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Abstract

The present contribution is dedicated to the identification of mechanical
parameters, especially distributed parameters for continuous structures. In
the following, the continuous time identification method is adapted and
improved. Firstly an original expansion method using Gauss-points is pre-
sented. A novel differentiation method is then developed and compared
to a classical one. These improvements are tested numerically and exper-
imentally. This general method can be applied to system identification,
structure identification, damage detection, etc. The main advantage of it is
its high order differentiation capability. Therefore, this method is applied
to structure monitoring on a cantilever beam in flexural motion (which in-
volves a fourth derivative). In the treated example, the parameter ρS/EI
and the fourth derivative ∂4v/∂x4 are computed. The parameter ρS/EI is
accurately reconstructed for the whole beam, using different sensor patch
lengths and the identification method is shown to be a precise tool for
damage location. The computed fourth derivative emphasises the discon-
tinuity due to the crack. Using only the discontinuity property of a crack,
no assumption is needed about crack behaviour. This novel differentiation
technique makes it possible to compute changes and is of great interest for
damage location.

Keywords: Chebyshev, continuous-time identification, numerical
differentiation, partial derivation equation

1. Introduction

The identification of mechanical systems and structures is currently at-
tracting much attention for monitoring and control purposes. In civil and
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aeronautical engineering, for example, optimizing structure life-time is cru-
cial. Therefore robust monitoring is also vital for updating controllers.
System control requires accurate models of the systems controlled, thus the
formulation of the parameter identification procedures implemented is a
critical step.
Various parametric identification methods [1](such as ARX, Box-Jenkins,
etc.) have been developed over the last century. These methods seem
difficult to implement in mechanical engineering, as the parameters iden-
tified have no mechanical meaning. Recently, D. Remond [2] proposed
an improved continuous time identification method which permits the di-
rect computation of mechanical quantities such as mass, damping, etc.
This continuous-time identification method was applied on different multi-
degrees of freedom systems [3, 4, 5] using different orthogonal bases (Cheby-
shev, Legendre, Fourier, etc.) and it has also been extended to non-linear
systems [6]. All these studies give similar results.
In practice, many identification problems relating to mechanical vibration
result in a further problem of derivative estimation. These estimation meth-
ods concern various domains and provide numerous applications. The usual
methods use finite difference schemes, but often require a regularisation
step, such as for force localisation [7, 8]. Some approaches comprise a nat-
ural regularisation dimension that involves using an integral formulation
for boundary characterisation [9, 10, 11], or polynomial approximation for
damage detection [12]. D. Wu [12] adapted a part of this continuous time
method for damage detection purposes on continuous structures. However,
the whole continuous-time identification method has never been reformu-
lated for a distributed parameter (continuous) structure, such as a beam or
plate.
The purpose of this study was to adapt and improve the continuous time
identification method proposed by D. Remond [2] for continuous structures.
D. Remond [2] clearly separated this identification method into three steps:
signal expansion, signal differentiation and parameter estimation. In this
study, both expansion and differentiation steps are drastically improved.
An original differentiation method is developed and adapted to partial dif-
ferentiation. An example is then given of the application of this method for
damage location on a beam structure.
In section 2, the general formulation is presented briefly. The improvements
developed are described and reformulated for continuous structures.
In section 3, this improved identification method is tested numerically on
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a cantilever beam. Two observations are discussed in order to understand
the method’s limits. The improved method is also compared to the classical
one.
In section 4, this improved identification method is tested experimentally
on a cantilever beam. The purpose of this experiment is to estimate the
structure parameter ρS/EI and to reconstruct changes of this parameter.
This physical parameter (proportional to the beam cross-section) is there-
fore identified as the damage indicator.

2. Chebyshev polynomials, properties and a derivative formula-
tion

2.1. Continuous Time identification method

As presented in [2], the Continuous Time Identification method is usually
based on three steps:

• Expansion step Firstly, the recorded signals are expanded on a trun-
cated orthogonal basis. The choice of the orthogonal basis is not lim-
ited. The expanded signals are reduced to a few expansion coefficients.

f(x) ≈

N∑
i=0

λiPi(x) (1)

the recorded signal f is expanded on orthogonal basis size N . λi are
the expansion coefficients. Pi(x) is the ith orthogonal function of basis
P .

• Differentiation step Secondly, the derivatives of the expanded signal
are computed. For this step, the derivatives of the orthogonal func-
tions are computed and derivatives of the signal are obtained from
computed expansion coefficients.

f (z)(x) ≈

N∑
i=0

λ
{z}
i Pi(x)

λ
{z}
i ≈

N∑
k=0

α
{z}
i+kλk

(2)

f (z) (the zth derivative of f) is expanded on the orthogonal basis P .

