = 5, 4 and 6; and the number q is 12 in only two cases:
(20, 4) → {1289 1379 1469 1478 1568 2369 2378 2459 2468 2567 3458 3467}
(25, 5)→ {12589 12679 13489 13579 13678 14569 14578 23479 23569 23578 24568 34567}

For 1 ≤ q ≤ 12, Table 15.2 gives the number N(q) of (S, p) pairs allowing q
different combinations of p different digits with sum S. The total Σ(q=1,…,12) q×N(q) is
equal to 502, the number of possible digit combinations, for any S and p. This may
give the impression that one has to deal with only small numbers of possibilities for
each value of (S, p), but this would be forgetting that any (S, p) pair can appear in a
puzzle, so that: 1) there are globally 502 possible combinations one may have to
consider and 2) some of these give rise to huge numbers of permutations.

q 1 2 3 4 5 6 7 8 9 10 11 12

Number N(q) of
(S, p) pairs having q
digit combinations

34 16 16 10 8 4 8 10 4 0 8 2

Table 15.2. Number N(q) of (S, p) pairs that are instantiated by q digit combinations.

As for the sectors that have no clue, the relevant data appearing in Table 15.3
may seem much less enticing: in a sector of size n, there are C(9, n) possible
combinations, i.e. upto 126 in the worst cases (which do not occur for the largest
sector sizes). This is why most puzzles proposed as games have no sector deprived
of a clue. However, possible combinations for such no-clue sectors convey no
information beyond that defined by mutual exclusion within the boundaries and it
will not be necessary to take them explicitly into consideration in our theoretical
analyses.

Sector size p 1 2 3 4 5 6 7 8 9

Number of combinations
C(9, p) = 9! / p! / (9-p)! 9 36 84 126 126 84 36 9 1

Table 15.3. Number of combinations with non-predefined sum, as a function of sector size.

406 Pattern-Based Constraint Satisfaction and Logic Puzzles

15.1.5. Pseudo-magic cases

There are 34 magic cases and there are also twenty-eight cases, given in Table
15.4, of non-magic (S, p) pairs that have digits (up to five) common to all their
combinations. This happens only when there are no more than five combinations.

These cases will also play a particular role in our modelling of Kakuro as a CSP,
because digits common to all the (S, p)-compatible combinations are as good for
many purposes as all the (S, p)-compatible digits in the “magic” cases. As far as we
know, these “pseudo-magic” cases have never before been explicitly considered as
forming a family worth of interest (although each may have been used implicitly in
resolution, in the form: “this digit must be somewhere in this sector, therefore …”).

(p, S) pseudo-magic combinations
 digits
(3,	 8)	 	 	 1	 	 	 125	 	 134	
(4,	 12)	 	 1,	 2	 	 1236	 	 1245	
(4,	 13)	 	 1	 	 	 1237	 	 1246	 	 1345	
(5,	 17)	 	 1,	 2,	 3	 	 	 12347	 	 12356	
(5,	 18)	 	 1,	 2	 	 12348	 	 12357	 	 12456	
(5,	 19)	 	 1	 	 	 12349	 	 12358	 	 12367	 	 12457	 	 13456	
(5,	 31)	 	 9	 	 	 16789	 	 25789	 	 34789	 	 35689	 	 45679	
(5,	 32)	 	 9	 	 26789	 	 35789	 	 45689	
(5,	 33)	 	 9	 	 	 36789	 	 45789	
(6,	 23)	 	 1,	 2,	 3,	 4	 	 	 123458	 	 123467	
(6,	 24)	 	 1,	 2,	 3	 	 	 123459	 	 123468	 	 123567	
(6,	 25)	 	 1,	 2	 	 	 123469	 	 123478	 	 123568	 	 124567	
(6,	 26)	 	 1	 	 	 123479	 	 123569	 	 123578	 	 124568	 	 134567	
(6,	 34)	 	 9	 	 	 136789	 	 145789	 	 235789	 	 245689	 	 345679	
(6,	 35)	 	 8,	 9	 	 	 146789	 	 236789	 	 245789	 	 345689	
(6,	 36)	 	 7,	 8,	 9	 	 	 156789	 	 246789	 	 345789	
(6,	 37)	 	 7,	 8,	 9	 	 	 256789	 	 346789	
(7,	 30)	 	 1,	 2,	 3,	 4,	 5	 	 1234569	 	 1234578	
(7,	 31)	 	 1,	 2,	 3,	 4,	 7	 	 1234579	 	 1234678	
(7,	 32)	 	 1,	 2,	 3	 	 1234589	 	 1234679	 	 1235678	
(7,	 33)	 	 1,	 2,	 6	 	 1234689	 	 1235679	 	 1245678	
(7,	 34)	 	 1	 	 1234789	 	 1235689	 	 1245679	 	 1345678	
(7,	 35)	 	 5	 	 1235789	 	 1245689	 	 1345679	 	 2345678	
(7,	 36)	 	 9	 	 1236789	 	 1245789	 	 1345689	 	 2345679	
(7,	 37)	 	 4,	 8,	 9	 	 1246789	 	 1345789	 	 2345689	
(7,	 38)	 	 7,	 8,	 9	 	 1256789	 	 1346789	 	 2345789	
(7,	 39)	 	 3,	 6,	 7,	 8,	 9	 	 1356789	 	 2346789	
(7,	 40)	 	 5,	 6,	 7,	 8,	 9	 1456789	 	 2356789	

Table 15.4. The 28 “pseudo-magic” (sector size, sum) pairs with digits common to all their
combinations

15. Non-binary arithmetic constraints and Kakuro 407

It should now be noted that, if the analogy with crosswords had to be pushed
further than mere grid structure, knowledge about words would have to be compared
with knowledge about magic sectors (Table 15.1) and pseudo-magic cases (Table
15.4) [and also about g-combinations – see section 15.5]. This appears to us as the
main limitation of Kakuro as a game: from a player’s point of view, we can easily
imagine that there is some pleasure in crosswords (because words are the stuff our
lives are made of and good crosswords propose unexpected definitions of them); we
can also imagine that there is some pleasure in finding complex patterns in a Sudoku
grid, because such patterns rely on some fixed visible grid structure; but it is hard to
imagine that there could be any pleasure in memorising so many combinations of
digits or in spending time in consulting tables containing them (however, this may
be due to our lack of imagination in this domain). In any case, this digression does
not lessen the theoretical interest of Kakuro in itself or for the purposes of this book.

15.2. Modelling Kakuro as a CSP

In this section, we show how Kakuro can be modelled as a CSP according to the
general principles of Part I, in spite of having non-binary constraints (they can
indeed be very far from binary, as some of them can bear on up to nine variables).

15.2.1. Sorts and CSP variables of the Kakuro CSP

For Kakuro on a k×k grid, we adopt the same Row and Column sorts as for
LatinSquare, but with domains adjusted to grid size, i.e. with respective sets of
constant symbols {r1, …, rk} and {c1, …, ck}. We also adopt a sort Number
independent of grid size, with set of constant symbols {n1, n2, …, n9}. Depending
on how we initialise the CSP variables, we can also introduce a sort
CompatSH,pH,SV,pV instead of Number for each legitimate (SH, pH) and (SV, pV) pairs,
with set of constant symbols Compat(SH, pH, SV, pV), the set of (SH, pH)-compatible
and (SV, pV)-compatible digits. In the sequel, we shall adopt this latter possibility.

We define a sort Combination, with set of constant symbols the set Comb of all
the symbols n1n2… made by glueing p (for any p with 1 ≤ p ≤ 9) different digits in
increasing order; see the examples for (S, p) = (20, 4) and (S, p) = (25, 5) in section
15.1.4.

In relation with sectors having no clue, we introduce a sub-sort Combinationp of
Combination, with set of constant symbols the set Comb(p) of all the symbols
n1n2…np made by glueing together exactly p different digits in increasing order
(with no sum constraint).

Last but nor least, for each digit p and sum S, we also define a sub-sort
CombinationS,p of Combination (and of Combinationp), with set of constant symbols

408 Pattern-Based Constraint Satisfaction and Logic Puzzles

the set Comb(S, p) of all the symbols n1n2…np made by glueing together exactly p
different (S, p)-compatible digits in increasing order and with sum S. The elements
in Comb(S, p) represent all the possibilities for a sector controlled by parameters
(S, p), notwithstanding the order of the digits.

Remarks:
– adopting an increasing order for the constant symbols of sorts Combination,

Combinationp and CombinationS,p is a mere notational choice, unrelated with any
consideration about permutations;

– we shall make an abuse of language by almost systematically identifying an
abstract symbol in Comb, Comb(p) or Comb(S, p) with the subset of digits from
which it is built.

15.2.1.1. The “natural” Xrc CSP variables

The “natural” CSP variables of k×k Kakuro, corresponding to the original
problem formulation, are all the Xr°c° such that r° is in {r1, …, rk}, c° is in
{c1, …, ck} and cell (r°, c°) is white. They are thus different for different patterns of
black cells. The domain of variable Xrc is Compat(SH, pH, SV, pV), where (SH, pH)
and (SV, pV) are its horizontal and vertical parameters. It should be noticed that this
entails in practice that most of the obvious initial domain restrictions of the white
cells (which may be the main stuff for beginners to deal with) are supposed to be
done before the start of the resolution process proper. Our main purpose in this
choice is to avoid endless boring eliminations at the start.

15.2.1.2. The Xrn and Xcn CSP variables

Contrary to the previous Sudoku and Futoshiki examples, there are in general no
Xr°n° or Xc°n° CSP variables associated with all the (Row, Number) or (Column,
Number) pairs, even limited to sectors, because there is in general no constraint
relative to the presence of each Number in each Row or Column.

However, there is a major exception and it is related to the “magic” sectors.
Given a horizontal “magic” sector of size p, controlled by black cell (r°, c°) with
horizontal clue S and associated with the unique combination C = {n1, …, np} of
digits defined in Table 15.1, for each n° in C, and only for these Numbers, we
introduce a CSP variable Hr°c°n°, with domain the set of columns in the magic
sector. We introduce similar Vr°c°n° CSP variables for the “magic” vertical sectors.
The reason why we have kept the special “45-in-9” magic case (contrary to usual
conventions and although it conveys no information) should now be clear: we did
not want to exclude it from generating such Hr°c°n° and/or Vr°c°n° variables.
Notice that these variables cannot be called Hr°n° or Vc°n° as they would be in
Sudoku or LatinSquare, because there may be several magic sectors in the same row
(or column) and we need a means of distinguishing the associated variables.

15. Non-binary arithmetic constraints and Kakuro 409

There is also a secondary exception, related to the twenty-eight “pseudo-magic”
cases given in Table 15.4. Given a horizontal “pseudo-magic” sector controlled by
black cell (r°, c°) with parameters (S, p), for each n° in the set of digits common to
all the (S, p)-compatible combinations, as defined in Table 15.4, and only for these
Numbers, we introduce a CSP variable Xr°c°n°, with domain the set of columns in
the magic sector. Of course, similar Xr°c°n° CSP variables are introduced for the
vertical “pseudo-magic” sectors.

15.2.1.3. The Hrc and Vrc CSP variables

We must also introduce additional CSP variables that will allow to take the sum
constraints into account. For each horizontal [resp. vertical] clue, we define a CSP
variable representing the global content of the cells in the sector it controls, this
content being considered as a set or a combination of different digits. We shall then
also say that this new CSP variable controls the sector. More precisely:

– for each black cell (r°, c°) containing a horizontal clue S, if the sector it
controls in row r° has length p, then we define CSP variable Hr°c°, with domain the
set of combinations of p different Numbers with sum S, i.e. CombinationS,p;

– similarly, for each black cell (r°, c°) containing a vertical clue S, if the sector it
controls in column c° has length p, then we define CSP variable Vr°c°, with domain
CombinationS,p.

In less formal terms, each of these new CSP variables allows to manage the
possible combinations of Numbers in the sector it controls. A candidate for such a
CSP variable is a possible combination of digits for the sector it controls; along the
resolution process, the number of these global possibilities for the sector will
decrease in a way consistent with the possibilities remaining in the white cells. The
horizontal [respectively vertical] magic sectors correspond to Hrv [resp. Vrc] CSP
variables with domains having only one value.

15.2.1.4. Miscellaneous remarks

The Hrc and Vrc CSP variables are not “natural” in the sense that they would
directly correspond to the original problem formulation: “find a value for each white
cell such that …”; only the Xrc are “natural” in this sense. But they are natural in the
larger sense that they are a mere formalisation of the classical idea that one must
keep track of the combinations still possible for each sector. In this extended sense,
the Xrn and Xcn variables are much less natural than the Hrc and Vrc.

The two new sets of Hrc and Vrc CSP variables are mutually disjoint, and
disjoint from the sets of Xrc, Xrn and Xcn, thanks to the presence of prefix H or V
in their names.

One can consider that there are 5 CSP-Variable-Types: rc, rn, cn, hrc, vrc.

410 Pattern-Based Constraint Satisfaction and Logic Puzzles

Each of the possible values for each of the Hrc or Vrc CSP variables is a set (a
combination); as each of these sets represents the whole set of values for cells in the
sector it controls, these variables are highly redundant with the “natural” ones, as is
usual in our approach.

After Table 15.2, the cardinalities of the domains of the new Hrc or Vrc CSP
variables are not much larger than those of the “natural” Xrc ones (the maximum is
12); in most of the cases, they are even smaller. We have therefore avoided the
complexity pitfall that generally goes with the replacement of non-binary constraints
by binary ones.

No CSP variable is introduced for sectors defined only by their boundaries, with
no sum constraint. This is first of all a natural modelling choice: such variables
would not carry any useful information. But, considering the data in Table 15.3, this
also has the fortunate consequence that we need not introduce any CSP variable
with a domain much larger (up to 126) than those of the “natural” ones.

There is another implicit modelling choice: instead of choosing for domains of
the new CSP variables the sets (i.e. combinations) of n different Numbers with sum
S, one could have chosen the sequences (i.e. permutations) of n different Numbers.
The cardinalities would have been much larger, upto 9! = 362,880. This would still
have been manageable for a computer, although probably not for a human solver,
but, as shown by theorem 15.1 below, this would have brought nothing more with
respect to the expression of sum constraints. This choice is consistent with (and was
inspired by) the way the usual resolution techniques are described on various
websites, where it is mentioned that one must track combinations of digits.

These new CSP variables (together with the definition of their domains) depend
in an essential way on the set of clues.

15.2.2. Labels of the Kakuro CSP

For a white cell (r°, c°), labels for CSP variable Xr°c° are defined as all the
(n°, r°, c°) triplets (also notated n°r°c°) with r° in Row, c° in Column and n° in
Compat(S°H, p°H, S°V, p°V), similarly to the Sudoku or LatinSquare cases. But
contrary to these CSPs, label n°r°c° is generally the equivalence class of only one
pre-label: <Xr°c°, n°> because there are no Xr°n° or Xc°n° CSP variables. The main
exception is for the “magic” sectors: if (r°, c°) belongs to a horizontal magic sector
controlled by cell (r°, c’°) and/or a vertical magic sector controlled by cell (r’°, c°),
then there are pre-labels <Hn°r°c’°, c°> and/or <Vn°r’°c°, r°> equivalent to
<Xr°c°, n°>. The secondary exception is for a “pseudo-magic” (S, p) pair and a digit
common to all its combinations (and only such a digit).

Labels for CSP variable Hr°c° controlling a horizontal sector with parameters
(S, p) are defined as all the symbols H[n1 … np]r°c°, where {n1, …, np} is a possible

15. Non-binary arithmetic constraints and Kakuro 411

value for Hr°c°, i.e. a combination of p digits with sum S; for the purpose of having
a well defined naming scheme for these labels, we always suppose that they are
written with n1 < … < np. Informally, label H[n1, …, np]r°c° represents the fact that
{n1, …, np} is exactly the set of values appearing somewhere (in any order) in the
horizontal sector controlled by (r°, c°). Each of these labels is the equivalence class
of only one pre-label <Hr°c°, {n1, …, np}>; there is therefore a one-to-one
correspondence between labels for Hr°c° and elements of Comb(S, p).

Labels for CSP variable Vr°c° are defined similarly, using prefix V instead of H.

15.2.3. Constraints and Constraint-Types of the Kakuro CSP

We shall use seven Constraint-Types: rc, hrc, vrc, rn, cn, hS, vS.

Constraints of type rc, hrc and vrc are associated with the above-defined three
classes of CSP variables (Xrc, Hrc and Vrc) and they mean as usual that two
different values for the same CSP variable are incompatible. This distinction
between three different types is not essential from the point of view of logic, but it
may be useful if one wants to distinguish different types of Singles and assign the
associated rules different priorities: e.g. Singles for Xrc variables may be considered
as “easier” to spot on the grid than Singles for Hrc or Vrc variables.

Constraints of type rn [respectively cn] express that two white cells in the same
horizontal [resp. vertical] sector cannot have the same value. As previously noticed,
except in the “magic” or “pseudo-magic” cases, these constraints cannot generally
be associated with “global” Xrn [resp. Xcn] CSP variables in the row [resp.
column], not even with “local” Xrc’n [resp. Xr’cn] CSP variables restricted to the
proper sectors. This will have concrete consequences, e.g. when we evoke Hidden or
Super-Hidden Subset rules (see section 15.3.2). Notice that we use the same rn and
cn constraint types, whether there is an underlying CSP variable or not, as this can
introduce no confusion.

Constraints of type hS [respectively vS] link the labels for the “natural” CSP
variables with the labels for the additional “horizontal” ones. They mean that the
information conveyed by the two labels is inconsistent, i.e. that the value of the label
for the white cell is not one of the values allowed by the combination in the label for
its horizontal controller cell. More precisely, we introduce a (symmetric) constraint
of type hS between label H[n1 … np]rc for CSP variable Hrc and label n’r’c’ for
CSP variable Hr’c’ whenever:

– r’ = r,
– c’ is in the horizontal sector controlled by (r, c),
– and n’ ∉ {n1, …, np}.

This constraint is expressed by predicate:

412 Pattern-Based Constraint Satisfaction and Logic Puzzles

linked-by(H[n1…np]rc, r’c’, hS) ∧ linked-by(r’c’, H[n1…np]rc, hS).

Constraints of type vS linking the labels for the “natural” CSP variables with the
labels for the additional “vertical” ones are defined similarly.

These different types of constraints may be used to assign a preference to ECP
based on rn and cn constraints, with respect to ECP based on hS or vS constraints.

15.2.4. Givens and domain assignments in the Kakuro CSP

In the first section, we said that the clues of a Kakuro puzzle are horizontal or
vertical sums in the black cells. In our formal CSP re-formulation, these correspond
to assigning values for the additional CSP variables only in the case of “magic”
sectors; in any other case, they only correspond to an initial restriction on the set of
all the possible combinations of p digits (i.e. candidates) for these new variables.
This does not change our model of resolution; the initial resolution state must only
be defined in a less direct way than in the previous cases, by assigning each of the
Hrc and Vrc variables a domain CombinationS,p consistent with its (S, p) pair. The
way domains are assigned to the Xrc variables has been discussed previously.

15.2.5. Re-formulation of Kakuro as a CSP

The motivation for the above detailed definitions lies in the following theorem:

Theorem 15.1: a solution of a Kakuro puzzle is equivalent to a solution of the
CSP defined by the natural Xrc and additional Xrn, Xcn, Hrc and Vrc CSP
variables (together with their allowed domains of values) with all the above-
defined constraints, namely (all the “strong” constraints and):

– in each sector, the constraints of mutual exclusion (along rn and cn links),
– for the additional CSP variables the constraints associated with their above

defined contradiction links (hS and vS links) with the natural ones.

Proof: the “natural ⇒ CSP” part is obvious. Let us prove the converse.

First, in a sector with no sum constraint, the only constraints for cells in this
sector specified by the original puzzle data are the constraints of mutual exclusion
and nothing needs be added.

Consider now any fixed clue in the original puzzle, with sum S for a sector of
size n. Consider the associated additional CSP variable, say X. The value of X,
which is a combination C of n different digits, means that these n digits have the
required sum S. The fact that this CSP variable X satisfies the contradiction links
with all the natural variables in the sector it controls means that each of the values
for these variables is among those in C. The fact that the natural CSP variables in

15. Non-binary arithmetic constraints and Kakuro 413

the sector satisfy the mutual exclusion constraints in the sector means that they are
all different. As a result, they constitute a realisation of combination C, their sum is
S and the original clue is satisfied. The same proof works for any clue. q.e.d.

The theorem says that, as far as the problem formulation and solution are
concerned, the original non-binary arithmetic constraints can be completely replaced
by the above-defined Hrc and Vrc variables together with their contradiction links
with the Xrc variables (and the links between the latter). Although a little more
complex, this is similar to the Futoshiki case, in which each inequality was replaced
by an equivalent set of links. The intuitive meaning is that, in theory, one needs do
no more arithmetic, but only find a solution with consistent values for combinations
and rc-cells. However, there are two limitations to the practical interpretation of the
theorem:

– it does not mean that a little more arithmetic may not make the resolution
simpler in practice; we shall consider some aspects of this question later (see section
15.7);

– it does not mean that the hS and vS links of the new formulation are sufficient
to express all the mathematical content of the sum constraints (see in section 15.3.2
how we shall palliate this limitation by adding six coupling rules).

Remarks:
– indirectly, the theorem also says that it would be useless to introduce CSP

variables whose domains would be sets of permutations instead of sets of
combinations; the next sections will show how to exploit concretely the interplay
between the natural Xrc variables on the one hand and the additional Hrc and Vrc
variables on the other hand;

– as far as can be seen from the existing websites, the idea of considering and
tracking combinations of numbers for each sector is standard in Kakuro; but we
have been able to find neither the origin of this idea, nor any formalisation of it, nor
any mention that this could completely replace (in theory) the sum information;

– several Kakuro websites propose only instances whose non-magic sectors are
restricted to N(q) = 2; this corresponds to having only bivalue additional CSP
variables, which makes the puzzles much easier; as there are only sixteen (S, p)
pairs with N(q) = 2 (see Table 15.2), this is a strong limitation on possible puzzles.

15.3. Elementary Kakuro resolution rules and theories

15.3.1. The Basic Kakuro Resolution Theory

There is nothing special to say about the Basic Kakuro Resolution Theory,
except that, as the “magic” additional CSP variables have their values assigned at
the start, they often allow obvious additional assertions.

414 Pattern-Based Constraint Satisfaction and Logic Puzzles

Consider the case when a sum of 16 [respectively 17] bears on a sector with only
two cells: the “magic” CSP variable has value {7 9} [resp. {8 9}] and all the
candidate-Numbers with values other than 7 and 9 [resp. 8 and 9] are therefore
absent from the initial resolution state. The opposite case is a clue with sum 45
bearing on nine cells: the only possible combination is {1 2 3 4 5 6 7 8 9} and it
allows no elimination in its sector.

On some Kakuro websites, the following special “rule” is proposed: if a sector of
two cells in a row has a sum of 16 and a sector of two cells in a column has a sum of
17 and if cell (r, c) belongs to the two sectors, then (r, c) = 9. But the result of this
combination of magic sectors can be obtained by rules in BRT: as the horizontal
controller has value {7, 9} and the vertical controller has value {8, 9}, the initial
state can only contain one candidate (9) and rule S can conclude that (r, c) = 9.

15.3.2. Coupling rules between controller and controlled variables

As mentioned in our interpretation of theorem 15.1, having transformed the
original arithmetic formulation into a binary one based on combinations and
associated contradiction links between labels for controller and controlled CSP
variables is not quite enough to make Kakuro fully amenable to our approach. One
point is, when one introduces CSP variables that are not inherent in the formulation
of the CSP, their relationship with the natural ones must somehow be specified. This
question was almost hidden in our previous examples by the straightforward way
equivalence relations between pre-labels for the different types (Xrc, Xrn, Xcn [and
Xbn]) of CSP variables were defined to make labels. For Kakuro, a more explicit
coupling between the CSP variables must be defined.

At this point, the links defined between “natural” and “controller” CSP variables
allow only to eliminate via standard ECP:

– candidates in a white cell that are not compatible with the sum of one of its
horizontal or vertical controllers, when one has been set;

– candidates in a controller cell that are not compatible with the value of a
controlled cell, when one has been set.

But they do not allow any elimination before a variable value has been found.
They can only be made fully operational if we consider the following four
elementary resolution rules, that we shall call the W1-coupling rules:

– ctr-to-horiz-sector (from horizontal controller to cells in the sector it controls):
in any resolution state, if a candidate-Number is absent from all the combinations
for a horizontal sector, then delete it from any cell in this sector; notice that, given
our definitions of links and CSP variables, this elimination can be done by a whip[1]
with the horizontal controller as its CSP variable;

15. Non-binary arithmetic constraints and Kakuro 415

– cell-to-horiz-ctr (from a cell to its horizontal controller): in any resolution
state, if a cell contains no digit of a combination C, then delete C from its horizontal
controller; here again, this elimination can be done by a whip[1] with the cell as its
CSP variable;

– the corresponding two “vertical” rules.

At this point, it may be useful to notice that, if a solution to the CSP formulation
is given, one never needs these rules in order to prove by standard mathematical
means that it is a solution to the initial problem (as can be seen from the proof of
theorem 15.1). However, they are required if a solution has to be built constructively
from an initial state in which some of the variables have several possible
combinations; this is the difference between checking a solution and building one.

It is easy to see that the four coupling rules are whips[1] and they are the only
possible types of whips[1]. Adopting them systematically is thus equivalent to using
W1 as our minimal resolution theory instead of BRT.

One must also consider another type of coupling rule:
– horiz-sector-to-ctr (from horizontal sector to controller): in any resolution

state, if a candidate-Number is absent from all the cells of a horizontal sector, then
delete from the horizontal controller CSP variable any candidate-combination
containing it; notice that, as there are in general no Hrcn CSP variables, this cannot
be considered as a whip[1] (even a generalised one with missing llc1), although it is
akin to a whip[1] and it has the effect of a whip[1]; and, in the (magic and pseudo-
magic) cases where there is an Hrcn CSP variable, the conditions of the rule can
never be satisfied; as appears from the resolution paths, this rule is activated much
less often than the previous ones if it is given lower priority. Of course, there is also
a verti-sector-to-ctr rule.

One may wonder whether this introduces a new kind of rule; but it is easy to see
that, for a sector of length p, it is equivalent to an Sp-1-braid[p] – although it appears
as a much simpler and natural structure when considered as a coupling rule.

The sequel will show that the six coupling rules are enough to ensure the full
resolution potential of the above defined CSP variables and links. We call BRT+ the
union of BRT with these six coupling rules (BRT+ is thus an extension of W1); more
generally, for any resolution theory T, we call T+ the union of T with these six rules.
As the last two coupling rules are obviously stable for confluence, BRT+ has the
confluence property; similarly, if T has the confluence property, so has T+.

15.3.3. Subset rules in Kakuro

Kakuro has Subset rules, but, due to the presence of sectors, they are a little
more complex than in our previous examples.

416 Pattern-Based Constraint Satisfaction and Logic Puzzles

15.3.3.1. Strict Subset rules

Strictly speaking (i.e. according to the general definitions of Subsets in chapter
8), there are only three kinds of Subset rules:

– “Naked” Subset rules, both in rows and columns (based either on Xrci CSP
variables with transversal rnj constraints or on Xric CSP variables with transversal
cnj constraints);

– “Hidden” Subset rules (based on Xrni CSP variables, with transversal rcj
constraints) in rows for horizontal magic sectors or for horizontal pseudo-magic
sector-digit cases;

– “Hidden” Subset rules (based on Xcni CSP variables, with transversal rcj
constraints) in columns for vertical magic sectors or for vertical pseudo-magic
sector-digit cases.

Given the definition of the rc, rn and cn constraints, all these rules can only be
applied locally within a sector, not globally in a row or a column. Thus, given three
cells in a sector in a row, if their candidate-Numbers belong to a same set of three
(formally, they are related by three different contraints of type rn), these Numbers
can be eliminated by Naked-Triplets-in-a-row from other cells in the same sector
(but not from other cells in the same row outside this sector).

15.3.3.2. Extended Hidden Subset rules

Strictly speaking, there are no other Hidden Subset rules (in the sense that they
would appear as mere Subset rules when considering the proper CSP variables) than
those associated with magic or pseudo-magic sectors (and restricted to the
appropriate digits in the latter case). We insist on this point, not for the theoretical
reason of making formal distinctions, but mainly for the practical one that the way
Hidden Subset rules are presented on Kakuro websites as similar to those of Sudoku
may be very misleading.

