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REVERSE CARLESON MEASURES IN HARDY SPACES

ANDREAS HARTMANN, XAVIER MASSANEDA, ARTUR NICOLAU, & JOAQUIM ORTEGA-CERDÀ

ABSTRACT. We give a necessary and sufficient condition for a measure µ in the closed unit disk

to be a reverse Carleson measure for Hardy spaces. This extends a previous result of Lefèvre,

Li, Queffélec and Rodrı́guez-Piazza [LLQR]. We also provide a simple example showing that the

analogue for the Paley-Wiener space does not hold. This example can be generalised to model

spaces associated to one-component inner functions.

1. INTRODUCTION

For 1 ≤ p <∞ let Hp be the Hardy space on the unit disk D equipped with its usual norm

‖f‖p =

(

sup
r<1

∫ 2π

0

|f(reiθ)|p
dθ

2π

)1/p

.

Denote by M+(D) the set of positive, finite Borel measures supported on D, and let µ ∈M+(D).
A well known theorem by Carleson (see [Gar, Chap.I Th. 5.6]) states that Hp embeds into

Lp(D, µ):

‖f‖Lp(D,µ) . ‖f‖p, f ∈ Hp,(1.1)

if and only if µ satisfies the Carleson condition: there exists C > 0 such that for all arcs I in ∂D

µ(SI) ≤ C|I|,(1.2)

where SI = {z ∈ D : 1− |I| ≤ |z| ≤ 1, z/|z| ∈ I} is the usual Carleson window. This theorem

has been extended to several other spaces, like Bergman, Fock, model spaces etc., and we refer

the reader to the huge bibliography on this topic for further information.

Note that Hp contains a dense set of continuous functions for which the embedding (1.1) still

makes sense when the measure has a part supported on the boundary. Then (1.2) implies that

the restriction of the measure µ to the boundary has to be absolutely continuous with respect to

Lebesgue measure and with bounded Radon-Nikodym derivative. It is thus possible to consider

more generally positive, finite Borel measures supported on the closed unit disk: M+(D).

Here, we are interested in reverse Carleson inequalities ‖f‖p . ‖f‖Lp(D,µ), f ∈ C(D) ∩

Hp(D), 1 < p <∞. In [LLQR] Lefèvre et al. proved that when µ is already a Carleson measure
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these hold if and only it there exists C > 0 such that for all arcs I ⊂ ∂D

µ(SI) ≥ C|I|.

Our elementary proof actually shows that the reverse inequalities hold without the Carleson

condition. It turns out that the interesting part of the measure has to be supported on the boundary,

while the part supported in the disk can be dropped.

The embedding problem is closely related with the reproducing kernel thesis: if the embedding

holds on the reproducing kernels, then it actually holds for every function. We also show that the

reproducing kernel thesis holds for the reverse Carleson embedding.

Finally, we provide a simple example showing that the analogous reproducing kernel thesis

for the reverse embedding in the Paley-Wiener space does not hold. The construction can be

generalised to model spaces associated to one-component inner functions.

We shall use the following standard notation: f . g means that there is a constant C indepen-

dent of the relevant variables such that f ≤ Cg, and f ≃ g means that f . g and g . f .

2. MAIN RESULT

For 1 < p <∞ and λ ∈ D consider the reproducing kernel in Hp

kλ(z) =
1

1− λz
, z ∈ D,

and its normalised companion

Kλ :=
kλ

‖kλ‖p
.

A standard computation shows that ‖kλ‖p ≃ (1− |λ|)−1/p′, where 1/p+ 1/p′ = 1.

Our main result reads as follows.

Theorem 2.1. Let 1 < p <∞ and let µ ∈M+(D). Then the following assertions are equivalent:

(1) There exists C1 > 0 such that for every function f ∈ Hp ∩ C(D),
∫

D

|f |pdµ ≥ C1‖f‖
p
p ,

(2) There exists C2 > 0 such that for every λ ∈ D,
∫

D

|Kλ|
pdµ ≥ C2 ,

(3) There exists C3 > 0 such that for every arc I ⊂ ∂D,

µ(SI) ≥ C3|I| .

(4) There exists C4 > 0 such that the Radon-Nikodym derivative of µ|∂D with respect to the

length measure is bounded below by C4.

Observe that in this theorem we do not require absolute continuity of the restriction µ|∂D.