λ
{z}
i is the ith expansion coefficient of f (z). The expansion coefficients
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λ
{z}
i are computed using the relationships between Pi and its deriva-

tives. These relationships are expressed by the α
{z}
i+k coefficients which

can be computed using various methods. A novel method will be
presented in section 2.2.2 and compared to a classical one in section
4.

• Differential to algebraic equation transform - For this step,
the differential equation governing the system behaviour is used. All
the derivatives in the differential equation are replaced by their ex-
pansion (computed in the differential step). The result of this step
is an algebraic equation composed of expansion coefficient arrays and
parameters. The parameters are computed using this algebraic equa-
tion.
The following is an example. Let the linear differential equation be:

f (4)(x) + A3f
(3)(x) + A2f

(2)(x) + A1f
(1)(x) + A0f(x) = 0 (3)

This differential equation is composed of the derivatives of f and the
Aj , j = 0..3 parameters and is transformed into the following algebraic
equation:

λ
{4}
i + A3λ

{3}
i + A2λ

{2}
i + A1λ

{1}
i + A0 λi ≈ 0 (4)

Using this set of algebraic equations (for i = 0..N), the Aj parameters
can be computed using a simple least square method.

2.2. Chebyshev polynomials properties and novel derivative formulation

2.2.1. Expansion with Gauss-points

The aim of the expansion with Gauss-points is to optimize the expan-
sion step. The λi expansion coefficients are expressed as a scalar product:

λi =< f(x), Pi >=

∫
Ω

f(x)w(x)Pi(x)dx (5)

where Ω is the domain of orthogonality. w(x) is a weighting function asso-
ciated with the basis P .
Traditionally, the trapezoidal rule is used to compute the integral and the
λi coefficients. This approach is accurate only if f is recorded for a large
number of samples, or if f and Pi vary slowly in the interval.
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An interesting property of Chebyshev orthogonal functions is their exact
discrete scalar product [13]. This scalar product can be transformed into:

λi =

N+1∑
j=1

f(xj)Pi(xj) (6)

where N + 1 > i and xj for j = 1..N + 1 are the zeros (or Gauss-points) of
Chebyshev function PN+1 of order N + 1. If f is recorded at all xj points,
using (6), the λi can be computed precisely with the discrete and finite
formulation.
This is true only if f can be expanded on the basis of size N (f(x) =∑N

i=0 λiPi(x)). In the case of the truncated expansion(1), the effect of the
approximation is negligible in comparison to the effect of the trapezoidal
rule, with the same number of samples. This comparison will be shown in
section 3.2.2.

2.2.2. Differentiation

A key challenge of this study was to optimize the differentiation step.
In order to calculate the derivatives of f , In [2], the author uses a derivative

matrix [D]. This [D] matrix is composed of the α
{z}
i+k coefficients expressed

previously (see eq.(2)). This method consists in assuming that the deriva-
tive of f is equal to a combination of the derivatives of Pi. However, this
simplification is not optimal. As explained by D-Y Lui [14], the estima-
tion of the derivative is corrupted by bias term errors that originate from
the truncation of the expansion of f . The aim of our novel differentiation
tool is to eliminate the bias term by integrating the expression of the scalar
product, as proposed by M. Mboup [11].
This novel differentiation method is used to compute the expansion of
[f (z) · uγ](function uγ will be explained in the next section). It is obtained
via a two-step process. Firstly, the scalar product of [f (z) · uγ] by Pi is
integrated by parts. Secondly, it is rewritten as a combination of scalar
products of f by Pk, weighted by a test function uγ−z.
If we write the expansion of f (z), the z-order derivative of f , in the integral
form (5), the expression can be integrated by parts in order to obtain (see
Appendix A for proof):

λ̃
{z}
i =< f (z) · uγ, Pi >

= (−1)z
∫ 1

−1

f(x)
[
uγ(x)w(x)Pi(x)

](z)
dx

(7)
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where uγ is chosen such that the integrated parts are equal to zero, i is
the order of the Chebyshev function and {z} is the differentiation order.

λ̃
{z}
i denotes the expansion coefficient of f (z) · uγ (unlike λ

(z)
i which is the

expansion coefficient of f (z)). For the following, we can simply choose:

uγ(x) = (1− x2)γ γ ≥ z + 1/2 (8)

By analytic calculation of
[
uγ(x)w(x)Pi(x)

](z)
, λ̃

{z}
i can be written as a

combination of expansion coefficients of f ·uγ−z, with uγ−z(x) = (1−x2)γ−z.

