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INTRODUCTION

For 1 ≤ p < ∞ let H p be the Hardy space on the unit disk D equipped with its usual norm A well known theorem by Carleson (see [START_REF] Garnett | Bounded analytic functions[END_REF]Chap.I Th. 5.6]) states that H p embeds into L p (D, µ):

f p = sup
f L p (D,µ) f p , f ∈ H p , (1.1)
if and only if µ satisfies the Carleson condition: there exists C > 0 such that for all arcs I in ∂D µ(S I ) ≤ C|I|, (1.2)

where S I = {z ∈ D : 1 -|I| ≤ |z| ≤ 1, z/|z| ∈ I} is the usual Carleson window. This theorem has been extended to several other spaces, like Bergman, Fock, model spaces etc., and we refer the reader to the huge bibliography on this topic for further information.

Note that H p contains a dense set of continuous functions for which the embedding (1.1) still makes sense when the measure has a part supported on the boundary. Then (1.2) implies that the restriction of the measure µ to the boundary has to be absolutely continuous with respect to Lebesgue measure and with bounded Radon-Nikodym derivative. It is thus possible to consider more generally positive, finite Borel measures supported on the closed unit disk: M + (D).

Here, we are interested in reverse Carleson inequalities

f p f L p (D,µ) , f ∈ C(D) ∩ H p (D), 1 < p < ∞.
In [LLQR] Lefèvre et al. proved that when µ is already a Carleson measure these hold if and only it there exists C > 0 such that for all arcs I ⊂ ∂D µ(S I ) ≥ C|I|.

Our elementary proof actually shows that the reverse inequalities hold without the Carleson condition. It turns out that the interesting part of the measure has to be supported on the boundary, while the part supported in the disk can be dropped.

The embedding problem is closely related with the reproducing kernel thesis: if the embedding holds on the reproducing kernels, then it actually holds for every function. We also show that the reproducing kernel thesis holds for the reverse Carleson embedding.

Finally, we provide a simple example showing that the analogous reproducing kernel thesis for the reverse embedding in the Paley-Wiener space does not hold. The construction can be generalised to model spaces associated to one-component inner functions.

We shall use the following standard notation: f g means that there is a constant C independent of the relevant variables such that f ≤ Cg, and f ≃ g means that f g and g f .

MAIN

RESULT For 1 < p < ∞ and λ ∈ D consider the reproducing kernel in H p k λ (z) = 1 1 -λz , z ∈ D,
and its normalised companion

K λ := k λ k λ p .
A standard computation shows that k λ p ≃ (1 -|λ|) -1/p ′ , where 1/p + 1/p ′ = 1.

Our main result reads as follows.

Theorem 2.1. Let 1 < p < ∞ and let µ ∈ M + (D). Then the following assertions are equivalent:

(1) There exists C 1 > 0 such that for every function

f ∈ H p ∩ C(D), D |f | p dµ ≥ C 1 f p p ,
(2) There exists C 2 > 0 such that for every λ ∈ D,

D |K λ | p dµ ≥ C 2 ,
(3) There exists C 3 > 0 such that for every arc I ⊂ ∂D, µ(S I ) ≥ C 3 |I| .

(4) There exists C 4 > 0 such that the Radon-Nikodym derivative of µ| ∂D with respect to the length measure is bounded below by C 4 .

Observe that in this theorem we do not require absolute continuity of the restriction µ| ∂D . Still, if we want to extend (1) to the entire H p -space, then, in order that D |f | p dµ makes sense for every function in H p , we need to impose absolute continuity on µ| ∂D . Note that the integral D |f | p dµ can be infinite for certain f ∈ H p when the Radon-Nikodym derivative of µ| ∂D is not bounded.

Proof. (1) ⇒ (2) is clear.

(3) ⇒ (4). Take h > 0 so that |I|/h is a large integer N and consider the modified Carleson window [START_REF] Rudin | Real and complex analysis[END_REF]Theorem 2.18]) we thus have

S I,h = {z ∈ D : 1 -h ≤ |z| ≤ 1, z/|z| ∈ I} . Split I into N subarcs I k such that |I k | = h (and hence S I k ,h = S I k ). Then µ(S I,h ) = µ( N k=1 S I k ,h ) = N k=1 µ(S I k ,h ) ≥ C 3 N k=1 |I k | = C 3 |I|. Now, for every open set O in D for which I ⊂ O there exists h > 0 such that S I,h ⊂ O. Since µ ∈ M + (D -) is outer regular (see
µ(I) = inf I⊂O open in D µ(O) ≥ inf h>0 µ(S I,h ) ≥ C 3 |I|.
We deduce that the Lebesgue measure on ∂D denoted by m is absolutely continuous with respect to the restriction of µ to ∂D and that the corresponding Radon-Nikodym derivative of µ is bounded below by C 3 . In particular one can choose

