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Abstract

Combinatorial maps define a general framework

which allows to encode any subdivision of an n-D

orientable quasi-manifold with or without boundaries.

Combinatorial pyramids are defined as stacks of suc-

cessively reduced combinatorial maps. Such pyramids

provide a rich framework which allows to encode fine

properties of objects (either shapes or partitions). Com-

binatorial pyramids have first been defined in 2D, then

extended using n-D generalized combinatorial maps.

We motivate and present here an implicit and efficient

way to encode pyramids of n-D combinatorial maps.

1. Introduction

Pyramids of combinatorial maps have first been de-

fined in 2D [1], and than extended to n-D using general-

ized maps [5]. Such pyramids encode successive subdi-

visions of orientable but also, in the case of generalized

maps, non-orientable quasi-manifolds [6]. Considering

the practical case of orientable-only spaces, the authors

have defined pyramids of n-maps [4, 2]. Although not

the only one, a main motivation for this choice was to

address the space complexity issue raised by such pyra-

mids, as a generalized map is roughly speaking twice as

much space consuming as a map for a given orientable-

space partition.

Since in applications, such as a region-merging, the

whole history of a region may be of interest for choices

to be made further on; it must be possible to retrieve

efficiently this information from the structure encoding

the corresponding pyramid of maps. For that purpose,

a first solution is an explicit encoding of each level of

the pyramid, which proves to be untractable even for

base maps with reasonable size (Subsection 4.2). An-

other solution, initially proposed in the 2D case [1], is

to use the direct link between elements of two consec-

utive levels of a pyramid (notion of reduction window)

and its transitive closure (notion of receptive field) to

retrieve that information. In fact, we show in this pa-

per that these two notions allow an implicit encoding,

or folding, of a whole pyramid as the single base map

and two arrays of integers, whose sizes are immediately

related with the one of the base map.

In a first section, we recall the definition of n-D com-

binatorial map and the one of the simultaneous cell re-

moval operation within such maps that allows the con-

struction of a pyramid of combinatorial maps. We then

present in Section 3 the notions of connecting walks and

connecting dart sequences that generalize the notion of

reduction window and receptive fields. Eventually, we

present in Section 4 the pyramid folding property and its

related space complexity as compared with the explicit

encoding.

2. Pyramids of n-D combinatorial maps

An n-map (n ≥ 1) is defined ([6]) as an (n + 1)-
tuple M = (D, γ0, . . . , γn−1) where D is a finite non-

empty set of darts, γ0, . . . , γn−2 are involutions on D,

and γn−1 is a permutation on D; such that γiγj is an

involution for any i, j ∈ {0, . . . , n−1} with |i−j| ≥ 2.

Each involution γi (i < n) sews together i-cells of a

subdivision by mapping some darts of each cell one to

the other. Thus, in the 3-map depicted in Figure 1, (1, 2)
is a cycle of γ0 as well as (9, 16). These two cycles

link the two upper-front vertices of the cube to form an

edge. On the other hand, the cycles (2, 3), (16, 15), and

(17, 24) of γ1 illustrate the fact that γ1 sews edges.

Any dart d in an n-map belongs to a cell of each

dimension i of {0, . . . , n}. Such an i-cell is defined

as the orbit < γ0, . . . , γ̂i, . . . , γn−1 > (d) if i < n
and < γ0γ1, . . . , γ0γn−1 > (d) for i = n (where <
γ0, . . . , γ̂i, . . . , γn−1>(d) is the set of images of d by

any element of the permutation group generated by the

permutations γ0,. . . ,γn−1 without γi). Thus, the upper-

front edge (or 1-cell) in Figure 1 is defined as <γ0, γ2>
(1), that is {1, 2, 9, 16}.
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In a combinatorial pyramid, each map of the pyra-

mid is defined from the map underneath by the simulta-

neous removal of cells of dimension at most n − 1 that

are parts of the n-cells boundaries. Thus, regions of a

subdivision may be merged by removing (n − 1)-cells

and subsequent removals allow the simplification of a

map while preserving the features of interest. The cell

removal operation is defined as soon as cells to be re-

moved satisfy several constraints regarding their local

degree, disjointness, and regularity [4]. For short, we

simply recall the main condition known since [5], which

guarantees that the removal of cells yields a proper map:

only i-cells that appear to be locally incident to two

(i + 1)-cells should be removed.