In the non-magic and non-pseudo-magic cases, one can indeed define
elimination rules similar to Hidden Subset rules, with the same sector restriction as
in the Naked case. But, because there are no Xrn (or Xcn) CSP variables in these
cases, even limited to the sector, such a rule must have the additional restriction that
it must have already been proven that all the candidate-Numbers the pattern bears on
must be present in the sector (this is never stated on any of the websites we have
seen). This happens for instance when all the cells in the sector have been restricted
by previous rules to the same p candidate-Numbers, where p is the size of the sector.
But this condition is not necessary; it is enough to know that all the candidate-
combinations remaining for the controller CSP-variable contain these candidate-
Numbers. The problem is, this condition on combinations is more complex than the
defining conditions of a Naked Subset; such a “Dynamic Hidden Subset” rule can
therefore not be considered as a counterpart of the Naked one for Subsets of same

15. Non-binary arithmetic constraints and Kakuro 417

size. The practical question is: in such cases, is it worth introducing these rules or is
it better to rely on Naked vs Hidden complementarity and use only Naked Subsets?
As we have not programmed such extensions in KakuRules and as Quads are
already rare patterns, we leave it open.

15.3.3.3. Extended Super Hidden Subset rules

Strictly speaking, there are no Super-Hidden Subset (Fish) rules. One can
introduce something similar, a “Dynamic” Super-Hidden Subset, although its
application is still more restricted than in the Hidden case: for a “Dynamic” Super-
Hidden Subset in rows [respectively columns], all the cells in each row and column
involved in the pattern must be in the same sector [it is “in each row and column”
for both horizontal and vertical cases, not respectively for each one]; moreover, it
must already have been proven that the candidate-Number involved in the pattern
must appear in each of the horizontal [resp. vertical] sectors containing cells of the
pattern (the only way this can be granted is when all the combinations remaining for
each horizontal [resp. vertical] sector all contain this candidate-Number – as in the
Hidden Subset case). A target in a column [resp. a row] must be in the same vertical
[resp. horizontal] sector as some cells in the pattern. However, nothing prevents
blacks cells to appear in the convex hull of the pattern, outside its rows and
columns. The direct proof of this rule is exactly as in Sudoku.

The additional conditions (with respect to the standard formulation of Subset
rules) for this extension are the same as for Hidden Subsets: the presence of a
candidate-Number in a sector can only be ascertained when all the combinations
remaining for the sector all contain this Number.

15.4. Bivalue-chains, whips and braids in Kakuro

There are two main remarks about bivalue-chains, whips or braids in Kakuro:
– they entertwine “natural” Xrc and additional Hrc and Vrc CSP variables in an

essential way;
– one can observe the same phenomenon as in Sudoku and Futoshiki: when

whips and braids are both active, whips are given a higher priority than braids of
same length (as in our standard complexity hierarchy) and the simplest-first strategy
is used, non-whip braids rarely appear.

As mentioned in the Introduction, when we want to display the resolution path of
an instance in a way that allows to consider it as a full proof of the solution, we face
the problem of the trivial steps, in particular the boring sequences of eliminations
due to direct constraint propagation. In Sudoku, the problem was easily dealt with
because the eliminations done by ECP rules are quite obvious and can be omitted
with no harm. In Futoshiki, in addition to ECP, we had to deal with ascending

418 Pattern-Based Constraint Satisfaction and Logic Puzzles

chains and the compromise between being boring and being unclear because of
discarding too many steps was to “forget” such chains only at the start.

In Kakuro, in addition to ECP (which will never be displayed, even between
different types of variables), the interplay between controller and controlled
variables (formalised in the coupling rules) is an essential part of the resolution
process, at any stage of it (as can be seen from the resolution paths below), and it
would be queer not to display the corresponding steps, especially as all the puzzles
proposed to beginners can be solved using only these rules.

The convention we shall adopt is that all the obvious eliminations whose effect
is to restrict the domains of the natural CSP variables are already done in the initial
resolution state RS1, before any application of the Single rule. This can be viewed
either as adopting the domain definitions given in section 15.2.4 or as allowing the
ctr-to-horiz-sector and ctr-to-verti-sector coupling rules to apply before Singles
(until RS1 is reached), even though they do not belong to BRT (they are whips[1]
and pseudo-whips[1]). As a result of this initialisation choice, Single assertions that
could be available earlier (e.g. as in the case described at the end of section 15.3.1)
will appear only after RS1. In practice, this amounts to delaying any Single
application a human player is likely to do during this initialisation phase.

We also adopt the convention that constraints in magic sectors are transformed
from the start (after the above Xrc domain restrictions) into given values for the
associated Hrc or Vrc variables and identified as such in the first two lines of the
resolution path.

After this initialisation phase, it is natural to grant Singles a higher priority than
coupling rules and it would be misleading not to display all of the instances of the
latter. [As all the interesting resolution theories must contain the coupling rules and
as only easy puzzles can be solved at such levels, this priority has no impact on our
further analyses of harder puzzles and on their classifications.] The resolution path
will generally start with a series of Singles for the Xrc, Hrc and Vrc variables.

15.4.1. Full resolution path of the puzzle in Figure 15.1

This section gives the full resolution path of the puzzle in Figure 15.1. Braids,
whips, bivalue chains, Naked and Hidden Subsets (in magic sectors) are active. We
have chosen this moderately difficult example because it has Naked and Hidden
Subsets (although these instances could be replaced by whips). Although active,
braids do not appear. The most interesting steps are in bold.

It should be noticed how Naked Singles for “natural” Xrc and for Hrc and Vrc
variables are entertwined: in Kakuro, there is a permanent interplay between the two
types of variables. It is thus worth for the reader to spend some time on checking (at

15. Non-binary arithmetic constraints and Kakuro 419

least in the bivalue-chains[2] and whips[2]) how this general idea is materialised in
most of the chains appearing in the resolution path.

*****	 	 KakuRules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 B+	 	 	 *****	
horizontal-‐magic-‐sectors	 ==>	 hr11c6	 =	 5789,	 hr9c3	 =	 124,	 hr5c1	 =	 356789,	 hr3c7	 =	 1235,	
hr3c1	 =	 56789	
vertical-‐magic-‐sectors	 ==>	 vr7c11	 =	 124,	 vr2c9	 =	 123456789,	 vr6c8	 =	 13,	 vr2c8	 =	 13,	
vr9c7	 =	 79,	 vr4c6	 =	 46789,	 vr1c4	 =	 123456789,	 vr1c3	 =	 1235,	 vr6c2	 =	 13	
naked-‐singles	 ==>	 r11c8	 =	 5,	 r10c7	 =	 7,	 r11c7	 =	 9,	 r9c11	 =	 4,	 r9c6	 =	 4,	 r6c6	 =	 6,	 r5c11	 =	 6,	
r3c11	 =	 5,	 r3c3	 =	 5,	 r3c6	 =	 6,	 r5c3	 =	 3,	 vr1c6	 =	 16,	 r2c6	 =	 1,	 r2c3	 =	 2,	 r4c3	 =	 1,	 vr1c11	 =	 58,	
r2c11	 =	 8,	 hr2c9	 =	 78,	 r2c10	 =	 7,	 vr1c10	 =	 37,	 r3c10	 =	 3,	 r3c8	 =	 1,	 r3c9	 =	 2,	 r4c8	 =	 3,	 hr5c8	 =	 126,	
r5c9	 =	 1,	 r5c10	 =	 2,	 vr4c10	 =	 25,	 r6c10	 =	 5,	 vr4c11	 =	 69,	 r6c11	 =	 9,	 hr6c8	 =	 459,	 r6c9	 =	 4,	
hr6c3	 =	 1236,	 hr9c8	 =	 489,	 hr10c6	 =	 12347,	 r10c9	 =	 3,	 vr9c8	 =	 25,	 r10c8	 =	 2,	 r10c11	 =	 1,	
r10c10	 =	 4,	 r8c11	 =	 2	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r4c7	 ≠	 8,	 r4c9	 ≠	 8,	 r4c7	 ≠	 4,	 r4c7	 ≠	 5,	 r4c9	 ≠	 5	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r4c2	 ≠	 5,	 r4c4	 ≠	 5	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r8c10	 ≠	 1,	 r8c10	 ≠	 3	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c1	 ≠	 249,	 hr7c1	 ≠	 258,	 hr7c1	 ≠	 267	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r7c4	 ≠	 2	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c1	 ≠	 456	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c5	 ≠	 2589,	 hr7c5	 ≠	 2679	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r7c7	 ≠	 2	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c5	 ≠	 4569,	 hr7c5	 ≠	 4578	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr11c1	 ≠	 56	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r11c3	 ≠	 5,	 r11c3	 ≠	 6	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr1c5	 ≠	 29	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r3c5	 ≠	 9	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr4c5	 ≠	 34	 	
ctr-‐to-‐verti-‐sector	 	 ==>	 r6c5	 ≠	 3	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr1c5	 ≠	 56	
ctr-‐to-‐verti-‐sector	 	 ==>	 r2c5	 ≠	 5,	 r2c5	 ≠	 6	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr6c3	 ≠	 67	
ctr-‐to-‐verti-‐sector	 	 ==>	 r7c3	 ≠	 6,	 r7c3	 ≠	 7	 ;	 verti-‐sector-‐to-‐ctr	 	 ==>	 vr2c2	 ≠	 178,	 vr2c2	 ≠	 169	
biv-‐chain[2]:	 r8n3{c7	 c8}	 –	 r8n1{c8	 c7}	 ==>	 r8c7	 ≠	 9,	 r8c7	 ≠	 8,	 r8c7	 ≠	 7,	 r8c7	 ≠	 6,	 r8c7	 ≠	 5,	 r8c7	 ≠	 4	
horiz-‐sector-‐to-‐ctr	 	 ==>	 hr8c5	 ≠	 123468	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r8c6	 ≠	 8,	 r8c9	 ≠	 8,	 r8c10	 ≠	 8	
horiz-‐sector-‐to-‐ctr	 	 ==>	 hr8c5	 ≠	 123459	
naked-‐singles	 ==>	 hr8c5	 =	 123567,	 r8c6	 =	 7	
biv-‐chain[2]:	 vr7c10{n4579	 n4678}	 –	 r9c10{n9	 n8}	 ==>	 r11c10	 ≠	 8	
naked-‐singles	 ==>	 r11c10	 =	 7,	 r11c9	 =	 8,	 r9c9	 =	 9,	 r9c10	 =	 8,	 vr7c10	 =	 4678,	 r8c10	 =	 6,	 r8c9	 =	 5	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c5	 ≠	 3489	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r7c7	 ≠	 4	
verti-‐sector-‐to-‐ctr	 	 ==>	 vr3c7	 ≠	 13456,	 vr3c7	 ≠	 12457,	 vr3c7	 ≠	 12349	
ctr-‐to-‐verti-‐sector	 	 ==>	 r5c7	 ≠	 9,	 r7c7	 ≠	 9	
biv-‐chain[2]:	 vr8c5{n14	 n23}	 –	 r9c5{n1	 n2}	 ==>	 r10c5	 ≠	 2	
biv-‐chain[2]:	 vr6c3{n49	 n58}	 –	 r8c3{n4	 n5}	 ==>	 r7c3	 ≠	 5	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c1	 ≠	 357	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r7c4	 ≠	 7	
biv-‐chain[2]:	 hr8c1{n125	 n134}	 –	 r8c3{n5	 n4}	 ==>	 r8c4	 ≠	 4	
biv-‐chain[2]:	 hr4c6{n137	 n236}	 –	 r4c9{n7	 n6}	 ==>	 r4c7	 ≠	 6	
biv-‐chain[2]:	 hr2c2{n1236	 n1245}	 –	 r2c5{n3	 n4}	 ==>	 r2c4	 ≠	 4	
biv-‐chain[2]:	 r9c5{n1	 n2}	 –	 vr8c5{n14	 n23}	 ==>	 r10c5	 ≠	 1	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr10c1	 ≠	 1257	
biv-‐chain[2]:	 r8c3{n4	 n5}	 –	 vr6c3{n49	 n58}	 ==>	 r7c3	 ≠	 4	
biv-‐chain[2]:	 r2c5{n3	 n4}	 –	 hr2c2{n1236	 n1245}	 ==>	 r2c4	 ≠	 3	
whip[2]:	 r4c9{n7	 n6}	 –	 hr4c6{n137	 .}	 ==>	 r4c7	 ≠	 7	
whip[2]:	 r7c2{n1	 n3}	 –	 hr7c1{n168	 .}	 ==>	 r7c4	 ≠	 1	
whip[2]:	 r7c2{n3	 n1}	 –	 hr7c1{n348	 .}	 ==>	 r7c4	 ≠	 3	
whip[2]:	 r7c3{n8	 n9}	 –	 hr7c1{n348	 .}	 ==>	 r7c4	 ≠	 8	

420 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[2]:	 r7c3{n9	 n8}	 –	 hr7c1{n159	 .}	 ==>	 r7c4	 ≠	 9	
whip[2]:	 r7c8{n1	 n3}	 –	 hr7c5{n1689	 .}	 ==>	 r7c7	 ≠	 1	
whip[2]:	 r7c8{n3	 n1}	 –	 hr7c5{n3678	 .}	 ==>	 r7c7	 ≠	 3	
whip[2]:	 r8c3{n5	 n4}	 –	 hr8c1{n125	 .}	 ==>	 r8c4	 ≠	 5	
whip[2]:	 hr10c1{n1248	 n1239}	 –	 r10c3{n4	 .}	 ==>	 r10c4	 ≠	 9	
whip[2]:	 hr11c1{n29	 n47}	 –	 r11c2{n2	 .}	 ==>	 r11c3	 ≠	 4	
whip[2]:	 r5c2{n8	 n9}	 –	 r3c2{n9	 .}	 ==>	 vr2c2	 ≠	 349	
whip[2]:	 vr2c2{n457	 n259}	 –	 r3c2{n7	 .}	 ==>	 r5c2	 ≠	 9	
whip[2]:	 vr9c2{n23	 n14}	 –	 r11c2{n2	 .}	 ==>	 r10c2	 ≠	 4	
whip[2]:	 vr9c3{n49	 n58}	 –	 r11c3{n7	 .}	 ==>	 r10c3	 ≠	 8	
whip[2]:	 r10c5{n3	 n4}	 –	 r10c3{n4	 .}	 ==>	 hr10c1	 ≠	 1248	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r10c4	 ≠	 8	
whip[2]:	 vr9c3{n49	 n67}	 –	 r11c3{n8	 .}	 ==>	 r10c3	 ≠	 7	
whip[2]:	 vr9c3{n58	 n49}	 –	 r11c3{n7	 .}	 ==>	 r10c3	 ≠	 9	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr10c1	 ≠	 1239	
naked-‐triplets-‐in-‐a-‐column	 c4{r6	 r8	 r9}{n2	 n3	 n1}	 ==>	 r10c4	 ≠	 3,	 r10c4	 ≠	 2,	 r10c4	 ≠	 1,	
r4c4	 ≠	 3	
whip[2]:	 hr4c1{n128	 n137}	 –	 r4c4{n8	 .}	 ==>	 r4c2	 ≠	 7	
naked-‐triplets-‐in-‐a-‐column	 c4{r6	 r8	 r9}{n2	 n3	 n1}	 ==>	 r4c4	 ≠	 2	
whip[2]:	 hr4c1{n137	 n128}	 –	 r4c4{n7	 .}	 ==>	 r4c2	 ≠	 8	
whip[4]:	 r5c6{n8	 n9}	 –	 c4n9{r5	 r3}	 –	 r3c2{n9	 n7}	 –	 vr2c2{n358	 .}	 ==>	 r5c2	 ≠	 8	
whip[4]:	 vr3c7{n12367	 n12358}	 –	 r5c7{n7	 n8}	 –	 c6n8{r5	 r7}	 –	 hr7c5{n3579	 .}	 ==>	 r7c7	 ≠	 5	
horiz-‐sector-‐to-‐ctr	 	 ==>	 hr7c5	 ≠	 3579	
whip[2]:	 vr3c7{n12367	 n12358}	 –	 r7c7{n7	 .}	 ==>	 r5c7	 ≠	 8	
hidden-‐pairs-‐in-‐a-‐row	 r5{n8	 n9}{c4	 c6}	 ==>	 r5c4	 ≠	 7,	 r5c4	 ≠	 6,	 r5c4	 ≠	 5	
biv-‐chain[5]:	 c8n3{r7	 r8}	 –	 r8n1{c8	 c7}	 –	 r4c7{n1	 n2}	 –	 hr4c6{n137	 n236}	 –	 c9n7{r4	 r7}	 ==>	
hr7c5	 ≠	 1689	
naked-‐singles	 ==>	 hr7c5	 =	 3678,	 r7c8	 =	 3,	 r8c8	 =	 1,	 r8c7	 =	 3,	 r7c6	 =	 8,	 r5c6	 =	 9,	 r5c4	 =	 8	
hidden-‐single-‐in-‐magic-‐verti-‐sector	 ==>	 r3c4	 =	 9	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr4c1	 ≠	 128	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r4c2	 ≠	 2	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr2c2	 ≠	 259	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr3c7	 ≠	 12358	
naked-‐single	 ==>	 vr3c7	 =	 12367	
verti-‐sector-‐to-‐ctr	 	 ==>	 vr2c2	 ≠	 268	
naked-‐pairs-‐in-‐a-‐row	 r6{c5	 c7}{n1	 n2}	 ==>	 r6c4	 ≠	 2,	 r6c4	 ≠	 1	
naked-‐single	 ==>	 r6c4	 =	 3	
whip[2]:	 r3c2{n7	 n8}	 –	 vr2c2{n457	 .}	 ==>	 r5c2	 ≠	 7	
hidden-‐single-‐in-‐magic-‐horiz-‐sector	 ==>	 r5c7	 =	 7	
naked-‐singles	 ==>	 r7c7	 =	 6,	 r7c9	 =	 7,	 r4c9	 =	 6,	 hr4c6	 =	 236,	 r4c7	 =	 2,	 r6c7	 =	 1,	 r6c5	 =	 2,	 vr4c5	 =	 25,	
r5c5	 =	 5,	 r5c2	 =	 6,	 vr2c2	 =	 367,	 r4c2	 =	 3,	 r3c2	 =	 7,	 r3c5	 =	 8,	 vr1c5	 =	 38,	 r2c5	 =	 3,	 hr2c2	 =	 1236,	 r2c4	
=	 6,	 hr4c1	 =	 137,	 r4c4	 =	 7	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr7c1	 ≠	 168	 ;	 horiz-‐sector-‐to-‐ctr	 	 ==>	 hr10c1	 ≠	 1347	
biv-‐chain[2]:	 hr10c1{n1356	 n2346}	 –	 r10c4{n5	 n4}	 ==>	 r10c5	 ≠	 4	
naked-‐singles	 ==>	 r10c5	 =	 3,	 vr8c5	 =	 23,	 r9c5	 =	 2,	 r9c4	 =	 1,	 r8c4	 =	 2,	 hr8c1	 =	 125,	 r8c2	 =	 1,	
r7c2	 =	 3,	 r8c3	 =	 5,	 vr6c3	 =	 58,	 r7c3	 =	 8,	 hr7c1	 =	 348,	 r7c4	 =	 4,	 r10c4	 =	 5,	 hr10c1	 =	 1356,	 r10c2	 =	 1,	
r10c3	 =	 6,	 vr9c3	 =	 67,	 r11c3	 =	 7,	 hr11c1	 =	 47,	 r11c2	 =	 4,	 vr9c2	 =	 14	
Grid	 solved.	 Hardest	 step:	 Bivalue-‐Chain[5].	

15. Non-binary arithmetic constraints and Kakuro 421

15.5. Theory of g-labels in Kakuro

Applying the general definition of a g-label to Kakuro is not as straightforward
as in our previous CSP examples; in particular, we need investigate how the general
condition of “saturation” or “local maximality” concretely appears when applied to
sets of digits and sets of combinations.

As there can be no g-label in magic sectors, in all this section we suppose that
(S, p) is a non-magic pair.

15.5.1. General preliminaries

For convenience, let us first repeat the definition of a g-label given in section
7.1.1.1. A potential-g-label is a pair <V, g>, where V is a CSP variable and g is a set
of labels for V, such that:

– the cardinality of g is greater than one, but g is not the full set of labels for V;
– there is at least one label l such that l is not a label for V and l is linked

(possibly by different constraints) to all the labels in g.

A g-label is a potential-g-label <V, g> that is “saturated” or “locally maximal” in
the sense that, for any potential g-label <V, g’> with g’ strictly larger than g (as sets
of labels), there is a label l that is not a label for V and that is linked to all the
elements of g but not to all the elements of g’.

The following three remarks show that the definition of g-labels is completely
taken care of by the next sub-sections.

1) There is always a one-to-one correspondence between the labels <X, v> for a
CSP variable X and the elements v of its domain (by the construction of pre-labels).
We shall use it freely (i.e. we shall make no distinction at all between the
corresponding elements) in the following two cases:

– for a fixed Xrc variable with parameters (SH, pH) and (SV, pV), the obvious
correspondence between labels for Xrc and (SH, pH)-compatible and (SV, pV)-
compatible digits;

– for a fixed Hrc [or Vrc] variable in a sector with parameters (S, p), the obvious
label-to-combination correspondence, in which case we shall also use freely the
obvious correspondences between symbols n1…np appearing in the labels,
combinations in Comb(S, p) and subsets {n1, … np} of p (S, p)-compatible digits.

2) For each sector, a g-label for the controller variable will be g-linked to a label
for a cell in the sector, depending only on their values (respectively set of
combinations and digit), not on the exact position of the cell in the sector. Similarly,
a g-label for a cell in the sector will be g-linked to a label for the controller variable,
depending only on their values (respectively set of digits and combination).

422 Pattern-Based Constraint Satisfaction and Logic Puzzles

3) As mentioned in chapter 7, the saturation condition in the definition of a g-
label is there mainly for reasons of efficiency. Too many useless g-labels would lead
to too many redundant partial g-whips, many of which would differ only by g-labels
that exclude the same candidates. When it was first introduced and illustrated by the
Sudoku case, this condition did not make a spectacular difference. But we shall see
that it is essential in practice for Kakuro.

15.5.2. Mutual exclusion between sets of combinations and sets of digits

For a legitimate (S, p) pair, we defined at the end of section 15.1.1 the set
Comb(S, p) of all the (S, p)-compatible combinations, i.e. of all the combinations of
p different digits with sum S. As can be seen from Table 15.2, the number of such
combinations is always an integer in the range [1, …, 12]. Table 15.1 shows that
there are thirty four “magic” (S, p) pairs that have only one combination and Table
15.4 shows that there are fifteen “pseudo-magic” (S, p) pairs that have digits (up to
five) common to all their combinations. We shall now study more complex
properties of Comb(S, p).

We shall be interested in particular subsets of Comb(S, p) and particular subsets
of Compat(S, p) that exclude each other, the sets gComb(S, p) and gDig(S, p). They
will play a major role in the definition of g-labels and their g-links.

15.5.2.1. Mutual exclusion of digits and combinations

Definition: a digit i ∈ Compat(S, p) and a combination C ∈ Comb(S, p) exclude
each other if i ∉ C. We also say that C excludes i or that i excludes C, but this basic
exclusion relation is fundamentally symmetric.

Definition: a set of digits gD ⊂ Compat(S, p) excludes a combination C if every
digit i ∈ gD excludes C, i.e. if gD ⊂ Cc. A set of digits gD ⊂ Compat(S, p) excludes
a set of combinations gC ⊂ Comb(S, p) if it excludes every combination C ∈ gC,
i.e. if gD ⊂ ∩{Cc, C ∈ gC}. Here, complementation is taken in Compat(S, p) and
“⊂” is understood in the non-strict sense.

Definition: a set of combinations gC ⊂ Comb(S, p) excludes a digit i if every
combination C ∈ gC excludes i, i.e. if i ∈ ∩{Cc, C ∈ gC}. A set of combinations
gC ⊂ Comb(S, p) excludes a set of digits gD ⊂ Compat(S, p) if it excludes every
digit i ∈ gD, i.e. if gD ⊂ ∩{Cc, C ∈ gC}.

Exclusion between a set of digits and a set of combinations is obviously a
symmetric relation, but in the context of g-labels we shall generally use it in
unsymmetric ways, whence the separate definitions.

If gD ⊂ Compat(S, p), we note D-Excl(gD) the set of combinations in
Comb(S, p) excluded by gD. If gC ⊂ Comb(S, p), we note C-Excl(gC) the set of

15. Non-binary arithmetic constraints and Kakuro 423

digits in Compat(S, p) excluded by gC. D-Excl is thus a function from subsets of
Compat(S, p) to subsets of Comb(S, p) and C-Excl a function from subsets of
Comb(S, p) to subsets of Compat(S, p). As which of the two is concerned is obvious
from the argument, we shall often write them loosely as Excl(gD) and Excl(gC).

15.5.2.2. Envelopes

It is obvious that D-Excl and C-Excl are decreasing functions: if gD1 ⊂ gD2, then
D-Excl(gD2) ⊂ D-Excl(gD1); if gC1 ⊂ gC2, then C-Excl(gC2) ⊂ C-Excl(gC1). This
remark justifies the following definitions.

Definiton: the envelope Env(gD) of a set of digits gD ⊂ Compat(S, p) is the
maximum superset of gD in Compat(S, p) that excludes the same combinations as
gD. It is obviously the set of all the digits in Compat(S, p) that exclude Excl(gD).

Definition: the envelope Env(gC) of a set of combinations gC ⊂ Comb(S, p) is
the maximum superset of gC in Comb(S, p) that excludes the same digits as gC. It
is obviously the set of all the combinations in Comb(S, p) that exclude Excl(gC).

It is obvious that mutual exclusion of a set of combinations gC ⊂ Comb(S, p)
and a set of digits gD ⊂ Compat(S, p) entails mutual exclusion of their envelopes.

We now turn our attention to “saturated” or “locally maximum” subsets of digits
and combinations.

15.5.2.2. gDigs

Definition: a potential-g-digit(S, p) is a subset gD of Compat(S, p):
– containing at least two elements of Compat(S, p) but not all of Compat(S, p),
– excluding at least one combination C ∈ Comb(S, p).

Definition: a g-digit(S, p) is a potential g-digit(S, p) that is “saturated” or
“locally maximal” in the sense that any strictly larger (with respect to set-theoretic
inclusion) potential-g-digit(S, p), if any, excludes a strictly smaller subset of
Comb(S, p). Equivalently: a g-digit is a potential-g-digit that is equal to its
envelope. We call this the “saturation” or “local-maximality” property of g-digits.
We define gDig(S, p) as the set of all the g-digits(S, p).

Remarks:
– any C ∈ Comb(S, p), if considered as a subset of Compat(S, p), is a g-

digit(S, p) as soon as the sector is not magical; but we shall see that there are many
other cases of g-digits;

– any g-digit contains all the digits common to all the combinations in
Comb(S, p).

Theorem 15.2: if gD ∈ gDig(S, p), then Excl(Excl(gD)) = gD.

424 Pattern-Based Constraint Satisfaction and Logic Puzzles

Remark: as exclusion is a symmetric relation, we already know that any digit in
gD is excluded by the set of combinations Excl(gD), i.e. that gD ⊂ Excl(Excl(gD).
What the theorem says is that there are no other digits excluded by Excl(gD).

Proof: by the saturation of gD, for any digit i ∈ Compat(S, p) such that i ∉ gD,
i ∪ gD excludes a set of combinations strictly smaller than Excl(gD). There is
therefore some combination C in Excl(gD) such that C is not excluded by i ∪ gD.
As C is excluded by gD (i.e. by every digit in gD), it can only mean that C is not
excluded by i. By the symmetry of exclusion, i is not excluded by C. Therefore i is
not excluded by Excl(gD). qed.

15.5.2.3. gCombs

We can now repeat for sets of combinations all that was done for sets of digits.

Definition: a potential-g-combination(S, p) is a subset gC of Comb(S, p):
– containing at least two elements of Comb(S, p) but not all of Comb(S, p),
– excluding at least one digit i ∈ Compat(S, p).

Definition: a g-combination(S, p) is a potential-g-combination(S, p) such that
any strictly larger (with respect to set-theoretic inclusion) potential-g-
combination(S, p), if any, excludes a strictly smaller set of digits. Equivalently: a g-
combination is a potential-g-combination that is equal to its envelope. We call this
the “saturation” or “local-maximality” property of g-combinations. We define
gComb(S, p) as the set of all the g-combinations(S, p).

Theorem 15.3: if gC ∈ gComb(S, p), then Excl(Excl(gC)) = gC.

Remark: as exclusion is a symmetric relation, we already know that any
combination in gC is excluded by the set of digits Excl(gC), i.e. that
gC ⊂ Excl(Excl(gC). What the theorem says is that there are no other combinations
excluded by Excl(gC).

Proof: by the saturation of gC, for any combination D in Comb(S, p) such that
D ∉ gC, D ∪ gC excludes a set of digits strictly smaller than C-Excl(gC). There is
therefore some digit i in C-Excl(gC) such that i is not excluded by D ∪ gC. As i is
excluded by gC (i.e. by every combination in gC), it can only mean that i is not
excluded by D. By the symmetry of exclusion, D is not excluded by i. Therefore D
is not excluded by C-Excl(gC). qed.

