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[1] We present an innovative approach to the generation of
remotely sensed high-resolution sea surface topography that
improves coastal and mesoscale dynamic characterization.
This new method is applied for the period 2002–2010 in
the northwestern Mediterranean Sea, an area marked by a
small Rossby radius. The spectral content of the new
mapped data is closer to that of the along-track signal and
displays higher levels of energy in the mesoscale bandwidth
with the probability distribution of the new velocity fields
30% closer to drifter estimations. The fields yield levels
of eddy kinetic energy 25% higher than standard altimetry
products, especially over regions regularly impacted by
mesoscale instabilities. Moreover, qualitative and quantitative
comparisons with drifters, glider, and satellite sea surface
temperature observations further confirm that the new altimetry
product provides, in many cases, a better representation of
mesoscale features (more than 25% improvement in correlation
with glider data during an experiment). Citation: Escudier, R.,
J. Bouffard, A. Pascual, P.-M. Poulain, and M.-I. Pujol (2013),
Improvement of coastal and mesoscale observation from space:
Application to the northwestern Mediterranean Sea, Geophys.
Res. Lett., 40, 2148–2153, doi:10.1002/grl.50324.

1. Introduction

[2] Mesoscale dynamics have significant impacts on
large-scale circulation [Lozier, 1997] as well as on energy,
heat flux transfers [Wunsch, 1999], and primary production
[McGillicuddy et al., 1998] due to important vertical
exchanges associated with mesoscale features [Pascual
et al., 2004]. Yet, because of the difficulty of sampling
mesoscale and coastal currents, which are highly variable
in time and space, few observation-based studies have
examined this topic.
[3] Recent advances in coastal satellite altimetry (refer to

Vignudelli et al. [2011] for a review) have enabled dynamic

signals in the 50 km coastal band to be characterized, specif-
ically over the northwestern Mediterranean (hereinafter
NWMed) [Bouffard et al., 2010]. However, these studies were
based on the analysis of along-track data, fromwhich coherent
structures are difficult to identify and track, and therefore,
optimal mapping techniques are required. The ability to recover
mesoscale data from along-track altimetry and optimally
interpolate it to 2D fields is based on the merging of data of
several altimeter missions [Le Traon and Dibarboure, 2004].
[4] The resulting altimetry maps are, however, spatially

smooth and, as evidenced by previous in situ experiments
[e.g., Nencioli et al., 2011], lack the resolution required to
detect small and coastal features (~10–100km). Dussurget
et al. [2011] recently addressed the need for better characteriza-
tion of the mesoscale from satellite observations and developed
a method that includes smaller correlation scales close to the
altimeter tracks. Focusing on the Bay of Biscay, the resulting
maps show coherent, finer-scale signals consistent with the
information provided by remotely sensed ocean color measure-
ments. In our study, a similar approach is adopted, but it also
includes an innovative bathymetric constraint to account
for the anisotropy of physical coastal features [Huthnance,
1995]. The methods are adapted to the NWMed, where the
internal Rossby radius of deformation is four times smaller
(around 10 km) than the typical value for the global ocean
due to the relatively shallow thermocline (see Data S1 in the
auxiliary material). The identification of mesoscale sea surface
height signatures (1 cm resolution for a radius of 10 km) and
the corresponding geostrophic current is particularly difficult
because of the relatively low energy of the NWMed.

2. Data

2.1. Altimetry Data

[5] Eight years (2002–2010) of the standard along-track
altimetry sea level anomaly data (SLA) provided by AVISO
(Archiving, Validation, and Interpretation of Satellite
Oceanographic data, http://www.aviso.oceanobs.com/)was used.
Data from the Geosat Follow-on, Jason-1, Topex/Poseidon,
Envisat, and Jason-2 satellites were included and subjected
to standard geophysical corrections [Ssalto/Duacs User
Handbook, 2012].
[6] Additionally, the regional product of merged, delayed-

time gridded SLA fields (“UPD” version) for theMediterranean
Sea was also obtained from the AVISO website (details of
the processing are provided in Pujol and Larnicol [2005]).
The absolute dynamic topography (ADT), from which are
derived the absolute geostrophic currents, was then calculated
by adding the mean dynamic topography from Rio et al.
[2007] to both AVISO and the generated higher-resolution
SLA maps described in section 3.
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2.2. Auxiliary Data

