
HAL Id: hal-00808055
https://hal.science/hal-00808055

Submitted on 4 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Curvelet transforms and Astronomical Data
Restoration

Arnaud Woiselle, Jean-Luc Starck, Jalal M. Fadili

To cite this version:
Arnaud Woiselle, Jean-Luc Starck, Jalal M. Fadili. 3D Curvelet transforms and Astronomical
Data Restoration. Applied and Computational Harmonic Analysis, 2010, 28 (2), pp.171-188.
�10.1016/j.acha.2009.12.003�. �hal-00808055�

https://hal.science/hal-00808055
https://hal.archives-ouvertes.fr

3D Curvelet transforms and Astronomical Data Restoration

A. Woisellea,b, J-L. Starcka, J. Fadilic

aCEA, IRFU, SEDI-SAP, Laboratoire Astrophysique des Interactions Multi-échelles (UMR 7158) ,

CEA/DSM-CNRS-Universite Paris Diderot, Centre de Saclay, F-91191 GIF-Sur-YVETTE, France.
bSagem Defense Securite, 95101 Argenteuil CEDEX, France.

cGREYC CNRS UMR 6072, Image Processing Group, ENSICAEN 14050 Caen Cedex, France.

Abstract

This paper describes two new 3D Curvelet decompositions, which are built in a way similar

to the first generation of curvelets [37]. The first one, called BeamCurvelet transform, is well

designed for representing 1D filaments in a 3D space, while the second one, the RidCurvelet

transform, is designed to analyze 2D surfaces. We show that these constructions can be useful for

different applications such as filament detection, denoising or inpainting. Hence, they could lead

to alternative approaches for analyzing 3D cosmological data sets, such as catalogs of galaxies,

λCDM simulation or weak lensing data.

Keywords: 3D transform, curvelet, wavelet, multi-resolution representations, astrophysics,

galaxy distribution

1. Introduction

Sparse representations such as wavelets or curvelets have been very successful for 2D image

processing. Impressive results were obtained for many applications such as compression (see [8]

for an example of Surflet compression; the new image standard JPEG2000 is based on wavelets

rather than DCT like JPEG), denoising [41, 37, 20], contrast enhancement [39], inpainting [17,

19] or deconvolution [44, 45]. Curvelets [37, 5], Bandelets [27] and Contourlets [12] were

designed to well represent edges in an image while wavelets are especially efficient for isotropic

feature analysis.

In 3D, the separable Wavelet transform (decimated, undecimated, or any other kind) and the

Discrete Cosine transform are certainly the most known decompositions [33, 11, 10]. The DCT

is mainly used in video compression, but has also been used in denoising [32]. A lot of effort

has been made in the last five years to build sparse 3D data representations, which represent

better geometrical features contained in the data. The 3D beamlet transform [16] and the 3D

ridgelet transform [43] were respectively designed for 1D and 2D features detection. Video

denoising using the ridgelet transform was proposed in [6]. The 3D fast curvelet transform [48]

consists in paving the Fourier domain with angular wedges in dyadic concentric squares using

the parabolic scaling law to fix the number of angles depending on the scale, and has atoms

Email addresses: arnaud.woiselle@cea.fr (A. Woiselle), jsarck@cea.fr (J-L. Starck),

jallal.fadili@greyc-ens.caen.fr (J. Fadili)

Preprint submitted to Applied and Computational Harmonic Analysis January 4, 2010

designed for representing surfaces in 3D. The Surflet transform [7] – a d-dimensional extension

of the 2D wedgelets [14, 29] – has recently been studied for compression purposes [8]. Surflets

are an adaptive transform estimating each cube of a quad-tree decomposition of the data by two

regions of constant value separated by a polynomial surface. Another possible representation

uses the Surfacelets developed by Do and Lu [21]. It relies on the combination of a Laplacian

pyramid and a d-dimensional directional filter bank. Surfacelets produce a tiling of the Fourier

space in angular wedges in a way close to the curvelet transform, and can be interpreted as a 3D

adaptation of the 2D contourlet transform. This transformation has recently also been applied to

video denoising [22].

3D multiscale transforms and cosmological data set

Different statistical measures have been used in the cosmological literature to quantitatively

describe the cosmic texture [25], i.e. the large-scale structure of the universe showing intricate

patterns with filaments, clusters, and sheet-like arrangements of galaxies encompassing large

nearly empty regions, the so-called voids. Wavelets have been used for many years [18, 36, 25],

and it has been shown that denoising the galaxy distribution using wavelet instead of the standard

Gaussian filtering, allows us to better preserve structure at different scales, and therefore better

constrain our cosmological models [24].

Noise is also a problem of major concern for N-body simulations of structure formation in

the early Universe and it has been shown that using wavelets for removing noise from N-body

simulations is equivalent to simulations with two orders of magnitude more particles [30, 31].

Finally, 3D walelets, ridgelet and beamlet were also used in order to extract statistical infor-

mation from galaxy catalogs [43] and compare our data set to simulations obtained from different

cosmological models.

Why new transforms ?

These 3D transforms all aim at representing the data using a minimal number of active co-

efficients, and by construction are better adapted to capture a specific kind of pattern. For the

wavelet transform the pattern is smooth and isotropic, while for the DCT it is oscillating in all

directions. All previously mentioned 3D transforms, except the beamlet transform, use plate-like

functions, useful to represent surfaces in a 3D volume. The beamlet is therefore the only exist-

ing geometric decomposition allowing an efficient detection of filaments in 3D. Two relatively

different implementations have been proposed. One [16] suffers the lack of any reconstruction

algorithm, and the other one [43] is only optimal for the detection of filaments with a specific

filament size. This has motivated the design of the FABT transform in biology [2], but this de-

composition is also limited, since its optimality is only for filament of a given width. None of

these transforms presents the nice scaling properties similar to those of 2D curvelet transform.

This paper

We propose in this paper a new transform, the BeamCurvelet transform, which is well adapted

for the detection of filaments of different sizes and widths. A minor variation in its construction

leads to another transform with plate-like elements, the RidCurvelet transform. Following the no-

tations in [15], a more standard name for these representations would be ”Local-k plane Ridgelet

Bases in n-D : LRB(k,n)“, thus leading respectively to LRB(1,3) and LRB(2,3). Both construc-

tions have interesting scaling properties, and offer exact reconstruction. They can therefore be

used for different applications such as denoising or inpainting.

2

This paper is organized as follows : In the second and third section, we show how we can

extend the 2D curvelet transform to 3D, leading to two new decompositions, the BeamCurvelet

and the RidCurvelet. In section 4, we investigate different approaches for BeamCurvelet /Rid-

Curvelet denoising. The last section presents applications how these two transforms can be used

for inpainting.

