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In this paper, modal feedback control is proposed to reduce the sound transmission through

�nite double panels, using PZT ceramic sensors and actuators bonded to the structure. Active

control allows adding virtual modal damping and mass to the structure by the use of modal

velocities and accelerations. In a �rst step, the equations describing the structure, the actuators,

the acoustic excitation and the acoustic radiation are detailed. Next, the state space formulation

of the smart structure is presented. In a second step, the implementation of active control is

illustrated through the use of numerical examples. Finally, simulations are performed using 2

actuators, allowing 5 modes to be controlled. The transmission loss factors of the controlled and

uncontrolled structure are shown as a function of the required command voltage. These results

are also compared with those achieved using other vibroacoustic control techniques.

Key-words : Vibroacoustic control, Active control, Modal control, Sound Transmission,
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1 Introduction

Double panels, made of two plates separated by an air cavity, are commonly em-
ployed when high transmission loss values must be achieved with lightweight structures.
Although such panels can provide good sound insulation at mid-high frequencies, their
performances decrease rapidly at low frequencies, especially in the vicinity of the mass-
air-mass resonance frequency. Good passive isolation can be achieved through the use of
cavity control or panel control. In recent years, considerable progress has been made in
active noise control, thanks to the ever-increasing processing power of computers. In the
case of cavity control, loudspeakers and error microphones are installed between the two
panels, in order to modify the cavity pressure �eld and reduce the radiated sound power.
X-�ltered LMS feed-forward control is often used in experimental research (Bao and Pan
[1997]; Jakob et al. [2003a]; Sas et al. [2005]; Bouvet [1993]) due to its simplicity and the
signi�cant reduction in sound power which can be obtained. Nonetheless, measuring a
reference signal under "real working conditions" is an obstacle to the development of this
control approach : the non-availability of a reference signal limits feed-forward control.
Although, feedback controllers have also been successfully implemented in Jakob et al.
[2003b]; Kaiser et al. [2003] the feed-forward approach appears to be more e�cient.

Prior to the development of active control, Mason and Fahy [1988] showed that a
Helmholtz resonator, optimally tuned to the cavity resonance, increased the acoustic
damping and allowed signi�cant transmission loss enhancements. This approach can be
adapted to a "passive control" technique using PZT and electric circuits. In an approach
similar to that of a Helmotz resonator, the control system's electrical resonance is tu-
ned to the cavity resonance (Mao and Pietrzko [2005]; Pietrzko and Mao [2008]). This
approach uses a combination of cavity and panel control. The possibility of inserting
actuators and sensors into structures has led to the development of Active Structural
Acoustic Control (ASAC). Elliott (Elliott and Johnson [1993]) showed that at low fre-
quencies, sound power is produced mainly by the �rst radiation mode (piston-motion).
Reducing in the volume velocity of the panel leads to a reduction in sound power. Sensor
networks (Sors and Elliott [2002]; Francois et al. [2001] ) or a distributed sensor such as
PVDF �lm (Preumont et al. [2005]) have been implemented to evaluate volume velocity
and supply a SISO controller. System stability is guaranteed (Preumont [2002]) when
the actuators and the sensors are ideal, collocated and dual. Model-based strategies have
also been introduced in vibroacoustic control. Baumann [1991]; Baumann et al. [1992]
proposed to compute sound power using radiation �lters introduced into the state space
model of the structure, with the acoustic energy being incorporated into the cost func-
tion. Experiments carried out by Bingham et al. [2001] and Dehandschutter et al. [1999]
have demonstrated the validity of this method, although it is limited by the number of
radiation �lters which need to be introduced into the state space formulation. Below the
critical frequency, transmission is mass controlled (Fahy [1985]). Alujevic and Gardonio
[2006] showed that a light panel, controlled by an active virtual mass with decentralized,
collocated MIMO controllers, behaves like a heavy, non-controlled panel. Although the
transmission losses are increased, sound power peaks persist due to the lack of active
damping.

Contrary to simple panels, double panels present very good acoustic properties at
medium to high frequencies, due to coupling e�ects between the plates and the cavity.
Unfortunately, double panels are not very e�ective at low frequencies. The main advan-
tage of combining a double panel with active control is that good acoustic properties
can be obtained over the whole frequency band. Moreover, the double panel has the
advantage of �ltering out the eventual gain peaking or spillover. Spillover appears at
high frequency in the case of a modal control approach due to the use of a reduced
model of the structure. For all of these reasons, the combination of a double panel with
active control appears to be a highly attractive solution.