C 4 = C 3 . (4) ⇒ (1) Clearly, for all f ∈ H p , D |f | p dµ ≥ ∂D |f | p dµ ≥ C 4 ∂D |f | p dm = C 4 f p p (in particular, one can choose C 1 = C 4 ).
(2) ⇒ (3). By hypothesis, integrating over S with respect to area measure dA on D we get

C 2 |I| × h ≤ S I,h D |K λ | p dµdA(λ) ≃ D S I,h (1 -|λ| 2 ) p/p ′ |1 -λz| p dA(λ)dµ(z). Set ϕ h (z) = 1 h S I,h (1 -|λ| 2 ) p/p ′ |1 -λz| p dA(λ) = 1 h S I,h (1 -|λ| 2 ) p-1 |1 -λz| p dA(λ),
so that the previous estimate becomes

(2.1) D ϕ h (z)dµ(z) |I| .
We claim that

lim h→0 ϕ h (z) ≃ 1 if z ∈ I, = 0 otherwise.
Indeed, if z / ∈ I, then there are δ, h 0 > 0 such that for every 0 < h < h 0 and for every λ ∈ S I,h , we have |1 -λz| ≥ δ > 0, and the result follows from the estimate

0 ≤ ϕ h (z) = 1 h S I,h (1 -|λ| 2 ) p-1 |1 -λz| p dA(λ) ≤ 1 δ p |I| × h h × (2h) p-1 h p-1 .
Suppose now that z = e iθ 0 ∈ I. Let h ≤ |I|, then setting λ = (1 -t)e iθ for λ ∈ S I,h we have

ϕ h (z) = 1 h S I,h (1 -|λ| 2 ) p-1 |1 -λz| p dA(λ) ≥ 1 h e iθ ∈I h 0 t p-1 |e iθ 0 -(1 -t)e iθ | p (1 -t)dtdθ 1 h h 0 |θ-θ 0 |≤t,e iθ ∈I t p-1 |θ -θ 0 | p + t p dθdt ≥ 1 h h 0 |θ-θ 0 |≤t,e iθ ∈I t p-1 2t p dθdt.
Since 0 ≤ t ≤ h ≤ |I| and z = e it ∈ I, the set {e iθ : |θ -θ 0 | ≤ t, e iθ ∈ I} contains an interval of length at least t/2, we get

ϕ h (z) 1 h h 0 t 2 × t p-1 2t p dt ≃ 1.
On the other hand, integrating in polar coordinates, we get

ϕ h (z) = 1 h S I,h (1 -|λ| 2 ) p-1 |1 -λz| p dA(λ) = 1 h 1 1-h (1 -r 2 ) p-1 I 1 |1 -re i(θ-θ 0 ) | p dθrdr 1 h h 0 t p-1 1 t p/p ′ dt ≃ 1.
Hence ϕ h converges pointwise to a function comparable to χ I , and ϕ h is uniformly bounded in h. Now, from (2.1) and by dominated convergence we finally deduce that

µ(I) = D - χ I dµ ≃ D lim h→0 ϕ h (z)dµ(z) = lim h→0 D ϕ h (z)dµ(z) |I| .

Remark.

The following example shows that the reproducing kernel thesis fails for the reverse Carleson inequalities in the Paley-Wiener space P W π , the space of Fourier transforms of square integrable functions on [-π, π]. In Section 2 we will show how it can be adapted to any model space associated to a one-component inner function.

Consider the sequence S = {x n } n∈Z\{0} , where

x n = n + 1/8 if n is even n -1/8 if n is odd.
By the Kadets-Ingham theorem (see e.g. [START_REF] Nikolski | Operators, functions, and systems: an easy reading[END_REF]Theorem D4.1.2]) S would be a minimal sampling sequence if we added the point 0. Since S is not sampling the discrete measure µ := n =0 δ xn does not satisfy the reverse inequality

f L 2 (R) f L 2 (µ) , f ∈ P W π .
Let us see that, on the other hand, the µ-norm of the normalised reproducing kernels

K λ (z) = c λ sinc(π(z -λ)) = c λ sin(π(z -λ)) π(z -λ) , c 2 λ ≃ (1 + | Im λ|)e -2π| Im λ| , is uniformly bounded from below. If λ is such that | Im λ| > 1 then | sin(π(x n -λ))
| ≃ e π| Im λ| , and hence

C |K λ (x)| 2 dµ(x) = n =0 c 2 λ sin(π(x n -λ)) π(x n -λ) 2 ≃ n =0 | Im λ| |x n -λ| 2 ≃ 1.
It is thus enough to consider points λ ∈ C with | Im λ| ≤ 1. Let x n 0 be the point of S closest to λ; then there is δ > 0, independent of λ, such that

C |K λ (x)| 2 dµ(x) = n =0 |K λ (x n )| 2 ≥ sin(π(x n 0 -λ)) π(x n 0 -λ) 2 ≥ δ .
It is interesting to point out that µ is a Carleson measure for P W π , since S is in a strip and separated.