15.2.3.4. Relationship between gDigs and gCombs

The previous three sub-sections illustrate the duality between g-digits and g-
combinations. The following theorem pushes it further.

15. Non-binary arithmetic constraints and Kakuro 425

We first need to set apart the cases in which only one label would be excluded.
Let us therefore define gDig-(S, p) as the subset of elements gD of gDig(S, p) such
that gD excludes at least two combinations from Comb(S, p). Similarly, define
gComb-(S, p) as the subset of elements gC of gComb(S, p) such that gC excludes at
least two digits from Compat(S, p).

Theorem 15.4: if gD ∈ gDig-(S, p), then Excl(gD) ∈ gComb-(S, p). If
gC ∈ gComb-(S, p), then Excl(gC) ∈ gDig-(S, p). D-Excl defines a one-to-one
correspondence between gDig-(S, p) and gComb-(S, p); C-Excl defines the inverse
one-to-one correspondence between gComb-(S, p) and gDig-(S, p).

Proof: we shall prove only the first part; the second part is easily obtained by
duality; and the third is an obvious corollary to the first two. Suppose that gD is a g-
digit(S, p) excluding at least two combinations C1 and C2 and consider the set of
combinations Excl(gD). It contains at least two elements (namely C1 and C2) but it
is not the full set Comb(S, p) because no digit in Compat(S, p) can exclude all of
Comb(S, p). Excl(gD) excludes at least two digits in Compat(S, p), indeed it
excludes all the digits in gD. There remains only to show that it is saturated. But, for
any combination C excluding all of gD, i.e. C ∈ Excl(Excl(gD)), theorem 15.2
shows that C ∈ gD.

15.5.3. Representation of a g-combination as a number

The definition of a g-digit(S, p) leads to easy computations. However, a
gComb(S, p), say gC, is a set of sets of digits and we still miss a simple way of
representing it. This can easily be palliated by defining Env’(gC) as the set of digits
compatible with gC [or, equivalently, with Env(gC)]. It is obvious that two different
g-combs have different Env’ values; we can therefore represent gC by Env’(gC) –
more precisely by the number Env*(gC) obtained by glueing together, in ascending
order, the elements of Env’(gC). This is convenient because the digits excluded by
gC will be the complement of Env’(gC) in Compat(S, p).

15.5.4. More on gComb(S, p)

The definition of a gComb(S, p) leads to easy computations, showing that there
are 63 (S, p) pairs (out of the 120 legitimate ones) that have g-combs. When an
(S, p) pair has g-combs, it has at least 3 and at most 77. The latter happens in only
four cases: (14, 3), (15, 3), (16, 3) and (20, 4). There are more than 10 g-combs in
49 cases. We cannot display all the possibilities here, but the following simple
example illustrates the notion of saturation of g-combs in a concrete case.

Pair	 (p,	 S)	 =	 (3,	 10)	 has	 4	 combs:	 {127	 136	 145	 235}	 and	 9	 g-‐combs	 :	
g-‐comb	 12345	 contains	 combs	 (145	 235)	 and	 excludes	 digits	 (6	 7)	
g-‐comb	 12356	 contains	 combs	 (136	 235)	 and	 excludes	 digits	 (4	 7)	

426 Pattern-Based Constraint Satisfaction and Logic Puzzles

g-‐comb	 12357	 contains	 combs	 (127	 235)	 and	 excludes	 digits	 (4	 6)	
g-‐comb	 12367	 contains	 combs	 (127	 136)	 and	 excludes	 digits	 (4	 5)	
g-‐comb	 12457	 contains	 combs	 (127	 145)	 and	 excludes	 digits	 (3	 6)	
g-‐comb	 13456	 contains	 combs	 (136	 145)	 and	 excludes	 digits	 (2	 7)	
g-‐comb	 123456	 contains	 combs	 (136	 145	 235)	 and	 excludes	 digit	 (7)	
g-‐comb	 123457	 contains	 combs	 (127	 145	 235)	 and	 excludes	 digit	 (6)	
g-‐comb	 123567	 contains	 combs	 (127	 136	 235)	 and	 excludes	 digit	 (4)	

It is interesting to consider the two g-combs 12345 and 123456 (or 123457):
they show that, in accordance with our general definition, saturation does not mean
an absolute but a local maximum. 123456 (or 123457) contains more combs than
12345, but it excludes fewer digits.

Notice that, with this (p, S) = (3, 10) example, there are 4 combinations, which
could lead to considering 24-4 = 12 subsets of more than one combinations if we did
not have the saturation condition, whereas it is useful to consider only 9 such
subsets, namely the 9 g-combs.

The reduction is still more impressive with a pair such as (5, 25): it has 12
combinations and therefore 212-12 = 4084 subsets of more than one combinations,
but only 37 g-combs. This shows that, in Kakuro, the saturation condition is
essential for the practical use of g-labels.

15.5.5. Missing an example with g-bivalue-chains, g-whips and g-braids

This sub-section will remain (almost) blank as a reminder that an example with
g-whips is missing. Although we have programmed g-labels compliant with the
above theory16, we have found no Kakuro puzzle with a g-whip elimination in all
those we have tried. This is almost certainly not due to some bug in our
implementation: for any length, lots of partial g-whips that are not partial-whips are
found (and we have checked that they are correct). We face here the problem
evoked in the Introduction. Very little is known about CSPs other than Sudoku: no
exceptionally hard cases, no instances with specific patterns, no forums where to
submit problems… The same remarks will apply to the Numbrix® and Hidato®
puzzles in the next chapter.

15.6. Application-specific rules in Kakuro: surface sums

The only type of application-specific rule we have met on all the Kakuro
websites we have visited and in all the available literature we have seen is what we
shall call “surface sums”. But the simplest and most general way of expressing it is

16 g-whips and g-braids are present in CSP-rules as generic rules, but they must be fed by the
application-specific definition of g-labels.

15. Non-binary arithmetic constraints and Kakuro 427

in terms of a cut in the graph underlying the puzzle (as defined below). It is a
specificity of Kakuro, with respect to our previous examples, that some puzzles can
be reduced, in rather straightforward ways, to several (easier) sub-puzzles. It raises
the question of whether the condition of well-formedness should exclude
reducibility.

15.6.1. Graph underlying a Kakuro puzzle

Definition: the (undirected) graph underlying a Kakuro puzzle P is composed of:
– a set of vertices (or nodes): one for each white cell of P;
– a set of edges (or arcs): there is an (undirected) edge between two nodes if and

only if the corresponding white cells are (horizontally or vertically) adjacent.

Definitions (standard from graph theory): in an undirected graph, a path between
two nodes C1 and C2 is a sequence of nodes starting in C1 and ending in C2, such
that there is an arc between any two consecutive nodes in the sequence. Two nodes
are connected if there is a path between them. A graph is connected if there is a path
between any two nodes.

Definitions (standard from graph theory): a cut is a set of nodes whose removal
makes the graph disconnected. A graph is k-connected if no cut of k-1 (or fewer)
nodes can disconnect it. The connectivity of a graph is the smallest k such that there
is a cut of size k disconnecting it.

The above definitions can be transferred to any Kakuro puzzle via its underlying
graph: a Kakuro puzzle is connected if its underlying graph is connected. As already
mentioned, if a puzzle is not connected, it is often reducible to several independent
puzzles (see details in the forthcoming examples). But, even a connected puzzle can
sometimes be decomposed into independent ones.

Definition: a cell C disconnects a Kakuro puzzle into two parts S1 and S2 if any
path from any cell C1 ∈ S1 to any cell C2 ∈ S2 passes through C. In terms of graphs,
this is equivalent to saying that C is a cut of the underlying graph.

A Kakuro puzzle cannot be disconnected by any cell if and only if its underlying
graph is 2-connected.

15.6.2. The “surface sum” rule

Many websites mention a “surface sum” rule dealing with almost closed surfaces
in which a cell C is included in the horizontal sums of the sectors making the surface
but not in the vertical ones [or conversely]. Figure 15.4 shows two such situations,
the simplest possible and one more complex. In these cases, the sum of the cells on
the surface can be computed in two ways: sum of horizontal clues (including C) and

428 Pattern-Based Constraint Satisfaction and Logic Puzzles

sum of vertical clues (excluding C). The value of C is then obtained directly as the
difference between these two sums. By transposing rows and columns, one obtains
similar examples. In each case, the condition for the rule to work is that any sector
completely included in the surface (i.e. all except at most one containing C) has a
clue. In all the websites we have seen, this situation is described by examples but
not formalised in the general and much simpler terms allowed by graph theory.

 v1

 v2

 v1

 v2

 v5

 v7

 h1

 h1

 h2
 v3

 h2

 x

 h3

 h4

 x

 h5

 v6

Up: whatever v1, v2, h1, h2,
one has:
x = (h1+h2) - (v1+v2)

 h6
 v2

 v8

 h7

 h8

 v4

 v9

Right: whatever v1, …, v9
and h1, …, h10, one has:
 x = (h1+ …+ h10)
 - (v1+ … v9)

 h9

 h10

Figure 15.4. Two examples of the domain sum rule (only the relevant parts of the puzzles are
shown; indicated h and v values and black cells are compulsory; black cells without explicit
clues may have clues or not; all the rest of the puzzle, i.e. the part not shown here, is free; in

particular, there may be white cells under x; inner cell with clues h8/v4 is not a problem).

15.6.3. The “cut rule”

The above “surface rule” has a much more general counterpart, based on the
notion of a cut. It has different conditions and conclusions, but it does not have to be
restricted to unions of horizontal and vertical sectors that differ by only one cell.

Theorem 15.6 (the strong cut rule): if in a Kakuro puzzle P there is a cell C
that disconnects P (i.e. its underlying graph) into two parts P1 and P’1 such that:

– all the sectors meeting P1 have a clue,

15. Non-binary arithmetic constraints and Kakuro 429

– one and only one of the horizontal or vertical sectors of C is entirely in P1,
– each of P1 and P’1 has a unique solution,

then P is equivalent to two independent Kakuro sub-puzzles with respective white
cells those of P1 and P’1; the clues for the newly created sector in each of P1 and
P’1 are obtained by computing the differences in the vertical and horizontal sums
of all the sectors at least partly in P1.

Notice that this general graph-based formulation does not prevent black cells to
appear between white ones in the surface (as in the rightmost part of Figure 15.4),
provided that they have clues for all the sectors they control. Also, this puts no
constraint on the place of C in its row or column.

It should be noticed that uniqueness of the sub-puzzles (without any reference to
their origin) is not a consequence of uniqueness of the initial puzzle. One way to
understand this is that some digits that were not compatible with the global sum may
become compatible with either of the split sums. See the examples below.

In practice, as shown by the example below, the above theorem may still be too
restrictive and the uniqueness condition for P1 and P’1 can be relaxed, if either one
gives up full independence of the sub-puzzles or one adds some condition to ensure
that their solutions are compatible (i.e. that the parts of the sector that has been split
into two must have different digits). For instance, if only one of the two sub-puzzles
has a unique solution, the information relative to the values of the cells of its half
sector in the solution must be transferred to the complementary half sector in the
other sub-puzzle or the solution of the values of the solved sub-puzzle cells can
merely be re-injected into the global one.

Instead of giving a formal proof of the theorem, which would require boring
technicalities but would not bring much insight into the elementary way this rule can
be used, we shall illustrate how it works on the puzzle P in Figure 15.5. (To preserve
the square grid hypothesis, one can always assume that five black columns are
added to the right).

The generalised cut rule can be applied repeatedly six times (cells C1 to C6 are
shown in Figure 15.5), leading to the situation represented in Figure 15.6:

– C1 disconnects P into two sub-puzzles: the first (small) part P1 consists of the
4×4 sub-puzzle made of the first four rows and columns, with horizontal clue 32 in
cell r4c1 replaced by clue (15+23+9) - (10+15) = 22; the second (and main) part P’1
is obtained by replacing all the cells in P1 by black cells with no clues, except an
horizontal clue 10 = 32 - 22 in cell r4c4;

– C2 disconnects P’1 into a small part P2 with vertical clue (15+16) - (16) = 15 in
r8c3 and a second sub-puzzle P’2 with vertical clue 35 in r5c3 replaced 35-15 = 20;

– C3 disconnects P’2 into a small part P3 with horizontal clue 16 in r8c2 replaced
by (10+20+6) - (8+19) = 9 and a third sub-puzzle P’3 with horizontal clue 16-9 = 7

430 Pattern-Based Constraint Satisfaction and Logic Puzzles

 in r8c4;
– C4 disconnect P’3 into a small P4 with horizontal clue (24+12+7) – (11+16) =

16 in r12c8 and a fourth sub-puzzle P’4 with horizontal clue 33 in cell r12c6
replaced by 33-16 = 17;

– C5 disconnect P’4 into a small part P5 with vertical clue 24 in r7c11 replaced
by (11+5) - 13 = 3 and a fifth sub-puzzle P’5 with vertical clue 24-3 = 21 in r9c10;

 K

 15

 23

 9

 14

 16

 34

 7

 10

 12
 20

 11
 20

 15

 22

 3

 32

 C1

 23

 41

 4

 10

 35

 18
 6

 14
 10

 8

 15
 31

 19

 26

 7

 24

 13

 16
 16

 C3

 17

 5

 15

 C2

 29

 11

 7

C5

 16

 17

 18
 13

C6

 9

 17

 27
 26

 21

 23

 17

 11
 12

 24

 13

 21

 24

 12

 7

 11
 8

 33

 4

 C4

 32

 11

 6

 6

 16

Figure 15.5. A 16×11 puzzle (of unknown origin) with 6 cuts

15. Non-binary arithmetic constraints and Kakuro 431

– C6 disconnect P’5 into a small part P6 with horizontal clue (7+21+9)-(21+11) =
5 in r10c8 and a sixth sub-puzzle P’6 with horizontal clue 18 in r10c5 replaced by
18-5 = 13.

 K

 14

 16

 34

 7

 12
 20

 11
 20

 22

 3

D1

 C7

 10

 23
 41

 4

 18

 14
 10

 15
 31

 D’1

 26

 7

 C8

 7

 17

 29

 17

 13
 13

 17

 27
 26

 C9

 23

 D2

 17

 12

 24

 13

 21

D’2

 11
 8

 17

 4

 32

 C10

 D’’2

 6

 6

Figure 15.6. P’6, the puzzle of Figure 15.5 after the 6 cuts have been applied

Notice that, in Figure 15.6, each of C7, C8, C9 and C10 also disconnects the
remaining puzzle P’6 into two parts, but they do not satisfy the additional condition

432 Pattern-Based Constraint Satisfaction and Logic Puzzles

that one of the sectors containing C is totally in one of the two parts. [In such cases,
the surface sum information could nevertheless be used, e.g. to introduce new Hrc
and Vrc CSP variables in intermediate virtual cells together with equalities between
their sums, but this is another topic.]

Notice also the particular situation of pairs of cells (D1, D’1), (D2, D’2) and
(D2, D’’2): each pair has a potential of separating the puzzle into two sub-puzzles;
but this information cannot be used as such, without additional conditions. However,
in the two cases, as cells C7, C8, C9 and C10 or pairs (D1, D’1), (D2, D’2) and
(D2, D’’2) are the key for splitting the puzzle into smaller ones, a reasonable
heuristic would suggest to start by trying to find their values.

15.6.4. What is the effect of the cut rule on a whip based solution?

There now arises a natural question about the effect of the cut rule on the
difficulty of solving a puzzle. Depending on how the original puzzle is split into
pieces, it can have very different consequences.

In most of the cases we have seen, applying the cut rule at the start made it
significantly simpler or it even turned it into an almost obvious instance. But no
rigorous statistical meaning should be understood here: this remark is only based on
the examples we could find on Kakuro websites and it is probably because they
were intended for the enjoyment of human players and designed to do so.

However, the puzzle in Figure 15.5 presents an interesting case where the cut
rule has no impact on the W+ rating: it is 6 for both the original and the reduced
puzzles. One may think that it is due to the fact that the remaining main part P’6 still
makes a long diagonal white stripe, but the examination of the resolution path shows
that the whips[6] appear only after the upper part (above C8) has been solved.
Moreover, the two whips[6] appearing in the resolution paths of P’6 and of the
original puzzle lie completely in the lower part and are very similar.

We give only the path for the reduced puzzle P’6 of Figure 15.6, where we track
cells C7, C8 and C9 (but we have programmed no special rule to focus search on
them).

*****	 	 KakuRules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W+	 	 	 *****	
horizontal-‐magic-‐sectors:	 hr14c6	 =	 89,	 hr13c1	 =	 789,	 hr9c4	 =	 5789,	 hr8c4	 =	 124,	
hr6c6	 =	 12345,	 hr4c7	 =	 689,	 hr3c5	 =	 123457	
vertical-‐magic-‐sectors:	 vr4c11	 =	 13,	 vr1c10	 =	 46789,	 vr8c8	 =	 89,	 vr4c7	 =	 2456789,	
vr14c6	 =	 13,	 vr3c5	 =	 12,	 vr11c2	 =	 89	
naked-‐singles	 ==>	 r16c6	 =	 1,	 r15c6	 =	 3,	 r13c4	 =	 7,	 r9c5	 =	 5,	 r6c10	 =	 4,	 r3c10	 =	 7	 (cell	 C7),	 r3c7	 =	 5,	
vr1c7	 =	 59,	 r2c7	 =	 9,	 hr2c6	 =	 39,	 r2c8	 =	 3,	 vr7c5	 =	 25,	 r8c5	 =	 2,	 r8c7	 =	 4,	 r8c6	 =	 1,	 vr10c4	 =	 12347,	
hr16c4	 =	 15,	 r16c5	 =	 5,	 vr13c5	 =	 579,	 r14c5	 =	 7,	 r15c5	 =	 9,	 hr14c2	 =	 137	
ctr-‐to-‐verti-‐sector	 	 ==>	 r3c8	 ≠	 1,	 r3c8	 ≠	 2	

15. Non-binary arithmetic constraints and Kakuro 433

naked-‐singles	 ==>	 r3c8	 =	 4,	 r3c6	 =	 3,	 vr2c6	 =	 389,	 vr1c8	 =	 349,	 r4c8	 =	 9	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr4c4	 ≠	 46	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr5c4	 ≠	 567	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr4c4	 ≠	 37	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr11c3	 ≠	 5679	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r11c5	 ≠	 5,	 r11c6	 ≠	 5,	 r11c7	 ≠	 5	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr2c9	 ≠	 47	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r2c11	 ≠	 4	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr5c8	 ≠	 257,	 hr5c8	 ≠	 347	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr5c4	 ≠	 369,	 hr5c4	 ≠	 378,	 hr5c4	 ≠	 459	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r5c7	 ≠	 5	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr5c4	 ≠	 468	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r5c7	 ≠	 6	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr5c8	 ≠	 248	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr10c5	 ≠	 157,	 hr10c5	 ≠	 247	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r10c7	 ≠	 7,	 r10c6	 ≠	 7	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr10c5	 ≠	 256	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r10c7	 ≠	 5,	 r10c6	 ≠	 5	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr10c5	 ≠	 346	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r10c7	 ≠	 6,	 r10c6	 ≠	 6	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr12c1	 ≠	 14567,	 hr12c1	 ≠	 23567;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr2c9	 ≠	 12359	
ctr-‐to-‐verti-‐sector	 	 ==>	 r5c9	 ≠	 9,	 r7c9	 ≠	 9	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr1c11	 ≠	 34	
ctr-‐to-‐verti-‐sector	 	 ==>	 r2c11	 ≠	 3	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr2c9	 ≠	 38	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r2c10	 ≠	 8	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr11c3	 ≠	 24569,	 vr11c3	 ≠	 24578	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr5c8	 ≠	 46	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r7c8	 ≠	 4,	 r7c8	 ≠	 6	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr2c9	 ≠	 13457	 ;	 cell-‐to-‐verti-‐ctr	 	 ==>	 vr12c7	 ≠	 467	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr12c8	 ≠	 57	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r13c8	 ≠	 5,	 r13c8	 ≠	 7	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr13c5	 ≠	 157,	 hr13c5	 ≠	 256	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r13c7	 ≠	 5,	 r13c6	 ≠	 5	
horiz-‐sector-‐to-‐ctr	 	 ==>	 hr10c5	 ≠	 139	 ;	 ctr-‐to-‐horiz-‐sector	 	 ==>	 r10c6	 ≠	 9,	 r10c7	 ≠	 9,	 r10c8	 ≠	 9	
naked-‐singles	 ==>	 r10c8	 =	 8,	 r10c7	 =	 2,	 r6c7	 =	 5,	 r9c8	 =	 9,	 hr10c5	 =	 238,	 r10c6	 =	 3	
verti-‐sector-‐to-‐ctr	 	 ==>	 vr14c2	 ≠	 35	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r15c2	 ≠	 5,	 r16c2	 ≠	 5	
biv-‐chain[2]:	 vr1c11{n16	 n25}	 –	 r3c11{n1	 n2}	 ==>	 r2c11	 ≠	 2	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr2c9	 ≠	 29	
naked-‐singles	 ==>	 hr2c9	 =	 56,	 r2c10	 =	 6,	 r2c11	 =	 5,	 r4c10	 =	 8,	 r4c9	 =	 6,	 r5c10	 =	 9,	 vr1c11	 =	 25,	
r3c11	 =	 2,	 r3c9	 =	 1	
;;;	 Resolution	 state	 RS1	

Although the value of C7 (= r3c10) has been set long ago (almost at the
beginning), those of r2c10, r2c11 and r3c11 are set only now and the small upper
righmost graph that C7 separates from the rest is solved only now. The solution has
involved a bivalue-chain[2]. In the present case, if the focus had been set on the
small subgraph, it could have been solved earlier in the path – but without changing
its overall complexity.

ctr-‐to-‐horiz-‐sector	 	 ==>	 r5c9	 ≠	 5,	 r5c9	 ≠	 8,	 r5c9	 ≠	 7	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r7c9	 ≠	 5	
biv-‐chain[2]:	 hr5c8{n149	 n239}	 –	 r5c11{n1	 n3}	 ==>	 r5c9	 ≠	 3	
biv-‐chain[2]:	 vr12c8{n39	 n48}	 –	 r14c8{n9	 n8}	 ==>	 r13c8	 ≠	 8	
biv-‐chain[2]:	 vr14c2{n17	 n26}	 –	 r16c2{n1	 n2}	 ==>	 r15c2	 ≠	 2	
biv-‐chain[2]:	 hr16c1{n15	 n24}	 –	 r16c2{n1	 n2}	 ==>	 r16c3	 ≠	 2	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr11c3	 ≠	 23678	
biv-‐chain[2]:	 hr11c3{n3789	 n4689}	 –	 r11c4{n3	 n4}	 ==>	 r11c6	 ≠	 4,	 r11c5	 ≠	 4	
biv-‐chain[2]:	 r16c2{n1	 n2}	 –	 vr14c2{n17	 n26}	 ==>	 r15c2	 ≠	 1	
biv-‐chain[2]:	 r16c2{n1	 n2}	 –	 hr16c1{n15	 n24}	 ==>	 r16c3	 ≠	 1	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr11c3	 ≠	 12689,	 vr11c3	 ≠	 13679	
whip[2]:	 r14c7{n8	 n9}	 –	 vr12c7{n458	 .}	 ==>	 r13c7	 ≠	 8	
whip[2]:	 r14c7{n9	 n8}	 –	 vr12c7{n359	 .}	 ==>	 r13c7	 ≠	 9	

434 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[2]:	 r14c8{n9	 n8}	 –	 vr12c8{n39	 .}	 ==>	 r13c8	 ≠	 9	
whip[2]:	 r14c7{n8	 n9}	 –	 vr12c7{n458	 .}	 ==>	 r15c7	 ≠	 8	
whip[2]:	 vr10c5{n49	 n58}	 –	 r11c5{n6	 .}	 ==>	 r12c5	 ≠	 8	
whip[2]:	 vr10c5{n58	 n49}	 –	 r11c5{n6	 .}	 ==>	 r12c5	 ≠	 9	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr12c1	 ≠	 12389	
whip[2]:	 r12c2{n8	 n9}	 –	 hr12c1{n23468	 .}	 ==>	 r12c3	 ≠	 8,	 r12c6	 ≠	 8	
whip[2]:	 r12c2{n9	 n8}	 –	 hr12c1{n23459	 .}	 ==>	 r12c3	 ≠	 9,	 r12c6	 ≠	 9	
whip[2]:	 vr12c7{n179	 n458}	 –	 r13c7{n1	 .}	 ==>	 r15c7	 ≠	 4	
whip[2]:	 vr5c8{n19	 n37}	 –	 r6c8{n1	 .}	 ==>	 r7c8	 ≠	 3	
whip[2]:	 vr5c8{n19	 n28}	 –	 r6c8{n1	 .}	 ==>	 r7c8	 ≠	 2	
biv-‐chain[3]:	 r5c9{n2	 n4}	 –	 vr2c9{n12368	 n12467}	 –	 r6c9{n3	 n2}	 ==>	 r7c9	 ≠	 2	
biv-‐chain[3]:	 vr2c9{n12368	 n12467}	 –	 r6c9{n3	 n2}	 –	 r5c9{n2	 n4}	 ==>	 r7c9	 ≠	 4	
whip[3]:	 r6c9{n3	 n2}	 –	 r5c9{n2	 n4}	 –	 vr2c9{n12368	 .}	 ==>	 r7c9	 ≠	 3	
horiz-‐sector-‐to-‐ctr	 	 ==>	 hr7c5	 ≠	 3689	
whip[3]:	 vr6c6{n1234678	 n1234579}	 –	 r11c6{n8	 n7}	 –	 r9c6{n7	 .}	 ==>	 r13c6	 ≠	 9	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr13c5	 ≠	 139	
whip[3]:	 vr6c6{n1234678	 n1234579}	 –	 r11c6{n8	 n7}	 –	 r9c6{n7	 .}	 ==>	 r7c6	 ≠	 9	
whip[3]:	 r7c9{n7	 n8}	 –	 r7c8{n8	 n9}	 –	 r7c7{n9	 .}	 ==>	 hr7c5	 ≠	 4589	
whip[4]:	 r6n2{c8	 c9}	 –	 r5c9{n2	 n4}	 –	 hr5c8{n239	 n149}	 –	 c11n3{r5	 .}	 ==>	 r6c8	 ≠	 3	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr5c8	 ≠	 37	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r7c8	 ≠	 7	
whip[4]:	 r7c8{n8	 n9}	 –	 hr7c5{n5678	 n2789}	 –	 r7c7{n6	 n7}	 –	 r7c9{n7	 .}	 ==>	 r7c6	 ≠	 8	
whip[4]:	 r4c6{n8	 n9}	 –	 hr4c4{n28	 n19}	 –	 c5n2{r4	 r5}	 –	 hr5c4{n189	 .}	 ==>	 r5c6	 ≠	 8	
naked-‐singles	 ==>	 r5c6	 =	 9,	 r4c6	 =	 8,	 hr4c4	 =	 28,	 r4c5	 =	 2,	 r5c5	 =	 1,	 hr5c4	 =	 189,	 r5c7	 =	 8,	 r9c7	 =	 7,	 	
r9c6	 =	 8,	 vr6c6	 =	 1234678	
horiz-‐sector-‐to-‐ctr	 	 ==>	 hr7c5	 ≠	 5678	 ;	 horiz-‐sector-‐to-‐ctr	 	 ==>	 hr13c5	 ≠	 148	
ctr-‐to-‐horiz-‐sector	 	 ==>	 r13c7	 ≠	 1	 ;	 horiz-‐sector-‐to-‐ctr	 	 ==>	 hr13c5	 ≠	 238	
biv-‐chain[2]:	 hr11c3{n3789	 n4689}	 –	 r11c6{n7	 n6}	 ==>	 r11c7	 ≠	 6	
naked-‐singles	 ==>	 r11c7	 =	 9,	 r7c7	 =	 6	 (cell	 C8),	 hr7c5	 =	 4679,	 r7c8	 =	 9,	 r7c9	 =	 7,	 r7c6	 =	 4,	
vr2c9	 =	 12467,	 r6c9	 =	 2,	 r6c8	 =	 1,	 r6c11	 =	 3,	 r5c11	 =	 1,	 r5c9	 =	 4,	 hr5c8	 =	 149,	 vr5c8	 =	 19	
;;;	 Resolution	 state	 RS2	

It is worth making a second pause here. As shown by the part of the resolution
path upto RS2, setting the value of cell C8 has involved the two parts of the graph
separated by C8. The upper of the two parts is now completely solved.