2. The BeamCurvelet transform

2.1. The 2D Curvelet transform

In order to understand our construction for 3D Curvelets, we first recall the simpler but very

similar 2D case.

The first generation curvelets [37, 4] were built using the isotropic undecimated wavelet

transform [38] and the ridgelet transform [3].

The ridgelet transform is useful for representing global lines crossing an image on its full

length the same way the wavelets represent isolated isotropic singularities and shapes. This

property is obtained by the Radon transform, which transforms lines into points. A ridgelet

function is indexed by a scale parameter a, a position b and an orientation θ. Let γ = (a, b, θ) ∈

R
∗
+ ×R × [0, 2π[. Given a wavelet function ψ, we define a ridgelet ψγ by

ψγ = a−1/2ψ ((x1 cos θ + x2 sin θ − b)/a) .

The ridgelet transform is implemented as a line extraction in Fourier domain, using the projection-

slice theorem. The process is shown in Figure 1. The main drawback of this transform is that

Original

image

FFT2D

F
F
T
1D

−

1

WT1D

A
n
g
le

A
n
g
le

Wavelet scales

Radon

Transform

Ridgelet

Transform

Figure 1: Scheme showing the main steps of the ridgelet transform in 2D : lines passing through the origin are extracted

from the Fourier transform of the image; a wavelet transform is applied on each of these lines.

lines span the whole image and thus aren’t well localized in space. The idea was then to make

it local and multiscale by applying it blockwise on a multiscale isotropic wavelet transform.

The key property is a law forcing the size of the blocks from one scale to the next, following a

parabolic scaling which states that the number of blocks to get in a scale is downsized by a factor

3

four each other scale (the size of the blocks is doubled each other scale on an isotropic undec-

imated wavelet transform, and divided by two on a decimated one). Figure 2 shows the global

process described above. The ridgelet transform is implemented through a Radon transform in

Fourier domain, followed by a one-dimensional wavelet transform.

Original

image

FFT2D

F
F
T
1D

−

1

WT1D

A
n
g
le

A
n
g
le

Wavelet scales

Radon

Transform

Ridgelet

Transform

for each block
on each scale

F
in

e
sca

les

WT2D

Coarse scale

Figure 2: Scheme showing the main steps of the curvelet-99 transform : the ridgelet transform is applied to each block

of each scale of an isotropic 2D wavelet transform.

As in two dimensions, the 3D first generation Curvelet transforms we develop in this pa-

per are based on the Radon transform applied to localized blocks of a given size of a 3D spectral

decomposition of the data. There are two ways of extending the Radon transform in three dimen-

sions, which lead to the two transforms described below. The first one is obtained by projecting

along 2D planes (3D partial Radon transform), which leads to the BeamCurvelets, and the second

one by projecting only along 1D lines (3D Radon transform), which leads to the RidCurvelets.

2.2. The 3D Continuous BeamCurvelet Transform

In order to separate the signal into spectral bands, we use a filter-bank. Let N∗ be the set

of strictly positive integers. Given a smooth function ψ ∈ L2(R3) : ∀s ∈ N∗, ψ2s = 26sψ(22s·)

extracting the frequencies around |ξ| ∈ [22s, 22s+2], and a low-pass filter ψ0 for |ξ| ≤ 1. We get a

partition of unity :

|ψ̂0(ξ)|2 +
∑

s>0

|ψ̂2s(ξ)|
2 = 1 (1)

Let P0 f = ψ0 ∗ f and ∆s f = ψ2s ∗ f , where ∗ is the convolution product. We can represent any

signal f as (P0 f ,∆1 f ,∆2 f , ...).

We tile the spatial domain of each scale s with a set Qs of regions Q of size 2s :

Q = Q(s, k1, k2, k3) =

[

k1

2s
,

k1 + 1

2s

[

×

[

k2

2s
,

k2 + 1

2s

[

×

[

k3

2s
,

k3 + 1

2s

[

⊂ [0, 1]3 (2)

4

with smooth windows wQ localized near Q, and verifying
∑

Q∈Qs
w2

Q
= 1, with

Qs =
{

Q(s, k1, k2, k3)|(k1, k2, k3) ∈ [0, 2s)3
}

. (3)

Each element of the frequency-space wQ∆s is transported to [0, 1]3 by the transport operator

TQ : L2(Q)→ L2([0, 1]3) applied to f ′ = wQ∆s f

TQ : L2(Q)→ L2([0, 1]3)

(TQ f ′)(x1, x2, x3) = 2−s f ′
(

k1 + x1

2s
,

k2 + x2

2s
,

k3 + x3

2s

)

. (4)

For each scale s, we have a space-frequency tiling operator gQ, the output of which lives on

[0, 1]3

gQ = TQwQ∆s. (5)

We can apply a 3D Beamlet transform [16, 13] on each block of each scale, by projecting on the

beamlet functions :

βσ,κ1,κ2,θ1,θ2
(x1, x2, x3) = σ−1/2φ((−x1 sin θ1 + x2 cos θ1 + κ1)/σ, (6)

(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + κ2)/σ).

where σ is the Beamlet scale parameter, (θ1, θ2) the orientation parameter and (κ1, κ2) the loca-

tion parameter, which is two dimensional because the beamlet transform integrates the data over

one dimension through the partial Radon transform (see section 2.3). φ ∈ L2(R3) is a smooth

function satisfying the following admissibility condition

∑

s∈Z

φ2(2su) = 1, ∀u ∈ R2. (7)

Finally, the BeamCurvelet transform of a 3D function f is

BC f =
{

〈
(

TQwQ∆s

)

f , βσ,κ1,κ2,θ1,θ2
〉 : s ∈ N∗,Q ∈ Qs

}

. (8)

As we can see, a BeamCurvelet function is parametrized in scale (s, σ), position (Q, κ1, κ2), and

orientation (θ1, θ2). The following sections describe the discretization and the effective imple-

mentation of such a transform.

2.3. Discretization

For convenience, and as opposed to the continuous notations, the scales are now numbered

from 0 to J, from the finest to the coarsest. As seen in the continuous formulation, the transform

operates in four main steps.

1. First the frequency decomposition is obtained by applying a 3D wavelet transform on

the data with a wavelet compactly supported in Fourier space like the pyramidal Meyer

wavelets with low redundancy [40], or using the 3D isotropic à trou wavelets.

2. Each wavelet scale is then decomposed in small cubes of a size following the parabolic

scaling law, forcing the block size Bs with the scale size Ns according to the formula

Bs

Ns

= 2s/2 B0

N0

, (9)

where N0 and B0 are the finest scale’s dimension and block size.

