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Color Object Recognition Based On Clifford
Fourier Transform

Jose Mennesson, Christophe Saint-Jean and Laurent Mascarilla

Abstract The aim of this paper is to propose two different approaches for color

object recognition, both using the recently defined color Clifford Fourier transform.

The first one deals with so-called Generalized Fourier Descriptors, the definition of

which relies on plane motion group actions. The proposed color extension leads to

more compact descriptors, with lower complexity and better recognition rates, than

the already existing descriptors based on the processing of the r,g and b channels

separately (later referred as marginal processing). The second approach concerns

color phase correlation for color images. The idea here is to generalize in the Clif-

ford framework the usual means of measuring correlation from the well-known shift

theorem. Both methods necessitate to choose a bivector B of R4,0 which corresponds

to an analysis plane in the color space. The relevance of proposed methods for clas-

sification purposes is discussed on several color image database. In particular, the

influence of parameter B is studied regarding the type of images.

1 Introduction

Most of already existing works on image recognition make use of discriminative

and invariant descriptors. Among them, moment-based descriptors [7] such as Hu

invariants, Legendre moments or Zernike moments are well known. Beside these ap-

proaches, SIFT (Scale-Invariant Feature Transform) descriptors are a popular choice

giving very good results [11]. An alternative to these methods is to define descrip-

tors in the frequency domain. In this framework, our paper concerns two extensions
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of existing methods based on a Fourier transform. Clearly, Fourier coefficients do

not respect the classical invariances (translation, rotation and scale) and must be

processed to obtain invariant descriptors. This paper proposes an extension of a re-

cent advance concerning invariant Generalized Fourier Descriptors (GFD) defined

by F. Smach et al. [15]. The extension of these descriptors to color images is gener-

ally based on a marginal processing of the three channels (r,g,b). Then, descriptors

extracted from each channel are concatenated to form the description vector. In or-

der to avoid this marginal processing, our proposal is to extract descriptors from a

color Clifford Fourier transform as defined by Batard et al. [1]. A second proposal is

the extension of the classical color phase correlation by means of the same Fourier

transform.

2 A Clifford Fourier transform for color image processing

As relating to color image processing, the usual Fourier transform corresponds in

fact to 3 two-dimensional Fourier transforms applied on each color channel, that

is a marginal processing. To emphasize the role of color, several authors have pro-

posed to embed the color space in a more pertinent and meaningful geometric space

such as the space of quaternions. For instance, Ell and Sangwine [6] propose a lu-

minance/chrominance Fourier analysis replacing the imaginary complex i by the

quaternion µ = i+ j+k√
3

corresponding to the gray-level axis. It already appears in this

work that one has to focus on an analysis direction (here given by µ).

Recently, Batard et al. [1] have defined a Fourier transform for L2(Rm;Rn) func-

tions. This one is mathematically rigorous and clarifies relations between the Fourier

transform and the action of the translation group through an action of a spinor group.

They show that the previously proposed generalizations for color images (i.e. n=3,

the number of color channels) are particular cases of their definition. In this paper,

only the particular case m = 2 and n = 3 is considered and described briefly in the

following. Firstly, in the equation of the classical 2D Fourier transform,

f̂ (u1,u2) =
∫

R2
f (x1,x2)e

−i(u1x1+u2x2)dx1dx2 (1)

the term e−i(u1x1+u2x2)(= e−i〈u,x〉 with u = (u1,u2) and x = (x1,x2)) rotates f (x1,x2)
in the complex plane C. From a mathematical point of view, it corresponds to the

action of the group S1 on C which can be identified as the group action of SO(2)
on R2. In order to generalize this principle to color images, one have to consider

the action of the matrix group SO(3) on R3. As described in [1], a general and

elegant expression may be written if the function corresponding to the color image

is embedded in the Clifford algebra R4,0:

f (x,y) = r(x,y)e1 +g(x,y)e2 +b(x,y)e3 +0 e4
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Within this framework, the rotation of a vector v by the angle −θ , in the plane

generated by a unitary bivector B is given by the action svs−1 of a spinor s and can

be written as

v → s−1vs = e
θ
2 B v e−

θ
2 B

For this type of functions, the following Fourier transform is considered :