λ̃
(z)
i =

z∑
k=−z

α
(γ,z)
i+k < uγ−z · f, Pi+k > (9)

α
(γ,z)
i+k coefficients depend on the z,i,γ and k. For uγ chosen before, α

(γ,z)
i+k

values are given up to the fourth derivatives in Appendix B.
This novel differentiation method is bias-free, contrary to the operator [D]
and it is also computable using other orthogonal bases. The improvements
of this differentiation method are shown in section 3.2.3.

2.2.3. Reformulation for continuous structures

Expansion.

With a continuous structure, the signal often depends on more than one
variable. For example, for a beam, the displacement field depends on time
and space (along the beam axis).
Now let us consider a signal recorded along two different dimensions/directions
χ1 and χ2. This signal can be expanded through both domains by writing:

f(χ1, χ2) �
N∑

i1=1

M∑
i2=1

λi1,i2Pi1(χ1)Pi1(χ2) (10)

where N ,M are the sizes chosen for the orthogonal basis of χ1 and χ2

respectively. In order to calculate the λi1,i2 coefficients, χ1 and χ2 samples
will be the zeros of PN+1 and PM+1.
f recorded at the sample points and P computed at the same points can
be transformed into matrices in the same way as that developed in [2]. The
λi1,i2 are then obtained by writing:

λN,M = P (χ1)
†
N,N+1fN+1,M+1P (χ2)

†
M+1,M (11)
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where .†A,B is the pseudo-inverse of .A,B, which is a A-by-B matrix and with
:

f =

⎡
⎢⎣

f(χ1,1, χ2,1) · · · f(χ1,N+1, χ2,1)
...

. . .
...

f(χ1,1, χ2,M+1) · · · f(χ1,N+1, χ2,M+1)

⎤
⎥⎦

P (χ1) =

⎡
⎢⎣

P0(χ1,1) · · · PN(χ1,1)
...

. . .
...

P0(χ1,N+1) · · · PN(χ1,N+1)

⎤
⎥⎦

P (χ2) =

⎡
⎢⎣

P0(χ2,1) · · · PM(χ2,1)
...

. . .
...

P0(χ2,M+1) · · · PM(χ2,M+1)

⎤
⎥⎦

(12)

Partial differentiation.

In (9), the derivatives of f · u are computed using the scalar product of the
signal f multiplied by uγ−z. This formulation can be extended to a two
dimension case. Let us consider the z-order partial derivative of f , with
respect to the direction χd (d = 1 or d = 2):

dλ̃
(z)
i =

z∑
k=−z

α
(γd,z)
i+k < uγd−z(χd) · f, Pi+k > (13)

the dλ̃
(z)
i are then rearranged in a matrix called dλ̃

(z).

From partial derivative to algebraic equation.

Let us consider a partial differential equation of f , f depending on two
variables χ1,χ2:

Z∑
z=0

[
A1,z

∂zf

∂χz
1

+ A2,z
∂zf

∂χz
2

+ A1,2,z
∂2zf

∂χz
1∂χ

z
2

]
= G (14)

where A1,z, A2,z, A1,2,z are constants (which depends on the physics studied),
G is a function of χ1 and χ2. It has been shown that a function uγ is needed
to calculate the partial derivatives of f . However, in equation (14), different
orders of differentiation are involved. Therefore the only way to make use
of the previous differentiation process is to select γ for the highest order Z
(γ ≥ 1/2 + Z). Indeed, (14) can be written as:

U
Z∑

z=0

[
A1,z

∂zf

∂χz
1

+ A2,z
∂zf

∂χz
2

+ A1,2,z
∂2zf

∂χz
1∂χ

z
2

]
= U ·G (15)
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with U = uγ1(χ1) · uγ2(χ2) = (1 − χ2
1)

γ1(1 − χ2
2)

γ2 . γ1 and γ2 can be freely
chosen by the user.
Then,(15) is reduced to an algebraic equation:

Z∑
i=0

(
A1,z1λ̃

(z) + A2,z2λ̃
(z) + A1,2,z1,2λ̃

(2z)
)
= λ̃G (16)

1λ̃
(z), 2λ̃

(z) and 1,2λ̃
(2z) are the matrices computed using the process sum-

marized in Fig. 1. λ̃G is the expansion matrix of G · U .
All A1,z, A2,z, A1,2,z constants can be determined with the set of equations
generated by (16).