5

3. Then, we apply a partial 3D Radon transform on each block of each scale. This is accom-

plished by integrating the blocks along lines at every direction and position. For a fixed

direction (θ1, θ2), the summation gives us a plane. Each point on this plane represents a

line in the original cube. We obtain projections of the blocks on planes passing through

the origin at every possible angle.

4. At last, we apply a two-dimensional wavelet transform on each Partial Radon plane.

Steps 3 and 4 represent the Beamlet transform of the blocks. The 3D Beamlet atoms aim at

representing filaments crossing the whole 3D space. They are constant along a line and oscillate

like φ in the radial direction. Arranged blockwise on a 3D isotropic wavelet transform, and

following the parabolic scaling, we obtain the BeamCurvelet transform.

Figure 3 summarizes the beamlet transform, and Figure 4 the global BeamCurvelet transform.

(θ1, θ2)

Sum over the lines at a
given direction

Partial

radon

transform 2D Wavelet

transform

(θ 1
, θ

2
)
di
re
ct
io
n

(θ 1
, θ

2
)
di
re
ct
io
n

Figure 3: Schematic view of a 3D Beamlet transform. At a given direction, sum over the (θ1, θ2) line to get a ◦ point.

Repeat over all its parallels to get the dark plane and apply a 2D wavelet transform within that plane. Repeat for all the

directions to get the 3D Beamlet transform. See the text (section 3) for a detailed explanation and implementation clues.

Wavelet transform

Original

datacube

(θ1, θ2)

(θ 1
, θ

2
)
di
re
ct
io
ns

(θ 1
, θ

2
)
di
re
ct
io
ns

3D

Beamlet

transform

Figure 4: Global flow graph of a 3D BeamCurvelet transform.

6

2.4. Algorithm summary

As for the 2D Curvelets, the 3D BeamCurvelet transform is implemented effectively in the

Fourier domain. Indeed, the integration along the lines (3D partial Radon transform) becomes

a simple plane extraction in Fourier space, using the d-dimensional projection-slice theorem,

which states that the Fourier transform of the projection of a d-dimensional function onto an m-

dimensional linear submanifold is equal to an m-dimensional slice of the d-dimensional Fourier

transform of that function through the origin in the Fourier space which is parallel to the projec-

tion submanifold. In our case, d = 3 and m = 2. Algorithm 1 summarizes the whole process.

Algorithm 1: The BeamCurvelet Transform

Data: A data cube x and an initial block size B

Result: BeamCurvelet transform of x

begin
Apply a 3D isotropic wavelet transform

for all scales from the finest to the second coarsest do
Partition the scale into small cubes of size B

for each block do
Apply a 3D FFT

Extract planes passing through the origin at every angle (θ1, θ2)

for each plane (θ1, θ2) do
apply an inverse 2D FFT

apply a 2D wavelet transform to get the BeamCurvelet coefficients

if the scale number is even then
according to the parabolic scaling :

B = 2B (in the undecimated wavelet case)

B = B/2 (in the pyramidal wavelet case)

end

2.5. Properties

As a composition of invertible operators, the BeamCurvelet transform is invertible. As the

wavelet and Radon transform are both tight frames, so is the BeamCurvelet transform.

Given a Cube of size N × N × N, a cubic block of length Bs at scale s, and J + 1 scales, the

redundancy can be calculated as follows :

According to the parabolic scaling, ∀s > 0 : Bs/Ns = 2s/2B0/N0. The redundancy induced by

the 3D wavelet tansform is

Rw =
1

N3

J
∑

s=0

N3
s , (10)

with Ns = 2−sN for pyramidal Meyer wavelets (the case used on experiments described in sec-

tions 4 and 5), and thus Bs = 2−s/2B0 according to the parabolic scaling (see equation 9).

The partial Radon transform of a cube of size B3
s has a size 3B2

s × B2
s to which we apply 2D

decimated orthogonal wavelets with no redundancy. There are (ρNs/Bs)
3 blocks in each scale

7

because of the overlap factor (ρ ∈ [1, 2]) in each direction. So the complete redundancy of the

transform using the Meyer wavelets is

R =
1

N3

J−1
∑

s=0

(

ρ
Ns

Bs

)3

3B4
s +

N3
J

N3
= 3ρ3

J−1
∑

i=0

Bs2
−3s + 2−3J (11)

= 3ρ3B0

J−1
∑

s=0

2−7s/2 + 2−3J (12)

= O
(

3ρ3B0

)

when J → ∞ (13)

R(J = 1) = 3ρ3B0 +
1

8
(14)

R(J = ∞) ≈ 3.4ρ3B0 (15)

For a typical block size B0 = 17, we get for J ∈ [1,∞[:

R ∈ [51.125, 57.8[without overlapping (16)

R ∈ [408.125, 462.4[with 50% overlapping (ρ = 2). (17)

2.6. Inverse BeamCurvelet Transform

Because all its components are invertible, the BeamCurvelet transform is invertible and the

reconstruction error is comparable to machine precision. Algorithm 2 details the reconstruction

steps.

An example of a 3D BeamCurvelet atom is represented in Figure 5. The BeamCurvelet atom

is a collection of straight smooth segments well localized in space. Across the transverse plane,

the BeamCurvelets exhibit a wavelet-like oscillating behavior.

Figure 5: Examples of a BeamCurvelet atoms at different scales and orientations. These are 3D density plots : the values

near zero are transparent, and the opacity grows with the absolute value of the voxels. Positive values are red/yellow, and

negative values are blue/purple. The right map is a slice of a cube containing these three atoms in the same position as

on the left. The top left atom has an arbitrary direction, the bottom left is in the slice, and the right one is normal to the

slice.