f̂B(u) =
∫

R2
e
〈u,x〉

2 I4Be
〈u,x〉

2 B f (x)e−
〈u,x〉

2 Be−
〈u,x〉

2 I4Bdx (2)

where I4 is the pseudo-scalar of R4,0, I4B is an unitary bivector orthogonal to B,

u = (u1,u2) and x = (x1,x2). From the geometric point of view, two independent

rotations in orthogonal planes are acting on f (x). As these rotations are of same

angle, the chosen Fourier transform involves isoclinic rotations of f in R4 [10]. Let

us emphasize that considering more general rotations in R4 leads to other definitions

of the Fourier transform and yields additional parameters which are hard to set in

practice.

2.1 The shift theorem for the Clifford Fourier Transform

The color phase correlation subsequently proposed relies on the Fourier Shift theo-

rem which states that a translation in the spatial domain induces a phase shift in the

frequency domain. By construction, this property still holds for our transform and

takes the following form.

Theorem 1. Let f ,g ∈ L2(R2,R3), B a unit bivector in R4,0 and ∆∆∆ = (∆1,∆2) the

vector containing the translation parameters.

If g(x) = f (x+∆∆∆) then

ĝB(u) = e−
〈u,∆∆∆〉

2 I4Be−
〈u,∆∆∆〉

2 B f̂B(u)e
〈u,∆∆∆〉

2 Be
〈u,∆∆∆〉

2 I4B (3)

Proof. The proof is essentially based on the fact that rotations in orthogonal planes

can commute. Let x∆∆∆ = x+∆∆∆ .

ĝB(u) =
∫

R2
e
〈u,x〉

2 (B+I4B) f (x+∆∆∆)e−
〈u,x〉

2 (B+I4B)dx

=
∫

R2
e
〈u,(x∆∆∆ −∆∆∆)〉

2 (B+I4B) f (x∆∆∆ )e−
〈u,(x∆∆∆ −∆∆∆)〉

2 (B+I4B)dx∆∆∆

=
∫

R2
e−

〈u,∆∆∆〉
2 (B+I4B)e

〈u,x∆∆∆ 〉
2 (B+I4B) f (x∆∆∆ )e−

〈u,x∆∆∆ 〉
2 (B+I4B)e

〈u,∆∆∆〉
2 (B+I4B)dx∆∆∆

= e−
〈u,∆∆∆〉

2 (B+I4B)

(∫

R2
e
〈u,x∆∆∆ 〉

2 (B+I4B) f (x∆∆∆ )e−
〈u,x∆∆∆ 〉

2 (B+I4B)dx∆∆∆

)
e
〈u,∆∆∆〉

2 (B+I4B)

= e−
〈u,∆∆∆〉

2 (B+I4B) f̂B(u)e
〈u,∆∆∆〉

2 (B+I4B) (4)

⊓⊔
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Even if (4) is more compact than (3), this formulation emphasizes that two indepen-

dent rotations apply. Simpler equations can be obtained using the decomposition of

f as the sum of its parallel projection f‖B on the plane defined from B and its per-

pendicular projection f⊥B on the plane defined from I4B (see later for details on the

decomposition). Skipping some technical details, (2) can be rewritten following this

decomposition as

f̂B(u) = f̂‖B(u)+ f̂⊥B(u) (5)

where

f̂‖B(u) =
∫

R2
e
〈u,x〉

2 B f‖B(x)e−
〈u,x〉

2 Bdx =
∫

R2
f‖B(x) e−〈u,x〉Bdx (6)

f̂⊥B(u) =
∫

R2
e
〈u,x〉

2 I4B f⊥B(x)e−
〈u,x〉

2 I4Bdx =
∫

R2
f⊥B(x) e−〈u,x〉I4Bdx (7)

Later on, (6) and (7) will provide a practical and efficient way to implement our

transform. According the same decomposition, Theorem 1 becomes

Theorem 2. Let f ,g ∈ L2(R2,R3) and B a unit bivector in R4,0.