The aim of this paper is to describe the reduction in the transmission of sound
through a double panel by modifying its modal distribution. When structures are rela-
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tively small and light, the associated panels have a low modal overlap. Modal control
thus appears to be well adapted to this situation, since it allows the active surface and
the number of control components to be limited (Gaudiller and Der Hagopian [1996])
and the control energy to be concentrated on high radiation e�ciency modes. Moreover,
the use of nonlinear algorithms allows the control energy to be reduced, through the
use of a variable gain, which is adjusted according to the level of modal quantities in
order to improve the energy exchange (Gaudiller and Matichard [2007]) or by remo-
ving the restoration of potential ( Matichard and Gaudiller [2005]). By adding modal
masses, the resonance frequencies are individually shifted to a less audible frequency
range. Also, the mass control of one eigenmode can be as achieved through the addition
of a virtual modal mass. The acoustic characteristics of the structure should also be
improved in the upper frequency range, thereby increasing its transmission losses. This
paper presents a modal state space feedback controller which acts on modal mass and
modal damping. Section 2 describes the modeling of the structure and the method used
to compute the sound power. Section 3 introduces the vibroacoustic controller driven
by modal accelerations and modal velocities. Simulations of this "Mass and Damping
vibroacoustic modal control" is presented in the case of a double panel in section 4. It
is then compared with other vibroacoustic modal control techniques.

2 Modeling

The �rst step in the design of a model-based control strategy consists in building
a structural and acoustic model. This model is used by the observer to reconstruct the
modal state vector of the structure from sensor signals . The control gains are then
applied to the estimated state vector, and can be optimized by minimizing the system's
kinetic energy and radiated sound power.

2.1 Double panel description

In the low frequency domain, the natural wavelength is much greater than the dis-
tance between the two plates, such that coupling due to the air space can be approxi-
mated by a uniformly distributed air spring. The governing equations for two simply
supported plates coupled through a linear spring can be written as (Vaicaitis [1983]) :

mIẅI + CIẇI +DI 54 wI +Ks(wI − wR) +
1

3
msẅI +

1

6
msẅR = pI(x, y, t),(1)

mRẅR + CRẇR +DR 54 wR +Ks(wR − wI) +
1

3
msẅR +

1

6
msẅI = pR(x, y, t),(2)

with wI and wR being respectively the transverse displacement of the incident (sub-
script I) and radiating (R) plates,54 the bi-Laplacian operator, Ks the air-layer sti�-
ness, pI(x, y, t) and pR(x, y, t) the normal external pressure acting on the incident and
radiating plates and CI and CR the structural damping coe�cients of the plates. Sub-
script s denotes the air cavity, ms3 and ms

6 are the contributions of the air cavity mass
apportioned to each of the two plates. The mass density per unit area of the structure
and the air sti�ness per unit area are de�ned as follows :

mI = ρI .hI ;mR = ρR.hR;ms = ρs.hs, (3)

DI =
EIh

3
I

12
(
1− υ2I

) ;DR =
ERh

3
R

12
(
1− υ2R

) , (4)

Ks =
ρsc

2

hs
;54 =

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
, (5)

where E is Young's modulus, υ is the Poisson's ratio, ρ is the mass density and h is the
thickness of the plate.
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For the sake of simplicity, the following new terms are introduced :

aI = mI +
ms

3
; aR = mR +

ms

3
; bs =

ms

6
. (6)

When the structure is lightly damped and the modes are su�ciently decoupled, the
transverse displacement �elds can written in a matrix form. The linear system can then
be described by a set of decoupled modal equations after a change of variable :

w = φq (7)

with w the transverse displacement matrix, φ the modal shapes and q the modal dis-
placement amplitudes. In the case of two simply supported plates (dimensions : Lx,
Ly), the dynamic behavior of both plates are similar and can be written using a modal
approach where the eigen-shapes are given by :

φImn(x, y) = φRmn(x, y) = φmn(x, y) = sin

(
mxπ

Lx

)
sin

(
nyπ

Ly

)
. (8)

The displacements of the incident and radiating plates can be written in the form of a
linear combination of modes :

wI =

m=∞∑
m=0

n=∞∑
n=0

qImnφ
I
mn (9)

and

wR =
m=∞∑
m=0

n=∞∑
n=0

qRmnφ
R
mn. (10)