Figure 1: Process for computation of [1λ̃
(z)], [2λ̃

(z)] and [1,2λ̃
(2z)] matrices (blue:

recorded, green: computed, pink: expansion coefficients). p = 1 or p = 2, p∗ = 1 or
p∗ = 2 with p∗ �= p

3. Numerical simulation

3.1. Computation framework

The vibration analysis of the cantilever beam is used as an example
to demonstrate the improvements of the method proposed and determine
its limits. Indeed, the computation of the fourth derivative of the Euler-
Bernouilli beam equation is a good challenge for this novel identification
method. Furthermore the cantilever beam response consists in propagating
and evanescent waves. Evanescent waves emanates from the discontinuities
at the ends and can be written in the exponential form. These waves are
usually hard to expand. Finally, the displacement field obtained with a can-
tilever beam is not symmetric. It becomes therefore interesting to expand
it on a basis made of symmetric functions.
The forced response of this free-clamped beam is computed analytically.
The dimensions of the beam are given in Fig. 2 and are similar to those
of the beam studied experimentally in section 4. For section 3.3.2, a nu-
merical model of a crack and a thickness reduction of 10% on 0.5% of the
beam length are considered. The forced response of the cracked beam is
also computed analytically.
Additive and multiplicative noise is added to the beam response in order
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Figure 2: Cantilever beam dimensions and model

to simulate sensors and amplifiers noise . For each numerical application,
the process is tested on a Monte Carlo simulation with 1000 runs. The
distributed displacement is computed as follows:

vnoisy(x, t) = vexact(x, t)Δvme
jΔφ +Δva (17)

Δvm is a real Gaussian number with a mean value equal to unity and a
standard deviation equal to a chosen percentage of the magnitude of the
displacement, Δφ is another Gaussian random real number of a null mean
value and a standard deviation of 1 deg and Δva is a real Gaussian number
of a null mean value and a standard deviation equal to a chosen magnitude
percentage of the displacement.

3.2. Application to beam test case

3.2.1. Formulation

The simple 3 steps process presented in 2.1 will be applied the the can-
tilever beam identification. The equation of a Euler-Bernoulli beam defining
the behaviour of a bending beam without external excitation can be ex-
pressed as the sum of partial derivatives of the displacement v, with respect
to time t and position x:

∂4v

∂4x
(x, t) =

ρS

EI

∂2v

∂2t
(x, t) (18)

where ρ is the density, E the Young modulus of the material, S the cross-
section area and I the flexural inertia of the beam. With a crack, the
cross-section area S and flexural inertia I will change locally. This change
will be reconstructed by the identification method proposed. The aim of
this application is to evaluate ρS

EI
.

Multiplying (18) by U(x, t) = (1− x2)5/2(1− t2)3/2, the following algebraic
equation is deduced:

xλ̃
(4) =

ρS

EI
tλ̃

(2) (19)

The space and time derivatives are reconstructed through this identification
process. The matrices xλ̃

(4) and tλ̃
(2) are calculated as presented in Fig.

1.
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3.2.2. Signal expansion improvements

The expansion using Gauss-points is compared to the expansion pro-
cess using the trapezoidal rule. The methods proposed for one and two-
dimensional cases are similar, therefore the harmonic response of the healthy
beam (depending only on x) is expanded. Indeed, the expansion results are
easier to interpret for a one-dimensional case. The expansion of the signal
(contrary to the signal itself) is studied, as method errors such as bias effect
are more visible on the expansion coefficients.
A reference expansion is computed. To perform this reference expansion,
the beam response is computed at 1000 Gauss-points. This expansion can
be considered as a reference, since the difference between a 1000 Gauss-
point expansion and a 2000 Gauss-point expansion is smaller than −10dB.
The error in dB is computed as follows:

error(dB) = log10 |
λiC − λiref

λiref

| (20)

λiref being the reference expansion coefficient, and λiC the computed co-
efficient. For the results concerning the second mode shown in Fig. 3, only

Figure 3: Error (dB) on the expansion coefficient for the second mode of the beam. (a):
noise-free case, (b): with 15% noise. The results are given for order i < 6 (for i > 6,
the expansion coefficients are 103 smaller than the first 6). The grey lines represent
the dispersion on the expansion error (obtained with 1000 runs on the Monte Carlo
application)

the first 6 expansion coefficients are relevant and presented. For the noise-
free case (left), the expansion error is drastically reduced using Gauss-points
(from −1dB to −4dB on average).
With 15% noise, the expansion based on only a few sensors (in this exam-
ple 24 or 31) is very sensitive to noise. Therefore the expansion results are
averaged over 10 runs. This averaged process is tested on a Monte Carlo
application with 1000 runs.
Even with noise, the expansion error is smaller with Gauss-points than when
using the trapezoidal rule. The improvement is smaller than for the case
without noise, but error dispersion is greater when using the trapezoidal
rule. With 24 linear-spaced samples, the maximum error is almost always
greater than 0dB (except for i = 0). With Gauss-points the maximum
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expansion error is close to the mean error, therefore limiting the risk of
inaccurate expansion.