If g(x) = f (x+∆∆∆) then

ĝ‖B(u) = e−
〈u,∆∆∆〉

2 B f̂‖B(u)e
〈u,∆∆∆〉

2 B = f̂‖B(u) e〈u,∆∆∆〉B (8)

ĝ⊥B(u) = e−
〈u,∆∆∆〉

2 I4B f̂⊥B(u)e
〈u,∆∆∆〉

2 I4B = f̂⊥B(u) e〈u,∆∆∆〉I4B (9)

A unit bivector B can be obtained from the geometric product of two unit orthogonal

vectors as B = c∧e4 or B = c1 ∧c2 (where c, c1 and c2 are RGB colors). These two

settings appear to be analogous up to a sign change since the dualization I4B of B

gives also a bivector of the other form. In the following, only the choice B = c∧ e4

will be considered in the experiments.

2.2 Computation of the Clifford Fourier Transform

The Clifford Fourier Transform can be efficiently computed using two complex

FFTs. Whereas {c,e4} is a trivial basis for the plane given by B, an orthonormal

basis {v,w} for the plane generated by I4B has to be constructed. A possible solu-

tion is to choose a unit vector µ with no e4 component and different from c1. Vector

v is taken as the rejection of µ on c and w as an orthogonal vector to v in subspace

represented by blade I4B (see Fig. 1). Then, the function f can decomposed as

f (x) = f‖B(x) + f⊥B(x)
= c [( f (x) · c)+( f (x) · cB)B] + v [( f (x) ·v)+( f (x) ·vI4B)I4B]

(10)

1 A typical setting for µ is (e1 + e2 + e3)/
√

3 which corresponds to select the achromatic axis.
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Each of the two square brackets can identified as complex number since BB =
I4BI4B = −1. The computation of f̂B is now reduced to the computation of two

usual Fourier transforms of a real function and of a complex function.

v =−c(c∧µ)−1 =(µ∧c)c−1

w =−v(I4B)−1 = v(I4B)

Fig. 1 Illustration of the basis {c,e4,v,w} of I4 using GABLE [4]

Depending on the intended application, it is not always necessary to reconstruct

f̂B from f̂‖B and f̂⊥B
2. If so, the following properties of the vectorial function f̂B

̂
(

f‖B(x)
)

B
= c

[
( f̂B(x) · c)+( f̂B(x) · cB)B

]
(11)

̂( f⊥B(x))B = v
[
( f̂B(x) ·v)+( f̂B(x) ·vI4B)I4B

]
(12)

give a set of four linear equations with four unknowns.

3 Generalized Color Fourier Descriptors

In this section, we propose an extension of the Generalized Fourier Descriptors of

Smach et al. (initially dedicated to grayscale images) to color images.

3.1 Generalized Fourier Descriptors (GFD)

Generalized Fourier descriptors introduced by [15] are defined from the group ac-

tion of M2. This group is composed of translations and rotations on the plane. Two

kinds of descriptors have been defined :

2 More precisely, the two functions in the square brackets
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• ”Spectral densities”-type invariants:

Ir
1( f ) =

∫ 2π

0

∣∣∣ f̂ (r,θ)
∣∣∣
2

dθ

• ”Shift of phases”-type invariants:

Iξ1,ξ2( f ) =
∫ 2π

0
f̂ (Rθ (ξ1 +ξ2)) f̂ (Rθ (ξ1)) f̂ (Rθ (ξ2))dθ

where f is the image, f̂ (r,θ) is the Fourier transform expressed in polar coordinates

in the frequency plane, ξ1 and ξ2 are variables of the frequency plane and Rθ is a

rotation of angle θ . It must be emphasized that, by construction, Ir
1 and Iξ1,ξ2 are

strictly invariant in R2 with respect to the action of M2.

Then, the descriptor vector for the first family of invariants, namely Ir
1, is defined as

follows :

GFD1( f ) =

{
I0
1 ( f ) =

∣∣ f̂ (0,0)
∣∣2

,
I1
1 ( f )

I0
1 ( f )

, . . . ,
Im
1 ( f )

I0
1 ( f )

}

where m is the number of computed descriptors. In the same way, we define the

GFD2 descriptor vector from the second family of invariants Iξ1,ξ2 .