Given the set K of all darts of the cells to be re-

moved, the n-map M ′ obtained by removal of these

cells is defined as M ′ = (D′ = D \ K, γ′

0, . . . , γ
′

n−1),
where the permutations γ′’s are defined as follows for

any d ∈ D′ (using our notation dγi
def
= γi(d)) :

• If i ≤ n − 2, dγ′

i = d(γiγ
−1
i+1)

kγi

• For i = n − 1, dγ′

n−1 = dγk+1
n−1

where k is the smallest integer such that dγ′

i ∈ D′.

By an abuse of notation, we may also denote by K
the set of cells to be removed that we call a removal

kernel in M . A pyramid of maps with height h is then

nothing but a sequence of maps M0,M1,. . . ,Mh such

that Ml = Ml−1\Kl−1 where Kl−1 is a removal kernel

in Ml−1 for l ∈ {1, . . . , h}. In the remaining of the

paper, we denote by Ml = (Dl, γl,0, . . . , γl,n−1) the n-
map of level l in a pyramid, for 0 ≤ l ≤ h. We highlight

the particular status of the base map by shortening γ0,i

as γi for any dimension i.
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Figure 1. A 3-map which forms a partition

of R
3 into two regions: the inside and the

outside of a cube.

3. Top-down relationships between levels

In the framework of irregular pyramids, reduction

windows associate removed nodes in one level with a

surviving node of the level above. In the context of

pyramids of combinatorial maps, an analogous notion is

the one of connecting walk. Indeed, we may associate

with any dart of a map Ml a sequence of darts of Ml−1

that must be traversed to define the new image of a dart

of Dl by a permutation of Ml. Such a sequence of darts

of Ml−1 corresponds to a single dart in Ml according to

the considered permutation.

Thus, for any i ∈ {0, . . . , n − 1}, the i-connecting

walk associated to a dart d ∈ Dl, denoted by CWi
l(d), is

the sequence (d0 = d, d1, . . . , dp) where du is defined

as follows for all u ∈ {0, . . . , p}:

• du = d(γl−1,iγ
−1
l−1,i+1)

u, if i ∈ {0, . . . , n − 2}.

• du = dγu
l−1,n−1, if i = n − 1.

and p = Min
{

k ∈ N
∣

∣ dkγi ∈ D′
}

.

Not surprisingly, this definition strictly follows the

one of the removal operation. It is therefore readily seen

that du /∈ Dl if and only if u > 0, and we have proved

[3, Property 5] that any such dart actually belongs to an

i-cell of Dl (so does duγi for u ∈ {0, . . . , p − 1}).

It is also straightforward to prove that, if we denote

dp = last(CWi
l(d)), a connecting walk satisfies:

last(CWi
l(d))γl−1,i = dγl,i [2, Prop. 6]

Connecting walks may thus be used to compute the

permutations γl,i of Ml. Furthermore, since all connect-

ing walks are proved to be disjoint [2, Proposition 3],

this computation may be achieved with a sequential pro-

cess in O(|Dl−1|). The overall cost of computing Ml

from Ml−1 is thus equal to O(n|Dl−1|).
Since a connecting walk associates to a dart d of level

l a sequence of darts that have been removed from level

l − 1, we may define using the transitive closure of this

relation a sequence of darts starting with d, but within

the base level of the pyramid. This leads to the notion

of connecting dart sequence which establishes a link,

as shown by two propositions given further on, between

any two levels of a pyramid the same way a connecting

walk does between two consecutive levels.