3. The 3D RidCurvelet transform

3.1. The continuous transform

As referred to in 2.2, the second extension of the curvelet transform in 3D is obtained by

using the 3D Ridgelet transform [3] instead of the Beamlets. A three-dimensional ridge function

8

Algorithm 2: The Inverse BeamCurvelet Transform

Data: An initial block size B, and the BeamCurvelet coefficients : series of wavelet-space

planes indexed by a scale, angles (θ1, θ2), and a 3D position (Bx,By,Bz)

Result: The reconstructed data cube

begin

for all scales from the finest to the second coarsest do
Create a 3D cube the size of the current scale (according to the 3D wavelets used

in the forward transform)

for each block position (Bx,By,Bz) do
Create a block B of size B × B × B

for each plane (θ1, θ2) indexed with this position do
− Apply an inverse 2D wavelet transform

− Apply a 2D FFT

− Put the obtained Fourier plane to the block, such that the plane passes

through the origin of the block with normal angle (θ1, θ2)

− Apply a 3D IFFT

− Add the block to the wavelet scale at the position (Bx,By,Bz), using a

weighted function if overlapping is involved

if the scale number is even then
according to the parabolic scaling :

B = 2B (in the undecimated wavelet case)

B = B/2 (in the pyramidal wavelet case)

Apply a 3D inverse isotropic wavelet transform

end

9

is given by :

ρσ,κ,θ1,θ2
(x1, x2, x3) = σ−1/2φ

(

1

σ
(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 + x3 sin θ2 − κ)

)

, (18)

where σ and κ are respectively the scale and position parameters, and φ ∈ L2(R) satisfies equa-

tion 7. The global RidCurvelet transform of a 3D function f is then

RC f =
{

〈
(

TQwQ∆s

)

f , ρσ,κ,θ1,θ2
〉 : s ∈ N∗,Q ∈ Qs

}

. (19)

3.2. Discretization

The discretization is made the same way, the sums over lines becoming sums over the planes

of normal direction (θ1, θ2), which gives us a line for each direction. The 3D Ridge function is

useful for representing planes in a 3D space. It is constant along a plane and oscillates like φ in

the normal direction. The main steps of the Ridgelet transform are depicted in figure 6.

3.3. Implementation

The RidCurvelet transform is also implemented in Fourier domain, the integration along the

planes becoming a line extraction in the Fourier domain. The overall process is shown in Figure

7, and Algorithm 3 summarizes the implementation.

Radon

transform

1D Wavelet

transform

Sum over the planes at
a given direction

(θ1, θ2)

position

(θ
1
,θ

2
)

d
ir

ec
ti

on

wavelet scales

(θ
1
,θ

2
)

d
ir

ec
ti

on

Figure 6: Overview of the 3D Ridgelet transform. At a given direction, sum over the normal plane to get a • point.

Repeat over all its parallels to get the (θ1, θ2) line and apply a 1D wavelet transform on it. Repeat for all the directions to

get the 3D Ridgelet transform. See the text (section 3) for a detailed explanation and implementation clues.

3.4. Properties

The RidCurvelet transform forms a tight frame. Additionally, given a 3D cube of size N ×

N × N, a block of size-length Bs at scale s, and J + 1 scales, the redundancy is calculated as

follows :

The Radon transform of a cube of size B3
s has a size 3B2

s × Bs, to which we apply a pyramidal

1D wavelet of redundancy 2, for a total size of 3B2
s × 2Bs = 6B3

s . There are (ρNs/Bs)
3 blocks in

10

Wavelet transform

Original

datacube

3D

Ridgelet

transform

(θ1, θ2)

position

(θ
1
,θ

2
)

d
ir

ec
ti

on
s

wavelet scales

(θ
1
,θ

2
)

d
ir

ec
ti

on
s

Figure 7: Global flow graph of a 3D RidCurvelet transform.

each scale because of the overlap factor (ρ ∈ [1, 2]) in each direction. Therefore, the complete

redundancy of the transform using many scales of 3D Meyer wavelets is

R =

J−1
∑

s=0

6B3
s

(

ρ
Ns

Bs

)3

+ 2−3J = 6ρ3

J−1
∑

s=0

2−3s + 2−3J (20)

R = O(6ρ3) when J → ∞ (21)

R(J = 1) = 6ρ3 + 1/8 (22)

R(J = ∞) ≈ 6.86ρ3. (23)

3.5. Inverse RidCurvelet Transform

The RidCurvelet transform is invertible and the reconstruction error is comparable to machine

precision. Algorithm 4 details the reconstruction steps.

An example of a 3D RidCurvelet atom is represented in Figure 8. The RidCurvelet atom

is composed of planes with values oscillating like a wavelet in the normal direction, and well

localized due to the smooth function used to extract blocks on each wavelet scale.

4. Denoising

4.1. Introduction

In sparse representations, the simplest denoising methods are performed by a simple thresh-

olding of the discrete curvelet coefficients. The threshold level is usually taken as three times the

noise standard deviation, such that for an additive gaussian noise, the thresholding operator kills

all noise coefficients except a small percentage, keeping the big coefficients containing informa-

tion. The threshold we use is often a simple κσ, with κ ∈ [3, 4], which corresponds respectively

11

Algorithm 3: The RidCurvelet Transform

Data: A data cube x and an initial block size B

Result: RidCurvelet transform of x

begin
Apply a 3D isotropic wavelet transform

for all scales from the finest to the second coarsest do
Cut the scale into small cubes of size B

for each block do
Apply a 3D FFT

Extract lines passing through the origin at every angle (θ1, θ2)

for each line (θ1, θ2) do
apply an inverse 1D FFT

apply a 1D wavelet transform to get the RidCurvelet coefficients

if the scale number is even then
according to the parabolic scaling :

B = 2B (in the undecimated wavelet case)

B = B/2 (in the pyramidal wavelet case)

end

Algorithm 4: The Inverse RidCurvelet Transform

Data: An initial block size B, and the RidCurvelet coefficients : series of wavelet-space

lines indexed by a scale, angles (θ1, θ2), and a 3D position (Bx,By,Bz)

Result: The reconstructed data cube

begin

for all scales from the finest to the second coarsest do
Create a 3D cube the size of the current scale (according to the 3D wavelets used

in the forward transform)

for each block position (Bx,By,Bz) do
Create a block B of size B × B × B

for each line (θ1, θ2) indexed with this position do
− Apply an inverse 1D wavelet transform

− Apply a 1D FFT

− Put the obtained Fourier line to the block, such that the line passes

through the origin of the block with the angle (θ1, θ2)

− Apply a 3D IFFT

− Add the block to the wavelet scale at the position (Bx,By,Bz), using a

weighted function if overlapping is involved

if the scale number is even then
according to the parabolic scaling :

B = 2B (in the undecimated wavelet case)

B = B/2 (in the pyramidal wavelet case)

Apply a 3D inverse isotropic wavelet transform

end

12

Figure 8: Examples of RidCurvelet atoms at different scales and orientation. The rendering is similar to that of figure 5.

The right plot is a slice from a cube containing the three atoms shown here.

to 0.27% and 6.3 · 10−5 false detections. Sometimes we use a higher κ for the finest scale [37].

Other methods exist, that estimate automatically the threshold to use in each band like the False

Discovery Rate (see [1, 26]). The correlation between neighbor coefficients intra-band and/or

inter-band may also be taken into account (see [35, 34]). In this paper, in order to evaluate the

different transforms, we use a κσ Hard Thresholding in our experiments.