Still, if we want to extend (1) to the entire Hp-space, then, in order that
∫

D
|f |pdµ makes sense

for every function in Hp, we need to impose absolute continuity on µ|∂D. Note that the integral
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∫

D
|f |pdµ can be infinite for certain f ∈ Hp when the Radon-Nikodym derivative of µ|∂D is not

bounded.

Proof. (1) ⇒ (2) is clear.

(3) ⇒ (4). Take h > 0 so that |I|/h is a large integer N and consider the modified Carleson

window

SI,h = {z ∈ D : 1− h ≤ |z| ≤ 1, z/|z| ∈ I} .

Split I into N subarcs Ik such that |Ik| = h (and hence SIk,h = SIk). Then

µ(SI,h) = µ(

N
⋃

k=1

SIk,h) =

N
∑

k=1

µ(SIk,h) ≥ C3

N
∑

k=1

|Ik| = C3|I|.

Now, for every open set O in D for which I ⊂ O there exists h > 0 such that SI,h ⊂ O. Since

µ ∈M+(D
−) is outer regular (see [Ru, Theorem 2.18]) we thus have

µ(I) = inf
I⊂O open in D

µ(O) ≥ inf
h>0

µ(SI,h) ≥ C3|I|.

We deduce that the Lebesgue measure on ∂D denoted by m is absolutely continuous with re-

spect to the restriction of µ to ∂D and that the corresponding Radon-Nikodym derivative of µ is

bounded below by C3. In particular one can choose C4 = C3.

(4) ⇒ (1) Clearly, for all f ∈ Hp,
∫

D

|f |pdµ ≥

∫

∂D

|f |pdµ ≥ C4

∫

∂D

|f |pdm = C4‖f‖
p
p

(in particular, one can choose C1 = C4).

(2) ⇒ (3). By hypothesis, integrating over SI,h with respect to area measure dA on D we get

C2|I| × h ≤

∫

SI,h

∫

D

|Kλ|
pdµdA(λ) ≃

∫

D

∫

SI,h

(1− |λ|2)p/p
′

|1− λz|p
dA(λ)dµ(z).

Set

ϕh(z) =
1

h

∫

SI,h

(1− |λ|2)p/p
′

|1− λz|p
dA(λ) =

1

h

∫

SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ),

so that the previous estimate becomes

(2.1)

∫

D

ϕh(z)dµ(z) & |I| .

We claim that

lim
h→0

ϕh(z)

{

≃ 1 if z ∈ I,
= 0 otherwise.

Indeed, if z /∈ I , then there are δ, h0 > 0 such that for every 0 < h < h0 and for every λ ∈ SI,h,

we have |1− λz| ≥ δ > 0, and the result follows from the estimate

0 ≤ ϕh(z) =
1

h

∫

SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ) ≤

1

δp
|I| × h

h
× (2h)p−1 . hp−1.
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Suppose now that z = eiθ0 ∈ I . Let h ≤ |I|, then setting λ = (1− t)eiθ for λ ∈ SI,h we have

ϕh(z) =
1

h

∫

SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ) ≥

1

h

∫

eiθ∈I

∫ h

0

tp−1

|eiθ0 − (1− t)eiθ|p
(1− t)dtdθ

&
1

h

∫ h

0

∫

|θ−θ0|≤t,eiθ∈I

tp−1

|θ − θ0|p + tp
dθdt

≥
1

h

∫ h

0

∫

|θ−θ0|≤t,eiθ∈I

tp−1

2tp
dθdt.

Since 0 ≤ t ≤ h ≤ |I| and z = eit ∈ I , the set {eiθ : |θ − θ0| ≤ t, eiθ ∈ I} contains an interval

of length at least t/2, we get

ϕh(z) &
1

h

∫ h

0

t

2
×
tp−1

2tp
dt ≃ 1.

On the other hand, integrating in polar coordinates, we get

ϕh(z) =
1

h

∫

SI,h

(1− |λ|2)p−1

|1− λz|p
dA(λ) =

1

h

∫ 1

1−h

(1− r2)p−1

∫

I

1

|1− rei(θ−θ0)|p
dθrdr

.
1

h

∫ h

0

tp−1 1

tp/p′
dt ≃ 1.