[7] A bathymetry dataset [Smith and Sandwell, 1997] was
employed to constrain the new optimal interpolation (OI)
scheme in the coastal domain (see section 3 for details).
To validate the methods, we perform qualitative comparisons
with EUMETSAT satellite sea surface temperature (SST)
provided by the O&SI SAF (www.osi-saf.org). Surface
velocities from Lagrangian drifters were also used, including
approximately 500 drifters covering the NWMed for the
period 2002–2010 [Poulain et al., 2012]. The trajectories
were interpolated, low-pass filtered with a cutoff at 36 h, and
subsampled every 6 h to remove high-frequency components,
especially tidal and inertial currents not included in the
altimetry fields. Ekman velocities were removed from the
drifter velocities using linear regressions with local wind
products [Poulain et al., 2012]. Additionally, we used
glider, conductivity-temperature-depth (CTD), and drifter
data collected during an intensive multisensor experiment
described in Pascual et al. [2010].

3. Methods

3.1. High-Resolution Product

[8] In order to compute the high-resolution (HR) fields,
the method used is similar to that described by Dussurget
et al. [2011]. The larger scales are obtained from the
standard AVISO product (see section 2.1 for a description).
Then, residuals of the along-track data are determined by
subtracting these fields from the along-track raw data.
Finally, an OI is performed on the residuals to obtain the
finer scales. For this OI, the correlation function for the
objective analysis is defined as (1)):

C r; tð Þ ¼ e�
r2

2L2e�
t
TÞ

2
�

(1)

where r and t are the spatial and time coordinates of the
studied point, and L and T are the spatial and temporal
correlation scales. This correlation scheme is used to determine
the weights for the data interpolation. The result from the
second interpolation is then added to the AVISO product
to generate the high-resolution field.

3.2. Bathymetry Constraint

[9] To improve the characterization of mesoscale structures
in the coastal band, where subsurface topography most
likely influences their shape and propagation, we propose
the addition of a bathymetry constraint with the introduction
of a generalized distance that takes into account the topography
(equation (2)) following the idea byDavis [1998] who used this
approach on drifter data:

C r ¼ a� b; tð Þ ¼ e�R2
e�

t
TÞ

2
�

(2)

with the generalized distance R between the two points a and
b defined as

R2 ¼ ja� bj2
2L2

þ 1

Φ
� jPV að Þ � PV bð Þj2

PV 2 að Þ þ PV 2 bð Þ (3)

where a and b are the two point positions, L is the correlation
scale,Φ is the nondimensional parameter of the constraint, and
PV is the barotropic vorticity. PV is defined as PV= f/H where
f represents the Coriolis parameter, and H corresponds to
the bathymetry, therefore PV depends on the bathymetry.

This new correlation scheme for the background error makes
weights isotropic in the center of the basin where the bottom
is relatively flat and elongated along the topography where
there are strong bathymetry gradients, thereby maintaining
the offshore gradients of the coastal features. The new fields
are hereinafter referred to as HR+bathy.
[10] To adjust the OI parameters, sensitivity tests based

on Monte Carlo analyses were performed. The values that
optimize the signal-to-noise ratio were L=30km, T=3 days,
and Φ = 0.7, with a measurement error variance of 3 cm2.

4. Results

4.1. Spectra

[11] The spatial power spectra densities of SLA (Figure 1)
show a significant discrepancy between the original along-track
signal and AVISO fields for spatial scales smaller than 150km.
For scales between 50 and 100 km, an increase in energy in
the HR products is observed, which agrees with the along-track
spectrum. Concerning the wavenumber spectrum slopes,
the HR product (k�2.8) is closer to the along-track data
(k�2.5) than the AVISO product (k�3.7) in the 70–200 km
band. Because noise tends to weaken the slope [Xu and
Fu, 2012], the along-track slope may be underestimated.
Nevertheless, the HR field slopes are much closer to the
along-track slope than the AVISO slope, indicating a more
coherent statistical representation of the geostrophic
turbulent cascade.

4.2. Statistics on Geostrophic Currents

[12] A direct comparison between collocated drifter and
altimetric velocities is difficult because a slight displacement
of small-scale features can induce a drastic change in the
drifter trajectory that will not be captured by the altimetry
coverage. Therefore, a statistical approach using statistical
distributions (probability density functions) was employed
for the entire 8 year period to quantitatively evaluate
the performance of different remotely sensed products.
When compared to the drifter distribution, the HR product
distribution shows a better agreement than the AVISO
distribution (refer to the histogram in Figure S2 in the auxiliary
material). The distribution was improved in terms of root
mean square differences (RMSDs) by 28% (HR) and 30%
(HR+ bathy), confirming a significant enhancement of
the statistical characterization of mesoscale dynamics in
the NWMed.