4.2. Algorithm

Due to the high redundancy of the proposed transforms, and because of the huge size of 3D

data, the transforms were implemented in a filtering-oriented way, in order to spare the machine

resources, and enable easy multi-threading. The two new Curvelet transforms operate blockwize,

and when there is no intra-block correlation taken into account in the denoising process, each

block can be treated independently and on a different processor. Therefore, we never have the

full transform in memory, only the wavelet transform of the data, and the Curvelet transform

of one block (times the number of CPUs if working on a cluster). Algorithm 5 summarizes the

denoising process. Using this algorithm, the memory used to filter a cube of any size using the

Curvelet transforms is about twice that of the isotropic Meyer wavelet transform, as the size of

one block is usually negligible compared to the size of the data. As an example, a data cube

of size 128 × 128 × 128 (8MB with 32bit floating points) transformed with the BeamCurvelet

and a block size of 17 with full 50% overlapping requires 3.3GB of memory, while it runs under

70MB with the low memory filtering algorithm. The transform and reconstruction with the

RidCurvelet (BeamCurvelet) transform take respectively about 25(260) and 35(460) seconds

without overlapping on a laptop (using a single core at 2.16GHz). With full overlapping, it takes

about six times more time, but as the code is parallelized with OpenMP, it can use all the CPUs

of the computer to lower the execution time dramatically.

4.3. Experiments

We have performed a few denoising experiments to emphasize the applicability domain and

specificity of each transform.

4.3.1. Toy model : Structure detection

First of all, in order to have a quantitative indicator of the efficiency of the two curvelet

transforms to approximate and detect specific structures, we transform two cubes, one containing

13

Algorithm 5: Curvelet denoising Algorithm

Data: The observed data, the noise level σ and a threshold level κσ.

Result: The denoised data. // Memory usage

begin
Apply a 3D isotropic Meyer wavelet transform 1 Wavelet transform

Duplicate it and set it to zero +1 Wavelet transform

Separate the following loop on multiple CPUs

for each block (s,Bx,By,Bz) of all scales except the coarsest do
Extract the block +1 block

Apply a 3D Beamlet or Ridgelet transform to the block +1 transformed block

Hard Threshold the coefficients at κσ

Apply a 3D Beamlet or Ridgelet inverse transform to the block

Put the block into the new wavelet scale, or add it with a weighing window if

overlapping is involved

Apply an inverse 3D wavelet transform

end

RidCurvelets BeamCurvelets Undecimated Wavelets Decimated Wavelets

Plane 11.78 8.11 5.06 3.13

Filament 1.02 2.22 1.30 1.16

Table 1: Maximum value of the coefficients of a transformed cube containing either a plane or a filament, using a given

representation.

a plane and the second a filament. Table 1 contains the maximum coefficients of the transformed

cubes, showing the level of detection of each structure in a given space. As we can see, the

RidCurvelet has the greatest coefficient for the plane and the BeamCurvelet for the filament. In

many applications (denoising, inpainting, morphological component analysis, ...), the process

is a thresholding of the coefficients at a level fixed by the parameters of the algorithm and the

noise level. Having many coefficients above a given level (or much energy), is an indication of

effectiveness.

In order to see the gain when using one transform rather than another, we threshold the

RidCurvelet transform of the cube containing the plane at the maximum BeamCurvelet detection

level (which is also far above the wavelet one). This means that, had we used another transform

besides the RidCurvelet at the same detection level, we would not have detected anything. The

reconstruction is shown in figure 9 (top row). We have also performed the same experiment with

the BeamCurvelet transform of the cube containing the filament with a threshold equal to the

level where the three other tested transforms don’t detect anything. As expected, there is much

information kept by the most adapted transform, even at a very high level of thresholding.

4.3.2. Structure denoising

Another way to see the power of each transform when associated to the right structures is to

denoise a synthetic cube containing plane- and filament-like structures. Figure 10 shows a cut

and a projection of the test cube containing parts of spherical shells and a spring-shaped filament.

We denoise this cube using wavelets, RidCurvelets and BeamCurvelets. As shown in figure 11,

the RidCurvelets denoise correctly the shells but poorly the filament, the BeamCurvelets restore

14

Figure 9: Top row : a plane, and the reconstruction after thresholding the RidCurvelet coefficients at 8.2 (see table 1).

Bottom row : a filament, and its reconstruction after the thresholding of the BeamCurvelet coefficients at 1.31.

15

Figure 10: From left to right : a 3D view of the cube containing pieces of shells and a spring-shaped filament, a slice of

the previous cube, and finally a slice from the noisy cube.

Wavelets RidCurvelets BeamCurvelets

Shells & spring 40.4dB 40.3dB 43.7dB

Table 2: PSNR of the denoised synthetic cube using wavelets, RidCurvelets or BeamCurvelets

the helix more properly while slightly underperforming for the shells, and wavelets are poor

on the shell and give a dotted result and misses the faint parts of both structures. The PSNRs

obtained with each transform are reported in Table 2. Here, the Curvelet transforms did very well

for a given kind of features, and the wavelets were better on the signal power. In Starck et al.

[41], in the framework of 3D image denoising, it was advocated to combine several transforms

in order to benefit from the advantages of each of them.

4.3.3. Combined Filtering

Let x be the unknown data, and z a white gaussian noise map of unitary variance. We observe

y = x + σz, where σ2 is the noise variance. A combined filtering algorithm has been developed

by Starck et al. [41], estimating x as x̃ as described below, using K dictionariesΦk, each having a

fast transform and reconstruction. We denote by ΦT
k

the forward transform. Let αk =
(

αk,i

)

be the

Figure 11: From left to right : a slice from the filtered test-cube described in section 4.3.2 (orignial in figure 10) by the

wavelet transform (isotropic undecimated), the RidCurvelets and the BeamCurvelets.

16

coefficient list indexed by i obtained by applying the k-th transform αk = Φ
T
k

y. Let Ω
y

k
be the list

of coefficients of y in Φk which have an absolute value greater than κσ : Ω
y

k
=

{

i : |αk,i| > κσ
}

,

κσ being the final threshold level (usually 3σ). The Combined Filtering method consists in

minimizing

min
x̃

K
∑

k=1

∥

∥

∥ΦT
k x̃

∥

∥

∥

ℓ1
s.t. ∀k ∈ [1,K] :

∥

∥

∥

∥

(

ΦT
k x̃ − ΦT

k y
)

Ωk

∥

∥

∥

∥

ℓ∞
≤
σ

2
, (24)

where (αk)Ωk
denotes the restriction to atoms in Ωk. The algorithm proposed in [41] solves

this minimization problem by iteratively transforming the solution in each dictionary, comparing

the coefficients with the noisy data’s coefficients, and soft-thresholding with a decreasing level.