Definition 1 (Connecting dart sequence [2]) Let d be

a dart of Dl, 0 ≤ l ≤ h. If CWi
Ml−1,Ml

(d) = (d =
d0, . . . , dp) for i ∈ {0, . . . , n − 1}, the i-connecting

dart sequence associated to d at level l, denoted by

CDSi
l(d), is defined by CDSi

0(d) = (d) and, if l > 0,

as follows:
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CDSi
l(d) = GLi

l−1(d0) · . . . · GLi
l−1(dp)

where

GLi
l−1(dr) =

{

CDSi
l−1(dr) · CDSi+1

l−1(drγl−1,i) if r < p

CDSi
l−1(dp) if r = p or i = n − 1

Important properties of the thus defined sequence of

darts have been proved [2], among which an important

one which states that for any dart d of Dl, the image by

γl,i of d is precisely the image by γ0,i of the last dart of

the connecting dart sequence CDSi
l(d). In other words,

we have

last(CDSi
l(d))γ0,i = dγl,i (1)

Together with a non-intersecting property, this shows

that connecting dart sequences play a role similar to the

one of receptive fields of the irregular pyramids frame-

work, but in terms of darts rather than in terms of n-

cells. One should also note that d is the only dart of

CDSi
l(d) belonging to Dl.

Furthermore, the knowledge of the connecting dart

sequence associated with a dart d immediately provides

the value of dγl,i using (1). However, the computa-

tion of CDSi
l(d) following this very definition would

require an explicit storage of all the maps under Ml,

which therefore provides no space optimization.

4. Pyramid folding

The main contribution of this paper comes from the

following proposition, which states that the connecting

dart sequence CDSi
l(d) may be retrieved using an itera-

tive process. In this proposition, we use ARl,t to denote

the set of darts that belong to a t-cell of a removal kernel

Kl′ for l′ < l (in particular, ARl,t ∩ Dl = ∅).

Proposition 1 If CDSi
l(d) = (d0, d1, . . . , dp), p ∈ N

∗,

is the i-connecting dart sequence associated to a dart

d of Ml, with 1 ≤ l ≤ h and 0 ≤ i ≤ n; then for all

u ∈ {0, . . . , p − 1} we have du+1 = duγtu
with t0 = i

and for all u ∈ {1, . . . , p−1} the subscript tu satisfies:

tu =

⎧

⎨

⎩

tu−1 + 1 if tu−1 < n − 1 and du ∈ ARl,tu−1

tu−1 if tu−1 = n − 1 and du ∈ ARl,tu−1

tu−1 − 1 if du ∈ ARl,tu−1−1

(2)

Moreover tp−1 = n− 1 if i = n− 1, otherwise tp−1 =
i + 1. (It is proved that p �= 0 implies that p > 1.)

The above property indeed provides an iterative defi-

nition of CDSi
l(d). The sequence may thus be retrieved

after exactly p decisions based on the position of the

latter computed dart of the sequence relatively to sets of

the form ARl,t, for some level l and dimension t. This

position may be determined in constant time as soon as

the following data is given for each dart d of the base

map:

• Λ(d), the level of the removal kernel that contains

d, if any (otherwise we set Λ(d)
def
= h); and

• ∆(d), the dimension of the cell that contains d

within KΛ(d) (if Λ(d) = h we set ∆(d)
def
= n,

as no n-cell may be removed).

Indeed, for any dart d ∈ Dl, we have:

d ∈ ARl,t ⇔ Λ(d) < l ∧ ∆(d) = t

The above mentioned process may then traverse all the

darts of the sequence, moving from one dart to its suc-

cessor by applying a bounded number of permutations,

based on a choice made in constant time depending on

the two integers associated with any dart of the base

map.

Using Proposition 1 as a mean to retrieve the con-

necting dart sequence of any dimension associated with

a dart d ∈ Dl, l ≤ h, and using (1), we obtain that the

image of d by any permutation of the map Ml may be

computed using the functions Λ and ∆. It is therefore

immediate that any map of the pyramid may be rebuilt

efficiently (Section 4.1) given the base map and the two

functions Λ and ∆. Eventually, we obtain an implicit

encoding of a whole pyramid as the base map and two

functions. We may summarize this result as

(M0, M1, . . . , Mh) ⇔ (M0,Λ,∆)

The (⇒) part of this equivalence is straightforward

from the very definition of the functions Λ and ∆. The

(⇐) part is a consequence of Proposition 1 and (1).