4.3. Spatial Distribution of Eddy Kinetic Energy

[13] Figure 2 presents the 8 year mean eddy kinetic energy
(EKE) derived from the SLA of the different 2D mapping
methods, as well as the one obtained from the drifter velocities.
As observed by Poulain et al., [2012], the significant differ-
ence in the magnitude of EKE between altimetry products
and drifters could be attributed to ageostrophic motions
and/or nonuniform sampling in space and time of drifter tra-
jectories. Nevertheless, the spatial distribution of high EKE
patterns is similar in the drifter-based and altimetry-based
EKE maps with high values between Menorca and Sardinia
and lower values in the north. The HR products, both with
and without the bathymetric constraint, exhibit a higher-
average EKE (approximately 50 cm2/s2) than the AVISO
product. Furthermore, this increase is not homogeneously
distributed and appears more substantial in the Balearic
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Sea, along the southern coast of France and in the center of the
basin where the EKE from drifters is also high. As expected, the
HR+bathy product reveals stronger EKE near the coast and
in areas where several previous studies (including Millot

[1999]) (see Figure 2d in this article) have shown a relative
strong mesoscale activity because of Northern and Balearic
slope current instabilities, which regularly form meanders
and eddy-like structures [Bouffard et al., 2010].

Figure 2. Eddy kinetic energy over the period 2003–2010. The top panels are the mean values over this period obtained from
the (a) drifters and the (b) AVISO maps. The bottom panels show the difference between the (c) HR or (d) HR+bathy and
AVISO. For the drifter map, the EKE is calculated from the drifter geostrophic velocity anomalies, obtained by subtracting
the mean velocity computed in each bin of size 0.2� � 0.2� from the velocity measured by the drifters. The circulation scheme
established by Millot [1999] is superposed on Figure 2d. The symbol meanings are as follows: continuous arrows are steady
paths, dashed arrows are mesoscale currents throughout the year, and dashed circles are wind-induced mesoscale.

Figure 1. The mean power spectra of the SLA in the NWMed for the different products, with the 95% confidence interval
shaded in gray (error was estimated using chi-square test). In dark red is the along-track 1Hz data while the gridded fields are
in blue, the lighter being the AVISO product and the darker ones are the HR products. The spectrum for these datasets was
computed from SLAs interpolated at the track locations. The fitted slopes between 70 and 250 km are indicated for each
spectrum. Bottom left corner: map with the position of the tracks (the long tracks used for the spectra computation are shown
in black, and the others are shown in gray).
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4.4. Focus on Specific Events

[14] A coastal mesoscale event observed during a
multiplatform experiment (Sistema Integrado de Oceanografía
Operacional, SINOCOP) illustrates the performance of the
methods (Figure 3). The analysis of the collected in situ data
revealed the presence of a small-scale anticyclonic eddy
(~25 km diameter) on the northern shore of Mallorca
(Figure 3a). This structure blocked the usual path of the
Balearic Current along the coast, deflecting the main
north-eastward flow to the north. Drifter data provide
horizontal velocities associated with the eddy on the order
of 20 cm/s [Pascual et al., 2010].
[15] As shown in Figure 3b, AVISO altimeter maps were un-

able to correctly reproduce the southern recirculation of the
small-scale anticyclonic eddy. The statistics presented in Ta-
ble 1 reveal that the correlations, as well as the RMSDs with re-
spect to drifter-derived currents, are significantly better for the
HR method (improvements> 10%). Despite these improved
statistics (cf. Figures 3c and 3b), the HR method does not per-
form very well near the coast. When the bathymetric con-
straint is used, a more accurate representation of the eddy is
obtained, both qualitatively (Figure 3d) and statistically
(Table 1). The eddy is then almost perfectly collocated with
the drifter trajectory, and the HR+bathy-derived currents agree
with the drifter velocities, with a correlation of 0.94 and an
RMSD below 7cm/s (i.e., close to the statistical results obtained
from comparisons between gliders and drifters; see Table 1).
[16] Qualitative comparisons between satellite SST and

altimetry-derived currents are also performed to evaluate

the HR + bathy method. For this, we focused on the Balearic
Sea which is a particular frontal area where SST gradients,
used here as a tracer, allow us to clearly identify mesoscale
features arising from frontal dynamics. We looked at the
first 6months of 2009, before and after the SINOCOP
experiment. Confirming the previous statistical results, we
found several cases of frontal dynamical structures detected
both by the satellite SST and the HR + bathy product but not
reproduced by AVISO (Figure 4; another example is provided
for 2010 in Figure S3). The relatively low number of examples
is due to cloud coverage and the fact that the new method, in
most cases, only induces changes in the current intensity and
not in the shape of dynamical small-scale features. For this
reason, SST cannot be used to perform a quantitative

Figure 3. Multisensor experiment north of Mallorca (14 May 2009): (a) The dynamic height computed from spatially
interpolated glider and CTD temperature and salinity fields. The ADT overlapped by the derived geostrophic current from
the (b) AVISO, (c) HR, and (d) HR+ bathy fields on the same date. The green lines are the filtered trajectories of two drifting
buoys launched at the same time.