3.2.3. Differentiation improvements

Differentiations using the D matrix proposed in [2] and using the novel
method explained in section 2.2.2 are compared. The harmonic response
of the healthy beam (depending only on x) studied previously is differen-
tiated. In order to apply these observations to the experimental settings,
the fourth derivative is computed. The expansion of the fourth derivative
calculated analytically and expanded with 1000 Gauss points is considered
as a reference. In Fig. 4, the error on computation of the fourth derivative

Figure 4: Error (dB) on the fourth-order differentiation coefficient for the beam second
mode. (a): noise-free case, (b): with 15% noise. The results are given for the order i < 6
(for i > 6, the expansion coefficients are 103 smaller than for the first 6). The grey lines
represent the dispersion on the expansion error (performed with 1000 runs)

with a truncated expansion (N = 27 and N = 28) is presented. These
two truncation orders are selected for the signal studied (second modal re-
sponse). Indeed, the 28th expansion coefficient is smaller than the first 27
coefficients. This basis extension clearly reveals the bias effect.
For the noise free-case, considerable improvement (−10dB) is achieved with
the novel differentiation method. The bias effect with the operator [D] ap-
pears on high order coefficients (> 3). With noise, the bias effect is ampli-
fied, as shown in Fig. 4. Indeed, both methods give similar results for a
sufficiently truncated basis (N = 27). However, the method based on the
operator D is very sensitive to the truncation order N . For N = 28, the
high order coefficients are corrupted by the bias and the error is greater than
1dB. This error induces extra oscillations on the computed derivative, as
shown in Fig. 5. With the novel differentiation method, the error on high
order coefficients is significantly reduced. It still adds extra-oscillations but
their amplitude is reduced compared to the D operator method. Therefore
truncation order N does not require precise tuning.

3.3. Limits of the method proposed

3.3.1. On the link between the number of samples and the wave number

In Fig. 3, the expansion precision is clearly related to the number of
samples (Gauss-points) used for the computation. In (6), N + 1 Gauss-
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Figure 5: displacement v · u (a) and fourth derivative v(4) · u (b) for the cantilever
beam. Light grey: signal computed analytically; light pink: computed with the novel
differentiation method; dark purple: computed with the [D] operator

points are needed for the computation of N expansion coefficients. In this
section, the link between the truncation order N and the composition of
the signal frequency are studied. For non-dimensional considerations, the
signal frequency composition is replaced by the wave number. The latter
does not depend on the structure’s length or material.
For this analysis we define the identification precision Γ as:

Γ(dB) = log10

∣∣∣∣∣
ρS

EI ID
− ρS

EI TH
ρS

EI TH

∣∣∣∣∣ (21)

where .ID is the parameter identified and .TH is the theoretical value. For
example if Γ = −2, then the parameter is accurate with 1% error.
in Fig. 6, the precision on the parameter identified is presented for the
wave number k between 0.1 and 3. For the noise free case, precision is
clearly related to the number of samples. For N = 14, for k > 1, the
error increases fast. Indeed, a sufficiently high number of polynomials is
needed to accurately expand the signal. These noise-free observations set
the upper limit of k, regarding to N . The performances of the method

Figure 6: Identification precision (dB) for the cantilever beam. (a): noise-free case; (b):
with 5% noise. Averaged precision obtained with 1000 runs for the noisy case. Results
for the different truncation order N

proposed are evaluated by a Monte Carlo simulation with 100 runs of this
averaged process. The performance of the identification is poor for small
wave number (k ≤ 0.5). Indeed, for this study the expansion matrices
are of size N -by-N . These matrices are almost empty for k ≤ 0.5, as the
signal is only expanded on the first Chebyshev functions. Indeed, the signal
oscillates slowly and is therefore expanded only on the few first orthogonal
functions. Therefore, even if the coefficients are averaged, they are very
sensitive to noise. These observations on the noisy case set the lower limit
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of k, regarding N .
In order to obtain maximum advantage from this identification method, it
is crucial to select the number of samples N for a given wave number k.

3.3.2. On the link between the damage position and the Gauss point location

For this section, we fix N = 16 (the same as for the experimental re-
sults). In order to satisfy the previous considerations, we choose k = 1. A
crack (10% height, 0.5% length) is moved numerically from one end to the
other of the beam considered. The signal is expanded on the Chebyshev
basis for each crack position. The computed expansion coefficients xλ̃

(4)
i

of the cracked beam and the healthy beam are compared. In Fig. 7, the
results are presented for i = 2,3,6 and 10 (the observations are similar for
other i). In Fig. 7, the difference between the cracked and healthy expan-

Figure 7: Computed expansion coefficients of the fourth derivative with respect to space.
Comparison between cracked and healthy expansion. From (a) to (d): expansion order
i = 2,3,6 and 10. The grey vertical lines correspond to the Gauss points of the Chebyshev
polynom of order i.

sion coefficients is clearly sensitive to the position of the crack regarding to
the Gauss-points. Indeed a crack located near the Gauss-points of the ith
polynom implies a noticeable change on the computed expansion coefficient
of order i.
Therefore the crack can be located depending on which expansion coeffi-
cients change.