3.2 Generalized Color Fourier Descriptors (GCFD)

In order to deal with color images, a commonly used approach consists in comput-

ing descriptors on each color channel separately. Then, they are concatenated into a

unique vector (e.g. [15]). This method implies three FFTs and three sets of descrip-

tors. However, this marginal processing induces a loss of colorimetric information

that can be avoided by using the color Clifford Fourier transform.

Equation (5) shows that the Clifford Fourier transform can be decomposed into two

parts. So, two descriptor vectors are defined: GCFD1‖B and GCFD1⊥B, each of

them implying two complex FFT. According to the definition of f‖B:

GCFD1‖B( f ) =

{
I0
‖B( f ) =

∣∣ f̂‖B(0,0)
∣∣2

,
I1
‖B

( f )

I0
‖B

( f )
, . . . ,

Im
‖B

( f )

I0
‖B

( f )

}

where Ir
‖B

( f ) =
∫ 2π

0

∣∣∣ f̂‖B(r,θ)
∣∣∣
2

dθ and m is the number of computed descriptors.

Similarly, GCFD1⊥B is defined thanks to f̂⊥B. Finally, the descriptor vector length

is 2×m:

GCFD1B( f ) =
{

GCFD1‖B( f ),GCFD1⊥B( f )
}

The same construction based on Iξ1,ξ2 leads to GCFD2B.
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4 Color Phase Correlation

In the literature, the phase correlation [14] is a well-established method that is used

for a lot of applications such as image recognition, video stabilization, motion es-

timation, stereo disparity analysis, vector flow analysis [5]. As it is based a direct

application on the Fourier shift theorem, its definition depends on the chosen Fourier

transform. Before presenting what can be a phase correlation method for color im-

ages, we recall now the principle of this method for grayscale images.

4.1 Phase Correlation for Grayscale Images

Let f and g be two grayscale images which are spatial shifted version of each one

another. According to the Fourier shift theorem,

ĝ(u) = f̂ (u) ei〈u,∆∆∆〉 (13)

Ideally, it is possible to extract the phase shift between f̂ and ĝ through the compu-

tation of their cross-power spectrum

R(u) = f̂ (u) ĝ(u)

| f̂ (u)ĝ(u)| = f̂ (u) f̂ (u) e−i〈u,∆∆∆〉

| f̂ (u) f̂ (u) e−i〈u,∆∆∆〉|

= | f̂ (u)|2 e−i〈u,∆∆∆〉

|| f̂ (u)|2e−i〈u,∆∆∆〉| = e−i〈u,∆∆∆〉

|e−i〈u,∆∆∆〉| = e−i〈u,∆∆∆〉
(14)

where operator ¯ is the usual complex conjugate. Ideally again, the exact trans-

lation ∆∆∆ = (∆1,∆2) can be obtained by taking the inverse Fourier transform of R(u)

r(x) = Ř(u) = δ−∆∆∆ (15)

where δ is the Dirac distribution.

In practice, the best estimated translation and correlation score ρ are given by

∆∆∆ = −argmax
x

(|r(x)|) ρ = max
x

(|r(x)|)

Coefficient ρ should be equal to 1 when g is a translated version of f and it could

be used as a similarity index between images in a recognition process. Note that

the phase correlation method is invariant under translations but not under rotations.

The invariance under rotations can be achieved by converting images in log-polar

domain, but it will not be discussed here.



8 Jose Mennesson, Christophe Saint-Jean and Laurent Mascarilla

4.2 Phase Correlation for Color Images

Phase correlation for color images is much more difficult than for grayscale images.

A first tentative approach is to work directly on the relation between f̂B and ĝB.

According to (3) and for any unit bivector B, ĝB is ideally obtain by an isoclinic

rotation of f̂B. After some calculations similar to those of (14), it should be pos-

sible to obtained this rotation as a spinor represented by a multivector containing

non vectorial terms. Unfortunately, definitions of the Fourier transform and Fourier

inverse transform are not yet available for general multivectorial functions. So, an

easier approach is to use the decompositions of f̂B and ĝB with respect to B.