cell-‐to-‐verti-‐ctr	 	 ==>	 vr10c5	 ≠	 49	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r12c5	 ≠	 4	
biv-‐chain[2]:	 hr11c3{n3789	 n4689}	 –	 r11c6{n7	 n6}	 ==>	 r11c5	 ≠	 6	
biv-‐chain[2]:	 vr10c5{n58	 n67}	 –	 r11c5{n8	 n7}	 ==>	 r12c5	 ≠	 7	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr12c1	 ≠	 12479	 ;	 cell-‐to-‐horiz-‐ctr	 	 ==>	 hr12c1	 ≠	 13478	
whip[2]:	 hr11c3{n4689	 n3789}	 –	 r11c6{n6	 .}	 ==>	 r11c5	 ≠	 7	
naked-‐singles	 ==>	 r11c5	 =	 8,	 vr10c5	 =	 58,	 r12c5	 =	 5	
whip[2]:	 hr13c5{n247	 n346}	 –	 r13c6{n2	 .}	 ==>	 r13c7	 ≠	 6	
whip[3]:	 r14c3{n1	 n3}	 –	 vr11c3{n14579	 n13589}	 –	 r12c3{n7	 .}	 ==>	 r15c3	 ≠	 1	
whip[4]:	 r13c7{n7	 n3}	 –	 r13c8{n3	 n4}	 –	 vr12c8{n39	 n48}	 –	 r14n9{c8	 .}	 ==>	 vr12c7	 ≠	 368	
whip[5]:	 r14n9{c7	 c8}	 –	 vr12c8{n48	 n39}	 –	 r13c8{n4	 n3}	 –	 hr13c5{n247	 n346}	 –	 r13c7{n2	 .}	 ==>	
vr12c7	 ≠	 278	
whip[2]:	 vr12c7{n458	 n269}	 –	 r13c7{n3	 .}	 ==>	 r15c7	 ≠	 2	

15. Non-binary arithmetic constraints and Kakuro 435

whip[2]:	 r15c2{n7	 n6}	 –	 r15c7{n6	 .}	 ==>	 hr15c1	 ≠	 234689	
whip[2]:	 hr15c1{n134789	 n235679}	 –	 r15c4{n1	 .}	 ==>	 r15c3	 ≠	 2	
whip[2]:	 vr12c7{n458	 n179}	 –	 r13c7{n2	 .}	 ==>	 r15c7	 ≠	 7	
whip[3]:	 hr15c1{n235679	 n134789}	 –	 r15c7{n5	 n1}	 –	 r15c4{n1	 .}	 ==>	 r15c3	 ≠	 4	
whip[6]:	 hr12c1{n13568	 n23459}	 –	 r12c6{n6	 n2}	 –	 r12c3{n2	 n3}	 –	 r14c3{n3	 n1}	 –	
c4n1{r14	 r15}	 –	 c4n2{r15	 .}	 ==>	 r12c4	 ≠	 4	
whip[6]:	 r11c6{n6	 n7}	 –	 hr11c3{n4689	 n3789}	 –	 r11c4{n4	 n3}	 –	 r14c4{n3	 n1}	 –	
r12c4{n1	 n2}	 –	 c6n2{r12	 .}	 ==>	 r13c6	 ≠	 6	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr13c5	 ≠	 346	
naked-‐singles	 ==>	 hr13c5	 =	 247,	 r13c8	 =	 4,	 vr12c8	 =	 48,	 r14c8	 =	 8,	 r14c7	 =	 9	
cell-‐to-‐verti-‐ctr	 	 ==>	 vr12c7	 ≠	 359	 ;	 ctr-‐to-‐verti-‐sector	 	 ==>	 r15c7	 ≠	 5	
whip[3]:	 r15c2{n7	 n6}	 –	 hr15c1{n134789	 n235679}	 –	 r15c7{n1	 .}	 ==>	 r15c3	 ≠	 7	
whip[2]:	 r16c3{n4	 n5}	 –	 r15c3{n5	 .}	 ==>	 vr11c3	 ≠	 23579	
whip[3]:	 r15c2{n6	 n7}	 –	 hr15c1{n135689	 n235679}	 –	 r15c7{n1	 .}	 ==>	 r15c3	 ≠	 6	
biv-‐chain[2]:	 r15c3{n5	 n8}	 –	 r13c3{n8	 n9}	 ==>	 vr11c3	 ≠	 14678	
whip[3]:	 r15c7{n1	 n6}	 –	 hr15c1{n134789	 n135689}	 –	 r15c2{n7	 .}	 ==>	 r15c4	 ≠	 1	
cell-‐to-‐horiz-‐ctr	 	 ==>	 hr15c1	 ≠	 135689	
biv-‐chain[2]:	 hr15c1{n134789	 n235679}	 –	 r15c7{n1	 n6}	 ==>	 r15c2	 ≠	 6	
naked-‐singles	 ==>	 r15c2	 =	 7,	 vr14c2	 =	 17,	 r16c2	 =	 1,	 hr16c1	 =	 15,	 r16c3	 =	 5,	 r15c3	 =	 8	 (cell	 C10),	
r13c3	 =	 9,	 r13c2	 =	 8,	 r12c2	 =	 9,	 vr11c3	 =	 13589,	 hr15c1	 =	 134789,	 r15c4	 =	 4,	 r11c4	 =	 3,	 r14c4	 =	 1,	
r14c3	 =	 3,	 r12c3	 =	 1,	 r12c4	 =	 2,	 r15c7	 =	 1,	 vr12c7	 =	 179,	 r13c7	 =	 7,	 r13c6	 =	 2,	 hr12c1	 =	 12569,	
r12c6	 =	 6,	 r11c6	 =	 7	 (cell	 C9),	 hr11c3	 =	 3789	
Grid	 solved.	 Hardest	 step:	 Whip[6]	

The separation potential of C9 or C10 has not been used in this resolution path.
Whether there is another path in W6

+ that would use these cells is an open question.

The small sub-puzzles P1 to P6 are easily solved once P’6 is – provided that one
uses the information obtained in the P’6 solution. Considered as standalone puzzles,
only P5 and P6 have a unique solution; P1 , P2, P2+P3 and P4 do not.

15.6.5. The cut rule is not subsumed by the coupling rules

Theorem 15.1 says that the original Kakuro problem is mathematically
equivalent to our CSP re-formulation. However, as already noticed, this does not
imply that our standard arsenal of resolution rules is enough to solve all the Kakuro
puzzles, even with the coupling rules added. In this context, there naturally appears
the question of whether the cut rule is subsumed by the coupling rules. It may seem
that it should be so, but the first sub-graph P1 of the example in Figure 15.5 provides
an easy counter-example (Figure 15.7).

As the practical effect of the cut rule is to split the puzzle into several almost
independent sub-puzzles, this situation does not present much interest from a
theoretical point of view. It could therefore be assumed that a well-formed Kakuro
puzzle is 2-connected. [Of course, from a new player’s point of view, there may be
some fun in finding such domains and easily solving apparently very large puzzles.

436 Pattern-Based Constraint Satisfaction and Logic Puzzles

But, as detecting the cuts and then checking if they are valid is very easy, all the
repetitive paper scratching it finally amounts to may also become very boring after
some practice.]

 K

 15

 23

 9

 The question with this small sub-puzzle P1 is:
given the same information as used by the
surface sums, i.e. given only the values of the
five horizontal and vertical sums of the
sectors completely inside P1, can it be
deduced that the sum of the first three cells in
the fourth row is 22, using only ECP, Singles
and coupling rules? But it cannot. All that
can be deduced for the white cells inside P1 is
shown in the Figure.

 10

 1 3

6

 1 3

 15

 1 3
 4 5 6
 8 9

 8 9

 1 3
 5

 32

 1 3
 4 5 6
 8 9

 8 9

1 3
 5

Figure 15.7. P1, the first small part of puzzle of Figure 15.5

16. Topological and geometric constraints: map
colouring and path finding

In this chapter, we consider two kinds of Constraint Satisfaction Problems with
constraints that can be considered as topological or geometrical in a broad sense of
these words:

– the Map colouring problem is the simplest CSP of all those we shall study in
this book; its constraints are obvious transcriptions of neighbourhood relations and
are thus purely topological;

– in the path finding problem of the Numbrix® or Hidato® CSPs, where there is
an underlying grid structure, one can choose whether they adopt only the obvious
purely topological constraints derived from the relation of neighbourhood/
adjacency, thus implicitly forgetting much of the grid structure, or whether they rely
on the notion of distance between two cells and they adopt a larger set of constraints
derived from it; interestingly, it is easy to find concrete examples showing that the
two views are not equivalent (i.e. they lead to different ratings).

16.1. Map colouring and the four-colour problem

Map colouring is interesting in the context of this book mainly because it will
provide an example of a CSP in which, contrary to all our previous examples, there
is no underlying grid structure at all (even distorted by “black cells” as in Kakuro,
Numbrix® and Hidato®). This will illustrate our approach in its most basic form.
[This section has no pretension of adding anything valuable to graph theory.]

16.1.1. The map colouring problem

Map colouring is a classical mathematical problem that became famous with the
proof of the “four-colour theorem” in 1976. A map is defined as a partition of a
plane (or a finite part of a plane) into a finite number of continuous domains with
absolutely continuous boundaries called regions; contrary to countries in the real
world, regions may not be made of separate parts (in this case, it is easy to find
counterexamples to the theorem). Two regions are adjacent if they have a common
boundary of positive length; two regions with only one point in common, or even
with only isolated points in common, are not adjacent. A colouring is an

438 Pattern-Based Constraint Satisfaction and Logic Puzzles

assignement of a colour to each region (i.e. it is a function from the set of regions to
the set of allowed colours) such that two adjacent regions have different colours.
The theorem states that every map can be coloured with at most four colours.

The conditions of the theorem are strict. For regions on a 2D surface other than a
plane, more than four colours can be required. Thus, if four are still enough on a
sphere or a cylinder, six can be needed on a Möbius strip or a Klein bottle, and
seven on a torus (there is a famous example of a partition of a torus into seven
regions, each adjacent to all the others, and that require seven colours). Moreover,
even on a plane, if the colours of some regions are pre-assigned, more than four
colours can be required. Nevertheless, most of what we say below about resolution
rules could easily be extended to such cases, with the appropriate number of colours.

We consider the adjacency constraints of map colouring as topological because
they depend only on aspects of the “geometry” that are invariant by elastic
transformations (and therefore independent of distances). Moreover, there are well-
known results that associate the maximum number of colours required on a non-
planar 2D surface of positive genus with its Euler characteristic or with its genus if
it is orientable – both of these values being purely topological.

In the more formal view generally adopted in mathematical studies of the
problem, a map is assimilated with a “planar graph” (a type of graph that can be
given various purely graph-theoretic definitions, with no reference to geometry): a
vertex is assigned to each region; there is an undirected edge between two vertices if
and only if the corresponding regions are adjacent (there is only one edge even if the
two regions are adjacent along several disjoint parts of their boundaries);
conversely, it is easy to see that every planar graph originates in this way in a map
(indeed, it can have many map representations). The colouring problem is then to
assign a colour from a predefined set to each vertex in such a way that two vertices
linked by an edge have different colours. The corresponding form of the theorem
states that every planar graph is 4-colourable (i.e. that 4 colours are always enough).

Even though the theorem itself does not seem to have any practical applications
in map production (real maps generally use more than four colours), it has become a
topic of much debate, in relation with the way it was first proved: in 1976, the
problem was reduced by Happel and Haken to a set of 1,936 particular cases (in
1996, this set was reduced to “only” 633); these cases had then to be tested
individually by a computer program and the main objection from some
mathematicians was that it was impossible to check the proof manually. Later, the
whole proof was checked by the Coq automatic theorem checker, making it more
“acceptable”. In our view, the problem is not acceptability but the fact that it does
not teach us anything, as explained in section 12.3.9.1.

From the standard graph-theoretic point of view, the minimum number p of
colours necessary for colouring a map is the only problem and how many different

16. Topological and geometric constraints: map colouring and path finding 439

such p-colourings are possible is more or less irrelevant. Given a map, it will
generally have several possible 4-colourings if no region has a predefined colour;
even if there is a definition of “Apollonian” graphs as the “uniquely 4-colourable”
graphs (several of the equivalent geometric definitions could be considered as more
basic), this uniqueness is meant only modulo a permutation of the colours.

The problem of colouring planar graphs can be extended to that of colouring
graphs in general and any CSP could be considered as a graph colouring problem.
Thus 9×9 Sudoku could be considered as a graph colouring problem with 81 regions
(corresponding to the rc cells) and 9 colours (corresponding to the nine digits); it has
a fixed, very specific and highly structured, but non-planar, network of edges,
corresponding to the links between the cells.

In this section, we shall concentrate on the reverse view: map colouring will be
seen as a CSP and we shall consider the colouring problem in the same way as we
have done for Sudoku, Futoshiki or Kakuro: we shall deal with instances with
sufficiently many “givens” to ensure that they have a unique solution with the
allowed number of colours. For definiteness, we take this number to be four. As far
as we know, this problem is not a standard one in graph theory.

16.1.2. Map colouring as a CSP

Expressing the map colouring problem (or the equivalent planar-graph colouring
problem) as a CSP is straightforward: each region/vertex is associated with a CSP
variable (we call these generically X1, X2, …), with domain a predefined set of four
colours – the same set for all the CSP variables, namely {Blue, Red, Yellow, Green}
or {B, R, Y, G} for short. We use X1, X2, … and c1, c2, … for names of variables of
respective sorts CSP-Variable and Colour.

Pre-labels are pairs < region, colour >. Labels are the same thing as pre-labels
(each label has only one pre-label in its equivalence class). Two labels < X1, c1 >
and < X2, c2 > are linked if and only if
- either: X1 = X2 and c1 ≠ c2 (csp-links)
- or: X1 ≠ X2, X1 and X2 are adjacent, and c1 = c2 (adjacency links).

There is no g-label and there are very limited possibilities for Subsets. As a
result, map colouring does not seem to have much potential as a logic puzzle.
Indeed, we have found only one website proposing a generator of map colouring
instances ([Tatham www]; there are many map colouring games with hand made
maps, but there seems to be no other generator). However, different global 2D
topologies (i.e. maps on non-planar surfaces) may allow more subtle patterns.

440 Pattern-Based Constraint Satisfaction and Logic Puzzles

16.1.3. A map colouring example and a whip-based solution

Figure 16.1 shows a map with 30 regions and 12 givens. It is adapted from an
example of the hardest level (“unreasonable”) in the famous Tatham collection of
generators of instances for various games [Tatham www]. As all the Sudoku and
Futoshiki instances we have found on that website are relatively easy, even those
classified as “extreme” or “unreasonable”, we conjecture that this is also the case for
the map examples – but we have no means of checking this. Anyway, the following
example is the hardest one (with respect to the W rating) we could find in a set of 30
“unreasonable” ones we tested (some of which had upto 120 regions): it requires
whips of length 7.

1 4 6 7 R 8 10 13

2 3 B 9 19 11 12 Y

Y G 5 20
14 16 18

B 15 17 R

 27 28
21 22 R

 23 R 26
24
25 G 29 R 30 B

Figure 16.1. A map with 30 regions and 12 givens (adapted from one on [Tatham www])

The regions in the original puzzle have more complex shapes than in our Figure,
which makes it harder and probably more interesting for a human solver; but, as
mentioned at the end of section 4.1, this is typically one informal aspect that a
formal resolution system can hardly tackle. To be more specific, let us mention
briefly how this map is passed to the “solve” function of CSP-Rules:

(solve	 4	 30	 ".YGB..R.....YB...R....R.G..RRB"	
1	 2	 3	 4	 |	 2	 3	 14	 |	 3	 4	 5	 14	 |	 4	 5	 6	 |	 5	 6	 14	 15	 |	 6	 7	 8	 9	 15	 16	 |	 8	 9	 10	 19	 |	 9	 16	 17	 18	 19	 |	 10	 11	 12	 13	
19	 20	 |	 11	 12	 20	 |	 12	 13	 20	 28	 |	 14	 15	 21	 22	 |	 15	 16	 17	 22	 |	 16	 17	 |	 17	 18	 19	 22	 26	 27	 |	 18	 19	 |	 19	
20	 27	 |	 20	 28	 |	 21	 22	 23	 24	 |	 22	 23	 24	 26	 29	 |	 23	 24	 25	 |	 24	 25	 |	 26	 27	 28	 29	 |	 27	 28	 |	 28	 30	 |	 29	 30)	

16. Topological and geometric constraints: map colouring and path finding 441

The first parameter (4) is the number of colours allowed; the second (30) is the
number of CSP variables (i.e. of regions), the third is a string of length 30 (the same
as the number of CSP variables) representing the series of givens (with a dot
corresponding to no given, as in Sudoku); next comes a series of sequences of
numbers separated by a vertical bar; each sequence between two bars represents the
regions that are adjacent to its first element (as adjacency is a symmetric relation,
only regions with a larger number than the first need be explicitly written): thus
region X5 is linked to (and only to) X3, X4, X6, X14 and X15, as can be checked on
Figure 16.1, and only the last three links need be written in the X5 sequence (the
first two being written in the X3 and X4 sequences). As can be seen from this
abstract graph representation, it provides no means of specifying the real shapes of
regions or any other geometric detail. And it is not hard to imagine very different
layouts for the same graph from the one in Figure 16.1.

*****	 	 MapRules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 config:	 W	 	 	 *****	
single	 ==>	 X1	 =	 R	
biv-‐chain[2]:	 X22{Y	 G}	 –	 X21{G	 Y}	 ==>	 X24	 ≠	 Y	
single	 ==>	 X24	 =	 B	
whip[3]:	 X6{G	 Y}	 –	 X5{Y	 R}	 –	 X15{R	 .}	 ==>	 X16	 ≠	 G	
whip[6]:	 X6{Y	 G}	 –	 X9{G	 B}	 –	 X19{B	 G}	 –	 X17{G	 Y}	 –	 X16{Y	 R}	 –	 X15{R	 .}	 ==>	 X8	 ≠	 Y	
whip[6]:	 X6{G	 Y}	 –	 X5{Y	 R}	 –	 X15{R	 G}	 –	 X22{G	 Y}	 –	 X17{Y	 B}	 –	 X9{B	 .}	 ==>	 X8	 ≠	 G	
whip[6]:	 X22{Y	 G}	 –	 X15{G	 R}	 –	 X5{R	 Y}	 –	 X6{Y	 G}	 –	 X9{G	 B}	 –	 X16{B	 .}	 ==>	 X17	 ≠	 Y	
whip[3]:	 X17{B	 G}	 –	 X26{G	 Y}	 –	 X22{Y	 .}	 ==>	 X27	 ≠	 B	
whip[3]:	 X17{B	 G}	 –	 X19{G	 Y}	 –	 X27{Y	 .}	 ==>	 X9	 ≠	 B	
biv-‐chain[2]:	 X6{Y	 G}	 –	 X9{G	 Y}	 ==>	 X16	 ≠	 Y	
whip[7]:	 X6{G	 Y}	 –	 X9{Y	 G}	 –	 X17{G	 B}	 –	 X19{B	 Y}	 –	 X27{Y	 G}	 –	 X26{G	 Y}	 –	 X22{Y	 .}	 ==>	 X15	 ≠	 G	
biv-‐chain[2]:	 X5{Y	 R}	 –	 X15{R	 Y}	 ==>	 X6	 ≠	 Y	
singles	 ==>	 X6	 =	 G,	 X9	 =	 Y	
whip[2]:	 X17{G	 B}	 –	 X19{B	 .}	 ==>	 X27	 ≠	 G	
single	 ==>	 X27	 =	 Y	
whip[2]:	 X17{G	 B}	 –	 X26{B	 .}	 ==>	 X22	 ≠	 G	
singles	 to	 the	 end:	 X22	 =	 Y,	 X15	 =	 R,	 X5	 =	 Y,	 X16	 =	 B,	 X17	 =	 G,	 X19	 =	 B,	 X8	 =	 R,	 X10	 =	 G,	 X12	 =	 B,	
X20	 =	 Y,	 X11	 =	 R,	 X26	 =	 B,	 X21	 =	 G	

This resolution path is unchanged if braids are activated: both the W and the B
ratings are 7.

16.2. Path finding: Numbrix® and Hidato®

Numbrix® and Hidato® are two closely related types of path-finding problems,
invented respectively by Marylin vos Savant and Gyora Benayek. They are
interesting in the context of this book mainly because they will lead us to introduce
a kind of CSP variables we have not yet encountered (the Xn), they are based on a

442 Pattern-Based Constraint Satisfaction and Logic Puzzles

new kind of constraints and they allow an easy illustratation of the consequences of
different modelling choices for these constraints.

16.2.1. Definition of Numbrix® and Hidato®

We first give the broadest definitions before mentioning various (in our opinion
unjustified) restrictions that are sometimes put on them.

Definition: A square grid of size n is given with two types of cells (“black” and
“white”, as in Kakuro); there are N ≤ n×n white cells and some of them are filled in
with a number not larger than N; the problem is to find a “continuous” path
compatible with the clues, i.e. a sequence (C1, …, CN) of white cells such that:

– for any 1 ≤ p < N, cell Cp+1 is “adjacent” to cell Cp,
– a clue indicates a forced passage of the path at a fixed time: more precisely, for

any given number p in a white cell Dp, one must have Cp = Dp.

The difference between Numbrix® and Hidato® lies in the meaning of “adjacent”:
in Numbrix® two cells are adjacent if and only if they touch each other by one side
in the same row or column; in Hidato®, they may also touch each other in diagonal,
i.e. by a corner.

Remarks:
– as in Kakuro, the “real” grid (made of the white cells) can have any shape,

provided only that it is path-connected (there is a “continuous” path between any
two cells);

– the problem is to find a “continuous” path, but not necessarily to find it “in a
continuous way”, i.e. the successive steps do not have to be found in order;

– it is often supposed that the extremities of the solution path (i.e. numbers 1 and
N) are given, but this is not necessary: one can deduce the value of N by counting
the number of white cells; what could really change the problem is knowing neither
the extreme values nor their positions (i.e. one would know only the length of the
path, but the counting would start at some number k>1; of course, this would be a
very artificial way of numbering the steps);

– many Numbrix® puzzles are proposed with no black cell;
– Hidato® is often presented as a King’s Tour problem (an instance of the

general Hamiltonian path problem in graph theory), due to the way the path must
move from one place to the next, like a king in chess; however, there are so many
more possibilities in this game that reducing it to this classical problem cannot be
justified: the grid can have any size, its shape can be almost completely arbitrary, it
can have inner holes, intermediate places are given, a well-formed puzzle is
guaranteed to have a unique solution, …

16. Topological and geometric constraints: map colouring and path finding 443

– for each of these two problems, there are two equivalent ways of seeing it:
either as finding a value for each white cell in the grid (the standard presentation) or
as finding a place in the grid for each number in {1, …, N} (the dual presentation);

– as we shall see, and independently of the previous remark, there are also two
natural ways of formalising their constraints.

16.2.2. Numbrix® and Hidato® as CSPs

As the reader should now be used to our modelling principles and as their
application to these two games is straightforward, we shall be a little sketchy, except
for the definition of the constraints.

16.2.2.1. Sorts, CSP-variables and labels

We introduce the sorts Number, Row, Column and Cell with respective domains
{1, …, N}, {r1, …, rn}, {c1, …, cn} and {(r, c) / (r, c) is white}.

As usual, we adopt a redundant set of CSP-variables, of two types, that naturally
correspond to the dual ways of seeing the problem:

– for each Cell (r, c), we introduce a CSP-variable Xrc with domain Number:
one must find a value for each white cell;

– for each Number n such that n is not in the set of clues, we introduce a CSP-
variable Xn with domain Cell: one must find a place for each undecided Number. [It
would be useless to introduce a CSP-variable for a decided value.]

We define a label as an (n, r, c) triplet, with the proper restrictions on n, r and c.
As expected, (n, r, c) is the class of two pre-labels <Xrc, n> and <Xn, rc>.

16.2.2.2. Constraints (topological vs geometric)

In addition to the “strong” CSP constraints that automatically go with the CSP-
variables, we introduce a unique (obviously symmetric) non-CSP constraint: “far”.
For each of the two CSPs, there are two ways of defining this constraint, somehow
parallel to the Futoshiki example, although there is no transitivity involved in the
present case. The first approach corresponds to a purely topological view of the
problem (based on adjacency relations), while the second is of a more geometric
nature (based on distances). It is interesting that they are not equivalent (they
produce different ratings). Both are implemented in our Numbrix®/Hidato® solver
based on CSP-Rules; which is chosen is passed as a parameter.

In the simplest and most obvious approach, two labels (n, r, c) and (n’, r’, c’) are
linked by constraint “far” if n’ = n ± 1 but (r, c) and (r’, c’) are not adjacent (with the
meaning of this word as specified above, depending on whether we speak of
Numbrix® or Hidato®). The meaning of “far” as a contradiction should be clear:
wherever n is in the grid, n±1 cannot be in a cell not adjacent to the cell where n is.

444 Pattern-Based Constraint Satisfaction and Logic Puzzles

In the second approach, the distance between two cells (r, c) and (r’, c’) is first
defined as the minimum number of steps necessary to pass from one to the other.
Then, we say that two labels (n, r, c) and (n’, r’, c’) are linked by constraint “far” if
their distance is too large, i.e. if dist(r, c, r’, c’) > ⎢n - n’⎢. In metaphoric terms, there
is a contradiction between the two labels because one does not have enough time
(measured by ⎢n - n’⎢) for walking the distance from (r, c) to (r’, c’). It is obvious
that there are more links in this approach than in the first and it has therefore an a
priori stronger resolution potential.

In all rigour, the distance should be computed as the length of the shortest path
from (r, c) to (r’, c’) in the underlying graph whose vertices are the white cells and
whose edges are the adjacency links specific to each game. One could even
eliminate from this graph all the decided cells, which would make length grow with
time and which could lead to the dynamical creation of links – but this remark is
highly prospective, as we have found on the Web no instance of any of these
problems that would justify doing so complicated things.

We have found convenient to use instead the following simple approximations
that amount to “forgetting” the colours of the cells (and whether they are decided or
not):

– for Numbrix®: dist(r, c, r’, c’) = ⎢r - r’⎢ + ⎢c - c’⎢,
– for Hidato®: dist(r, c, r’, c’) = max(⎢r - r’⎢, ⎢c - c’⎢).

Three questions immediately arise:
– can the topological and geometric approaches lead to different results? The

next two sections will answer positively, even when the W rating is small: the
Numbrix® puzzle in section 16.2.3 will become solvable by bivalue-chains[2]
instead of whips[2], while the W rating of the Hidato® puzzle in section 16.2.4 will
pass from 4 to 3. The part of the question that we shall leave unanswered (because
we miss really hard instances) is: can any puzzle be solved (e.g. using whips,…, g-
braids,…) with the geometric approach and not with the topological one?

– in the geometric approach, can the approximation (which leads to fewer links
than the “real” distance and may thus reduce the resolution potential) lead to
different results? We have no answer. But it seems unlikely in most instances,
especially in Hidato®, unless very special patterns of black cells completely isolate a
part of the white ones (e.g. by making long tubes).

– which approach is more realistic from a player’s point of view? Undoubtedly
the topological one for a beginner, but a more advanced player may want to use the
geometric one together with the approximation. Using the real distance seems very
unnatural as it requires to compute it each time it is needed or to remember it (in the
normally rare cases) when it is not equal to its approximated value. An alternative is
a restricted geometric approach, in which time and/or space differences considered
in relation “far” are limited by some predefined value(s).

16. Topological and geometric constraints: map colouring and path finding 445

16.2.2.3. Basic resolution theory

We distinguish two types of Singles, corresponding to the two types of CSP
variables: Naked-Single (a cell can only have one value) and Hidden-Single (a
number can only be in one cell). The examples in the next sub-sections will
illustrate the interplay between the two types of variables. They will also show that,
in our approach, both of them are necessary. Somewhat arbitrarily, we give Naked-
single a higher priority than Hidden-Single (the main purpose is to shorten the
writing of the resolution paths, while keeping them distinct). As usual, the
eliminations due to ECP will not be displayed (they may be different in the two
approaches).

16.2.2.4. Initial state

In spite of our definition of the domains of the CSP variables, we must be careful
with initialisation: if we merely started in a resolution state RS0 with all the
Numbers (or even with only all the undecided Numbers) as candidate-Numbers for
all the white cells, there would be a huge number of candidates (N2) and every
resolution path would start with hundreds of trivial eliminations.

We shall therefore adopt the convention of starting with a resolution state RS1 in
which the most obvious whip[1] eliminations are already done. This is very far from
enough to eliminate all the easy steps (in particular, this is not very efficient for
instances with few clues), but this multitude of trivial eliminations is inherent in
these types of puzzles and the vast majority of those proposed in newspapers are
solvable by singles and whips[1].

We define RS1 as the resolution state where all the givens are asserted as values
and all and only the compatible labels are asserted as candidates, where compatible
means non linked according to the second approach. This entails that the initial state
is the same in the two approaches. Notice that, even when we adopt the first
approach, the passage from RS0 to RS1 does not hide the use of any new rules; it
amounts to doing a lot of ECP and whip[1] eliminations. (We leave the details of the
easy proof, by recursion on ⎢n - n’⎢, as an exercise for the reader.) The difference
between the two approaches can appear only with longer chains – but the first
example will show that it can already appear with whips[2].