3.4. Summary of numerical considerations

It has been shown previously that the identification results depend on
the following considerations:

• for a truncation order N , N + 1 Gauss-points are required;

• the novel differentiation method is less sensitive to the truncation
order N ;

• a sufficiently high truncation order N is required in order to compute
the signal expansion precisely (refer to Fig. 6, noise free case);
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• a sufficiently high wave number k is required in order to separate signal
expansion and noise expansion accurately (refer to Fig. 6, noisy case);

• crack position can be computed depending on which expansion coef-
ficient is affected (refer to Fig. 7).

4. Experimental results

4.1. Implementation setup

The novel differentiation formulation reformulated for continuous struc-
tures is applied to a cantilever beam, although the experimental technique
can be applied to any type of structure. The parameter ρS/EI and the
fourth derivative of the displacement(with respect to space) are computed.
The displacement of this beam is reconstructed with selected time samples
and space positions using a laser vibrometer (PSV400). Here, we study
the forced response of this cantilever beam. 1.1m long in which a crack is
imposed (a notch 3mm in width and 2.5mm in depth). For this experimen-
tation, a relatively large crack is chosen as a first test of this method. Fig.
8 shows the beam, the imposed crack and laser measurements at different
positions. A sensor array provides 16 measurements at 16 different sample
positions (as shown in Fig. 8). For this experiment, the limits of the method

Figure 8: Experimental implementation: cantilever beam, imposed crack and laser mea-
surements at different sample positions (for one sensor array)

considered (presented in section 3.3) were taken into account. Each sensor
array has 16 sample positions. Therefore, the signal is expanded on the
basis of 15 Chebyshev functions. In order to ensure a minimal wave num-
ber equal to 1, the length of the sensor array is adapted at each excitation
frequency. For example, at the 5th flexural mode of the beam, the sensor
array length is equal to 1/5th of the beam length. No specific hypothesis
can be made regarding the crack location on the sensor array. Therefore the
sensor array is shifted along the beam. If the crack were located in a dead
zone for a given sensor array position, it would be located in a sensitive zone
for the next sensor array position , as shown in Fig. 9. The experimental
application of this method was tested for different excitation frequencies.
Each experiment (for a given sensor array position and for a given excitation
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Figure 9: Experimental implementation: cantilever beam, imposed crack and laser mea-
surements at different sample positions (for one sensor array)

frequency) was repeated twice. As the results for the different excitation
frequencies were similar, the dispersion of the results for a single frequency
is presented in the next section.

4.2. Results and discussion

Parameter ρS/EI and the fourth derivative (∂4v/∂t4·u) can be evaluated
for all the sensor array locations for undamaged (x < 0.8m and x > 0.8m))
and damaged cases (x ≈ 0.8m).
This identification method has two main applications. The first is linked
to the material properties of the structure. It permits the identification of
a global ρS/EI for the whole beam. This method has many applications,
such as model updating for a controller and monitoring of Young’s Modulus
(material aging). The second involves more geometrical properties of the
structure. It permits the computation of the dispersion of ρS/EI along the
beam for each sensor array.
Fig. 10 (left) shows the ratio between the identified and theoretical ρS/EI.
The value of the mean identified parameter ρS/EI is computed and plotted
in dashed lines: dark grey for k ≈ 1 and light grey k ≈ 0.8. For both cases,
the mean value is close to the theoretical one ( ratio equal to 1.16 for k = 0.8
and 0.85 for k = 1). The mean value can be corrupted by noise which could
explain the dispersion of the measurements. The theoretical value is also
roughly estimated with the beam dimensions and the properties of the steel.
The dispersion of ρS/EI is plotted in Fig. 10 (left). Each filled box corre-
sponds to the parameter dispersion at a single sensor array position. The
computed parameter values oscillate between 1/2 and 3 times the mean
value, except when the sensor array is located near x = 0.8m. At this loca-
tion, the computed parameter becomes negative or is greater than 4 times
the mean value. The oscillating values (between 1/2 and 3 times the mean
value) can be explained by the variability due to the noise. The assumption
of a continuous structure is not accurate at the damage location, therefore
the computed parameter can be negative. Conversely, a negative parameter
shows a breach in the formulated hypothesis and therefore damage. The
effect of damage (or a discontinuity) is similar to that of noise. Indeed, a
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discontinuity changes the slope of the signal slope locally. This local change
drastically increases the high order coefficient of expansion. In the case of
noise, the effect of these high order coefficients is smoothed by the compu-
tation of a mean value. In the case of damage, the effect of these high order
coefficients cannot be smoothed by the same technique. Therefore the value
of the computed parameter at damage location can increased by more than
4 times, due to these high order coefficients.
This reasoning is confirmed in Fig. 10 (right). Indeed the calculation of the
displacement’s fourth derivative with respect to space emphasises these high
order coefficients. Near the damage location, the computed fourth deriva-
tive consists of high-oscillating terms. For both cases (k ≈ 0.8 and k ≈ 1),
the maximum value of the fourth derivative is located at the Gauss-point
closest to the damage. These results demonstrate an alternative method