According to (8) and (9), the phase correlation now relies on the detection of

simultaneous Dirac at the same location:

R‖B(u) =
f̂‖B(u) ĝ‖B(u)

| f̂‖B(u)ĝ‖B(u)|
= e−〈u,∆∆∆〉B =⇒ r‖B(x) = δ−∆∆∆ (16)

R⊥B(u) =
f̂⊥B(u) ĝ⊥B(u)

| f̂⊥B(u)ĝ⊥B(u)|
= e−〈u,∆∆∆〉I4B =⇒ r⊥B(x) = δ−∆∆∆ (17)

In practice, one has to cope with the aggregation of r‖B and r⊥B. Experiments sec-

tion gives some results for different aggregation criteria. Whole process is illustrated

in Fig. 2.

��������		�A�BC�D
��	�AA�A�E�	B

��������		�A�BC�D
F	B����D�A�E�	B

���	���BC�D����
��		�A�BC�D����	�����
�CD����������D����

��		�A�BC�D�
E������

�
����
��D�����

��

Fig. 2 Image similarity as a score aggregation

There are many rotations in R4 which map f̂B(u) to ĝB(u). Among these, one

can choose the unique one that leaves invariant the plane generated by f̂B(u) and
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ĝB(u). This leads to the spinor τ(u) such that g̃B(u) = τ(u) f̃B(u)τ−1(u)

τB(u) = exp

[
θ(u)

2

g̃B(u)∧ f̃B(u)

|g̃B(u)∧ f̃B(u)|

]
=

1+ g̃B(u) f̃B(u)√
2(1+ g̃B(u) · f̃B(u))

where f̃B(u) = f̂B(u)/| f̂B(u)| and g̃B(u) = ĝB(u)/|ĝB(u)|. This rotation is classi-

fied as a simple rotation by Lounesto [10]. Such an approach deviates from the

conditions of the shift theorem by relaxing the constraint on the type of rotation

between vectors f̂B and ĝB. Here again, the inverse Fourier transform of τ(u) is

not accessible. However, it is possible to neglect the bivectorial part of the spinor

by transforming it to a constant bivector identifiable with complex imaginary i. A

correlation score ρB then can be built on θ(u):

RB(u) = eiθ(u) =⇒ ρB = max
x

(|rB(x)|) (18)

where rB(x) = ŘB(u). An alternative formulation of such a criterion is given by the

cosine between f̂B and ĝB:

ℜ(RB(u)) = cos( f̂B(u), ĝB(u)) =
f̂B(u)∗˜̂gB(u)

| f̂B(u)||ĝB(u)|
(19)

where ˜ and ∗ denote the reverse operator and the Hestenes scalar product [8].

5 Experimentations

Our goal is to evaluate if proposed descriptors are good at classifying images. More

precisely, the unique label of the request image is predicted from an entire set of

labeled images. Both synthetic and standard image databases are considered and the

choice of the bivector is discussed.

5.1 Image database

The databases used in this section are COIL-100, color FERET and, to check ro-

bustness again noise, a noisy version of this last dataset.

• COIL-100 (Columbia Object Image Library) database [12] is composed of

7200 color images of size 128 × 128 of 100 different objects. Each picture

has been taken with a black background and 72 different angles of view. This

database, used in similar works [15], can be qualified as ”easy” from an image

classification context as every image background is removed.
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• color FERET database [13] is composed of face images of 1408 different per-

sons, taken from different angles of view. In our tests, a set of 2992 images con-

taining 272 persons equally represented by 11 pictures is selected and size of

images is reduced to 128 × 128. This database is more difficult than the first one

due to background illumination changes.

• noisy color FERET database is derived from the color FERET database, but

Gaussian noise is added to each color plane of the images. The parameter θ is

fixed to 0.23, which is the maximum noise level used in [15].

5.2 Descriptors Extraction

Regarding the GFD, 64 descriptors are extracted for each color channel. For GFD1,

it consists of 64 values of radius r in Ir
1 and GFD2 is built from equally spaced values

of ξ2 in its polar domain [0,2π]× [1,8] and ξ1 set to (0,1). As it is argued in [15],

such ξ1 and ξ2 choices allow to take into account low frequencies of the image,

i.e. the shape. For GCFD1 and GCFD2, the length of the descriptor vectors are

64× 2 (parallel and orthogonal part of the Clifford Fourier transform). Regarding

the phase correlation, one score corresponding to the correlation peak is extracted

for each image pair. Two cases are considered: either phase correlation is computed

from parallel and orthogonal parts of the Clifford Fourier transform, and the two

correlation scores, ρ‖B and ρ⊥B, are aggregated to obtain a single score, either the

correlation ρB is computed from reconstructed Fourier transform.