FAILURE IN OTHER MODEL SPACES

The previous construction can be generalised to certain model spaces in the disk. The model space associated to an inner function Θ is K Θ = H 2 ⊖ ΘH 2 , and the reproducing kernel corresponding to λ ∈ D is given by

k Θ λ (z) = 1 -Θ(λ)Θ(z) 1 -λz , z ∈ D.
A particular class of model spaces is given by the so-called one-component inner functions, those for which the sub-level set {z ∈ D : |Θ(z)| < ε} is connected for some 0 < ε < 1 .

The Paley-Wiener space corresponds, after a conformal mapping of D into the upper halfplane, to the inner function Θ 2π (z) = e i2πz . More precisely K Θ 2π = e iπz P W π .

Here we show the following result.

Theorem 3.1. If Θ is a one-component inner function, then the reverse reproducing kernel thesis does not hold in K Θ .

We refer the reader to [BFGHR] for sufficient conditions for reverse Carleson measures in model spaces.

Let σ(Θ) denote the spectrum of Θ, that is, the set of ζ ∈ D such that lim inf z→ζ,z∈D |Θ(z)| = 0.
For one-component inner functions the set ∂D \ σ(Θ) is a countable union of arcs where Θ is analytic (and on which the argument of Θ increases by 2π). Moreover, for any = 1,

E α := {ζ ∈ ∂D \ σ(Θ) : Θ(ζ) = α}
is countable and the system (K Θ ζn ) ζn∈Eα is an orthonormal basis of K Θ , a so-called Clark basis (see [Cl], and [START_REF] Baranov | The Feichtinger conjecture for reproducing kernels in model spaces[END_REF]Section 4] for the material needed here). For such ζ ∈ ∂D \ σ(Θ) the reproducing kernel is defined as

k Θ ζ (z) = 1 -Θ(ζ)Θ(z) 1 -ζz = ζΘ(ζ) Θ(ζ) -Θ(z) ζ -z , z ∈ D.
Its norm is |Θ ′ (ζ)|, so that the corresponding normalised reproducing kernel is

K Θ ζ := k Θ ζ k Θ ζ 2 = k Θ ζ |Θ ′ (ζ)| .
With these elements we follow the scheme of the Paley-Wiener case to prove Theorem 3.1.

Proof. Pick the Clark basis (K Θ ζn ) n≥0 for α = 1 and set

ξ n = ζ n if n = 1 ξ 1 if n = 1,
where we choose ξ 1 sufficiently close to ζ 1 (and in particular different from ζ n , n = 1) but different from ζ 1 , implying in particular K Θ ξ 1 , K Θ ζn = 0 for every n, so that (K Θ ξn ) n≥0 is an unconditional basis (see [BaDy]; it is actually not far from being orthogonal). It will be clear from the proof below how close to ζ 1 we have to choose ξ 1 .

We now consider the measure

µ := n>0 k Θ ξn -2 2 δ ξn = n>0 |Θ ′ (ξ n )| -1 δ ξn
where we have taken away the very first point ξ 0 , so that (K Θ ξn ) n>0 is an incomplete family. Notice that this is a perturbation of the Clark measure σ = n≥0 k Θ ζn -2 δ ζn with one mass point deleted. Thus µ is not a reverse Carleson measure since there are functions vanishing in all the points ξ n , n > 0, but not in ξ 0 .