Hence ϕh converges pointwise to a function comparable to χI , and ϕh is uniformly bounded in

h. Now, from (2.1) and by dominated convergence we finally deduce that

µ(I) =

∫

D−

χIdµ ≃

∫

D

lim
h→0

ϕh(z)dµ(z) = lim
h→0

∫

D

ϕh(z)dµ(z) & |I| .

�

Remark. The following example shows that the reproducing kernel thesis fails for the reverse

Carleson inequalities in the Paley-Wiener space PWπ, the space of Fourier transforms of square

integrable functions on [−π, π]. In Section 2 we will show how it can be adapted to any model

space associated to a one-component inner function.

Consider the sequence S = {xn}n∈Z\{0}, where

xn =

{

n+ 1/8 if n is even

n− 1/8 if n is odd.

By the Kadets-Ingham theorem (see e.g. [Nik, Theorem D4.1.2]) S would be a minimal sampling

sequence if we added the point 0. Since S is not sampling the discrete measure µ :=
∑

n 6=0 δxn

does not satisfy the reverse inequality ‖f‖L2(R) . ‖f‖L2(µ), f ∈ PWπ.

Let us see that, on the other hand, the µ-norm of the normalised reproducing kernels

Kλ(z) = cλ sinc(π(z − λ)) = cλ
sin(π(z − λ))

π(z − λ)
, c2λ ≃ (1 + | Imλ|)e−2π| Imλ|,
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is uniformly bounded from below. If λ is such that | Imλ| > 1 then | sin(π(xn − λ))| ≃ eπ| Imλ|,

and hence
∫

C

|Kλ(x)|
2dµ(x) =

∑

n 6=0

c2λ

∣

∣

∣

∣

sin(π(xn − λ))

π(xn − λ)

∣

∣

∣

∣

2

≃
∑

n 6=0

| Imλ|

|xn − λ|2
≃ 1.

It is thus enough to consider points λ ∈ C with | Im λ| ≤ 1. Let xn0
be the point of S closest to

λ; then there is δ > 0, independent of λ, such that

∫

C

|Kλ(x)|
2dµ(x) =

∑

n 6=0

|Kλ(xn)|
2 ≥

∣

∣

∣

∣

sin(π(xn0
− λ))

π(xn0
− λ)

∣

∣

∣

∣

2

≥ δ .

It is interesting to point out that µ is a Carleson measure for PWπ, since S is in a strip and

separated.

3. FAILURE IN OTHER MODEL SPACES

The previous construction can be generalised to certain model spaces in the disk. The model

space associated to an inner function Θ is KΘ = H2 ⊖ ΘH2, and the reproducing kernel corre-

sponding to λ ∈ D is given by

kΘλ (z) =
1−Θ(λ)Θ(z)

1− λz
, z ∈ D.

A particular class of model spaces is given by the so-called one-component inner functions, those

for which the sub-level set {z ∈ D : |Θ(z)| < ε} is connected for some 0 < ε < 1 .

The Paley-Wiener space corresponds, after a conformal mapping of D into the upper half-

plane, to the inner function Θ2π(z) = ei2πz . More precisely KΘ2π
= eiπzPWπ.

Here we show the following result.

Theorem 3.1. If Θ is a one-component inner function, then the reverse reproducing kernel thesis

does not hold in KΘ.

We refer the reader to [BFGHR] for sufficient conditions for reverse Carleson measures in

model spaces.

Let σ(Θ) denote the spectrum of Θ, that is, the set of ζ ∈ D such that lim inf
z→ζ,z∈D

|Θ(z)| = 0.

For one-component inner functions the set ∂D \ σ(Θ) is a countable union of arcs where Θ is

analytic (and on which the argument of Θ increases by 2π). Moreover, for any |α| = 1,

Eα := {ζ ∈ ∂D \ σ(Θ) : Θ(ζ) = α}

is countable and the system (KΘ
ζn
)ζn∈Eα

is an orthonormal basis of KΘ, a so-called Clark basis

(see [Cl], and [BaDy, Section 4] for the material needed here). For such ζ ∈ ∂D \ σ(Θ) the

reproducing kernel is defined as

kΘζ (z) =
1−Θ(ζ)Θ(z)

1− ζz
= ζΘ(ζ)

Θ(ζ)−Θ(z)

ζ − z
, z ∈ D.
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Its norm is
√

|Θ′(ζ)|, so that the corresponding normalised reproducing kernel is

KΘ
ζ :=

kΘζ
‖kΘζ ‖2

=
kΘζ

√

|Θ′(ζ)|
.