5.3 Classification

The classification step is performed using a standard SVM (Support Vector Ma-

chine) [2]. As GFD and GCFD are vector descriptors they can directly be used as

input for such a kernel based classifier. In this paper a RBF kernel is selected and

the value of the two parameters θ and C are empirically determined to maximize the

recognition rates for each database. The phase correlation methods directly result in

a real valued score assessing the matching quality and this similarity measure can

not be used as input in a standard SVM. Various solutions to address such cases

have been proposed in the literature (see [3] for a recent review). Fortunately, in the

phase correlation case, one can slightly modify the SVM algorithm by replacing the

inner product values of the Gram matrix by a symmetric similarity measure ensuring

its semi-positive definiteness. Such a property is guaranteed by taking as a measure

the mean value of the correlation scores between f̂B and ĝB and between ĝB and f̂B.

Validation of the classification results is done by a 10-fold cross-validation.
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5.4 Evaluation of the GCFD

In this section, the Generalized Clifford based Fourier Descriptors, GCFD1 and

GCFD2, are evaluated to assess their classification performance relatively to the

usual Generalized Fourier Descriptors, GFD1 and GFD2. The classification perfor-

mance of GFD and GCFD is tested on the COIL-100, the color FERET and the

noisy color FERET database. Each database (see Table 1, Table 2, Table 3) is pro-

cessed using the same choices of bivectors, one bivector per row of the Tables. The

first one, denoted by Br, is obtained using a red vector (i.e. Br = r∧ e4), the three

next bivectors Bg, Bb, Bµ respectively refer to green, blue colors and the achromatic

axis. The next row gives the best classification rate, the mean and standard deviation

of classification rates obtained by randomly choosing 100 bivectors. These five first

rows provide results for single bivectors while the last two concern triple size bivec-

tors. The first one, denoted by Br + Bg + Bb, uses as descriptor the concatenation

of descriptors computed from Br, Bg and Bb (descriptors of size 384). The last row,

denoted by B1 +B2 +B3, provides results obtained by using an automatic selection

algorithm to select the three bivectors maximizing the classification rate. This so-

called ”SFFS” (Sequential Floating Forward Selection) algorithm is a suboptimal

selection procedure that avoid exhaustive search in the feature space, here defined

by the space of the c normalized color vectors. Interested reader can refer to [9], for

comparison to similar optimization techniques.

COIL-100 being an easy dataset from a classification point of view, any descrip-

tors provides excellent results, very close to 100%. In Table 1, the descriptors size

is recalled for each method and best results for each method is highlighted. Yel-

low color highlights best results for one bivector and green highlights results for 3

bivectors (obtained by concatenation or by the SFFS procedure). It must be noted

that such a classification rate validates the choice of Fourier descriptors on this kind

of images where color background is homogeneous and similar for every image.

The standard deviations obtained for Brand are small and suggest little influence of

the bivector choice on this database and experiments were not carried further in that

direction.

COIL-100

Bivectors GFD1(64 desc.) GCFD1(128 desc.) GFD2(64 desc.) GCFD2(128 desc.)

Br 98.04 99.83 98.69 99.81

Bg 98.06 99.56 99.39 99.85

Bb 96.90 99.86 94.03 99.85

Bµ 98.49 99.25 99.40 99.47

Brand(×100) 98.42±0.3 99.54±0.3 98.88±0.82 99.82±0.1

max. 98.87 99.89 99.47 99.96

192 desc. 384 desc. 192 desc. 384 desc.

Br +Bg +Bb 99.9 99.92 99.89 99.87

B1 +B2 +B3(SFFS) 99.86 99.96 99.89 99.96

Table 1 COIL-100 : Recognition rates in % with GFD1, GCFD1, GFD2 and GCFD2.
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color FERET

Bivectors GFD1(64 desc.) GCFD1(128 desc.) GFD2(64 desc.) GCFD2(128 desc.)