The main drawback of this algorithm is that it requires to have in memory all coefficients of all

transforms during the iterations in order to evaluate the right-hand part of the functional. With

the size of 3D data and the redundancy of the proposed transforms, this requires a huge memory

size. Hence, using this method, we lose the advantages of the low-memory implementation that

make our new transforms useable on a laptop computer with very low memory consumption.

Therefore, we propose an alternative approach for the Combined Filtering.

The idea is that the residual between the data and the filtered cube must not be sparse in any

of the chosen transforms, and thus leads to small coefficients. It can be interpreted as ”There is

no structure (in the sense of detection with Φk) in the residual“. We aim to solve the optimization

problem

min
x̃
‖y − x̃‖2ℓ2

s.t. ∀k ∈ [1,K] :
∥

∥

∥ΦT
k (y − x̃)

∥

∥

∥

ℓ∞
< κσ (25)

where σ is the noise estimated on the data (or the energy of the faintest detail we wish to recover).

This problem can be solved using Algorithm 6. With this new algorithm, the memory required

Algorithm 6: The Combined Filtering

Data: The observed data y, the noise level σ, an initial threshold level k(0)σ, and a number

of iterations N.

Result: The estimate x(N) of the unknown x.

Let STλ be the soft-thresholding operator with threshold λ.

Let Φk, k ∈ [0,K) be the K dictionaries to combine.

Let κ = 3 be the final threshold level (when multiplied by σ).

begin

x(0) = 0 // Initial estimate

for n = 0 to N − 1 do

u(0) = x(n)

λ(n) = (k(0)σ − κσ)(N − 1 − n)/(N − 1) + κσ // Current threshold level

for k = 0 to K − 1 do

u(k+1) = u(k) + Φk STλ(n)

(

ΦT
k

(y − u(k))
)

// New estimate

x(n+1) = u(K)

end

to treat data of size 1283 with wavelets, BeamCurvelets and RidCurvelets with overlapping is

17

Figure 12: A slice and a 3D view of the noisy cube on Figure 10 after denoising with the presented Combined Filtering.

about 110MB, while it would need about 4GB with the old algorithm if it were optimally coded

(not using transforms as black boxes, but interacting with them). In our current implementation,

it uses twice that.

We used this Combined Filtering method to denoise the synthetic data in Figure 10, and

compared to the single-transform denoising PSNRs (see Table 2), we get a PSNR of 45.4dB,

which is almost 2dB higher than the best transform alone. Figure 12 shows the result of the new

CFA.

4.3.4. λCDM denoising

In astrophysics, we use N-body simulations when making an initial homogeneous universe

evolve with gravity to form structures, and during this process, there is a noise present in the

low density areas. Simulations of Cold Dark Matter (λCDM) exhibit formation of clusters and

filamentary, the density of the filaments being a thousand times lower than the clusters. As the

noise is important at low density, because of material particles of a given mass, we have to apply

a denoising between the time iterations of the simulation in order to improve it.

In the following example, we show a denoising of a simulated λCDM cube obtained by a sim-

ulation using the RAMSES code [47] with cosmological parameters as follows : Ωm = 0.3 (i.e.

30% of standard matter), Ωλ = 0.7 (70% of Dark Matter, which is interacting gravitationally

only), the Hubble parameter h = 0.7 (the rate of expansion of the universe) and σ8 = 0.9 (the

dark matter density fluctuations at present time at scale 8MPc).

The noise added to the data has a standard deviation (σ = 0.025) comparable to the filaments

amplitude (0.02), which is very small compared to the total amplitude of the data (≈ 100), as the

most dense clusters are five orders of magnitude higher than the filaments.

We first tried denoising the data using the undecimated wavelet transform, which correctly re-

covers the high-level clusters, but it fails to separate the filamentary structure from the noise.

Facing this problem, we used the BeamCurvelet transform instead. The result, shown in figure

13, although recovering the filaments, reveals strong artifacts surrounding the high-density clus-

ters, and therefore is useless. This phenomenon is not due to the noise, but to the form of the

BeamCurvelet atoms. Fine-scale BeamCurvelet atoms have an oscillating behavior, and although

these oscillations are very low (order 1e − 4 compared to the atom’s amplitude), they become

18

a serious problem when structures contained in the data have a huge dynamic range, as in our

λCDM simulations where clusters are 105 larger than filaments. When the atom is used to ap-

proximate a high density object, and when we look round it at scales 105 smaller, the oscillations

become dominant. In order to solve this problem, we must use conjointly the wavelets and the

BeamCurvelets combined in the algorithm we presented in section 4.3.3.

The results of denoising the λCDM data using the new combined filtering algotithm (Alg.

6) are shown in figure 14. As expected, the result is far better than using one transform alone,

and we restore the filaments very well. The oscillating structure has also naturally completely

disappeared from the residual.

5. 3D Inpainting

5.1. Introduction

When measuring quantities on sky observations, we often have to apply a mask to the data

to cover inappropriate data, due to the stacking on the line of sight. For example, on the full-sky

microwaves images, we have to mask out the whole galactic plane (roughly a cylinder on the

sphere) because it is very polluted by the foreground, the Milky Way. In the case of 3D data,

there can be a whole cone missing, a sphere of a given radius around the center, or any local area

hidden by something. This problem has already been addressed with sparse representations in

2D, for example in weak lensing data [28]. We investigate, in this section, how the 2D sparse

inpainting methods can be applied in 3D, using the new 3D Curvelet transforms.

5.2. The Inpainting problem

Inpainting is the process of recovering missing parts in altered data from the still available

clues. Let x be our three-dimensional data cube with missing data indicated by the mask M. The

available data is y = Mx. Given a dictionary Φ, we are trying to recover x from the observed y

and the mask M. This is an ill posed inverse problem. To get a consistent solution, one must seek

regularized solutions. One such regularization is to suppose that x is sparse in one dictionary of

atoms Φ, which means that x can be represented by a few atoms from Φ.

Therefore, we want to solve the following inpainting problem :

arg min
x
‖ΦT x‖0 s.t. ‖y − Mx‖2 < ǫ(σ), (26)

where Φ+ stands for the analysis operator (forward transform). To solve this problem, Algorithm

7 is applied (see [17]).

5.3. Example 1 : Random missing voxels

We tried to push the degradation process to see how the BeamCurvelet performed. We applied

different masks to the λCDM data, with an increasing percentage of randomly missing voxels.