Figure 10: ρS/EIID/ρS/EITH (a) and (∂4v/∂x4 ·u) (b) for the cantilever beam, results
based on a experimental data (excitation frequency equal to 1471Hz). On the left, the
light and dark grey dashed lines correspond to the mean values ( for k ≈ 0.8 and k ≈ 1
respectively)

for damage location. Indeed, with a restricted number of samples (here
16 samples), it was shown that ρS/EI and the fourth derivative ∂4v/∂x4

can be computed. The parameters studied are very sensitive to damage (a
discontinuity). ρS/EI becomes negative when the continuity assumption
is no longer valid. The damage can also drastically increase the ρS/EI
value. The method proposed is capable of computing these changes and
thus locating the damage accurately.

5. Conclusion

In this contribution, a novel differentiation technique was reformulated
for partial differentiation. Using signal expansion and our novel differentia-
tion technique, the partial differential equation governing system behaviour
was transformed into an algebraic equation. This novel differentiation tech-
nique is bias-free and therefore less sensitive to the basis truncation order.
A basis size extension leads to increasing the precision of identification, con-
trary to the operational matrix traditionally computed for this application.
No assumption about boundary conditions is made. Therefore this identi-
fication technique can be used with unknown boundary conditions.
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The method was applied to a cantilever beam to locate imposed dam-
age , although the experimental technique can be applied to any type of
structure. Indeed, parameter ρS/EI and the fourth derivative ∂4v/∂x4

were computed, using a signal recorded experimentally. Parameter ρS/EI
was accurately reconstructed for the whole beam, using different sensor
patch lengths. The damage was accurately located using this identifica-
tion method. The computed fourth derivative emphasised the discontinuity
due to the crack. These changes in continuity could be computed with the
novel differentiation technique, making it very interesting for damage lo-
cation. This technique shows also good capabilities for the estimation of
material properties such as the Young Modulus. Therefore, this technique
could be applied to material ageing estimation.
Further research should extend this technique to structure response with
white noise excitation. Then, for example, this method could be applied to
the ambient response of a bridge. The link between crack size, noise level
and method regularization is also under investigation.

Appendix A. Proof of (7)

The scalar product between Pi and uγ × f (z) is defined as :

λ̃
{z}
i =

∫ 1

−1

f (z)(x)
[
uγ(x)w(x)Pi(x)

]
dx (A.1)

Integrating once by part:

λ̃
{z}
i =

[
f(x)(z−1)[uγ(x)w(x)Pi(x)]

]1
−1
−

∫ 1

−1

f(x)(z−1)
[
uγ(x)w(x)Pi(x)

](1)
dx

= −

∫ 1

−1

f(x)(z−1)
[
uγ(x)w(x)Pi(x)

](1)
dx

(A.2)
This is true if uγ(1) = uγ(−1) = 0 and f(1)(z−1),f(−1)(z−1),w(1),w(−1),Pi(1)
and Pi(−1) finite. This assumption is true for w and Pi and most of the
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time true for f (z−1).

λ̃
{z}
i = −

∫ 1

−1

f(x)(z−1)
[
uγ(x)w(x)Pi(x)

](1)
dx

= −
[
f(x)(z−2)[uγ(x)w(x)Pi(x)]

(1)
]1
−1
+

∫ 1

−1

f(x)(z−2)
[
uγ(x)w(x)Pi(x)

](2)
dx

=

∫ 1

−1

f(x)(z−2)
[
uγ(x)w(x)Pi(x)

](2)
dx

(A.3)

This is true if u
(1)
γ (1) = u

(1)
γ (−1) = 0 and f(1)(z−2),f(−1)(z−2),w(1)(1),w(1)(−1),P

(1)
i (1)

and P
(1)
i (−1) finite. This assumption is true for w(1) and P

(1)
i and most of

the time true for f (z−2).
And so on until (7):