Table 1. Statistical Results Obtained From Comparisons Between
Gliders and Driftersa

Glider AVISO HR HR+Bathy

R-U 0.92 0.59 0.84 0.96
R-V 0.76 0.77 0.87 0.94
RMSD-U (cm/s) 9.0 12.0 10.0 7.0
RMSD-V (cm/s) 2.9 7.0 6.2 4.9

aDiagnostics for the experiment are shown in Figure 3. The top two lines show
the correlation (R) between the different estimated product velocities (from
gliders, AVISO maps, and the two new HR fields) and the drifter-derived
velocities, while the last two rows show the root mean square difference
(RMSD) between the two velocities. Note that all correlations are significant
at the 95% confidence level.
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diagnostics since no simple relation exists between SST
gradients and the geostrophic current intensity.

5. Discussion

[17] Despite the promising results shown in the previous
sections, it is, however, fundamental to have in mind that
the coastal and mesoscale characterizations from existing
observations directly depend upon altimeter track availability,
as illustrated in Figure S4 (auxiliary material) showing the

error field estimated from the OI for the SINOCOP period.
In this figure, it appears that between tracks (left panel) or
between satellite cycle (right panel), the fine-scale interpolation
does not add relevant information. The interpolation could then
create spurious eddies in these areas by extrapolating short-
lived eddies in time or if the bathymetry constraint is poorly pa-
rameterized. These limitations also make the long-term track-
ing of small-scale dynamical features difficult, which will
require the use of a denser satellite constellation or complemen-
tary measurements to reduce the OI mapping error.

Figure 4. Comparisons between the different altimetric products (SSH in centimeter + geostrophic current) and satellite SST
in degrees Celsius in the Catalan and Balearic Sea for different periods of 2009. The first column features the AVISO standard
product, the second the HR+bathy product (equivalent results are obtained with HR, but to a lesser extend), and the last one the
SST, filtered at 15 km, from EUMETSAT. The dates for each snapshot are respectively 19 January (row a, SST observation of a
dipole eddy structure), 23 February (row b, SST observation of a cyclonic coastal eddy), 14 May (row c, SST observation of the
SINOCOP eddy), and 6 June 2009 (row d, SST observations of a thermal front separated by a zonal jet).
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[18] Nevertheless, with regard to the results obtained, a
small coastal eddy in the north of Mallorca seems to appear
regularly in the new data and has been confirmed by
SST and drifter data in some cases. The detection and study
of such small structures is crucial for evaluating transport
variability [Pinot et al., 1995].

6. Conclusions

[19] In this study, alternative methods to generate high-
resolution altimeter maps were developed and evaluated
both quantitatively and qualitatively. These methods employ
the standard altimeter gridded products as a first guess,
and subsequently, an optimal interpolation is performed on
the along-track raw data with the aim of resolving features at
smaller scales. The optimal interpolation can be isotropic
(HR), or a bathymetric constraint can be applied to the OI
in order to improve the characterization of coastal structures
(HR + bathy). These methods are tested in the NWMed.
[20] The new mapping methods demonstrated herein have

enabled the detection of new coherent dynamical structures.
In addition, when compared to AVISO, they improve the
coherence of the spectral content with respect to along-track
data and the velocity statistical distribution by 30%. The
new fields also display smaller features with realistic higher
levels of EKE of about 25%. In addition, the obtained results
agree with sea surface temperature, drifter, and glider
observations, specifically in areas where relatively intense
mesoscale activity was previously observed and/or simulated.
Such data could therefore be used to study some specific
events, especially during cruise campaigns operating in
the neighborhood of altimetric track passages.
[21] Standard along-track data have been used in order to

assess the performance of the method. Yet, as several upgraded
coastal along-track products are available (such as X-TRACK
or PISTACH), they could be used to improve the performance
in coastal zones. Furthermore, the new method described in
this paper will benefit from an increased number of satellite
missions (AltiKa in 2013 and Sentinel 3 in 2014) and the
combination with regular in situ measurements (e.g., Argo
floats and gliders) paving the way for promising improvements
in coastal mesoscale observation.
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