Br 76.70 87.90 77.31 84.42

Bg 73.66 79.65 77.37 80.01

Bb 70.49 84.49 75.87 82.31

Bµ 73.03 78.10 77.30 82.12

Brand(×100) 73.72±1 85.34±2.92 77.54±0.69 84.50±2.06

max. 76.14 90.37 78.91 89.57

192 desc. 384 desc. 192 desc. 384 desc.

Br +Bg +Bb 88.03 85.53 84.26 82.55

B1 +B2 +B3(SFFS) 85.46 93.15 82.89 90.07

Table 2 Color FERET : Recognition rates in % with GFD1, GCFD1, GFD2 and GCFD2

Regarding the color FERET dataset, it can be checked that the GCFD1 outper-

forms both GFD1 and GFD2 in term of classification rate for any bivector choice.

GCFD2 while providing better results than GFD1 and GFD2 is not better than

GCFD1. This may be due to the choice of the ξ1 and ξ2 parameters, but none of our

experiments led to an improvement in that respect. Anyway, these results clearly

show the added benefit of the Clifford Fourier transform with regard to classifica-

tion. Concatenation (Br + Bg + Bb) of bivectors improves the results for GFD but

not for GCFD. This is probably due to the better information encoding done by

the Clifford Fourier transform and GCFD descriptors obtained for various bivec-

tors are probably more redundant than the marginal GFD. This is confirmed by the

SFFS method: selection of 3 ”optimal” bivectors pushes GCFD to the best results.

In the random bivector choice experiment, GCFD1 and GCFD2 standard deviation

are quite important compared to the ones of GFD1 and GFD2. This clearly reveals

that the GCFD depends on the choice of the bivector. To inspect its influence, the

random experiment results are detailed in Fig. 3. Color of each dot denotes the c

color chosen to define the bivector, and best ones are mostly blue. Visual inspec-

tion of the database confirms that this color corresponds to the background color of

most images. As the bivector is unique for a given database it must be chosen either

according to some prior knowledge either according to an empirical search method

like SFFS.

noisy color FERET: Influence of noise on classification rate is given in Table 3.

GFD1 is the most sensitive to noise and, as expected (see [15]), GFD2 is much

more robust.

noisy color FERET

Bivectors GFD1(64 desc.) GCFD1(128 desc.) GFD2(64 desc.) GCFD2(128 desc.)

Br 45.32 71.05 73.46 83.49

Bg 46.83 61.99 75.26 78.64

Bb 48.49 73.46 74.77 81.78

Bµ 55.28 62.03 77.34 80.98

Brand(×100) 54.23±1.75 69.64±3.21 76.59±0.74 82.56±1.80

max. 57.55 77.27 78.41 87.00

192 desc. 384 desc. 192 desc. 384 desc.

Br +Bg +Bb 73.16 72.16 83.25 81.12

B1 +B2 +B3(SFFS) 71.52 80.62 83.36 88.24

Table 3 noisy Color FERET : Recognition rates in % with GFD1, GCFD1, GFD2 and GCFD2
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Fig. 3 color FERET: Recognition rates with GCFD1 for 100 random bivectors

5.5 Evaluation of the phase correlation

In this paper, two methods have been proposed to compute phase correlation for

color images, both depend on a bivector Bc, where c is the chosen color. The first

one depends on two correlation scores, ρ‖Bc
and ρ⊥Bc

, given by the parallel and or-

thogonal part of the Clifford Fourier transform and requires an aggregation step to

give final score. The second one, noted ρBc , does not require such a processing.