Let us check that the reverse reproducing kernel thesis fails, which, in view of the above, amounts to find a δ > 0 such that K Θ z L 2 (µ) ≥ δ for every z ∈ D. Note that Let us prove that if ζ = ζ 0 then there are two such functions f 1 , f 2 . We start by taking two linearly independent continuous functions h 1 , h 2 ∈ K Θ . It may happen that (h 1 (ζ), h 1 (ζ 0 )) and (h 2 (ζ), h 2 (ζ 0 )) are linearly independent and then we are done. If they are linearly dependent, then we can find a linear combination f of h 1 and h 2 which is not identically 0 and such that f 

(3.1) K Θ z 2 L 2 (µ) = n≥1 1 |Θ ′ (ξ n )| |K Θ z (ξ n )| 2 = n≥1 | K Θ z , K Θ ξn | 2 , which are just the generalised Fourier coefficients of K Θ z in K Θ ξn , n ≥ 1. Let us introduce the following function ϕ(z) := | K Θ ζ 0 , K Θ z | 2 = Θ(ζ 0 ) -Θ(z) ζ 0 -z 2 1 |Θ ′ (ζ 0 )| 1 -|z| 2 1 -|Θ(z)| 2 , z ∈ D. By the Cauchy-Schwarz inequality ϕ(z) ≤ 1 for all z ∈ D. Also, since K Θ ζ 0 2 = K Θ z 2 = 1, the only way to get ϕ(z) = 1 is that K Θ z = αK Θ ζ 0 , |α| = 1, i.e. z = ζ 0 . Since ζ 0 is not in the spectrum, there is a closed neighbourhood C of ζ 0 in D on which Θ is analytic,

.

  Denote by M + (D) the set of positive, finite Borel measures supported on D, and let µ ∈ M + (D).

  which implies that ϕ is continuous on C. We suppose C small enough that it does not contain any other ζ k , k = 0, nor ξ 1 . Introduce the sets U δ := {z ∈ C : |z -ζ 0 | < δ} and define ψ(δ) := sup z / ∈U δ ϕ(z) which is not possible unless ζ = ζ 0 .

  (ζ) = f (ζ 0 ) = 0. Consider the backward shift operator S * f (z) = f (z)-f (0) z and recall that S * K Θ ⊂ K Θ . Observe that if moreover f (0) = 0 then also S * f (ζ) = S * f (ζ 0 ) = 0.Hence, after sufficiently many applications of S * we can suppose that f (0) = 0, f (ζ) = f (ζ 0 ) = 0, and, renormalising, that f (0) = 1.Then g = S * f is continuous in K θ and takes two different values g(ζ) = -ζ and g(ζ 0 ) = -ζ 0 . Set now h = S * 2 f which takes the values h(ζ) = -ζ 2 -ζh ′ (0) and h(ζ 0 ) = -ζ 0 2 -ζ 0 h ′ (0).Then either the vectors (g(ζ), g(ζ 0 )) and (h(ζ), h(ζ 0 )) are linearly independent (and we are done) or they are not, in which case the solution of the linear dependence gives ζ = ζ 0 .
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Claim: For sufficiently small δ the function ψ(δ) is decreasing, with ψ(0) = 1 and ψ(δ) < 1 for δ > 0.

We postpone the proof of the claim and proceed now to prove that K Θ z L 2 (µ)

1. Pick δ > 0 sufficiently small such that ψ(δ) < 1. We consider two cases.

Assume first that z / ∈ U δ . Pick 0 < ε < 1 -ψ(δ). Since {ζ 0 } ∪ {ξ k } k≥1 gives rise to a perturbation of the orthonormal Clark basis (K ζn ) n≥0 , it suffices to choose ξ 1 close enough to ζ 1 so that there is 0 < η < ǫ such that for every f ∈ K Θ (see [BaDy])

Then, by (3.1)

We will check that on this set it suffices to consider only two terms of the sum ϕ

so that by a continuity argument we conclude that ϕ 1 (z) + ϕ 2 (z) is strictly bounded away from 0 for z / ∈ U δ , which concludes the proof.

Proof of the Claim. It is clear that ψ(δ) is decreasing and ψ(0) = 1.

We prove now that ψ(δ) < 1 for δ > 0. Indeed, suppose not, then there is a sequence

We can also assume that

n is a bounded family, and by the Alaoglu theorem it admits a weak convergent subsequence, which in order not to overcharge notation, we can suppose to be also indexed by n. Let f be a weak limit of this sequence so that

It is also clear that f 2 = 1. From the same observation as above we can deduce f = αK Θ ζ 0 , |α| = 1 (in fact, every weak convergent subsequence has K Θ ζ 0 as weak limit). In particular, by the weak convergence, for every

Observe that K Θ contains continuous functions (by a result of Aleksandrov continuous functions in K Θ form actually a dense set in K Θ , see [START_REF] Cima | The Cauchy transform[END_REF]p.186]). Now, if there are two continuous functions f 1 and f 2 in K Θ such that the vectors (f 1 (ζ), f 1 (ζ 0 )) and (f 2 (ζ), f 2 (ζ 0 )) are linearly independent, then we can deduce from (3.2) that necessarily, first