16.2.2.5. Warnings about the forthcoming resolution paths

The number of eliminations increases like the number of initial candidates, i.e.
approximately like N2, most of which are really boring. Even with small-sized grids
(and small N) and with the above-defined initialisation, the full resolution paths are
very long in most cases, mainly due to the presence of innumerable whips[1]. In all
our resolution paths, we shall suppose that the reader is able to find the whips[1] by
himself when necessary and we shall skip almost all of them.

446 Pattern-Based Constraint Satisfaction and Logic Puzzles

The length of the paths is in part the result of our goal of finding the “simplest”
solution, of the associated simplest-first strategy and of the absence in CSP-Rules of
“heuristic” rules for focusing on some candidate. A human solver is very unlikely to
follow a similar path; instead, he would concentrate e.g. on finding some value close
to the already known ones (not caring too much about the length of his chains of
reasoning); but in the process he would somehow have to justify (part of) the same
eliminations.

16.2.2.6. Subsets in Numbrix® and Hidato®

Subsets are very simple patterns in Numbrix® and Hidato®. The two types of
CSP-variables are transversal. Associated with them, there are two kinds of Subsets;
for each integer p > 2:

– Naked-Subset[p]: given p different rc-cells and p different Numbers such that
each of these cells contains no other candidate-Number as these p Numbers
(together with non-degeneracy conditions stated in chapter 8), then eliminate any of
these candidate-Numbers from any other rc-cell. With respect to the general
definitions of chapter 8, this corresponds to taking the p Xrc CSP-variables
corresponding to the p rc-cells as the CSP-variables of the Subset and the p Xn CSP-
variables (considered as constraints) corresponding to the p Numbers as its
transversal sets.

– Hidden-Subset[p]: given p different Numbers and p different rc-cells such that
these Numbers are candidates for no other rc-cell than these (together with non-
degeneracy conditions stated in chapter 8), then eliminate any other candidate-
Numbers from these rc-cells. With respect to the general definitions of chapter 8,
this corresponds to taking the p Xn CSP-variables corresponding to the p Numbers
as the CSP-variables of the Subset and the p Xrc CSP-variables (considered as
constraints) corresponding to the p rc-cells as its transversal sets.

Remarks:
– in spite of the existence of a row-column grid structure, it plays strictly no role

in the definition of Subsets;
– the distinction between “Naked” and “Hidden” corresponds to the standard

presentation of these puzzles, on an rc-grid. But, considering the previous remark,
these could be interchanged if one considers that the dual presentation, as a linear
grid of n-cells of Undecided-Numbers, would be better;

– there is no limitation on the size of a Subset – other than the number of
undecided cells and, from a practical point of view, the doubly exponential growth
of complexity with size (be it for a human player or a computer program);

– in our Numbrix®/Hidato® solver, the implemention of Subsets is application-
specific.

16. Topological and geometric constraints: map colouring and path finding 447

16.2.3. A Numbrix® example

The standard reference as the major source of Numbrix® puzzles is the “Parade”
magazine [askmarilyn www], where a new one is published daily by the inventor of
the game, with difficulty levels varying from “easy” to “expert”. We had pre-
selected the expert one from the 16th of October 2012 (Figure 16.2) because it is one
of the hardest we had found there. (Here, as for most of the logic puzzles published
in newspapers or journals, the notion of “hard” is very relative, as one has W = 2.)
But the final reason for presenting it here is that the topological and geometric
models lead to solutions with different hardest patterns, even for this easy puzzle.

The first steps of the resolution path are not very interesting; after Singles and
whips[1], they lead to the “elaborated” puzzle displayed in the right part of Figure
16.2, from which we shall start.

 7 6 5
 25 22 16 8 1 25 22 16 8 1 4
 24 2 24 23 2 3
 52
 36 54 36 54
 38
 42 58 39 42 58
 41 78 68 70 59 40 41 78 68 69 70 59
 81 80 79

Figure 16.2. A Numbrix® puzzle (clues of #20121016 expert, askmarylin) and its elaboration

*****	 	 Numbrix-‐Rules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 geometric-‐model,	 config:	 B	 	 	 *****	
biv-‐chain[2]:	 r8c9{n60	 n62}	 –	 n64{r9c6	 r9c8}	 ==>	 r9c8	 ≠	 60	
naked-‐singles:	 r8c9	 =	 60,	 r9c8	 =	 62,	 r9c6	 =	 64,	 r9c7	 =	 63,	 r7c7	 =	 71,	 r9c5	 =	 65,	 r8c4	 =	 67,	 r7c3	 =	 77,	
r6c2	 =	 43,	 r6c3	 =	 44,	 r7c4	 =	 76,	 r5c1	 =	 37,	 r9c4	 =	 66,	 r9c9	 =	 61,	 r7c9	 =	 57,	 r6c9	 =	 56,	 r4c7	 =	 50,	
r4c8	 =	 51,	 r5c9	 =	 53,	 r6c8	 =	 55	
whip[1]:	 n10{r1c6	 .}	 ==>	 r5c7	 ≠	 11	 ;	 hidden-‐single:	 r5c7	 =	 49	 ;	 more	 whips[1]	 ;	 singles	 to	 the	 end	

It appears that the bivalue-chain[2] elimination r8c9 ≠ 60 is the key to the
solution. It rests on the facts that, in the resolution state where it appears, cell r8c9
has only two possible values (60 and 62) and number 64 has only two possible
places (r9c6 and r9c8); and this is true, after the long series of whips[1], in both the
topological and geometric approaches. Moreover, the target is linked in both cases
to the two ends of the chain. What makes this chain non valid in the topological
model is the left-to-right link n62r8c9 – n64r9c6 because ⎢64-62⎢ ≠ 1; it is valid in
the geometric approach because dist(r8c9, r9c6) = 4 > 2 = 64-62.

448 Pattern-Based Constraint Satisfaction and Logic Puzzles

In the absence of this bivalue-chain[2] elimination, the resolution path for the
topological model is longer and whips[2] are required:

*****	 	 Numbrix-‐Rules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 topological-‐model,	 config:	 B	 	 	 *****	
biv-‐chain[2]:	 n53{r4c8	 r5c9}	 –	 n51{r5c9	 r4c8}	 ==>	 r4c8	 ≠	 11	
whip[2]:	 n51{r5c9	 r4c8}	 –	 n53{r4c8	 .}	 ==>	 r5c9	 ≠	 55	
whip[2]:	 n71{r7c7	 r9c7}	 –	 n72{r7c6	 .}	 ==>	 r7c7	 ≠	 73	
whip[2]:	 n71{r9c7	 r7c7}	 –	 n72{r9c8	 .}	 ==>	 r9c7	 ≠	 73	
whip[2]:	 n73{r6c6	 r9c5}	 –	 n72{r7c6	 .}	 ==>	 r9c6	 ≠	 74	
whip[2]:	 n74{r6c5	 r9c4}	 –	 n73{r7c5	 .}	 ==>	 r9c5	 ≠	 75	
whip[2]:	 n75{r6c4	 r8c4}	 –	 n77{r8c4	 .}	 ==>	 r9c4	 ≠	 76	
biv-‐chain[2]:	 n44{r6c3	 r7c4}	 –	 n76{r7c4	 r6c3}	 ==>	 r6c3	 ≠	 32	
biv-‐chain[2]:	 n44{r6c3	 r7c4}	 –	 n76{r7c4	 r6c3}	 ==>	 r6c3	 ≠	 34	
whip[2]:	 n44{r7c4	 r6c3}	 –	 n76{r6c3	 .}	 ==>	 r7c4	 ≠	 74	
whip[2]:	 n34{r4c1	 r5c4}	 –	 n32{r5c4	 .}	 ==>	 r6c4	 ≠	 33	
whip[2]:	 r6c4{n75	 n45}	 –	 r7c5{n45	 .}	 ==>	 r9c4	 ≠	 74	
singles:	 r9c4	 =	 66,	 r9c5	 =	 65,	 r9c6	 =	 64,	 r9c7	 =	 63,	 r7c7	 =	 71,	 r9c8	 =	 62,	 r8c9	 =	 60,	 r9c9	 =	 61,	
r8c4	 =	 67,	 r7c3	 =	 77,	 r6c2	 =	 43,	 r6c3	 =	 44,	 r7c4	 =	 76,	 r5c1	 =	 37,	 r7c9	 =	 57,	 r6c9	 =	 56,	 r4c7	 =	 50,	
r4c8	 =	 51,	 r5c9	 =	 53,	 r6c8	 =	 55,	 r5c7	 =	 49	
whip[2]:	 n11{r3c5	 r2c6}	 –	 n9{r2c6	 .}	 ==>	 r1c6	 ≠	 10	
singles:	 r3c6	 =	 10,	 r3c7	 =	 9,	 r1c6	 =	 18,	 r1c5	 =	 19,	 r1c4	 =	 20,	 r2c6	 =	 17	
whip[2]:	 n31{r3c1	 r4c4}	 –	 n33{r4c4	 .}	 ==>	 r3c4	 ≠	 32	
whips[1]	 and	 singles	 to	 the	 end	

16.2.4. Three Hidato® puzzles created by P. Mebane

The standard reference as the major source of Hidato® puzzles is the Smithsonian
magazine [Smithsonian www]. However, here again, these puzzles are relatively
easy (all those we have tested among those considered there as being at the hardest
level could be solved by whips of maximum length 2, even in the topological
model). We have found much harder instances in [Mebane 2012].

16.2.4.1. First Hidato® example

An 8×8 puzzle with a very special pattern of black cells is reproduced in Figure
16.3. It is announced as the hardest in the Mebane collection, but we have seen that
“hard” may have many meanings, depending on one’s goals and on the CSP under
consideration: with W = 3 (in both the topological and the geometric models), it
would be considered as simple in Sudoku; however, what makes it hard here is the
number of eliminations necessary at its hardest level W3.

Notice that neither the starting point (Number 1) not the end of the path (Number
56, the number of white cells) are given; this is the first reason why we have chosen
to present it here (the second being the small size of the grid). As before, we do not
display the whips[1] in the following resolution paths.

16. Topological and geometric constraints: map colouring and path finding 449

 51 34 33 52 51 54 55 56
 15 35 15 32 53 50 25 26
 31 36 14 16 31 24 49 27
 30 28 37 13 17 23 30 48 28

38 12 38 39 12 18 22 29 47
 6 1 11 40 6 19 21 46
 20 2 10 5 41 7 20 45
 8 3 4 9 8 42 43 44

Figure 16.3. A Hidato® puzzle and its solution (clues of # III.10, [Mebane 2012])

*****	 	 Hidato-‐Rules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 topological-‐model,	 config:	 B	 	 	 *****	
biv-‐chain[2]:	 n16{r3c2	 r3c4}	 –	 n14{r3c4	 r3c2}	 ==>	 r3c2	 ≠	 1,	 2,	 3,	 34,	 35,	 36,	 40,	 41,	 42,	 43,	 44,	 45,	
46,	 47,	 55,	 56	
whip[2]:	 n14{r3c4	 r3c2}	 –	 n16{r3c2	 .}	 ==>	 r3c4	 ≠	 1,	 2,	 3,	 24	
whips[2]:	 n24{r3c6	 r5c4}	 –	 n22{r5c4	 .}	 ==>	 r4c3	 ≠	 23	
whip[2]:	 n14{r3c4	 r3c2}	 –	 n16{r3c2	 .}	 ==>	 r3c4	 ≠	 32	
whip[2]:	 n34{r5c4	 r4c3}	 –	 n13{r4c3	 .}	 ==>	 r4c2	 ≠	 35	
whip[2]:	 n14{r3c4	 r3c2}	 –	 n16{r3c2	 .}	 ==>	 r3c4	 ≠	 33,	 34	
whip[2]:	 n32{r3c6	 r2c5}	 –	 n34{r2c5	 .}	 ==>	 r2c4	 ≠	 33	 	
whip[2]:	 n14{r3c4	 r3c2}	 –	 n16{r3c2	 .}	 ==>	 r3c4	 ≠	 35	
whip[2]:	 n14{r3c4	 r3c2}	 –	 n16{r3c2	 .}	 ==>	 r3c4	 ≠	 41,	 42,	 43,	 44,	 45,	 46,	 47,	 48,	 49,	 53	
whip[2]:	 n55{r5c4	 r4c3}	 –	 n13{r4c3	 .}	 ==>	 r4c2	 ≠	 56	
whip[2]:	 n14{r3c4	 r3c2}	 –	 n16{r3c2	 .}	 ==>	 r3c4	 ≠	 54,	 55,	 56	
whip[2]:	 	 n24{r3c6	 r7c4}	 –	 n22{r7c4	 .}	 ==>	 r8c3	 ≠	 23,	 r7c3	 ≠	 23	
biv-‐chain[3]:	 n13{r4c2	 r4c3}	 –	 n17{r4c3	 r4c5}	 –	 r3c2{n16	 n14}	 ==>	 r3c4	 ≠	 14	
naked-‐singles:	 r3c2	 =	 14,	 r3c4	 =	 16	
whip[3]:	 n33{r5c4	 r4c5}	 –	 n17{r4c5	 r4c3}	 –	 n18{r5c6	 .}	 ==>	 r5c4	 ≠	 34	
whip[3]:	 n35{r5c2	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 34	
biv-‐chain[3]:	 n32{r2c4	 r4c5}	 –	 n17{r4c5	 r4c3}	 –	 n18{r5c6	 r5c4}	 ==>	 r5c4	 ≠	 33	
biv-‐chain[3]:	 n34{r1c2	 r6c5}	 –	 n19{r6c5	 r6c7}	 –	 n18{r5c4	 r5c6}	 ==>	 r5c6	 ≠	 33	
naked-‐singles:	 r1c3	 =	 33,	 r1c2	 =	 34,	 r2c1	 =	 35,	 r3c1	 =	 36,	 r2c4	 =	 32	
whips[2]:	 n13{r4c2	 r4c3}	 –	 n46{r4c3	 .}	 ==>	 r4c2	 ≠	 45;	 	 	 n56{r2c6	 r2c5}	 –	 n54{r2c5	 .}	 ==>	 r1c4	 ≠	 55	

n55{r2c6	 r2c5}	 –	 n53{r2c5	 .}	 ==>	 r1c4	 ≠	 54;	 	 	 	 	 n54{r2c6	 r2c5}	 –	 n52{r2c5	 .}	 ==>	 r1c4	 ≠	 53	
n50{r2c6	 r2c5}	 –	 n48{r2c5	 .}	 ==>	 r1c4	 ≠	 49;	 	 	 	 	 n49{r2c6	 r2c5}	 –	 n47{r2c5	 .}	 ==>	 r1c4	 ≠	 48	
n48{r2c6	 r2c5}	 –	 n46{r2c5	 .}	 ==>	 r1c4	 ≠	 47;	 	 	 	 	 n47{r2c6	 r2c5}	 –	 n45{r2c5	 .}	 ==>	 r1c4	 ≠	 46	
n46{r2c6	 r2c5}	 –	 n44{r2c5	 .}	 ==>	 r1c4	 ≠	 45	

whip[3]:	 n37{r4c1	 r4c2}	 –	 n43{r4c2	 r5c2}	 –	 n45{r5c2	 .}	 ==>	 r4c1	 ≠	 44,	 43	
whip[3]:	 n13{r4c2	 r4c3}	 –	 n43{r4c3	 r5c2}	 –	 n45{r5c2	 .}	 ==>	 r4c2	 ≠	 44	
whip[3]:	 n37{r4c1	 r4c2}	 –	 n43{r4c2	 r5c2}	 –	 n41{r5c2	 .}	 ==>	 r4c1	 ≠	 42	
whip[3]:	 n13{r4c2	 r4c3}	 –	 n44{r4c3	 r5c2}	 –	 n42{r5c2	 .}	 ==>	 r4c2	 ≠	 43	
whip[3]:	 n42{r4c2	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 43	
whip[3]:	 n43{r5c2	 r6c5}	 –	 n19{r6c5	 r6c7}	 –	 n18{r5c4	 .}	 ==>	 r5c6	 ≠	 44	
whip[3]:	 n44{r5c7	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 45	

450 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[3]:	 n37{r4c1	 r4c2}	 –	 n42{r4c2	 r5c2}	 –	 n40{r5c2	 .}	 ==>	 r4c1	 ≠	 41	
whip[3]:	 n13{r4c2	 r4c3}	 –	 n43{r4c3	 r5c2}	 –	 n41{r5c2	 .}	 ==>	 r4c2	 ≠	 42	
whip[3]:	 n41{r4c2	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 42	
whip[3]:	 n42{r5c2	 r6c5}	 –	 n19{r6c5	 r6c7}	 –	 n18{r5c4	 .}	 ==>	 r5c6	 ≠	 43	
whip[3]:	 n43{r6c1	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 44	
whip[3]:	 n44{r5c2	 r6c5}	 –	 n19{r6c5	 r6c7}	 –	 n18{r5c4	 .}	 ==>	 r5c6	 ≠	 45	
whip[3]:	 n45{r6c2	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 46	
whip[3]:	 n54{r3c7	 r3c6}	 –	 r1c7{n53	 n1}	 –	 r1c8{n1	 .}	 ==>	 r4c5	 ≠	 55	
whip[3]:	 n54{r4c7	 r4c5}	 –	 r1c7{n53	 n1}	 –	 r1c8{n1	 .}	 ==>	 r5c4	 ≠	 55	
whip[3]:	 n55{r5c7	 r5c6}	 –	 n18{r5c6	 r5c4}	 –	 n19{r6c7	 .}	 ==>	 r6c5	 ≠	 56	
whip[3]:	 n54{r1c6	 r4c7}	 –	 r1c7{n53	 n1}	 –	 r1c8{n1	 .}	 ==>	 r5c7	 ≠	 55,	 r5c8	 ≠	 55	
whip[3]:	 r1c8{n54	 n1}	 –	 r1c7{n1	 n53}	 –	 n54{r4c7	 .}	 ==>	 r4c7	 ≠	 55,	 r5c6	 ≠	 55	
whip[2]:	 n53{r3c7	 r3c6}	 –	 n55{r3c6	 .}	 ==>	 r4c5	 ≠	 54	
whip[3]:	 r1c8{n54	 n1}	 –	 n2{r8c7	 r2c7}	 –	 n3{r8c7	 .}	 ==>	 r3c6	 ≠	 55	
whip[3]:	 n45{r6c2	 r6c5}	 –	 n19{r6c5	 r6c7}	 –	 n18{r5c4	 .}	 ==>	 r5c6	 ≠	 46	
whip[3]:	 n46{r6c3	 r5c4}	 –	 n47{r5c8	 r4c5}	 –	 n17{r4c5	 .}	 ==>	 r4c3	 ≠	 45	
whip[3]:	 n46{r6c3	 r5c4}	 –	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 .}	 ==>	 r4c5	 ≠	 47	
biv-‐chain[3]:	 n18{r5c4	 r5c6}	 –	 n17{r4c3	 r4c5}	 –	 n48{r4c5	 r4c7}	 ==>	 r5c4	 ≠	 47	
whip[3]:	 n24{r3c7	 r3c6}	 –	 n26{r3c6	 r2c6}	 –	 n50{r2c6	 .}	 ==>	 r2c5	 ≠	 25	
whip[3]:	 r1c8{n54	 n1}	 –	 r1c7{n1	 n53}	 –	 r1c4{n52	 .}	 ==>	 r3c7	 ≠	 55,	 r3c8	 ≠	 55	
whip[3]:	 n47{r5c7	 r5c6}	 –	 n18{r5c6	 r5c4}	 –	 n19{r6c7	 .}	 ==>	 r6c5	 ≠	 46	
;;;	 more	 whips[1]	 and	 Singles	
biv-‐chain[2]:	 n5{r6c3	 r7c3}	 –	 n40{r7c3	 r6c3}	 ==>	 r6c3	 ≠	 1,	 3,	 4,	 10,	 11	
biv-‐chain[2]:	 n39{r5c2	 r6c2}	 –	 n11{r6c2	 r5c2}	 ==>	 r5c2	 ≠	 4	
biv-‐chain[2]:	 r8c1{n1	 n3}	 –	 r6c1{n3	 n1}	 ==>	 r6c2	 ≠	 1,	 r7c1	 ≠	 1,	 r7c2	 ≠	 1,	 r7c3	 ≠	 1,	 r8c2	 ≠	 1	
whip[1]:	 r8c2{n3	 .}	 ==>	 r6c1	 ≠	 3	
singles	 to	 the	 end	

16.2.4.2. Second Hidato® example: non equivalence of the topological and
geometric models

Puzzle # III.7 in [Melbane 2012] is interesting for four reasons:
– as before, the places of the first and the last values (36) are not given;
– it has only two givens and uniqueness of the solution is ensured by the very

constrained pattern of black cells;
– it is a hard instance (relatively to all those we have seen) in a very compact

design;
– above all, its W (or B) rating is 4 or 3, depending on whether one adopts the

topological or the geometric model.

This puzzle is given in Figure 16.4. In order to save space, whips[2] will not be
written in the resolution paths. These should therefore be considered as giving only
the main lines of a proof with blanks that must be filled by whips[1] and whips[2],
when a single or a t-candidate in a longer whip must be justified.

16. Topological and geometric constraints: map colouring and path finding 451

 2 35 36 7 1 2
 33 34 8 6 3
 32 30 9 5 4
 31 29 10
 28 11 13
 24 25 27 12 14
 23 26 19 16 15

22 22 21 20 18 17

Figure 16.4. A Hidato® puzzle and its solution (clues of # III.7, [Mebane 2012])

Let us start with the geometric model:

*****	 	 Hidato-‐Rules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 geometric-‐model,	 config:	 B	 	 	 *****	
;;;	 lots	 of	 whips[1],	 biv-‐chains[2]	 and	 whips[2]	
whip[3]:	 r3c8{n36	 n4}	 –	 n6{r1c4	 r1c6}	 –	 n5{r3c5	 .}	 ==>	 r2c6	 ≠	 36	
whip[3]:	 r3c7{n5	 n35}	 –	 n34{r1c3	 r2c6}	 –	 n4{r2c6	 .}	 ==>	 r5c4	 ≠	 7	
whip[3]:	 r3c7{n5	 n35}	 –	 n34{r1c3	 r2c6}	 –	 n4{r2c6	 .}	 ==>	 r4c5	 ≠	 6	
whip[3]:	 n6{r1c4	 r3c5}	 –	 r3c7{n5	 n35}	 –	 r2c1{n36	 .}	 ==>	 r8c6	 ≠	 11,	 r8c5	 ≠	 11,	 r8c3	 ≠	 11,	 r7c7	 ≠	 10,	
r7c4	 ≠	 10,	 r7c3	 ≠	 10	
whip[2]:	 n8{r1c3	 r5c4}	 –	 n10{r1c3	 .}	 ==>	 r6c4	 ≠	 9	
whip[3]:	 n5{r3c5	 r2c5}	 –	 n7{r2c5	 r2c6}	 –	 n4{r2c6	 .}	 ==>	 r1c6	 ≠	 6	
whip[3]:	 r3c7{n5	 n35}	 –	 n34{r1c3	 r2c6}	 –	 n4{r2c6	 .}	 ==>	 r1c6	 ≠	 5,	 r3c5	 ≠	 5	
whip[3]:	 n6{r2c6	 r3c5}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 7	
whip[3]:	 n8{r1c4	 r2c2}	 –	 n11{r7c8	 r3c1}	 –	 n9{r3c5	 .}	 ==>	 r2c1	 ≠	 10	
whip[3]:	 r3c8{n4	 n36}	 –	 n35{r1c3	 r3c7}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 4	
whip[3]:	 r8c2{n21	 n23}	 –	 r6c1{n24	 n36}	 –	 n35{r6c4	 .}	 ==>	 r6c2	 ≠	 20	
whip[3]:	 n24{r8c3	 r7c3}	 –	 n20{r7c3	 r6c1}	 –	 n18{r6c4	 .}	 ==>	 r8c3	 ≠	 25	
whip[3]:	 r7c1{n21	 n23}	 –	 n25{r6c4	 r6c2}	 –	 n26{r8c5	 .}	 ==>	 r7c3	 ≠	 20	
whip[2]:	 n20{r8c3	 r6c1}	 –	 n19{r7c3	 .}	 ==>	 r8c3	 ≠	 18	
whip[3]:	 n6{r1c4	 r3c5}	 –	 r3c7{n5	 n35}	 –	 r2c1{n30	 .}	 ==>	 r6c6	 ≠	 9	
whip[3]:	 r7c1{n23	 n21}	 –	 n19{r7c4	 r6c2}	 –	 n18{r6c4	 .}	 ==>	 r7c3	 ≠	 24	
whip[3]:	 n35{r6c2	 r7c3}	 –	 n19{r7c3	 r7c4}	 –	 n25{r7c4	 .}	 ==>	 r6c2	 ≠	 36	
whip[3]:	 n34{r6c4	 r7c3}	 –	 n19{r7c3	 r7c4}	 –	 n25{r7c4	 .}	 ==>	 r6c2	 ≠	 35	
whip[3]:	 r6c1{n24	 n20}	 –	 n18{r6c4	 r7c3}	 –	 n17{r8c6	 .}	 ==>	 r6c4	 ≠	 26	
whip[3]:	 r3c7{n5	 n35}	 –	 n34{r1c3	 r2c6}	 –	 n33{r2c1	 .}	 ==>	 r3c5	 ≠	 6	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 8,	 r2c6	 ≠	 9	
whip[2]:	 n7{r3c5	 r2c5}	 –	 n9{r3c1	 .}	 ==>	 r1c6	 ≠	 8	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 10	
whip[2]:	 n8{r3c5	 r2c5}	 –	 n10{r3c1	 .}	 ==>	 r1c6	 ≠	 9	
whip[3]:	 n10{r3c1	 r2c5}	 –	 n13{r6c6	 r2c6}	 –	 n12{r3c1	 .}	 ==>	 r1c6	 ≠	 11	
whip[3]:	 n13{r4c2	 r2c5}	 –	 n11{r2c1	 r3c5}	 –	 n14{r3c5	 .}	 ==>	 r2c6	 ≠	 12	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 11	
whip[2]:	 n9{r3c1	 r2c5}	 –	 n11{r3c1	 .}	 ==>	 r1c6	 ≠	 10	

452 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 13	
whip[2]:	 n11{r3c1	 r2c5}	 –	 n13{r3c1	 .}	 ==>	 r1c6	 ≠	 12	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 31	
whip[3]:	 n33{r3c1	 r4c5}	 –	 n31{r3c1	 r2c5}	 –	 n30{r3c3	 .}	 ==>	 r3c5	 ≠	 32	
whip[3]:	 n32{r4c3	 r5c6}	 –	 n30{r4c2	 r3c5}	 –	 n29{r4c3	 .}	 ==>	 r4c5	 ≠	 31	
whip[3]:	 n9{r1c3	 r5c6}	 –	 n11{r4c3	 r5c7}	 –	 n12{r4c5	 .}	 ==>	 r6c6	 ≠	 10	
whip[3]:	 n10{r1c3	 r5c6}	 –	 n12{r4c3	 r6c6}	 –	 n13{r4c5	 .}	 ==>	 r5c7	 ≠	 11	
whip[3]:	 r7c8{n29	 n15}	 –	 r3c1{n13	 n36}	 –	 r2c1{n36	 .}	 ==>	 r1c4	 ≠	 33	
whip[2]:	 n31{r2c5	 r2c2}	 –	 n33{r2c2	 .}	 ==>	 r1c3	 ≠	 32	
whip[3]:	 n9{r1c3	 r5c6}	 –	 n11{r1c3	 r6c6}	 –	 n12{r4c5	 .}	 ==>	 r5c7	 ≠	 10	
whip[2]:	 n8{r1c4	 r4c5}	 –	 n10{r1c3	 .}	 ==>	 r5c6	 ≠	 9	
whip[2]:	 n7{r1c3	 r3c5}	 –	 n9{r2c1	 .}	 ==>	 r4c5	 ≠	 8	
whip[3]:	 n10{r1c3	 r5c6}	 –	 n12{r4c3	 r5c7}	 –	 n13{r4c5	 .}	 ==>	 r6c6	 ≠	 11	
whip[3]:	 n32{r4c3	 r1c4}	 –	 n6{r1c4	 r2c6}	 –	 n8{r2c2	 .}	 ==>	 r2c5	 ≠	 31	
whip[3]:	 n11{r1c3	 r5c6}	 –	 n13{r4c2	 r6c6}	 –	 n14{r6c8	 .}	 ==>	 r5c7	 ≠	 12	
whip[3]:	 n8{r2c2	 r1c4}	 –	 n7{r1c6	 r1c3}	 –	 n6{r2c6	 .}	 ==>	 r2c5	 ≠	 9	
whip[3]:	 n9{r3c1	 r1c3}	 –	 n8{r2c5	 r2c2}	 –	 n7{r2c5	 .}	 ==>	 r1c4	 ≠	 10	
whip[3]:	 r2c6{n6	 n34}	 –	 r7c8{n36	 n29}	 –	 r6c6{n29	 .}	 ==>	 r2c1	 ≠	 9	
whip[3]:	 r2c6{n6	 n34}	 –	 r7c8{n36	 n29}	 –	 r6c6{n29	 .}	 ==>	 r3c1	 ≠	 9	
whip[3]:	 n10{r1c3	 r4c2}	 –	 n12{r6c6	 r3c3}	 –	 n9{r3c3	 .}	 ==>	 r4c3	 ≠	 11	
whip[3]:	 n9{r3c5	 r3c3}	 –	 n11{r5c6	 r3c1}	 –	 n14{r6c8	 .}	 ==>	 r4c2	 ≠	 10	
whip[3]:	 n10{r4c3	 r2c2}	 –	 n8{r2c5	 r1c4}	 –	 n12{r6c6	 .}	 ==>	 r1c3	 ≠	 11	
singles,	 whips[1],	 biv-‐chains[2]	 and	 whips[2]	 to	 the	 end	
	