The data are strictly positive (matter density); to avoid high dynamic range issues, in the whole

inpainting section we work on the logarithm of the data, but for more clarity, we display all

figures with a linear scale, truncated at about 10 times the level of the filaments; the strong

clusters are thus saturated. Figure 15 presents slices of the original data with missing 20, 50 and

80% missing voxels, and the reconstructed data. The global structure is perfectly recovered in

the three examples, and only the faintest filaments are lost in the 80% missing voxels data. The

19

(a) (b)

(c) (d)

Figure 13: The central slice of (a) the original λCDM data cube, (b) the noisy data, (c) the data recovered by Wavelet

Hard Thresholding, and (d) recovered by BeamCurvelet thresholding.

20

Figure 14: Denoised λCDM data using the Combined Filtering (see Algorithm 6).

Algorithm 7: The Inpainting Process

Data: A mask M, the observed data x = My, y being the unknown cube , the number of

iterations N, an initial threshold level k(0).

Result: The estimate x(N) of y.

LetHTλ(n) be the hard-thresholding operator with threshold λ(n).

MAD stands for Median absolute deviation.

begin

x(0) = y

∀i ∈ [0,N) : k(i) = k(0)(N − 1 − i)/(N − 1)

for n = 0 to N − 1 do

λ(n) = k(n) · MAD
(

ΦT x(n)
)

x(n+1) = ΦHTλ(n)

(

ΦT
[

x(n) + M
(

y − Mx(n)
)])

= ΦHTλ(n)

(

ΦT
[

(I − M)x(n) + y
])

end

21

(a) 20% missing (b) 50% missing (c) 80% missing

Figure 15: Central slice of the masked λCDM data with 20, 50, and 80% missing voxels, and the inpainted maps. The

missing voxels are dark red.

inpainting process and the transform used (the BeamCurvelet transform) are very well adapted to

recover this kind of structure. Animations of the inpainting process and 3D representations of the

results of this experiment and the following ones can be seen online at http://arnaud.woiselle.fr

in the research pannel.

5.4. Example 2 : Missing blocks

In order to see the gain when using one transform rather than another in inpainting when the

missing data is spatially coherent, we applied a mask to our λCDM cube, with 50% randomly

missing voxels, and an additional 3D checkerboard array of missing boxes of 343 contiguous

voxels each (7 × 7 × 7). We applied the inpainting algorithm to restore the data using either

the RidCurvelet transform, or the BeamCurvelet transform. The results are shown in Figure 16.

The reconstruction is very good in both cases, but as the BeamCurvelets are more adapted to

the structure of the data than the RidCurvelets, their reconstruction is better : the L2 and L1

norms of the errors are lower with the BeamCurvelts, and there is visually less residual noise in

the reconstruction, which can be understood as the atoms (planes) of the RidCurvelet transform

must spread around the data’s filaments more than the atoms (filaments) of the BeamCurvelet

transform to approximate the data.

6. Conclusion

We have presented two novel multiscale geometric decompositions of a three dimensional

volume. The RidCurvelet represents well surfaces and the BeamCurvelet is well adapted for

22

Figure 16: First row : original central frame of the λCDM data cube, and degraded version with missing voxels in red.

Bottom row : the filtered results using the RidCurvelets (left) and the BeamCurvelets (right). Missing voxels are dark

red.

23

analyzing filamentary features. Preliminary results have shown that they produce interesting re-

sults for denoising and inpainting. An important aspect we did not treat is the noise property for

denoising applications. Here we have considered only Gaussian noise. However, most 3D astro-

nomical data sets require that we consider Poisson noise. A solution would be to consider non

linear 3D decompositions, using both BeamCurvelet and the Multiscale Variance Stabilization,

in a similar way to what has been done for the 2D curvelet transform Poisson denoising [46].

Aknowledgements

We wish to thank Romain Teyssier for providing us the λCDM simulated data [47] used in

sections 5 and 4.

This work is supported by Sagem DS.

[1] Y Benjamini and Y Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 1995.

[2] S. Berlemont, A. Bensimon, and J.-C. Olivo-Marin. Detection of curvilinear objects in biological noisy image

using feature-adapted fast slant stack. SPIE conference Wavelets XII, Special Session on Wavelet in Bioimaging,

2007.

[3] E.J. Candès and D.L. Donoho. Ridgelets: the key to high dimensional intermittency. Philosophical Transactions

of the Royal Society of London A, 357:2495–2509, Sep. 1999.

[4] E.J. Candès and D.L. Donoho. Curvelets, multiresolution representation, and scaling laws. SPIE Wavelet Applica-

tions in Signal and Image Processing, 2000.

[5] E.J. Candès and D.L. Donoho. New Tight Frames of Curvelets and Optimal Representations of Objects with C2

Singularities. Communications on Pure and Applied Mathematics, 57(2):219–266, 2003.

[6] P. Carre, D. Helbert, and E. Andres. 3D fast ridgelet transform. In International Conference on Image Processing,

volume 1, pages 1021–1024, 2003.

[7] V. Chandrasekaran, M.B. Wakin, D. Baron, and R.G. Baraniuk. Surflets : A sparse representation for multidimen-

sional functions containing smooth discontinuities. Information Theory, 2004. ISIT 2004. Proceedings. Interna-

tional Symposium on, July 2004.

[8] V. Chandrasekaran, M.B. Wakin, D. Baron, and R.G. Baraniuk. Representation and compression of multidimen-

sional piecewise functions using surflets. IEEE Transactions on Information Theory, 55(1):374–400, Jan. 2009.

[9] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific

Computing, 20(1):33–61, 1999.

[10] Z. Chen and R. Ning. Breast volume denoising and noise characterization by 3D wavelet transform. Computerized

Medical Imaging and Graphics, 28(5):235–246, 2004.

[11] A. Dima, M. Scholz, and K. Obermayer. Semiautomatic quality determination of 3D confocal microscope scans of

neuronal cells denoised by 3D wavelet shrinkage. In H. H. Szu, editor, Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, volume 3723, pages 446–457, March 1999.

[12] M.N. Do and M. Vetterli The contourlet transform: an efficient directional multiresolution image representation

IEEE Transactions on Image Processing, 14(12):2091–2106, Dec. 2005.

[13] D. L. Donoho and X. Huo. Beamlets and multiscale image analysis. Multiscale and Multiresolution Methods,

Lecture Notes in Computational Science and Engineering, 20:149–196, Springer, NY, USA, 2001.

[14] D.L. Donoho. Wedgelets: nearly minimax estimation of edges. The Annals of Statistics, 27(3):859–897, 1999.

[15] D.L. Donoho. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from

d-dimensional singularities inRn. Applied Mathematics, Proc. Natl. Acad. Sci. USA, 96:1828–1833, 1999.