With these elements we follow the scheme of the Paley-Wiener case to prove Theorem 3.1.

Proof. Pick the Clark basis (KΘ
ζn
)n≥0 for α = 1 and set

ξn =

{

ζn if n 6= 1
ξ1 if n = 1,

where we choose ξ1 sufficiently close to ζ1 (and in particular different from ζn, n 6= 1) but

different from ζ1, implying in particular 〈KΘ
ξ1
, KΘ

ζn
〉 6= 0 for every n, so that (KΘ

ξn
)n≥0 is an

unconditional basis (see [BaDy]; it is actually not far from being orthogonal). It will be clear

from the proof below how close to ζ1 we have to choose ξ1.

We now consider the measure

µ :=
∑

n>0

‖kΘξn‖
−2
2 δξn =

∑

n>0

|Θ′(ξn)|
−1δξn

where we have taken away the very first point ξ0, so that (KΘ
ξn
)n>0 is an incomplete family. No-

tice that this is a perturbation of the Clark measure σ =
∑

n≥0 ‖k
Θ
ζn
‖−2δζn with one mass point

deleted. Thus µ is not a reverse Carleson measure since there are functions vanishing in all the

points ξn, n > 0, but not in ξ0.

Let us check that the reverse reproducing kernel thesis fails, which, in view of the above,

amounts to find a δ > 0 such that ‖KΘ
z ‖L2(µ) ≥ δ for every z ∈ D. Note that

(3.1) ‖KΘ
z ‖

2
L2(µ) =

∑

n≥1

1

|Θ′(ξn)|
|KΘ

z (ξn)|
2 =

∑

n≥1

|〈KΘ
z , K

Θ
ξn〉|

2,

which are just the generalised Fourier coefficients of KΘ
z in KΘ

ξn
, n ≥ 1.

Let us introduce the following function

ϕ(z) := |〈KΘ
ζ0
, KΘ

z 〉|
2 =

∣

∣

∣

∣

Θ(ζ0)−Θ(z)

ζ0 − z

∣

∣

∣

∣

2
1

|Θ′(ζ0)|

1− |z|2

1− |Θ(z)|2
, z ∈ D.

By the Cauchy-Schwarz inequality ϕ(z) ≤ 1 for all z ∈ D. Also, since ‖KΘ
ζ0
‖2 = ‖KΘ

z ‖2 = 1,

the only way to get ϕ(z) = 1 is that KΘ
z = αKΘ

ζ0
, |α| = 1, i.e. z = ζ0.

Since ζ0 is not in the spectrum, there is a closed neighbourhood C of ζ0 in D on which Θ is

analytic, which implies that ϕ is continuous on C. We suppose C small enough that it does not

contain any other ζk, k 6= 0, nor ξ1.

Introduce the sets

Uδ := {z ∈ C : |z − ζ0| < δ}

and define

ψ(δ) := sup
z /∈Uδ

ϕ(z)
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Claim: For sufficiently small δ the function ψ(δ) is decreasing, with ψ(0) = 1 and ψ(δ) < 1
for δ > 0.

We postpone the proof of the claim and proceed now to prove that ‖KΘ
z ‖L2(µ) & 1. Pick δ > 0

sufficiently small such that ψ(δ) < 1. We consider two cases.

Assume first that z /∈ Uδ. Pick 0 < ε < 1 − ψ(δ). Since {ζ0} ∪ {ξk}k≥1 gives rise to a

perturbation of the orthonormal Clark basis (Kζn)n≥0, it suffices to choose ξ1 close enough to ζ1
so that there is 0 < η < ǫ such that for every f ∈ KΘ (see [BaDy])

(1− η)‖f‖22 ≤ |〈f,Kζ0〉|
2 +

∑

n≥1

|〈f,Kξn〉|
2 ≤ (1 + η)‖f‖22.