Synthetic data: Two simple images (see Fig. 4) are considered, they contain the

same shape (a rectangle) on a black background, but the second is translated and its

color c2 changed from experiments to experiments. Bivectors Bµ , Br and Bc1
, where

c1 is the color of the first rectangle, are used to compute the correlation scores. In

�
�
���������	A�BBC �

�

DEF���� DEF����

Fig. 4 Synthetic data: rectangles of color c1 and c2

Table 4, the ’-’ symbol denotes a value that cannot be computed because the parallel

(resp. orthogonal) part is null. Taking the example in which c2 = rgb(66,0,0) one

can see that ρ‖Bc2
= ρ⊥Bc2

= 1. This is not conclusive as two rectangles which have

different colors must be considered as different. However, the correlation score ρBc2

computed from the reconstructed Clifford Fourier transform gives scores lower than

one and depends on the amount of color that the two rectangles have in common.
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P
P

P
P

P
P

c2

B Bµ Br Bg Bb Bc1

ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB

c1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1

rgb(66,0,0) 1 1 0.43 1 - 0.36 - 1 0.55 - 1 0.91 1 - 0.36

rgb(0,154,0) 1 1 0.84 - 1 0.93 1 - 0.83 - 1 0.91 1 - 0.84

rgb(0,0,77) 1 1 0.50 - 1 0.93 - 1 0.55 1 - 0.42 1 - 0.42

µ 1 - 0.93 1 1 0.96 1 1 0.93 1 1 0.97 1 - 0.93

Table 4 Correlation scores between image 1 and 2 for various choices of c2 and B. From image 1

to 2, the rectangle has color changed from c1 = rgb(66,154,77) to c2 and a translation is applied.

The same remarks apply to c2 taken equal to rgb(0,154,0) or rgb(0,0,77). The

behavior for the gray axis level , µ , is different as ρBµ is always high: unsurprisingly,

it mostly depends on the shape without taking into account color information.

ρ

94.96

ρ‖B ρ⊥B ρmin
‖,⊥B

ρmax
‖,⊥B

ρmean
‖,⊥B

ρB

Br 95.38 96.33 96.46 96.14 96.58 97.50

Bg 95.29 96.79 96.68 95.90 96.68 97.49

Bb 95.08 96.58 96.60 95.89 96.51 97.49

Bci
95.33 83.92 82.60 96.08 95.50 97.53

Table 5 COIL-100 : Recognition rates in % with the phase correlation for color images

COIL-100: Results with Br, Bg, Bb and Bci
bivectors are given. Notice that ci cor-

responds to the choice of one bivector per request image, this color being the dom-

inant color of the image. Table 5 clearly shows that the correlation computed from

the reconstructed Clifford Fourier transform is the best method for this database. It

has more discriminative power for color objects than other methods, and more im-

portantly, it seems to be quite insensitive to the bivector choice. One can also see

that most of color phase correlation methods give better recognition rates than the

classical phase correlation for grayscale images. The different choices of bivectors

or aggregation functions do not give really improve the results nevertheless recog-

nition rates are high.

ρ

66.37

ρ‖B ρ⊥B ρmin
‖,⊥B

ρmax
‖,⊥B

ρmean
‖,⊥B

ρB

Br 66.51 66.00 67.64 68.05 69.15 66.74

Bg 66.00 67.91 67.31 66.95 67.51 66.41

Bb 65.57 67.41 68.01 66.95 67.71 66.81

Bci
66.34 74.50 76.84 71.52 78.38 66.94

Table 6 color FERET : Recognition rates in % with the phase correlation for color images

One can see on the Table 6 that the results for the color FERET database are quite

different. Indeed, ρBr is not the best method anymore, but still very stable. This

relatively low performance is due to confusions induced by the different colors con-

stituting the background. So, if the reconstructed Clifford Fourier transform is con-

sidered, all the color information is aggregated. Hence the choice of one bivector

per request image, corresponding to the dominant color, separates the background

and the foreground. This choice is the best among Br, Bg and Bb and gives the best

recognition rate using the mean as an aggregation function.
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6 Conclusion

Two descriptors for color object recognition based on Clifford Fourier transform

and with the viewpoint of group actions are proposed. Better classification results

than those of analogous marginal methods are provided. Specially, Clifford Fourier

descriptors enhance Generalized Fourier Descriptors with lower computation cost

and size (only two FFT instead of three). Mathematically sound phase correlation

computation for color images would imply an inverse Clifford Fourier transform of

a spinor which is not available for now. Although some workaround are proposed in

this paper, future works will give more efficient and consistent solutions.
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