[16] D.L. Donoho and O. Levi. Fast X-Ray and Beamlet Transforms for Three-Dimensional Data. In D. Rockmore and

D. Healy, editors, Modern Signal Processing, pages 79–116, 2002.

[17] M. Elad, J.-L. Starck, P. Querre, and D.L. Donoho. Simultaneous cartoon and texture image inpainting using

morphological component analysis. Computational Harmonic Analysis, 19:340–358, 2005.

[18] E. Escalera, E. Slezak, and A. Mazure. New evidence for subclustering in the Coma cluster using the wavelet

analysis. Astronomy and Astrophysics, 264:379–384, October 1992.

[19] M. J. Fadili, J.-L. Starck, and F. Murtagh. Inpainting and zooming using sparse representations. The Computer

Journal, 52(1):64–79, 2007.

[20] G. Hennenfent and F.J. Herrmann. Seismic denoising with nonuniformly sampled curvelets. IEEE Computing in

Science and Engineering, 8(3):16–25, May 2006.

24

[21] Y. Lu and M. N. Do. 3-d directional filter banks and surfacelets. In Proc. of SPIE Conference on Wavelet Applica-

tions in Signal and Image Processing XI, San Diego, USA, 2005.

[22] Y.M. Lu and M.N. Do. Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image

Processing, 16(4):918–931, 2007.

[23] S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal

Processing, 41(12):3397–3415, Dec. 1993.

[24] V. J. Martı́nez, J.-L. Starck, E. Saar, D. L. Donoho, S. C. Reynolds, P. de la Cruz, and S. Paredes. Morphology of

the Galaxy Distribution from Wavelet Denoising. Astrophysical Journal, 634:744–755, December 2005.

[25] V.J. Martinez, S. Paredes, and E. Saar. Wavelet analysis of the multifractal character of the galaxy distribution.

MNRAS, 260:365–375, January 1993.

[26] C. J. Miller, C. Genovese, R. C. Nichol, L. Wasserman, A. Connolly, D. Reichart, A. Hopkins, J. Schneider,

and A. Moore. Controlling the false-discovery rate in astrophysical data analysis. The Astronomical Journal,

122(6):3492–3505, Dec. 2001.

[27] G. Peyre and S. Mallat. Discrete Bandelets with Geometric Orthogonal Filters. Proceedings of ICIP’05., vol.1 ,

65-68, Sept. 2005.

[28] S. Pires, J.-L. Starck, A. Amara, R. Teyssier, A. Refregier, and J. Fadili. FASTLens (FAst STatistics for weak

Lensing) : Fast method for Weak Lensing Statistics and map making. ArXiv e-prints, April 2008.

[29] J.K. Romberg, M. Wakin, and R. Baraniuk. Multiscale wedgelet image analysis: fast decompositions and modeling.

In in IEEE Int. Conf. on Image Proc. ? ICIP ?02, volume 3, pages 585–588, Jun. 2002.

[30] A. B. Romeo, C. Horellou, and J. Bergh. N-body simulations with two-orders-of-magnitude higher performance

using wavelets. MNRAS, 342:337–344, June 2003.

[31] A. B. Romeo, C. Horellou, and J. Bergh. A wavelet add-on code for new-generation n-body simulations and data

de-noising (jofiluren). MNRAS, 354:1208–1222, November 2004.

[32] D. Rusanovskky and K. Egiazarian. Video Denoising Algorithm in Sliding 3D DCT Domain. Lecture Notes in

Computer Science, 37(08):618–625, 2005.

[33] I.W. Selesnick and K.Y. Li. Video denoising using 2D and 3D dual-tree complex wavelet transforms. In Proc. of

SPIE conference on Wavelet Applications in Signal and Image Processing X, San Diego, USA, Aug. 2003.

[34] L. Sendur and I. W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale

dependency. IEEE Trans. on Signal Processing, 50(11):2744–2756, Nov. 2002.

[35] L. Sendur and I. W. Selesnick. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters,

9(12):438–441, Dec. 2002.

[36] E. Slezak, V. de Lapparent, and A. Bijaoui. Objective detection of voids and high density structures in the first CfA

redshift survey slice. Astrophysical Journal, 409:517–529, 1993.

[37] J.-L. Starck, E.J. Candès, and D.L. Donoho. The curvelet transform for image denoising. IEEE Transactions on

Image Processing, 11(6):670–684, June 2002.

[38] J.-L. Starck and F. Murtagh. Astronomical Image and Data Analysis. Astronomical image and data analysis, by

J.-L. Starck and F. Murtagh. Astronomy and astrophysics library. Berlin: Springer, 2006, 2006.

[39] J.-L. Starck, F. Murtagh, E. Candès, and D.L. Donoho. Gray and color image contrast enhancement by the curvelet

transform. IEEE Transactions on Image Processing, 12(6):706–717, 2003.

[40] J.L. Starck, A. Bijaoui, B. Lopez, and C. Perrier. Image reconstruction by the wavelet transform applied to aperture

synthesis. Astronomy and Astrophysics, 283:349–360, 1999.

[41] J.L. Starck, D.L. Donoho, and E. Candès. Very high quality image restoration by combining wavelets and curvelets.

In A. Laine, M.A. Unser, and A. Aldroubi, editors, SPIE conference on Signal and Image Processing: Wavelet

Applications in Signal and Image Processing IX, San Diego, 1-4 August. SPIE, 2001.

[42] J.L. Starck, M. Elad, and D.L. Donoho. Image decomposition via the combination of sparse representations and a

variational approach. IEEE Transactions on Image Processing, 14(10):1570–1582, October 2005.

[43] J.L. Starck, V.J. Martinez, D.L. Donoho, O. Levi, P. Querre, and E. Saar. Analysis of the spatial distribution of

galaxies by multiscale methods. Eurasip Journal on Applied Signal Processing, 15:2455–2469, November 2005.

[44] J.L. Starck, M.K. Nguyen, and F. Murtagh. Deconvolution based on the curvelet transform. In International

Conference on Image Processing, pages II: 993–996, 2003.

[45] J.L. Starck, M.K. Nguyen, and F. Murtagh. Wavelets and curvelets for image deconvolution: a combined approach.

Signal Processing, 83:2279–2283, 2003.

[46] B. Zhang, J. Fadili and J.L. Starck. Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Transactions

on Image Processing, 17(7):1093–1108.

[47] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement. a new high resolution code called ram-

ses. Astronomy and Astrophysics, 385:337–364, April 2002.

[48] L. Ying, L. Demanet, and E. Candès. 3D Discrete Curvelet Transform. Applied and Computational Mathematics,

217(50), 2005.

25