4.1. Unfolding the pyramid

Given a triple (M0,Λ,∆), unfolding the pyramid

consists in computing the values of the permutations

γ0,. . . ,γn−1 for all the darts of each level. Note that

a set Dl, 0 ≤ l ≤ h, is determined by Λ using the rela-

tion Dl = {d ∈ D0 | Λ(d) ≥ l}. Eventually, the image

by a permutation γi,l, 0 ≤ i ≤ n−1, of any dart d ∈ Dl

may be computed using Algorithm 1. Indeed, the while

loop of the algorithm traverses the non-surviving darts

of the connecting dart sequence while the if tests encode

the three cases of Proposition 1 which are proved to be

exclusive [2]. Furthermore, since any two connecting

walks are distinct, it is readily seen that the same prop-

erty holds for connecting dart sequences from their very

definition. It follows that the unfolding of a whole level

of the pyramid may be achieved in O(|D|).
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Algorithm 1: { Computes γl,i(b) for b ∈ Dl }

Input: M0, Λ and ∆
Input: l ∈ {1, . . . , h} {A level in the pyramid.}
Input: i ∈ {0, . . . , n − 1} {A dimension.}
Input: b ∈ {1, . . . , m} with Λ(d) ≥ l {b ∈ Dl.}
Output: γl,i(b)
tprev ← i
d ← bγi

while Λ(d) < l do

if ∆(d) = tprev − 1 then
tprev = tprev − 1

else if tprev < n − 1 then
tprev ← tprev + 1

d ← dγtprev

return d

4.2. Space complexities

Let us now describe the benefits of the implicit en-

coding presented in the previous section in terms of

space complexity.

An n-dimensional map with N = |D| darts may be

stored using n−1 arrays of N integers each, that is (n−
1)×N×log2(N) bits. Assuming a constant decimation

factor of τ between any two level of the pyramid, the

number of darts in the map Ml, 0 ≤ l ≤ h is N/τ l so

that the overall number of bits used to store the pyramid

explicitly is

(n − 1) log2(N)

h
∑

l=0

N

τ l
≃ (n − 1)N log2(N)

τ

τ − 1

Given N = |D0|, when h is maximal we have

N/τh = 1, hence h log2(τ) = log2(N). In this case,

the size becomes h(n−1)Nτ log2(τ)/(τ−1) bits. With

τ = 2 we obtain 2hN(n − 1) which grows in a linear

way with respect to the height h of the pyramid.

On the other hand, the implicit encoding requires the

storage of the base maps and exactly two integers for

each d ∈ D0: the dimension ∆(d), bounded by n, and

the level Λ(d), bounded by h. In other words, the im-

plicit encoding of a pyramid with height h requires

(n − 1) log2(N) + N × (log2(n) + log2(h)) bits.

This quantity therefore grows as O(log2(h)).
Considering a base 3-map that partitions an hyper-

cube with side m ∈ N in the cubic grid, the number of

darts C3(m) in such a map is given by:

C3(m) = 8 × m2 × (m + 1) × 3

As an illustration, the following table summarizes ac-

tual figures obtained for storing pyramids of 3D combi-

natorial maps in the cubic grid, with τ = 2.

Side length Height Explicit enc. Implicit enc.

512 32 48 GiB 2.6 GiB

1024 35 420 GiB 24 GiB

Because the size of an implicit encoding has a small

dependence with respect to the height of the pyramid,

it may permit during a union-only process the merging

of only a few regions between consecutive levels of the

pyramid (i.e. using a small decimation factor), which

therefore should preserve subsequent mergings to be too

dependent on the choices made during previous steps.

Furthermore, as the complexity of Algorithm 1 is lin-

ear with the length of CDSi
l(d), the computation of the

values of γl,i for all the darts of Dl is therefore in O(N),
hence the unfolding of any level of the pyramid may be

achieved in O(N × n). Eventually, a parallel imple-

mentation with one processor per dart of Dl would be

in linear time with respect to the dimension.

5. Conclusion

We have defined an implicit encoding of n-

dimensional combinatorial pyramids the way Brun and

Kropatsch did in the two-dimensional case ([1]) and fol-

lowing the works of Grasset et al. about pyramids of

generalized maps ([5]). This encoding relies on the def-

initions of connecting walks (reduction windows) and

connecting dart sequences (receptive fields).
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