Let us now consider the topological model:

*****	 	 Hidato-‐Rules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 topological-‐model,	 config:	 B	 	 	 *****	
;;;	 lots	 of	 whips[1],	 biv-‐chains[2]	 and	 whips[2]	
whip[3]:	 n6{r2c6	 r3c5}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 7	
whip[3]:	 n9{r2c5	 r3c1}	 –	 n8{r3c5	 r2c2}	 –	 n11{r2c2	 .}	 ==>	 r2c1	 ≠	 10	
whip[3]:	 r3c8{n4	 n36}	 –	 n35{r1c3	 r3c7}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 4	
whip[3]:	 r8c2{n21	 n23}	 –	 r6c1{n24	 n36}	 –	 n35{r6c4	 .}	 ==>	 r6c2	 ≠	 20	
whip[3]:	 r8c2{n23	 n21}	 –	 r6c1{n20	 n36}	 –	 n35{r6c4	 .}	 ==>	 r6c2	 ≠	 24	
whip[4]:	 n36{r3c1	 r2c5}	 –	 r3c7{n35	 n5}	 –	 n6{r1c4	 r2c6}	 –	 n34{r2c6	 .}	 ==>	 r1c6	 ≠	 35	
whip[4]:	 r3c7{n35	 n5}	 –	 n6{r1c4	 r2c6}	 –	 n33{r2c6	 r2c5}	 –	 n35{r2c5	 .}	 ==>	 r1c6	 ≠	 34	
whip[4]:	 n7{r3c5	 r2c5}	 –	 n5{r2c5	 r3c7}	 –	 n6{r1c4	 r2c6}	 –	 n9{r2c6	 .}	 ==>	 r1c6	 ≠	 8	
whip[4]:	 n16{r3c3	 r3c5}	 –	 n6{r3c5	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 15	
whip[4]:	 n15{r3c1	 r2c5}	 –	 n5{r2c5	 r3c7}	 –	 n6{r3c5	 r2c6}	 –	 n13{r2c6	 .}	 ==>	 r1c6	 ≠	 14	
whip[4]:	 n28{r8c6	 r3c5}	 –	 n6{r3c5	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 29	
whip[4]:	 n29{r3c1	 r2c5}	 –	 n5{r2c5	 r3c7}	 –	 n6{r3c5	 r2c6}	 –	 n31{r2c6	 .}	 ==>	 r1c6	 ≠	 30	
whip[4]:	 n34{r6c4	 r7c3}	 –	 n36{r7c3	 r6c1}	 –	 n20{r6c1	 r8c3}	 –	 n24{r8c3	 .}	 ==>	 r6c2	 ≠	 35	
whip[3]:	 r6c1{n24	 n20}	 –	 n19{r6c4	 r6c2}	 –	 n18{r6c4	 .}	 ==>	 r7c3	 ≠	 25	
whip[3]:	 n25{r8c3	 r7c4}	 –	 n24{r6c1	 r7c3}	 –	 n27{r7c3	 .}	 ==>	 r8c3	 ≠	 26	
whip[3]:	 r6c1{n24	 n20}	 –	 n19{r6c4	 r6c2}	 –	 n18{r6c4	 .}	 ==>	 r7c3	 ≠	 24	
whip[3]:	 n24{r8c3	 r6c1}	 –	 n20{r6c1	 r7c3}	 –	 n26{r7c3	 .}	 ==>	 r8c3	 ≠	 27	
whip[3]:	 n25{r6c2	 r7c4}	 –	 r6c1{n24	 n20}	 –	 n19{r6c4	 .}	 ==>	 r6c2	 ≠	 36	

16. Topological and geometric constraints: map colouring and path finding 453

whip[2]:	 r6c2{n19	 n25}	 –	 n26{r8c5	 .}	 ==>	 r7c3	 ≠	 19	
whip[3]:	 n19{r8c3	 r7c4}	 –	 n20{r6c1	 r7c3}	 –	 n17{r7c3	 .}	 ==>	 r8c3	 ≠	 18	
whip[3]:	 r6c2{n19	 n25}	 –	 n26{r8c5	 r7c3}	 –	 n20{r7c3	 .}	 ==>	 r6c4	 ≠	 19	
whip[3]:	 r6c2{n19	 n25}	 –	 n26{r8c5	 r7c3}	 –	 n20{r7c3	 .}	 ==>	 r8c3	 ≠	 19	
whip[3]:	 r6c2{n25	 n19}	 –	 n18{r6c4	 r7c3}	 –	 n17{r8c6	 .}	 ==>	 r6c4	 ≠	 26	
biv-‐chain[3]:	 n27{r6c4	 r8c6}	 –	 n26{r7c3	 r8c5}	 –	 r6c2{n25	 n19}	 ==>	 r6c4	 ≠	 18	
whip[3]:	 n5{r2c5	 r3c7}	 –	 n6{r3c5	 r2c6}	 –	 n13{r2c6	 .}	 ==>	 r2c5	 ≠	 12,	 32	
whip[3]:	 n32{r3c1	 r2c6}	 –	 n31{r3c1	 r2c5}	 –	 n34{r2c5	 .}	 ==>	 r1c6	 ≠	 33	
whip[3]:	 n31{r4c2	 r2c5}	 –	 n33{r2c5	 r3c5}	 –	 n30{r3c5	 .}	 ==>	 r2c6	 ≠	 32	
whip[3]:	 n12{r3c1	 r2c6}	 –	 n13{r6c6	 r2c5}	 –	 n10{r2c5	 .}	 ==>	 r1c6	 ≠	 11	
whip[3]:	 n13{r4c2	 r2c5}	 –	 n11{r2c5	 r3c5}	 –	 n14{r3c5	 .}	 ==>	 r2c6	 ≠	 12	
whip[3]:	 r5c4{n28	 n16}	 –	 r7c8{n15	 n36}	 –	 n35{r6c6	 .}	 ==>	 r6c8	 ≠	 29	
whip[3]:	 r5c4{n16	 n28}	 –	 r7c8{n29	 n36}	 –	 n35{r6c6	 .}	 ==>	 r6c8	 ≠	 15	
whip[3]:	 n8{r1c4	 r5c6}	 –	 n10{r5c6	 r6c6}	 –	 n11{r4c5	 .}	 ==>	 r5c7	 ≠	 9	
whip[3]:	 n9{r6c6	 r5c6}	 –	 n11{r5c6	 r5c7}	 –	 n12{r4c5	 .}	 ==>	 r6c6	 ≠	 10	
whip[3]:	 n10{r1c3	 r5c6}	 –	 n12{r5c6	 r6c6}	 –	 n13{r4c5	 .}	 ==>	 r5c7	 ≠	 11	
whip[3]:	 n8{r1c4	 r5c6}	 –	 n10{r5c6	 r5c7}	 –	 n11{r4c5	 .}	 ==>	 r6c6	 ≠	 9	
whip[3]:	 n9{r1c3	 r5c6}	 –	 n11{r5c6	 r6c6}	 –	 n12{r4c5	 .}	 ==>	 r5c7	 ≠	 10	
whip[3]:	 n10{r1c3	 r5c6}	 –	 n12{r5c6	 r5c7}	 –	 n13{r4c5	 .}	 ==>	 r6c6	 ≠	 11	
whip[3]:	 n11{r1c3	 r5c6}	 –	 n13{r5c6	 r6c6}	 –	 n14{r6c8	 .}	 ==>	 r5c7	 ≠	 12	
whip[3]:	 n12{r6c6	 r5c6}	 –	 n14{r5c6	 r5c7}	 –	 n15{r7c8	 .}	 ==>	 r6c6	 ≠	 13	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 8	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 9	
whip[2]:	 n7{r1c3	 r2c5}	 –	 n9{r2c5	 .}	 ==>	 r3c5	 ≠	 8	
whip[3]:	 n8{r2c2	 r1c4}	 –	 n7{r1c6	 r1c3}	 –	 n6{r2c6	 .}	 ==>	 r2c5	 ≠	 9	
whip[3]:	 n9{r3c1	 r1c3}	 –	 n8{r2c5	 r2c2}	 –	 n7{r2c5	 .}	 ==>	 r1c4	 ≠	 10	
whip[3]:	 n10{r2c2	 r2c6}	 –	 n6{r2c6	 r1c4}	 –	 n5{r3c7	 .}	 ==>	 r2c5	 ≠	 11	
whip[3]:	 n14{r3c3	 r3c5}	 –	 n12{r3c5	 r1c6}	 –	 n11{r3c1	 .}	 ==>	 r2c6	 ≠	 13	
whip[3]:	 n11{r3c1	 r2c6}	 –	 n10{r3c1	 r2c5}	 –	 n13{r2c5	 .}	 ==>	 r1c6	 ≠	 12	
whip[3]:	 n10{r2c2	 r2c5}	 –	 n5{r2c5	 r3c7}	 –	 n6{r1c4	 .}	 ==>	 r2c6	 ≠	 11	
whip[3]:	 n13{r5c6	 r5c7}	 –	 n12{r4c5	 r6c6}	 –	 n11{r4c3	 .}	 ==>	 r5c6	 ≠	 14	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 10	
whip[2]:	 n8{r1c4	 r2c5}	 –	 n10{r2c5	 .}	 ==>	 r1c6	 ≠	 9	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 31	
whip[3]:	 n6{r2c6	 r1c4}	 –	 r3c7{n5	 n35}	 –	 n34{r4c2	 .}	 ==>	 r2c6	 ≠	 33	
whip[2]:	 n31{r3c1	 r2c5}	 –	 n33{r2c5	 .}	 ==>	 r1c6	 ≠	 32	
whip[3]:	 r3c7{n35	 n5}	 –	 r1c6{n4	 n7}	 –	 n8{r2c2	 .}	 ==>	 r2c5	 ≠	 36	
whip[3]:	 n5{r2c5	 r3c7}	 –	 r1c6{n4	 n36}	 –	 n35{r2c1	 .}	 ==>	 r2c5	 ≠	 7	
whip[3]:	 n8{r2c5	 r2c2}	 –	 n7{r3c5	 r1c3}	 –	 r2c6{n6	 .}	 ==>	 r2c5	 ≠	 34	
whip[3]:	 n15{r4c3	 r7c8}	 –	 n14{r4c2	 r6c8}	 –	 n13{r4c2	 .}	 ==>	 r4c3	 ≠	 12	
whip[4]:	 n31{r2c2	 r2c5}	 –	 n33{r2c5	 r1c3}	 –	 n34{r6c6	 r2c2}	 –	 n8{r2c2	 .}	 ==>	 r1c4	 ≠	 32	
whip[4]:	 r2c6{n34	 n6}	 –	 r1c4{n6	 n9}	 –	 n10{r4c5	 r1c3}	 –	 n11{r5c6	 .}	 ==>	 r2c2	 ≠	 35	
whip[4]:	 n32{r2c1	 r2c2}	 –	 n34{r2c2	 r1c4}	 –	 n35{r6c8	 r2c5}	 –	 n8{r2c5	 .}	 ==>	 r1c3	 ≠	 33	
whip[4]:	 n33{r2c1	 r2c5}	 –	 n8{r2c5	 r2c2}	 –	 n7{r3c5	 r1c3}	 –	 n6{r2c6	 .}	 ==>	 r1c4	 ≠	 34	
whip[4]:	 r3c7{n35	 n5}	 –	 r1c4{n6	 n9}	 –	 n10{r4c5	 r1c3}	 –	 n11{r5c6	 .}	 ==>	 r2c2	 ≠	 36	
whip[4]:	 r3c7{n35	 n5}	 –	 r1c4{n6	 n9}	 –	 n8{r2c2	 r2c5}	 –	 n35{r2c5	 .}	 ==>	 r1c6	 ≠	 36	
biv-‐chain[3]:	 n5{r2c5	 r3c7}	 –	 r1c6{n4	 n7}	 –	 n8{r2c2	 r2c5}	 ==>	 r2c5	 ≠	 33	

454 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[2]:	 n31{r3c1	 r4c5}	 –	 n33{r4c5	 .}	 ==>	 r3c5	 ≠	 32	
whip[2]:	 n30{r4c2	 r5c6}	 –	 n32{r5c6	 .}	 ==>	 r4c5	 ≠	 31	
biv-‐chain[3]:	 n5{r2c5	 r3c7}	 –	 r1c6{n4	 n7}	 –	 n8{r2c2	 r2c5}	 ==>	 r2c5	 ≠	 35	
whip[2]:	 n33{r3c1	 r4c5}	 –	 n35{r4c5	 .}	 ==>	 r3c5	 ≠	 34	
whip[2]:	 n32{r4c2	 r5c6}	 –	 n34{r5c6	 .}	 ==>	 r4c5	 ≠	 33	
biv-‐chain[3]:	 n8{r2c2	 r2c5}	 –	 n5{r2c5	 r3c7}	 –	 r1c6{n4	 n7}	 ==>	 r3c5	 ≠	 7	
whip[3]:	 n36{r3c1	 r4c5}	 –	 n34{r4c5	 r2c6}	 –	 n33{r3c1	 .}	 ==>	 r3c5	 ≠	 35	
whip[3]:	 n35{r3c7	 r5c6}	 –	 n33{r5c6	 r3c5}	 –	 n32{r4c2	 .}	 ==>	 r4c5	 ≠	 34	
whip[4]:	 r2c6{n34	 n6}	 –	 r1c3{n7	 n10}	 –	 n35{r1c3	 r3c1}	 –	 r3c5{n36	 .}	 ==>	 r2c1	 ≠	 34	
whip[4]:	 n34{r2c2	 r5c7}	 –	 r2c6{n34	 n6}	 –	 r1c3{n7	 n10}	 –	 r3c5{n9	 .}	 ==>	 r6c8	 ≠	 35	
;;;	 singles,	 whips[1],	 biv-‐chains[2]	 and	 whips[2]	 to	 the	 end	

16.2.4.3. Third Hidato® example

The reasons for choosing our last Hidato® example (Figure 16.5) should be
obvious: with grid size 5, it is remarkably compact but it has an unexpectedly hard
resolution path (in both the topological and the geometric models, W = B = 8), in
spite of having both ends (Numbers 1 and 19) given. We show only the path for the
topological model. As, contrary to the previous examples, there are few whips[1]
before the first Single, we display them all.

 3 4 6 7
 2 5 8
 19 1 10 18 19 1 10 9
 17 14 11
 16 15 13 12

Figure 16.5. A Hidato® puzzle and its solution (clues of # III.4, [Mebane 2012])

*****	 	 Hidato-‐Rules	 1.2	 based	 on	 CSP-‐Rules	 1.2,	 topological-‐model,	 config:	 B	 	 	 *****	
whip[4]:	 n8{r1c2	 r2c2}	 –	 n9{r2c5	 r2c3}	 –	 n6{r2c3	 r1c1}	 –	 n5{r1c4	 .}	 ==>	 r1c2	 ≠	 7	
whip[3]:	 n7{r1c4	 r2c2}	 –	 n8{r5c5	 r1c2}	 –	 n5{r1c2	 .}	 ==>	 r1c1	 ≠	 6	
whip[4]:	 n12{r1c2	 r2c2}	 –	 n11{r4c4	 r2c3}	 –	 n14{r2c3	 r1c1}	 –	 n15{r5c5	 .}	 ==>	 r1c2	 ≠	 13	
whip[3]:	 n13{r1c4	 r2c2}	 –	 n12{r2c5	 r1c2}	 –	 n15{r1c2	 .}	 ==>	 r1c1	 ≠	 14	
whip[4]:	 n17{r5c4	 r4c4}	 –	 n18{r2c2	 r4c3}	 –	 n15{r4c3	 r5c5}	 –	 n14{r5c2	 .}	 ==>	 r5c4	 ≠	 16	
whip[3]:	 n16{r5c5	 r4c4}	 –	 n17{r5c2	 r5c4}	 –	 n14{r5c4	 .}	 ==>	 r5c5	 ≠	 15	
whip[5]:	 n3{r3c5	 r4c4}	 –	 n2{r4c4	 r4c3}	 –	 n5{r4c3	 r2c5}	 –	 n9{r2c5	 r2c3}	 –	 n11{r2c3	 .}	 ==>	 r3c5	 ≠	 4	
whip[5]:	 n17{r1c1	 r4c4}	 –	 n18{r2c2	 r4c3}	 –	 n15{r4c3	 r2c5}	 –	 n9{r2c5	 r2c3}	 –	 n11{r2c3	 .}	 ==>	
r3c5	 ≠	 16	
whip[4]:	 n18{r2c2	 r4c3}	 –	 n16{r4c3	 r5c5}	 –	 n15{r5c2	 r5c4}	 –	 n14{r5c2	 .}	 ==>	 r4c4	 ≠	 17	
whip[6]:	 n17{r1c1	 r5c4}	 –	 n18{r4c1	 r4c3}	 –	 n15{r4c3	 r3c5}	 –	 n14{r4c1	 r2c5}	 –	 n9{r2c5	 r2c3}	 –	
n11{r2c3	 .}	 ==>	 r4c4	 ≠	 16	
whip[6]:	 n16{r5c1	 r2c5}	 –	 n17{r5c4	 r1c4}	 –	 n18{r4c3	 r2c3}	 –	 n14{r2c3	 r4c4}	 –	 n11{r4c4	 r4c3}	 –	
n9{r4c3	 .}	 ==>	 r3c5	 ≠	 15	

16. Topological and geometric constraints: map colouring and path finding 455

whip[3]:	 n17{r1c1	 r1c4}	 –	 n15{r1c4	 r1c5}	 –	 n14{r2c2	 .}	 ==>	 r2c5	 ≠	 16	
whip[7]:	 n3{r1c1	 r1c4}	 –	 n5{r1c4	 r2c5}	 –	 n6{r2c5	 r3c5}	 –	 n7{r3c5	 r4c4}	 –	 n2{r4c4	 r2c3}	 –	
n9{r2c3	 r4c3}	 –	 n11{r4c3	 .}	 ==>	 r1c5	 ≠	 4	
whip[7]:	 n18{r2c2	 r4c3}	 –	 n16{r4c3	 r5c5}	 –	 n15{r5c2	 r4c4}	 –	 n14{r5c1	 r3c5}	 –	 n13{r4c1	 r2c5}	 –	
n9{r2c5	 r2c3}	 –	 n11{r2c3	 .}	 ==>	 r5c4	 ≠	 17	
whip[1]:	 n17{r1c1	 .}	 ==>	 r5c5	 ≠	 16	
whip[7]:	 n3{r3c1	 r2c2}	 –	 n2{r2c2	 r2c3}	 –	 n5{r2c3	 r4c1}	 –	 n18{r4c1	 r4c3}	 –	 n17{r1c1	 r5c2}	 –	
n16{r3c1	 r5c1}	 –	 n15{r5c4	 .}	 ==>	 r3c1	 ≠	 4	
whip[7]:	 n8{r1c2	 r2c2}	 –	 n9{r2c5	 r2c3}	 –	 n6{r2c3	 r4c1}	 –	 n18{r4c1	 r4c3}	 –	 n17{r1c1	 r5c2}	 –	
n16{r3c1	 r5c1}	 –	 n15{r5c4	 .}	 ==>	 r3c1	 ≠	 7	
whip[4]:	 n9{r2c5	 r2c3}	 –	 n7{r2c3	 r1c1}	 –	 n6{r1c4	 r1c2}	 –	 n5{r1c4	 .}	 ==>	 r2c2	 ≠	 8	
whip[7]:	 n12{r1c2	 r2c2}	 –	 n11{r4c4	 r2c3}	 –	 n14{r2c3	 r4c1}	 –	 n18{r4c1	 r4c3}	 –	 n17{r1c1	 r5c2}	 –	
n16{r3c1	 r5c1}	 –	 n15{r5c4	 .}	 ==>	 r3c1	 ≠	 13	
whip[4]:	 n11{r4c4	 r2c3}	 –	 n13{r2c3	 r1c1}	 –	 n14{r5c5	 r1c2}	 –	 n15{r5c4	 .}	 ==>	 r2c2	 ≠	 12	
whip[7]:	 n16{r3c1	 r1c4}	 –	 n14{r1c4	 r2c5}	 –	 n13{r4c1	 r3c5}	 –	 n12{r4c3	 r4c4}	 –	 n11{r2c5	 r4c3}	 –	
n9{r4c3	 r2c3}	 –	 n17{r2c3	 .}	 ==>	 r1c5	 ≠	 15	
whip[7]:	 n18{r2c2	 r2c3}	 –	 n16{r2c3	 r1c5}	 –	 n15{r2c2	 r2c5}	 –	 n14{r3c1	 r3c5}	 –	 n13{r4c1	 r4c4}	 –	
n9{r4c4	 r4c3}	 –	 n11{r4c3	 .}	 ==>	 r1c4	 ≠	 17	
whip[1]:	 n17{r2c2	 .}	 ==>	 r1c5	 ≠	 16	
whip[8]:	 n8{r1c2	 r5c2}	 –	 n9{r2c3	 r4c3}	 –	 n6{r4c3	 r4c1}	 –	 n5{r4c1	 r3c1}	 –	 n4{r1c1	 r2c2}	 –	
n18{r2c2	 r2c3}	 –	 n2{r2c3	 r4c4}	 –	 n3{r5c2	 .}	 ==>	 r5c1	 ≠	 7	
whip[6]:	 n2{r2c2	 r4c4}	 –	 n4{r4c4	 r5c4}	 –	 n5{r5c4	 r4c3}	 –	 n6{r4c3	 r5c2}	 –	 n7{r5c2	 r4c1}	 –	
n8{r5c5	 .}	 ==>	 r5c5	 ≠	 3	
whip[8]:	 n3{r1c1	 r5c2}	 –	 n2{r2c2	 r4c3}	 –	 n5{r4c3	 r4c1}	 –	 n6{r4c1	 r3c1}	 –	 n7{r1c1	 r2c2}	 –	
n8{r5c5	 r1c2}	 –	 n9{r2c5	 r2c3}	 –	 n18{r2c3	 .}	 ==>	 r5c1	 ≠	 4	
whip[7]:	 n8{r1c4	 r1c2}	 –	 n9{r4c4	 r2c3}	 –	 n6{r2c3	 r3c1}	 –	 n5{r3c5	 r4c1}	 –	 n18{r4c1	 r4c3}	 –	
n17{r5c1	 r5c2}	 –	 n4{r5c2	 .}	 ==>	 r2c2	 ≠	 7	
whip[8]:	 n9{r2c5	 r2c3}	 –	 n7{r2c3	 r1c1}	 –	 n6{r1c4	 r2c2}	 –	 n5{r2c5	 r3c1}	 –	 n4{r4c3	 r4c1}	 –	
n18{r4c1	 r4c3}	 –	 n17{r5c1	 r5c2}	 –	 n3{r5c2	 .}	 ==>	 r1c2	 ≠	 8	
whip[1]:	 n8{r1c4	 .}	 ==>	 r1c1	 ≠	 7	
whip[8]:	 n7{r2c3	 r4c1}	 –	 n8{r5c5	 r5c2}	 –	 n9{r4c4	 r4c3}	 –	 n5{r4c3	 r2c2}	 –	 n18{r2c2	 r2c3}	 –	
n17{r3c1	 r1c2}	 –	 n16{r1c4	 r1c1}	 –	 n15{r1c4	 .}	 ==>	 r3c1	 ≠	 6	
whip[3]:	 n4{r5c4	 r5c2}	 –	 n6{r5c2	 r5c1}	 –	 n7{r5c5	 .}	 ==>	 r4c1	 ≠	 5	
whip[3]:	 n5{r4c3	 r5c2}	 –	 n7{r5c2	 r4c1}	 –	 n8{r5c5	 .}	 ==>	 r5c1	 ≠	 6	
whip[2]:	 n8{r1c4	 r5c2}	 –	 n6{r5c2	 .}	 ==>	 r4c1	 ≠	 7	
whip[2]:	 n9{r2c3	 r4c3}	 –	 n7{r4c3	 .}	 ==>	 r5c2	 ≠	 8	
whip[4]:	 n3{r5c2	 r4c3}	 –	 n5{r4c3	 r5c1}	 –	 n6{r5c5	 r4c1}	 –	 n7{r5c5	 .}	 ==>	 r5c2	 ≠	 4	
whip[4]:	 n2{r4c3	 r4c4}	 –	 n4{r4c4	 r5c4}	 –	 n5{r5c2	 r5c5}	 –	 n6{r5c2	 .}	 ==>	 r4c3	 ≠	 3	
whip[4]:	 n3{r5c2	 r4c4}	 –	 n2{r2c3	 r4c3}	 –	 n5{r4c3	 r5c5}	 –	 n6{r5c2	 .}	 ==>	 r5c4	 ≠	 4	
whip[4]:	 n2{r4c4	 r4c3}	 –	 n4{r4c3	 r5c5}	 –	 n5{r5c2	 r5c4}	 –	 n6{r5c2	 .}	 ==>	 r4c4	 ≠	 3	
whip[4]:	 n4{r5c5	 r4c4}	 –	 n6{r4c4	 r5c4}	 –	 n7{r5c2	 r4c3}	 –	 n8{r5c5	 .}	 ==>	 r5c5	 ≠	 5	
whip[5]:	 n15{r2c2	 r1c4}	 –	 n16{r2c2	 r2c3}	 –	 r5c1{n15	 n5}	 –	 n4{r5c5	 r4c1}	 –	 r1c1{n5	 .}	 ==>	
r2c5	 ≠	 14	
whip[3]:	 n14{r3c1	 r4c4}	 –	 n12{r4c4	 r2c5}	 –	 n11{r4c3	 .}	 ==>	 r3c5	 ≠	 13	
whip[5]:	 n16{r2c2	 r2c3}	 –	 n14{r2c3	 r1c5}	 –	 r5c1{n13	 n5}	 –	 n4{r5c5	 r4c1}	 –	 r1c1{n5	 .}	 ==>	
r1c4	 ≠	 15	
whip[3]:	 n15{r2c2	 r2c5}	 –	 n16{r5c2	 r1c4}	 –	 n13{r1c4	 .}	 ==>	 r1c5	 ≠	 14	