Then, by (3.1)

‖KΘ
z ‖

2
L2(µ) =

∑

n≥1

|〈KΘ
z , K

Θ
ξn〉|

2 = |〈KΘ
z , K

Θ
ζ0
〉|2 +

∑

n≥1

|〈KΘ
z , K

Θ
ξn〉|

2 − |〈KΘ
z , K

Θ
ζ0
〉|2

≥ (1− η)‖KΘ
z ‖

2
2 − ϕ(z) ≥ (1− η)− (1− ǫ) = ǫ− η > 0

Assume now that z ∈ Uδ ⊂ C. We will check that on this set it suffices to consider only two

terms of the sum ϕ1(z) = |〈KΘ
z , K

Θ
ξ1
〉|2 and ϕ2(z) = |〈KΘ

z , K
Θ
ζ2
〉|2. It is here that we need that

ξ1 is a small perturbation of ζ1 which is “not harmonic” with ζ1, meaning that |〈KΘ
ζ2
, KΘ

ξ1
〉|2 6= 0.

Indeed ϕ1 and ϕ2 are continuous functions on the compact set U δ. Since Uδ ⊂ C, we have

ϕ2(z) = 0, z ∈ U δ, if and only if z = ζ0. Now ϕ1(ζ0) > 0 so that by a continuity argument we

conclude that ϕ1(z) + ϕ2(z) is strictly bounded away from 0 for z /∈ Uδ, which concludes the

proof.

Proof of the Claim. It is clear that ψ(δ) is decreasing and ψ(0) = 1.

We prove now that ψ(δ) < 1 for δ > 0. Indeed, suppose not, then there is a sequence

(zn)n ⊂ D \ Uδ such that ϕ(zn) = |〈KΘ
ζ0
, KΘ

zn〉|
2 → 1 as n → ∞. We can also assume that

zn → ζ ∈ clos(∂D\Uδ). Now (KΘ
zn)n is a bounded family, and by the Alaoglu theorem it admits

a weak convergent subsequence, which in order not to overcharge notation, we can suppose to

be also indexed by n. Let f be a weak limit of this sequence so that |〈KΘ
ζ0
, f〉| = 1. It is also

clear that ‖f‖2 = 1. From the same observation as above we can deduce f = αKΘ
ζ0

, |α| = 1

(in fact, every weak convergent subsequence has KΘ
ζ0

as weak limit). In particular, by the weak

convergence, for every f ∈ KΘ,

f(zn)

√

1− |zn|2

1− |Θ(zn)|2
= 〈f,KΘ

zn〉 → 〈f,KΘ
ζ0
〉 =

f(ζ0)
√

|Θ′(ζ0)|
.(3.2)

Observe that KΘ contains continuous functions (by a result of Aleksandrov continuous func-

tions in KΘ form actually a dense set in KΘ, see [CMR, p.186]).

Now, if there are two continuous functions f1 and f2 inKΘ such that the vectors (f1(ζ), f1(ζ0))
and (f2(ζ), f2(ζ0)) are linearly independent, then we can deduce from (3.2) that necessarily, first

1− |zn|
2

1− |Θ(zn)|2
→

1

|Θ′(ζ0)|

and then

f1(ζ) = f1(ζ0) and f2(ζ) = f2(ζ0)
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which is not possible unless ζ = ζ0.

Let us prove that if ζ 6= ζ0 then there are two such functions f1, f2. We start by taking two

linearly independent continuous functions h1, h2 ∈ KΘ. It may happen that (h1(ζ), h1(ζ0)) and

(h2(ζ), h2(ζ0)) are linearly independent and then we are done. If they are linearly dependent,

then we can find a linear combination f of h1 and h2 which is not identically 0 and such that

f(ζ) = f(ζ0) = 0. Consider the backward shift operator S∗f(z) = f(z)−f(0)
z

and recall that

S∗KΘ ⊂ KΘ. Observe that if moreover f(0) = 0 then also S∗f(ζ) = S∗f(ζ0) = 0. Hence,

after sufficiently many applications of S∗ we can suppose that f(0) 6= 0, f(ζ) = f(ζ0) = 0, and,

renormalising, that f(0) = 1.

Then g = S∗f is continuous inKθ and takes two different values g(ζ) = −ζ and g(ζ0) = −ζ0.

Set now h = S∗2f which takes the values h(ζ) = −ζ
2
− ζh′(0) and h(ζ0) = −ζ0

2
− ζ0h

′(0).
Then either the vectors (g(ζ), g(ζ0)) and (h(ζ), h(ζ0)) are linearly independent (and we are done)

or they are not, in which case the solution of the linear dependence gives ζ = ζ0. �
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