λ̃
{z}
i = (−1)z

∫ 1

−1

f(x)
[
uγ(x)w(x)Pi(x)

](z)
dx (A.4)

Appendix B. α
(γ,z)
i+k coefficients for derivative computation

Appendix B.1. α
(γ,1)
i+k coefficients for first order derivative

For i ≥ 1 :

α
(γ,1)
i−1 = −(

1

2
− γ +

i

2
)

α
(γ,1)
i+1 = −(

1

2
− γ −

i

2
)

α
(γ,1)
i = 0

(B.1)

For i = 0 :

α
(γ,1)
1 = −2(

1

2
− γ)

α
(γ,1)
−1 = α

(γ,1)
0 = 0

(B.2)
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Appendix B.2. α
(γ,2)
i+k coefficients for second order derivative

For i ≥ 2 :

α
(γ,2)
i−2 = (

1

2
− γ + i/2)(1− γ +

i

2
)

α
(γ,2)
i+2 = (

1

2
− γ − i/2)(1− γ −

i

2
)

α
(γ,2)
i−1 = α

(γ,2)
i+1 = 0

α
(γ,2)
i =

(
(2γ − 1)(γ − 1)−

i2

2

)
(B.3)

For i = 1 :

α
(γ,2)
1 =

[
(γ −

3

2
)(−3γ − 2)− γ

]

α
(γ,2)
3 = γ(γ −

1

2
)

α
(γ,2)
−1 = α

(γ,2)
0 = α

(γ,2)
2 = 0

(B.4)

For i = 0 :

α
(γ,2)
0 = 2(γ −

1

2
)(γ − 2)

α
(γ,2)
2 = 2(γ −

1

2
)(γ − 1)

α
(γ,2)
−2 = α

(γ,2)
−1 = α

(γ,2)
1 = 0

(B.5)

Appendix B.3. α
(γ,3)
i+k coefficients for third order derivative

For i ≥ 3 :

α
(γ,3)
i−3 = α

(γ,2)
i−2 (

3

2
− γ +

i

2
)

α
(γ,3)
i+3 = α

(γ,2)
i+2 (

3

2
− γ −

i

2
)

α
(γ,3)
i−1 = α

(γ,2)
i−2 (

7

2
− γ −

i

2
) + α

(γ,2)
i (

5

2
− γ +

i

2
)

α
(γ,3)
i+1 = α

(γ,2)
i (

5

2
− γ −

i

2
) + α

(γ,2)
i+2 (

7

2
− γ +

i

2
)

α
(γ,3)
i−2 = α

(γ,3)
i+2 = α

(γ,3)
i = 0

(B.6)
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For i = 1 :

α
(γ,3)
0 =

[
(γ −

3

2
)(−3γ + 2) + γ

]
(3− γ)

α
(γ,3)
2 =

[(
(γ −

3

2
)(−3γ + 2) + γ

)
(2− γ)− γ(γ −

1

2
)(4− γ)

]

α
(γ,3)
4 = −γ(γ −

1

2
)(1− γ)

α
(γ,3)
−2 = α

(γ,3)
−1 = α

(γ,3)
1 = α

(γ,2)
3 = 0

(B.7)

For i = 0 :

α
(γ,3)
0 = 2(γ −

1

2
)
[(
(γ −

5

2
)(3γ − 5)− (γ − 1)

)]

α
(γ,3)
3 = 2(γ −

1

2
)(γ −

3

2
)(γ − 1)

α
(γ,3)
−3 = α

(γ,3)
−2 = α

(γ,3)
−1 = α

(γ,3)
1 = α

(γ,3)
2 = 0

(B.8)

For i = 2, the combination process is similar to other coefficient orders.

Appendix B.4. α
(γ,4)
i+k coefficients for the fourth order derivative

For i ≥ 4 :

α
(γ,4)
i−4 = α

(γ,3)
i−3 (2− γ +

i

2
)

α
(γ,4)
i+4 = α

(γ,3)
i+3 (2− γ −

i

2
)

α
(γ,4)
i−2 = α

(γ,3)
i−3 (5− γ −

i

2
) + α

(γ,3)
i−1 (3− γ +

i

2
)

α
(γ,4)
i+2 = α

(γ,3)
i+1 (3− γ −

i

2
) + α

(γ,3)
i+3 (5− γ +

i

2
)

α
(γ,4)
i = α

(γ,3)
i−1 (4− γ −

i

2
) + α

(γ,3)
i+1 (4− γ +

i

2
)

α
(γ,4)
i−3 = α

(γ,4)
i+3 = α

(γ,4)
i−1 = α

(γ,4)
i+1 = 0

(B.9)

For i = 0, 1, 2, 3, the combination process is similar to other coefficient
orders.
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