456 Pattern-Based Constraint Satisfaction and Logic Puzzles

whip[5]:	 n16{r2c2	 r1c4}	 –	 n14{r1c4	 r3c5}	 –	 r5c1{n13	 n5}	 –	 n4{r5c5	 r4c1}	 –	 r1c1{n5	 .}	 ==>	
r2c5	 ≠	 15	
whip[2]:	 n17{r1c1	 r2c3}	 –	 n15{r2c3	 .}	 ==>	 r1c4	 ≠	 16	
whip[4]:	 n18{r2c3	 r2c2}	 –	 n16{r2c2	 r1c2}	 –	 n15{r3c1	 r1c1}	 –	 n14{r1c4	 .}	 ==>	 r2c3	 ≠	 17	
whip[5]:	 n15{r3c1	 r4c4}	 –	 n16{r5c2	 r4c3}	 –	 n13{r4c3	 r2c5}	 –	 n11{r2c5	 r2c3}	 –	 n9{r2c3	 .}	 ==>	
r3c5	 ≠	 14	
whip[7]:	 n18{r2c3	 r2c2}	 –	 n16{r2c2	 r1c2}	 –	 n15{r1c2	 r2c3}	 –	 n14{r2c3	 r1c4}	 –	 r5c1{n13	 n5}	 –	
r3c1{n5	 n3}	 –	 n2{r4c3	 .}	 ==>	 r1c1	 ≠	 17	
whip[7]:	 n3{r5c2	 r5c4}	 –	 n5{r5c4	 r4c4}	 –	 n2{r4c4	 r4c3}	 –	 n6{r4c3	 r3c5}	 –	 n7{r5c5	 r2c5}	 –	
n11{r2c5	 r2c3}	 –	 n9{r2c3	 .}	 ==>	 r5c5	 ≠	 4	
whip[8]:	 n4{r1c1	 r4c1}	 –	 n6{r4c1	 r5c2}	 –	 n3{r5c2	 r3c1}	 –	 n2{r4c3	 r2c2}	 –	 n17{r2c2	 r1c2}	 –	
n18{r4c3	 r2c3}	 –	 n16{r2c3	 r1c1}	 –	 n15{r2c3	 .}	 ==>	 r5c1	 ≠	 5	
whip[2]:	 n7{r4c4	 r4c3}	 –	 n5{r4c3	 .}	 ==>	 r5c2	 ≠	 6	
whip[3]:	 n15{r3c1	 r2c3}	 –	 r5c1{n14	 n17}	 –	 n16{r4c3	 .}	 ==>	 r1c4	 ≠	 14	
whip[1]:	 n14{r2c2	 .}	 ==>	 r1c5	 ≠	 13,	 r2c5	 ≠	 13	
whip[3]:	 n16{r1c1	 r4c3}	 –	 r5c1{n15	 n13}	 –	 n14{r5c5	 .}	 ==>	 r5c4	 ≠	 15	
whip[3]:	 n15{r1c1	 r4c4}	 –	 r5c1{n14	 n17}	 –	 n16{r4c3	 .}	 ==>	 r5c5	 ≠	 14	
whip[3]:	 n7{r5c4	 r5c2}	 –	 r1c5{n6	 n12}	 –	 r5c5{n12	 .}	 ==>	 r4c1	 ≠	 6	
whip[2]:	 n8{r1c4	 r4c3}	 –	 n6{r4c3	 .}	 ==>	 r5c2	 ≠	 7	
whip[3]:	 n7{r1c4	 r2c3}	 –	 r1c5{n6	 n12}	 –	 r5c5{n12	 .}	 ==>	 r2c2	 ≠	 6	
whip[1]:	 n6{r2c3	 .}	 ==>	 r3c1	 ≠	 5	
whip[3]:	 n2{r2c2	 r4c3}	 –	 n4{r4c3	 r4c1}	 –	 n5{r3c5	 .}	 ==>	 r5c2	 ≠	 3	
whip[3]:	 n7{r1c4	 r2c3}	 –	 r1c5{n6	 n12}	 –	 r5c5{n12	 .}	 ==>	 r1c2	 ≠	 6	
whip[1]:	 n6{r1c4	 .}	 ==>	 r1c1	 ≠	 5	
whip[2]:	 n8{r1c5	 r1c4}	 –	 n6{r1c4	 .}	 ==>	 r2c3	 ≠	 7	
whip[3]:	 n4{r1c1	 r4c3}	 –	 n3{r1c1	 r5c4}	 –	 n2{r2c3	 .}	 ==>	 r4c4	 ≠	 5	
whip[3]:	 n3{r1c1	 r5c4}	 –	 n5{r5c4	 r5c2}	 –	 n6{r5c5	 .}	 ==>	 r4c3	 ≠	 4	
whip[3]:	 n5{r5c2	 r5c4}	 –	 n7{r5c4	 r4c4}	 –	 n4{r4c4	 .}	 ==>	 r5c5	 ≠	 6	
whip[3]:	 n4{r1c1	 r4c4}	 –	 n6{r4c4	 r4c3}	 –	 n7{r5c5	 .}	 ==>	 r5c4	 ≠	 5	
whip[3]:	 n9{r4c3	 r4c4}	 –	 n7{r4c4	 r5c4}	 –	 n6{r3c5	 .}	 ==>	 r4c3	 ≠	 8	
whip[3]:	 n16{r1c1	 r4c3}	 –	 n14{r4c3	 r5c4}	 –	 r5c1{n15	 .}	 ==>	 r4c4	 ≠	 15	
whip[2]:	 n17{r1c2	 r5c2}	 –	 n15{r5c2	 .}	 ==>	 r4c3	 ≠	 16	
whip[4]:	 n15{r5c1	 r4c3}	 –	 r5c1{n14	 n17}	 –	 r3c1{n18	 n3}	 –	 r1c1{n4	 .}	 ==>	 r5c4	 ≠	 14	
whip[4]:	 n14{r1c2	 r4c4}	 –	 n12{r4c4	 r5c4}	 –	 n11{r3c5	 r4c3}	 –	 n15{r4c3	 .}	 ==>	 r5c5	 ≠	 13	
whip[3]:	 r5c5{n7	 n12}	 –	 r1c5{n12	 n5}	 –	 n6{r5c4	 .}	 ==>	 r4c3	 ≠	 7	
whip[4]:	 n15{r1c1	 r4c3}	 –	 n13{r4c3	 r5c4}	 –	 n12{r5c2	 r5c5}	 –	 n11{r4c3	 .}	 ==>	 r4c4	 ≠	 14	
whip[2]:	 n16{r5c1	 r5c2}	 –	 n14{r5c2	 .}	 ==>	 r4c3	 ≠	 15	
whip[3]:	 n18{r2c2	 r4c1}	 –	 n16{r4c1	 r5c2}	 –	 n15{r5c2	 .}	 ==>	 r5c1	 ≠	 17	
whip[2]:	 r5c1{n13	 n16}	 –	 n15{r3c1	 .}	 ==>	 r2c3	 ≠	 14	
whips[1]:	 n14{r3c1	 .}	 ==>	 r1c4	 ≠	 13;	 	 	 	 	 n13{r2c2	 .}	 ==>	 r1c5	 ≠	 12,	 r2c5	 ≠	 12	
whip[2]:	 r1c5{n5	 n8}	 –	 n7{r3c5	 .}	 ==>	 r4c3	 ≠	 6	
whips[1]:	 n6{r4c4	 .}	 ==>	 r5c2	 ≠	 5;	 	 	 	 	 n5{r1c2	 .}	 ==>	 r4c1	 ≠	 4	
whip[2]:	 n2{r2c3	 r2c2}	 –	 n4{r2c2	 .}	 ==>	 r3c1	 ≠	 3	
whip[2]:	 n6{r5c4	 r4c4}	 –	 r1c5{n7	 .}	 ==>	 r5c4	 ≠	 7	
whip[2]:	 n9{r2c3	 r4c4}	 –	 n7{r4c4	 .}	 ==>	 r5c5	 ≠	 8	
whip[2]:	 r5c5{n7	 n12}	 –	 n11{r4c3	 .}	 ==>	 r4c4	 ≠	 7	
whip[2]:	 n5{r1c2	 r2c5}	 –	 n7{r2c5	 .}	 ==>	 r3c5	 ≠	 6	

16. Topological and geometric constraints: map colouring and path finding 457

whip[2]:	 n7{r1c4	 r5c5}	 –	 r1c5{n8	 .}	 ==>	 r5c4	 ≠	 6	
whip[2]:	 r5c5{n12	 n7}	 –	 n6{r1c4	 .}	 ==>	 r4c4	 ≠	 12	
whip[1]:	 n12{r5c2	 .}	 ==>	 r3c5	 ≠	 11	
whip[2]:	 n4{r1c1	 r4c4}	 –	 n6{r4c4	 .}	 ==>	 r4c3	 ≠	 5	
whip[2]:	 n6{r1c4	 r4c4}	 –	 r1c5{n7	 .}	 ==>	 r5c5	 ≠	 7	
;;; Until now there has been no Single
singles	 and	 whips[1]	 to	 the	 end	

In all these examples, one may wonder whether these long resolution paths could
be simplified. By keeping all the assertion steps and, moving backwards from the
end of the path, keeping only the elimination steps necessary to justify the assertions
and eliminations that have been kept in the previous (from the end) elimination and
assertion steps, it is likely that some intermediate eliminations could be avoided.
But, as the first value assertions appear only near the end of the path, it is unlikely
that this would lead to drastic simplifications. And, in any case, the B or W rating
would not be changed.
	

17. Final remarks

In these final, partly retrospective remarks, which are intended neither as a
summary nor as a conclusion, we shall highlight and comment some overlapping
facets of what has been achieved for the pattern-based solution of the general finite
Constraint Satisfaction Problem (with a few open questions). As for the practical
applicability of the approach developed in this book, we merely refer to the many
Sudoku examples and to the chapters dedicated to other logic puzzles.

17.1. About our approach to the finite CSP

17.1.1. About the general distinctive features of our approach

There are five main inter-related reasons why this book diverges radically from
the current literature on the finite CSP17:

– almost everything in our approach, in particular all our definitions and
theorems, is formulated in terms of mathematical logic, independently of any
algorithmic implementation; (apart from the obvious logical re-formulation of a
CSP, the current literature on CSPs is mainly about algorithms for solving them and
comparisons of such algorithms); however, by effectively implementing them and
applying them to various types of constraints, we have shown that these logical
definitions are not mere abstractions and that they can be made fully operational;

– we systematically use redundant (but not overly redundant) sets of CSP
variables; correlatively, we do not define labels as <variable, value> pairs but as
equivalence classes of such pairs;

– we fix the main parameter defining the “size” of a CSP and we are not (or not
directly) concerned with the usual theoretical perspectives of complexity, such as
NP-completeness of a CSP with respect to its size;

– we nevertheless tackle questions of complexity, in terms of the statistical
distribution of the minimal instances of a fixed size CSP; although all our resolution
rules are valid for all the instances of a CSP, without any kind of restriction, we

17 We are not suggesting that our approach is better than the usual ones; we are aware that our
purposes are non-standard and they may be irrelevant when speed of resolution is the main
criterion; this is why we have stated our motivations with some detail in the Foreword.

460 Pattern-Based Constraint Satisfaction and Logic Puzzles

grant minimal instances a major role in all our statistical analyses and classification
results; the thin layer of instances they define in the whole forest of possible
instances (see chapter 6 for this view) allows to discard secondary problems that
multi-solution or over-constrained instances would raise for statistics; (by contrast,
the notion of minimality is almost unknown in the CSP world);

– last but not least, our purposes lie much beyond the usual ones of finding a
solution or defining the fastest algorithms for this. Here, instead of the solution as a
result, we are interested in the solution as a proof of the result, i.e. in the resolution
path. Accordingly, we have concentrated on finding no-guessing, constructive, pure
logic, pattern-based, rule-based, understandable, meaningful resolution paths –
though these words did not have a clear pre-assigned meaning.

We have taken this purpose into account in Part I by interpreting the “pure logic”
requirement literally – i.e. as a solution completely defined in terms of mathematical
logic (with no reference to any algorithmic notions). Thus, we have introduced a
general resolution paradigm based on progressive candidate elimination. This
amounts to progressive domain restriction, a classical idea in the CSP community.
But, in our approach, each of these eliminations is justified by a single pattern –
more precisely by a well defined resolution rule of a given resolution theory – and
is interpreted in modal (non algorithmic) terms. We have established a clear logical
(intuitionistic) status for the notion of a candidate (a notion that does not a priori
pertain to the CSP Theory). Moreover, we have shown that the modal operator that
naturally appears when one tries to provide a formal definition of a candidate can
be “forgotten” when we state resolution rules, provided that we work with
intuitionistic (or constructive) instead of classical logic (which is not a restriction in
practice).

Once this logical framework is set, a more precise purpose can be examined, not
completely independent from the vague “understandable” and “meaningful” original
ones: one may want the simplest pure logic (or “rule-based” or “pattern-based”)
solution. As is generally understood without saying when one speaks of the simplest
solution to a mathematical problem, we mean neither easiest to discover for a human
being nor computationally cheapest, but simplest to understand for the reader. Even
with such precisions, we have shown that “simplest” may still have many different,
all logically grounded, meanings, associated with different (purely logical) ratings of
instances.

Taking for granted that hard minimal instances of most fixed size CSPs cannot
be solved by elementary rules but they require some kind of chain rules (with the
classical xy-chains of Sudoku as our initial inspiration), we have refined our general
paradigm by defining families of resolution rules of increasing logical (and
computational) complexity, valid for any CSP: some reversible (Bivalue-Chains, g-
Bivalue-Chains, Reversible-Subset-Chains, Reversible-g-Subset-Chains) and some

17. Final remarks 461

orientated, much more powerful ones (whips, g-whips, Sp-whips, gSp-whips, Wp-
whips and similar braid families).

The different resolution paths obtained with each of these families when the
simplest-first strategy is adopted correspond to different legitimate meanings of
“simplest solution” (when they lead to a solution) and, in spite of strong
subsumption relationships, we have shown (in several chapters, by examples of
instances that have different ratings) that none of them can be completely reduced to
another in a way that would preserve the ratings. Said otherwise: there does not
seem to be any universal notion of (logical) simplicity for the resolution of a CSP.

17.1.2. About our resolution rules (whips, braids, …)

Regarding these new families of chain rules, now reversing the history of our
theoretical developments, four main points should be recalled:

– We have introduced a formal definition of Trial-and-Error (T&E), a procedure
that, in noticeable contrast with the well known structured search algorithms
(breadth-first, depth-first, …) and with all their CSP specific variants implementing
some form of constraint propagation (arc-consistency, path-consistency, MAC, …),
allows no “guessing”, in the sense that it accepts no solution found by sheer chance
during the search process: a value for a CSP variable is accepted only if all its other
possible values have been tested and each of them has been constructively proven to
lead to a contradiction.

– With the “T&E vs braids” theorem and its “T&E(T) vs T-braids” extensions to
various resolution theories T, we have proven that a solution obtained by the
T&E(T) procedure can always be replaced by a “pure logic” solution based on T-
braids, i.e. on sequential patterns with no OR-branching accepting simpler patterns
taken from the rules in T as their building blocks.

– Because its importance could not be over-estimated, we have proven in great
detail that all our generalised braid resolution theories (braids, g-braids, Sp-braids,
gSp-braids, Bp-braids, B*-braids, …) have the confluence property. Thanks to this
property, we have justified the idea that these types of logical theories can be
supplemented by a “simplest first” strategy, defined by assigning in a natural way a
different priority to each of their rules. When one tries to compute the rating of an
instance and to find the simplest, pure logic solution for it, in the sense that it has a
resolution path with the shortest possible braids in the family (which the T&E
procedure alone is unable to provide), this strategy allows to consider only one
resolution path; without this property, all of them should a priori be examined,
which would add an exponential factor to computational complexity18. Even if the

18 The confluence property of a resolution theory T should not be interpreted beyond what it
means. In particular, it does not allow to assign a rating to each candidate of an instance P:
different resolution paths for P within T will always have the same rating of their hardest step,

462 Pattern-Based Constraint Satisfaction and Logic Puzzles

goal of maximum simplicity is not retained, the property of stability for confluence
of these T-braid resolution theories remains very useful in practice, because it
guarantees that valid eliminations and assertions occasionally found by any other
consistent opportunistic solving methods (or any application-specific heuristics or
any other search strategy) cannot introduce any risk of missing a solution based on
T-braids or of finding only ones with unnecessarily long braids.

– With the statistical results of chapter 6, we have also shown that, in spite of a
major structural difference between whips and braids (the “continuity” condition),
whips (even if restricted to the no-loop ones) are a very good approximation of
braids19, in the double sense that: 1) the associated W and B ratings are rarely
different when the W rating is finite and 2) the same “simplest first” strategy, a
priori justified for braids but not for whips, can be applied to whips, with the result
that a good approximation of the W rating is obtained after considering only one
resolution path (i.e. the concrete effects of non confluence of the whip resolution
theories appear only rarely). This is the best situation one can desire for a restriction:
it reduces structural (and computational) complexity but it entails little difference in
classification results.20 Of course, much work remains to be done to check whether
this proximity of whips and braids is true for all the types of extended whips and
braids defined in this book (it seems to be true for g-whips) and for CSPs other than
Sudoku (it seems to be true also for Futoshiki, Kakuro, Map colouring, Numbrix®
and Hidato®, as can be seen by the small number of occurrences of braids appearing
in the resolution paths).

17.1.3. About human solving based on these rules

The four above-mentioned points have their correlates regarding a human trying
to solve an instance of a CSP “manually” (or should we say “neuronally”?), as may
be the “standard” situation for some CSPs, such as logic puzzles:

– It should first be noted that T&E is the most natural and universal resolution
method for a human who is unaware of more complex possibilities and who does

but these hardest steps may correspond to the elimination of different candidates. This is not
an abstract view; it happens very often.
19 We have shown this in great detail for Sudoku, but the resolution paths we have obtained
for most of the Futoshiki, Kakuro, Map colouring, Numbrix® and Hidato® examples confirm a
similar behaviour.
20 By contrast, the “reversibility” condition often imposed on chains in some Sudoku circles
(never clearly formulated before HLS) is very restrictive and it leads some players to reject
solutions based on non-reversible (or “orientated”) chains (such as whips and braids) and to
the (in our opinion, hopeless for hard instances) search for extremely complex patterns (such
as all kinds of what we would call extended g-Fish patterns: finned, sashimi, chains of g-Fish,
…). This said, we acknowledge that Reversible-Subset-Chains (Nice Loops, AICs) may have
some appeal for moderately complex instances.

17. Final remarks 463

not accept guessing. This was initially only a vague intuition. But, with time, it has
received very concrete confirmations from our experience in the Sudoku micro-
world (with friends, students, contacts, or from questions of newcomers on forums),
considering the way new players spontaneously re-invent it without even having to
think of it consciously. Indeed, it does not seem that they reject guessing a priori;
they start by using it and they feel unsatisfied about it after some time, as soon as
they understand that it is an arbitrary step in their solution; “no-guessing” then
appears as an additional a posteriori requirement. Websites dedicated to the other
logic puzzles studied in this book are another source of confirmation: T&E (in
various names and usually in informal guises, but always in a form compatible with
our formal definition) always appears as the most widely used resolution method,
except of course for the easiest puzzles.

– The “T&E vs braids” theorem means that the most natural T&E solving
technique, in spite of being strongly anathemised by some Sudoku experts, is not so
far from being compatible with the abstract “pure logic” requirement. Moreover, its
proof shows that a human solver can always easily modify a T&E solution in order
to present it as a braid solution. Thanks to the subsumption theorems or to the more
general “T&E(T) vs T-braids” theorem, this remains true when he learns more
elaborate techniques (such as Subset or g-Subset rules) and he starts to combine
them with T&E.

– Finding the shortest braid solution is a much harder goal than finding any
solution based on braids and this is where the main divergence with a solution
obtained by mere T&E occurs. For the human solver who started with T&E, it is
nevertheless a natural step to try to find a shorter (even if not the shortest) solution.
An obvious possibility consists of excising the useless branches of what he has first
found; but he can also look for alternative braids, either for the same elimination or
for a different one.

– As for the fourth point, a human solver is very likely to have spontaneously
the idea of using the continuity condition of whips to guide his search for a
contradiction on some target Z: it means giving a preference to pushing further the
last tried step rather than a previous one. It is so natural that he may even apply it
without being aware of it.

Finally, for a human solver, the transition from the spontaneous T&E procedure
to the search for whips can be considered as a very natural process. Learning about
Subsets and g-Subsets and looking for them can also be considered as a natural,
though different, evolution. And the two can be combined. Once more, there is no
unique way of defining what “the best solution” may mean.

Of course, a human player can also follow a very different learning path, starting
with application specific rules, such as xy-chains in Sudoku and progressively trying
to spot patterns from the ascending sequence of more complex rules following a
discovery path similar to that in HLS. But, unless he limits himself to moderately

464 Pattern-Based Constraint Satisfaction and Logic Puzzles

complex instances, he cannot avoid the kind of non-reversible chain patterns
introduced in this book.

17.1.4. About a strategic level

We have used the confluence property to justify the definition of a “simplest-
first” strategy for all the braid and generalised braid (and, by extension, all the whip
and generalised whip) resolution theories. This strategy perfectly fits the goals of
finding the simplest solution (keeping the above comments on “simplest” in mind)
and of rating an instance.

What the “simplest-first” strategy guarantees should be clear: for a resolution
theory T with the confluence property, it finds a solution with the smallest T-rating
(if there is one); in any case, at each step in any resolution path within T, the
available assertion or elimination with the lowest T-rating is applied (or, when there
are several, one of the possible assertions or eliminations with this rating is
randomly chosen and applied). One thing it does not guarantee is that all these steps
are necessary for justifying the next ones or that there is no other resolution path
with fewer eliminations (not counting Elementary Constraints Propagation).

Other systematic strategies can also be imagined. One of them consists of
considering subsets of CSP variables of “same type” and defining special cases of
all the rules by restricting them to such subsets of variables and by assigning these
cases higher priorities than their initial full version. This is what we have done for
Sudoku in HLS1, with the 2D rules. It is easy to see that, as the “2D” rules are the
various 2D projections (on the rc-, rn-, cn- and bn- spaces) of the “3D” ones
presented here, all the 2D-braid theories (in each of these four 2D spaces) are stable
for confluence and have the confluence property; it is therefore also true of their
union. In HLS1, we have shown that 97% of the puzzles in the random Sudogen0
collection can be solved by such 2D rules (the real percentage may be a little less for
an unbiased sample). We still consider these rules as interesting special cases that
have an obvious place in the “simplest-first” strategy and that may be easier to find
and/or to understand for a human player.

Now, it is very unlikely that any human solver would proceed in such a
systematic way as described in any of the above two strategies. He may prefer to
concentrate on some aspect of the puzzle and try to eliminate a candidate from a
chosen cell (or group of cells). As soon as he has found a pattern justifying an
elimination, he applies it. This could be called the opportunistic “first-found-first-
applied” strategy. And, thanks to stability for confluence, it is justified in all the
generalised braid resolution theories defined in this book. In simple terms, there can
be no “bad” move able to block the way to the solution. This conclusion is in strong
opposition to claims often made in some Sudoku circles that adding a clue (or
asserting a value) may make a puzzle harder; such views can only rely on forgetting

17. Final remarks 465

a few facts: 1) such cases arise only when rules of uniqueness are involved; 2) they
arise only when hardness is measured by the SER; 3) if added to a resolution theory
with the confluence property, a rule for uniqueness destroys it, unless it is given
higher priority than all the other rules; 4) there is a confusion in SER between the
priority of a rule and its rating; 5) this confusion prevents rules for uniqueness to
apply as soon as they should; 6) as a result, the SER rating of rules for uniqueness is
inconsistent.

What may be missing however in our approach is more general “strategic”
knowledge for orientating the search: when should one look for such or such
pattern? This would be meta-knowledge about how to use the knowledge included
in the resolution theories. It would very likely have to be application-specific21.

But the fact is, we have no idea of which criteria could constitute a basis for such
meta-knowledge. Worse, even in the most studied Sudoku CSP, whereas there is a
plethora of literature on resolution techniques (sometimes misleadingly called
strategies), nothing has ever been written on the ways they should be used, i.e. on
what might legitimately be called strategies. In particular, one common prejudice is
that one should first try to eliminate bivalue/bilocal candidates (i.e., in our
vocabulary, candidates in bivalue rc, rn, cn or bn cells). Whereas this may work for
simple puzzles, it is almost never possible for complex ones. This can easily be seen
by examining the hard examples of this book (for any of the CSPs we have studied),
with the long sequences of whip eliminations necessary before a Single is found: if
any of these eliminations had occurred for a bivalue CSP variable, then it would
have been immediately followed by a Single.

17.2. About minimal instances and uniqueness

17.2.1. Minimal instances and uniqueness

Considering that, most of the time, we restrict our attention to minimal instances
that (by definition) have a unique solution, one may wonder why we do not
introduce any “axiom” of uniqueness. Indeed, there are many reasons:

– it is true that we restrict all our statistical analyses of resolution rules to
minimal instances, for reasons that have been explained in the Introduction; but it
does not entail that validity of resolution rules should be limited per se to minimal
instances; on the contrary, they should apply to any instance; in a few examples in
this book, our rules have even been used to prove non-uniqueness or non-existence
of solutions;

– as mentioned in the Introduction, from the point of view of Mathematical
Logic, uniqueness cannot be an axiom, at least not an axiom that could impose

21 [Laurière 1978] presents a different perspective, based on general-purpose heuristics.

466 Pattern-Based Constraint Satisfaction and Logic Puzzles

uniqueness of a solution; for any instance, it can only be an assumption; moreover,
when incorrectly applied to a multi-solution instance, the assumption of uniqueness
can lead, via a vicious circle, to the erroneous conclusion that an instance has a
unique solution; we have given an example in HLS1, section XXII.3.1 (section 3.1
of chapter “Miscellanea” in HLS2);

– uniqueness is not a constraint the CSP solver (be he human or machine) is
expected or can choose to satisfy; in some CSPs or some situations (such as for
statistical analyses or for logic puzzles like Sudoku), uniqueness may be a
requirement to the provider of instances (he should provide only “well formed”
instances, i.e. minimal instances or, at least, instances with a unique solution); the
CSP solver can then decide to trust his provider or not; if he does and he uses rules
based on it in his resolution paths, then uniqueness can best be described as an
oracle; for this reason, in all the solutions we have given, uniqueness is never
assumed, but it is proven constructively from the givens;

– the fact is, there is no known way of exploiting the assumption of uniqueness
for writing any general resolution rule for uniqueness; and we can take no
inspiration in the Sudoku case, because all the known techniques based on the
assumption of uniqueness are Sudoku specific;

– in the Sudoku case, if any of the known rules of uniqueness is added in its
usual form to a resolution theory with the confluence property, it destroys
confluence (see HLS for an example); however, we have not explored the possibility
of other (more complex) formulations that could preserve it;

– still in the Sudoku case, it does not seem that the known rules for uniqueness
have much resolution power; there is no known example that could be solved if they
were added to “standard” resolution rules but that could not otherwise.

Of course, we are not trying to deter anyone from using uniqueness in practice, if
they like it, in CSPs for which it allows to formulate specific resolution rules, such
as Sudoku (where it has always been a very controversial topic, but it has also led to
the definition of smart techniques); in some rare cases, it can simplify the resolution
paths. We are only explaining why we chose not to use it in our theoretical
approach. One should always keep in mind that theory often requires more stringent
constraints than practice.

17.2.2. Minimal instances vs density and tightness of constraints

Two global parameters of a CSP, its “density of constraints” and its “tightness”,
have been identified in the classical CSP literature. Their influence on the behaviour
of general-purpose CSP solving algorithms has been studied extensively and they
have also been used to compare such algorithms. (As far as we know, these studies
have been about unrestricted CSP instances; we have been unable to find any
reference to the notion of a minimal instance in the CSP literature.)

17. Final remarks 467

Definitions (classical in CSPs): the density of constraints of a CSP is the ratio
between the number of label pairs linked by some constraint (supposing that all the
constraints are binary) and the total number of label pairs; the tightness of a CSP is
the ratio between the number of label pairs linked by some “strong” constraint (i.e.
some constraint due to a CSP variable) and the number of label pairs linked by some
constraint.

Density reflects the intuitive idea that the vertices of an undirected graph (here,
the graph of labels) can be more or less tightly linked by the edges (here the direct
binary contradictions); it also evokes a few general theorems relating the density and
the diameter of a random graph (a topic that has recently become very attractive
because of communication networks). Tightness evokes the difference we have
mentioned between Sudoku or LatinSquare (tightness 100%, for any grid size) and
N-Queens (tightness ~ 50%, depending on n).

In the context of this book, relevant questions related to these parameters should
be about their influence on the scope of the various types of resolution rules with
respect to the set of minimal instances of the CSP. However, how the definitions of
these two parameters should be adapted to this context is less obvious than it may
seem at first sight. The question is, should one compute these parameters using all
the labels of the CSP or only the actual candidates? In the latter case, they would
change with each step of the resolution process.

Taking the 9×9 Sudoku example, the computation is easy for labels: there are
729 labels (all the nrc triplets) and each label is linked by some constraint to 8
different labels on each of the n, r, c axes, plus 4 remaining labels on the b axis.
Each label is thus linked by some constraint to the same number (28) of other labels
and one gets a density equal to 28/728 = 3.846%. More generally, for n×n Sudoku
with n = m2, density is: (4m2-2m-2)/(m6-1); it tends rapidly to zero (as fast as 4/n2)
as the size n of the grid increases.

However, considering the first line of each Sudoku resolution path in this book,
one can check that for a minimal puzzle, after the Elementary Constraint
Propagation rules have been applied (i.e. after the straightforward initial domain
restrictions), the number of candidates remaining in the initial resolution state RSP
of an instance P is much smaller. As all that happens in a resolution path depends
only on RSP, a definition of density based on the candidates in RSP can be expected
to be more relevant. But, the analysis of the first series of 21,375 puzzles produced
by the controlled-bias generator, leads to the following conclusions, showing that
neither the number of candidates in RSP nor the density of constraints in RSP have
any significant correlation with the difficulty of a puzzle P (measured by its W
rating):

468 Pattern-Based Constraint Satisfaction and Logic Puzzles

– the number of candidates in RSP has mean 206.1 (far less than the 729 labels)
and standard deviation 10.9; it has correlation coefficient -0.20 with the W rating;

– the density of constraints in RSP has mean 1.58% (much less than when
computed on all the labels) and standard deviation 0.05%; its has correlation
coefficients -0.16 with the number of candidates in RSP and -0.06 with the W rating.

One (seemingly more interesting) open question is: is there a correlation between
the rating of the current “simplest” possible elimination and the current density
(based on the current set of candidates before the elimination). In the instances with
a hard first step that we checked, there was no significant deviation from the mean;
but the question may be worth more systematic investigation.

Can tightness give better or different insights? This parameter plays a major role
in the left to right extension steps of the partial chains of all the types defined in this
book. In n×n Sudoku or n×n LatinSquare, tightness is 100%, whatever the value of
n; these examples can therefore not be used to investigate this parameter. If there are
few CSP variables, there may be few chains. In this context, it should however be
noticed that, from the millions of Sudoku puzzles we have solved, problems that
appear for the hardest ones solvable by whips or g-whips arise from two opposite
causes: not only because there are too few partial whips or g-whips (and no
complete ones), but also because there are too many useless partial whips or g-whips
(eventually leading to computational problems due to memory overflow).

One idea that needs be explored in more detail is that the possible statistical
effects of initial density or tightness of constraints on complexity are minimised (as
is the case for the number of givens) by considering the thin layer of minimal
instances (because they have a unique solution). But the 16×16 and 25×25 Sudoku
examples in section 11.5 show that they cannot be minimised to the point of limiting
the depth of T&E in a way independent of density (or grid size).

17.3. About ratings, simplicity, patterns of proof

Our initial motivations included three broad categories of (vague) requirements:
– a “pure logic”, “pattern-based”, “rule-based”, “constructive” solution with “no

guessing”,
– an “understandable”, “explainable” solution,
– and a “simplest” solution.

If the first type has been given a precise meaning and has been satisfied in Part I,
and if the second can be considered as a more or less subjective mix of the other
two, one may wonder what the third has become or rather how it had to be refined.

17. Final remarks 469

17.3.1. About general ratings and the requirement for the “simplest” solution

For any instance P of any CSP, several ratings of P have been introduced: W, B,
gW, gB, S+W, S+B, SW, SB,… All of them have been defined in pure logic terms,
they are invariant under the symmetries of the CSP (if its constraints are properly
modelled) and they are intrinsic properties of P. They have also been shown to be
largely mutually consistent, i.e. they assign the same finite ratings “most of the
time” to instances in T&E(1)22 – which probably already includes much more than
what can be solved “manually” by normal human beings.

Moreover, if one nevertheless wants to go further, we have defined the WW, BB,
W*W, B*B ratings and we have shown that the BB rating is finite for any instance
in T&E(2), i.e. that can be solved with at most two levels of Trial-and-Error.

What the multiplicity of these logically grounded ratings also shows is that there
is one thing all our formal analyses cannot do in our stead: choosing what should be
considered as “simplest”. And we strongly believe that there can be no universal a
priori definition of simplicity of a resolution path, even when one adopts a hardest-
step view of simplicity and even for a problem as “simple” as Sudoku, let alone for
the general finite CSP. Simplicity can only depend on one’s specific goals. For
definiteness, let us illustrate this with the Sudoku CSP.

If one is interested in providing examples of some particular set of techniques or
promoting them, then a solution considered as the simplest must (tautologically) use
only these techniques; the job will then be to provide nice handcrafted examples of
such puzzles (and, sometimes, to carefully hide the fact that they are exceptional in
the set of all the minimal puzzles); this is the approach implicitly taken by most
Sudoku puzzle providers and most databases of “typical examples” associated with
computerised solvers. Unfortunately, apart from those here and in HLS, we lack
both formal studies of such sets of techniques and statistical analyses of their scopes.

If one is interested in the simplest pattern-based solution for all the minimal
puzzles, then, considering the statistical results of chapter 6, a whip solution could
certainly be considered as the simplest one, statistically; a g-whip solution would be
a good alternative, as the structural complexity of g-whips is not much greater than
that of whips. “Statistically” means that, in rare cases, a better solution including
Subsets or g-Subsets or Reversible-Subset-Chains or S-whips or W-whips could be
found – “better” in the sense that it would provide a smaller rating (at the cost of
using more complex patterns). Although it is hard to imagine a motivation for this
when whips or g-whips would be enough, one could also use Wp*-whips or B*-
braids, i.e. rely on T&E(2) contradictions as if they were ordinary constraints; doing
this may ultimately be only a matter of personal taste [provided that confusion is not

22 Strictly speaking, this has been shown in precise terms only for 9×9 Sudoku, but there are
serious indications that it remains true for the other logic puzzles we have examined.

470 Pattern-Based Constraint Satisfaction and Logic Puzzles

created by comparing without caution ratings that involve these derived constraints
with those that do not].

If one is interested in the “hardest” instances, then it should first be specified
precisely what is meant by “hardest” (in particular with respect to which rating); this
may seem obvious, but it remains frequent on Sudoku forums to see (implicit)
references to two different ratings in the same sentence. In Sudoku, puzzles harder
than the “hardest” known ones with respect to the prevailing SER rating keep being
discovered. One can consider that Part III of this book (apart from chapter 8) is
dedicated to resolution rules for the hardest puzzles (not in the sense of the SER, but
in the broader sense that they are not solvable by braids or g-braids, or equivalently
by at most one level or T&E or gT&E). Much depends on two parameters: the
maximal depth d of Trial-and-Error necessary to solve these instances and the
maximal look-ahead p necessary to solve them at depth d-1. [Even for 9×9 Sudoku,
although we have shown that there are very strong reasons to conjecture that d = 2
and p = 7, i.e. that every puzzle can be solved by B7-braids, we have no formal proof
of this.]

The T&E(2) land is where many different possibilities appear. For instances
there, instead of looking for the simplest solution with respect to the universal BB
rating, one can consider two simpler approaches: 1) the B?B classification, possibly
followed by a Bp-braids solution, and 2) the Bp*-braids view. As an illustration of
the latter, the solution given for EasterMonster in section 12.3.3.1 proceeds in two
steps: the first step provides the main lines of the proof as a sequence of B*-
whips[1] eliminations; the second step should contain the “details” of the proof by
exhibiting the bi-braids justifying each of these B*-whips[1]. This led us to
introduce the general notion of a pattern of proof, but this is a vast topic and we
have only skimmed it.

As shown by the sk-loop examples in chapter 13, it may occasionally happen
that application-specific patterns (often tightly related to patterns of givens enjoying
very particular symmetries or quasi-symmetries) reduce the complexity of an
instance (measured in this case by the B?B classification). However, for the very
hardest instances, it may also happen that the whole requirement of simplicity
becomes merely meaningless: the existence of extremely rare but very hard
instances that cannot be solved by any “simple” rules (in a vague intuitive sense of
“simple”) is a fact that cannot be ignored.

17.3.2. About adapting the general ratings to an application

The Futoshiki CSP allows two additional comments about how the general
ratings introduced in this book can easily be adapted to a particular CSP in order to
better take into account any “natural” notion of simplicity in specific applications:

17. Final remarks 471

– although “ascending chains” of any size are equivalent to series of whips of
length one, they are so natural that presenting them as whips would make the
resolution paths look unnecessarily complicated, with lots of elementary and boring
steps; this means that, in some cases, our requirement of simplicity cannot be
defined based only on formal criteria but it may have to take into account matters of
presentation; however, from a technical point of view, this is more a cosmetic than a
deep matter;

– “hills” and “valleys” raise a much more interesting question; they are almost
as natural and obvious patterns as ascending chains, whatever their size; although
they can always be considered as Subsets or as S-whips and their complexity in
terms of the equivalent Subsets or S-whips would be much higher than that of
ascending chains, it would be intuitively absurd to assign them a much greater
complexity, because there is not much difference between finding or understanding
hills and valleys and finding or understanding ascending chains, and this does not
depend on their size; fortunately, stability for confluence allows to combine any Bn
or gBn theory with hills and valleys of unrestricted size without loosing confluence;
this means that hills and valleys can consistently be assigned any rating one wants in
the Bn or gBn hierarchy; said otherwise, one can refine the notion of simplicity in
such a way that it becomes adapted to the specificities of the Futoshiki CSP, without
loosing the benefits of the general theory; if needed, this illustrates again the
importance of the confluence property.

The above remarks can be transposed to Kakuro and to the coupling rules: any
resolution theory should include them (and we have accordingly defined the +
variants of all the theories introduced in this book: BRT+, W1

+, …).

17.3.3. Similarity between Subset and whip/braid patterns of same size

We have noticed a remarkable formal similarity between the Subset and the
whip/braid patterns of same size (see Figure 11.3 and comments there). It has
appeared in very explicit ways in the proofs of the confluence property and of the
generalised “T&E(T) vs T-braids” theorems for the Sp-braids and Bp-braids. But the
general subsumption theorems in section 8.7 and the Sudoku-specific statistical
results in Table 8.1 suggest that whips/braids have a much greater resolution power
than Subsets of same size. As mentioned in section 8.7.3, these results indicate that
the definition of Subsets is much more restrictive than the definition of
whips/braids. And Table 11.1 shows that the same kind of very large difference in
resolution power remains true for the generalised braids including these patterns as
right-linking elements, at least for the Sudoku CSP.

In Subsets, transversal sets are defined by a single constraint. In whips, the fact
of being linked to the target or to a given previous right-linking candidate plays a
role very similar to each of these transversal sets. But being linked to a candidate is

472 Pattern-Based Constraint Satisfaction and Logic Puzzles

much less restrictive than being linked to it via a pre-assigned constraint; in this
respect, the three elementary examples for whips of length 2 in sections 8.7.1.1 and
8.8.1 are illuminating. As shown by the subsumption and almost-subsumption
results in section 8.7, the few cases of Subsets not covered by whips because of the
restrictions related to sequentiality are too rarely met in practice to be able to
compensate for this.

For the above reasons, we conjecture that, in any CSP, whips/braids have a much
greater resolution potential than Subsets of same length p, at least for small values
of p; and Bp-braids have a much greater resolution potential than Sp-braids. For large
values of p, it is likely true also, but it is less clear because there may be an
increasing number of cases of non-subsumption but there may also be more ways of
being linked to a candidate. Much depends on how many different constraints a
given candidate can participate in. This is an area where more work is necessary.

17.4. About CSP-Rules

As mentioned in the Foreword and as can be checked by a quick browsing of
this book, it is almost completely written at the logic level; it does not say much
about the algorithmic or the implementation levels – beyond the fact that our
detailed definitions provide unambiguous specifications for them, whichever
computer language one finally chooses. However, a few general indications on CSP-
Rules may be welcome.

In this section, it may be useful for the reader not yet familiar with the basic
principles of expert systems and/or inference engines to read one of the quick
introductions that are widely available on the Web (in particular the notions of a rule
base and a fact base); the CLIPS documentation can be browsed, but this is not
essential for reading what follows.

17.4.1. CSP-Rules

Almost all23 the resolution paths appearing in this book were obtained with the
current last version of CSP-Rules (version 1.2), the generic finite CSP solver we
wrote in the rule-based language of the CLIPS24 inference engine.

23 The only exceptions are the few N-Queens examples, for which we did not implement the
necessary interface (mainly because we could not find any generator of N-Queen instances
and we did not want to spend time on writing one, so that we finally have only very easy
instances). Two other exceptions are mentioned explicitly in the text.
24 CLIPS for Mac OSX, version 6.30. CLIPS is the acronym for “C Language Integrated
Production System”; it is a distant descendant of OPS (the Official Production System) but its
syntax (inherited from ART, a commercial expert system shell) is much better. CLIPS is free,

17. Final remarks 473

In principle, CSP-Rules can also be run on JESS25 (all the rules we have
implemented use only the part of the syntax ensuring compatibility). But JESS is
slower and we have given up trying to fill up the compatibility issues when coding
the application-specific parts of the various CSPs or to deal with Java-specific
memory management problems.

CSP-Rules was designed from the start as a research tool, with the main purpose
of proving concretely that the general resolution rules and the simplest-first strategy
defined in this book can be implemented in a generic way and can lead in practice to
real solutions for different CSPs, even for their hard instances. Another purpose was
to allow quick implementation of tentative rules and to test their resolution potential
with respect to those we had already defined. Finally, we also wanted to make it
easy to add application-specific rules (such as sk-loops in Sudoku, hills and valleys
in Futoshiki or coupling rules in Kakuro) or to code alternative strategies without
having to deal with a programming language like C.

Saying that we conceive CSP-Rules as a research tool means in particular that it
was not designed with high speed or low memory purposes in mind, although it
includes a few standard tricks to avoid too fast memory explosion and it has been
used several times to solve millions of instances. It seems obvious to us that a direct
implementation in C or any other procedural language could lead to large
improvements in computation times and memory requirements, especially for hard
instances – although the exponential increase of the number of partial patterns (with
respect to their length) before a full one can be used to produce an elimination is
inherent in some instances. The reference to g-labels and S-labels instead of g-
candidates and Subsets in g-whips and S-whips is a key for many optimisations of
memory.

CSP-Rules is a descendant of SudoRules, the Sudoku solver we originally
developed in parallel with the writing of HLS. As the main parts of the later versions
of SudoRules were already written in an almost application independent way, it was
easy to maximally reduce and to isolate the unavoidably application-specific parts.
The version of SudoRules (16.2) based on CSP-Rules that was used in the Sudoku
examples presented in this book is 100% equivalent to (i.e. it produces exactly the
same resolution paths as) the last version before the split (namely 15b.1.12, which
has been our version of reference at the time of writing CRT), when the same rules
are enabled.

which probably largely contributed to make it one of the most widely adopted shells. Another
reason is that CLIPS implements the RETE algorithm that made OPS famous, with all the
improvements that appeared since that time, making it one of the most efficient shells.
25 Current version as of this writing, i.e. 6.1p2. JESS is the acronym for “Java Expert System
Shell”; it was initially the Java version of CLIPS; but, due to the underlying language, it has
grown up differently and there are now compatibility issues.

474 Pattern-Based Constraint Satisfaction and Logic Puzzles

The current version of CSP-Rules implements the following sets of rules (we
have also implemented other tentative rules but they are not mentioned in this book
because they did not lead to interesting results):

– BRT (i.e. ECP + Single + Contradiction detection + Solution detection),
– bivalue-chains, whips, braids,
– g-bivalue-chains, g-whips, g-braids,
– forcing whips, forcing braids,
– bi-whips, bi-braids,
– forcing bi-whips, forcing bi-braids,
– W*-whips, B*-braids.

For each of these patterns and for each possible length, CSP-Rules has two or
three rules (one or two for building the partial patterns, one for detecting the full
ones and doing the eliminations), plus an activation rule (used mainly for memory
optimisation) and a tracking rule (as they are mainly used for tracking the numbers
of partial patterns and for statistics, their output does not appear in the resolution
paths given here). All these rules are written only in the generic terms of candidates,
g-candidates, CSP-variables, links and g-links. Their effective output (what we want
to appear in a resolution path) is controlled by a set of global variables.

CSP-Rules also implements the generic parts of functions used in the left-hand
side of rules (when it is both possible and more efficient to make a test [linked,
glinked, …] than to write an additional explicit condition pattern) or for the
interfacing with specific applications (e.g. for printing the different steps of the
resolution path – although it already implements the generic parts of the output
functions). Any application must provide the specific parts of these functions.

CSP-Rules also provides the possibility of computing T&E(T) and bi-T&E(T)
for any resolution theory T whose rules are programmed in CSP-Rules.

Because it was too hard to do this in sufficiently efficient ways, CSP-Rules does
not implement a generic version of Subsets (let alone of g-Subsets). Instead, it has a
standard version of Subsets (upto size four) valid for CSPs based on a square (or
rectangular) grid (like most of the examples in this book), with a sub-version with
blocks as in Sudoku. In the Kakuro CSP, its adaptation to the case of Subsets
restricted to sectors was straightforward.

The generation of instances is not part of CSP-Rules.

17.4.2. Configuration of an application for solving an instance

Any application (any particular CSP) has a configuration file allowing to choose
the resolution theory one wants to use, i.e. which patterns should be enabled and up

17. Final remarks 475

to which size. Technically, “enabled” means loaded into the rule base; it does not
mean “activated”. An enabled pattern gets activated only if necessary (i.e. if shorter
ones are not enough to solve the instance under consideration).

Consistency of the chosen parameters is ensured automatically, e.g.
– for any pattern P[n] depending on a size or length parameter n, if P[n] is

explicitly enabled, then P[n-1], … P[1] are automatically enabled;
– if g-braids of length upto n are enabled, then braids and g-whips of length upto

n are enabled if they have not been explicitly enabled with a larger length;
– if g-whips of length upto n are enabled, then whips of length upto n are

enabled if they have not been explicitly enabled with a larger length;
– if braids of length upto n are enabled, then whips of length upto n are enabled

if they have not been explicitly enabled with a larger length…

However, bivalue-chains are not automatically enabled when whips are enabled.
This may be changed in the future. But we have found it useful to keep this degree
of freedom, as enabling special types of whips sometimes allows to find different
whip resolution paths (see an example in section 5.10.3).

17.4.3. Resolution strategies predefined in CSP-Rules

The current version of CSP-Rules has only one resolution strategy, the
“simplest-first”, with the priorities as described in section 7.5.2:
ECP > S >
biv-chain[1] > whip[1] > g-whip[1] > braid[1] > g-braid[1] >
… > …
biv-chain[k] > whip[k] > g-whip[k] > braid[k] > g-braid[k] >
biv-chain[k+1] > whip[k+1] > g-whip[k+1] > braid[k+1] > g-braid[k+1] > …

A few things are easy to change, such as assigning braids[k] a higher priority
than g-whips[k] or introducing more special cases of whips. For radically different
strategies, the main problem would not be to code them in CSP-Rules, but to first
define them (see the remarks in section 17.1.4).

17.4.4. Applications already interfaced to CSP-Rules

As of this writing, the current version of CSP-Rules has application-specific
interfaces (and in some cases a few application-specific resolution rules, possibly
including alternative versions of the rules in BRT, e.g. different rules for Naked and
Hidden Singles) for the following CSPs: LatinSquare, Sudoku, Futoshiki, Kakuro,
Map-colouring, Numbrix® and Hidato®. For each of them, the volume of the source
code of the application-specific part (including mainly input-output functions) is
between 3% and 5% of the total generic CSP-Rules part. For Sudoku, more

476 Pattern-Based Constraint Satisfaction and Logic Puzzles

functions had been written in the previous versions of SudoRules, but they were
mainly intended for statistical analyses and cannot be considered as necessary for
the normal resolution of instances; moreover, with a little more adaptation work,
they could also be made generic, if needed.

18. References

Books and articles

[Apt 2003]: APT K., Principles of Constraint Programming, Cambridge University Press,
2003.

[Barcan 1946a]: BARCAN M., A Functional Calculus of First Order Based on Strict
Implication, Journal of Symbolic Logic, Vol. 11 n°1, pp. 1-16, 1946.

[Barcan 1946b]: BARCAN M., The Deduction Theorem in a Functional Calculus of First
Order Based on Strict Implication, Journal of Symbolic Logic, Vol. 12 n°4, pp. 115-118,
1946.

[Berthier 2007a]: BERTHIER D., The Hidden Logic of Sudoku, First Edition, Lulu.com
Publishers, May 2007.

[Berthier 2007b]: BERTHIER D., The Hidden Logic of Sudoku, Second Edition, Lulu.com
Publishers, November 2007.

[Berthier 2008a]: BERTHIER D., From Constraints to Resolution Rules, Part I: Conceptual
Framework, International Joint Conferences on Computer, Information, Systems Sciences
and Engineering (CISSE 08), December 5-13, 2008, Springer. Published as a chapter of
Advanced Techniques in Computing Sciences and Software Engineering, Khaled Elleithy
Editor, pp. 165-170, Springer, 2010.

[Berthier 2008b]: BERTHIER D., From Constraints to Resolution Rules, Part II: chains,
braids, confluence and T&E, International Joint Conferences on Computer, Information,
Systems Sciences and Engineering (CISSE 08), December 5-13, 2008, Springer. Published as
a chapter of Advanced Techniques in Computing Sciences and Software Engineering, Khaled
Elleithy Editor, pp. 171-176, Springer, 2010.

[Berthier 2009]: BERTHIER D., Unbiased Statistics of a CSP - A Controlled-Bias Generator,
International Joint Conferences on Computer, Information, Systems Sciences and
Engineering (CISSE 09), December 4-12, 2009, Springer. Published as a chapter of
Innovations in Computing Sciences and Software Engineering, Khaled Elleithy Editor, pp.
11-17, Springer, 2010.

[Berthier 2011]: BERTHIER D., Constraint Resolution Theories, Lulu.com Publishers,
November 2011.

[Bridges et al. 2006]: BRIDGES D. & VITA L., Techniques of Constructive Analysis,
Springer, 2006.

[Dechter 2003]: DECHTER R., Constraint Processing, Morgan Kaufmann, 2003.

478 Pattern-Based Constraint Satisfaction and Logic Puzzles

[Feys 1965]: FEYS R., Modal Logics, Fondation Universitaire de Belgique, 1965.

[Fitting 1969]: FITTING M., Intuitionistic Logic, Model Theory and Forcing, North Holland,
1969.

[Fitting et al. 1999]: FITTING M. & MENDELSOHN R., First-Order Modal Logic, Kluwer
Academic Press, 1999.

[Freuder et al. 1994]: FREUDER E. & MACKWORTH A., Constraint-Based Reasoning,
MIT Press, 1994.

[Früwirth et al. 2003]: FRÜWIRTH T. & SLIM A., Essentials of Constraint Programming,
Springer, 2003.

[Garson 2003]: GARSON J., Modal Logic, Stanford Encyclopedia of Philosophy, 2003,
available at http://plato.stan ford. edu/entries/logic-modal.

[Gary et al. 1979]: GARY M. & JOHNSON D., Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, 1979.

[Gentzen 1934], GENTZEN G., Untersuchungen über das logische Schlieβen I,
Mathematische Zeitschrift, vol. 39, pp. 176-210, 1935.

[Hendricks et al. 2006]: HENDRICKS V. & SYMONS J., Modal Logic, Stanford
Encyclopedia of Philosophy, 2006, available at http://plato.stan ford. edu/entries/logic-modal.

[Hintikka 1962]: HINTIKKA J., Knowledge and Belief: An Introduction to the Logic of the
Two Notions, Cornell University Press, 1962.

[HLS1, HLS2, HLS]: respectively, abbreviations for [Berthier 2007a], [Berthier 2007b] or for
any of the two.

[Guesguen et al. 1992]: GUESGUEN H.W. & HETZBERG J., A Perspective of Constraint-
Based Reasoning, Lecture Notes in Artificial Intelligence, Springer, 1992.

[Kripke 1963]: KRIPKE S., Semantical Analysis of Modal Logic, Zeitchrift für Matematische
Logik und Grundlagen der Matematik, Vol. 9, pp. 67-96, 1963.

[Kumar 1992]: KUMAR V., Algorithms for Constraint Satisfaction Problems: a Survey, AI
Magazine, Vol. 13 n° 1, pp. 32-44, 1992.

[Laurière 1978]: LAURIERE J.L., A language and a program for stating and solving
combinatorial problems, Artificial Intelligence, Vol. 10, pp. 29-117, 1978.

[Lecoutre 2009]: LECOUTRE C., Constraint Networks: Techniques and Algorithms,
ISTE/Wiley, 2009.

[Lemmon et al. 1977]: LEMMON E. & SCOTT D., An introduction to Modal Logic,
Blackwell, 1977.

[Marriot et al. 1998]: MARRIOT K. & STUCKEY P., Programming with Constraints: an
Introduction, MIT Press, 1998.

[Meinke et al. 1993]: MEINKE K. & TUCKER J., eds., Many-Sorted Logic and its
Applications, Wiley, 1993.

References 479

[Moschovakis 2006]: MOSCHOVAKIS J., Intuitionistic Logic, Stanford Encyclopedia of
Philosophy, 2006, available at http://plato.stan ford.edu/entries/logic-intuitionistic.

[Newell 1982]: NEWELL A., The Knowledge Level, Artificial Intelligence, Vol. 59, pp 87-
127, 1982.

[Riley 2008]: RILEY G., CLIPS documentation, 2008, available at http://clipsrules.
sourceforge.net/OnlineDocs.html.

[Rossi et al. 2006]: ROSSI F., VAN BEEK P. & WALSH T., Handbook of Constraint
Programming, Foundations of Artificial Intelligence, Elsevier, 2006.

[Schank 1986]: SCHANCK R., Explanation Patterns, Understanding Mechanically and
Creatively, Lawrence Erlbaum Associates Publishers, 1986.

[Stuart 2007]: STUART A., The Logic of Sudoku, Michael Mepham Publishing, 2007.

[Van Hentenryck 1989]: VAN HENTENRYCK P., Constraint Satisfaction in Logic
Programming, MIT Press, 1989.

Websites

[Angus www]: ANGUS J. (Simple Sudoku), http://www.angusj.com/sudoku/, 2005-2007 [the
main reference for the basic Sudoku techniques].

[Armstrong www]: ARMSTRONG S. (Sadman Software Sudoku, Solving Techniques),
http://www. sadmansoftware.com/sudoku/techniques.htm, 2000-2007.

[askmarilyn www]: http://www.parade.com/askmarilyn/index.html [the “official” place for
Numbrix® puzzles].

[atksolutions www]: http://www.atksolutions.com [the most interesting source we have found
for Futoshiki and Kakuro puzzles].

[Barker 2006]: BARKER M., Sudoku Players Forum, Advanced solving techniques, post
362, in http://www.sudoku.com/forums/viewtopic.php?t=3315

[Berthier www]: BERTHIER D., http://www.carva.org/denis.berthier (permanent URL). This
is where supplements to this book and to HLS can be found.

[Brouwer 2006]: BROUWER A., Solving Sudokus, http://homepages.cwi.nl/~aeb/games/
sudoku/, 2006.

[CLIPS www]: http://clipsrules.sourceforge.net

[Davis 2006]: DAVIS T., The Mathematics of Sudoku, www.geometer.org/mathcircles/
sudoku.pdf, 2006.

[edhelper www]: http://www.edhelper.com/puzzles.htm [a website with instances of various
difficulty levels for many different logic puzzles].

[Eleven www]: https://sites.google.com/site/sudoeleven/, 08/07/2011.

[Eleven 2011]: https://sites.google.com/site/sudoeleven/elevens_hardest_V2.zip?attredirects=
0, 08/07/2011.

480 Pattern-Based Constraint Satisfaction and Logic Puzzles

[Felgenhauer et al. 2005]: FELGENHAUER B. & JARVIS F., Enumerating possible Sudoku
grids, http://www.afjarvis.staff.shef.ac.uk/sudoku/sudgroup.html, 2005.

[gsf www]: FOWLER G. (alias gsf), http://www2.research.att.com/~gsf/sudoku

[Hodoku www]: http://hodoku.sourceforge.net

[Jarvis 2006]: JARVIS F., Sudoku enumeration problems, http://www.afjarvis.staff.shef.ac.
uk/ sudoku/, 2006.

[JESS www]: http://herzberg.ca.sandia.gov/jess

[Juillerat www]: JUILLERAT N., http://diuf.unifr.ch/people/juillera/Sudoku/Sudoku.html

[Mebane 2012]: MEBANE P., http://mellowmelon.files.wordpress.com/2012/05/pack03
hidato_v3.pdf [the hardest and most interesting Hidato® puzzles we have found].

[Nikoli www]: http://www.nikoli.com/ [Probably the most famous reference in logic puzzles].

[Penet 2012]: PENET G. (alias champagne), http://gpenet.pagesperso-orange.fr/downloads/
hard11.zip, 2012.

[Russell et al. 2005]: RUSSELL E. & JARVIS F., There are 5,472,730,538 essentially
different Sudoku grids … and the Sudoku symmetry group, http://www.afjarvis.staff.
shef.ac.uk/ sudoku/sudgroup.html, 2005.

[Smithsonian www]: http://www.smithsonianmag.com/games/hidato.html [the “official”
place for Hidato® puzzles].

[SPlF]: the late Sudoku Player’s Forums, http://www.sudoku.com/forums/index.php

[SPrF]: Sudoku Programmers Forums, http://www.setbb.com/sudoku/index.php?mforum=
sudoku

[Sterten www]: STERTEN (alias dukuso), http://magictour.free.fr/sudoku.htm

[Sterten 2005]: STERTEN (alias dukuso), suexg, http://www.setbb.com/phpbb/viewtopic.
php?t=206&mforum= sudoku, 2005.

[Sudopedia]: Sudopedia, http://www.sudopedia.org/wiki/Main_Page

[Tatham www]: http://www.chiark.greenend.org.uk/~sgtatham/puzzles/ [One of the classical
references in logic puzzles, with easy instances].

[Werf www]: van der WERF R., Sudocue, Sudoku Solving Guide, http://www.sudocue.
net/guide.php, 2005-2007.

[Yato et al. 2002]: YATO T. & SETA T., Complexity and completeness of finding another
solution and its application to puzzles, IPSG SIG Notes 2002-AL-87-2, http://www-
imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf, 2002.