From (1), (2) and (7), for the two plates, the modal equations of motion of mode mn
are given by :

q̈Imn + 2ξmnω
I
mn

mI

aI
q̇Imn +

(
(ωI

mn)
2mI

aI
+
Ks

aI

)
qImn −

Ks

aI
qRmn +

bs
aI
q̈Rmn =

PdImn

aI
, (11)

q̈Rmn + 2ξmnω
R
mn

mR

aR
q̇Rmn +

(
(ωR

mn)
2mB

aR
+
Ks

aR

)
qRmn −

Ks

aR
qImn +

bs
aR

q̈Imn =
PdRmn

aR
,(12)

where ξmn is the modal damping factor,and ωmnR and ωmnI are the eigen-frequencies
of the uncoupled plates :

ωRmn =

√
DR

mR

[(
mπ

Lx

)2

+

(
nπ

Ly

)2
]
, ωImn =

√
DI

mI

[(
mπ

Lx

)2

+

(
nπ

Ly

)2
]
, (13)

and PdImn, Pd
R
mn the generalized external forces :

PdImn =
4

Lx.Ly

∫ Lx

0

∫ Ly

0
φImn(x, y)pI(x, y, t)dxdy

PdRmn =
4

Lx.Ly

∫ Lx

0

∫ Ly

0
φTmn(x, y)pR(x, y, t)dxdy. (14)

State space matrices of both plates

The Fourier transform of the coupling terms between the two plates in (11) and (12)

can be simpli�ed when ω << ωc with ωc <
√

Ks
bs

by :

−q̂Rmn
aI

(
Ks + ω2bs

)
≈ −Ks

aI
q̂Rmn, (15)

−q̂Imn
aR

(
Ks + ω2bs

)
≈ −Ks

aR
q̂Imn, (16)
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where q̂Imn and q̂Rmn denote the Fourier transform of the amplitudes of the incident and
radiating plates for the mode mn. These simpli�cations result from the fact that the
inertia of the air-layer is negligible when compared to the in�uence of its sti�ness.

In this study, frequencies higher than ωc are not considered. From (11), (12), (15),
(16), the state space matrices of the plates coupled by an air cavity can be written as :


˙qImn
˙qRmn
¨qImn
¨qRmn


︸ ︷︷ ︸

Ẋ

=


0 0 1 0
0 0 0 1

−Ks+mI(ωImn)
2

aI
Ks
aI

−2ξImnωImnmIaI 0

Ks
aR

−Ks+mR(ωRmn)
2

aR
0 −2ξRmnωRmnmRaR


︸ ︷︷ ︸

A

.


qImn
qRmn
˙qImn
˙qRmn


︸ ︷︷ ︸

X

+


0
0

PdImn
aI
0


︸ ︷︷ ︸

EI

WI +


0
0
0

PdRmn
aR


︸ ︷︷ ︸

ER

WR +


0
0

BImn
aI
0


︸ ︷︷ ︸

BI

UI +


0
0
0

BRmn
aR


︸ ︷︷ ︸

BR

UR, (17)

where X is the modal state vector, A is the dynamic matrix, EI and ER are the distur-
bance state matrices, BI and BR are the actuation state matrices,WI andWR represent
the system noise, and UI and UR represent the control vectors.

State space matrices of the global structure

When the double panel is excited by an acoustic wave on the incident plate, the modal
displacements of each plate are obtained in state space formulation as :

y = Cx, (18)

where C is the output matrix which depends on the sensors. In the Laplace domain, if
incident pressure only is considered, the outputs are computed as :

Y (s) = C(sI −A)−1EIWI(s), (19)

For each mode, transfer functions from excitation (aerial or mechanical) to the outputs
of each plate can be obtained from the summation of the two second order rational frac-
tion polynomials (20) and (21) indexed 1 and 2. Indeed, each modal shape mn has two
resonances, corresponding to these two fraction polynomials (with both plates in-phase,
or out-of-phase). These fractions can be computed analytically or obtained experimen-
tally by curve �tting identi�cation (Richardson and Formanti [November 1982.]) :

qImn(s) =
ψI1e

jφI1

s2 + bIs+ cI
+

ψI2e
jφI2

s2 + eIs+ fI
, (20)

qRmn(s) =
ψR1 e

jφR1

s2 + bRs+ cR
+

ψR2 e
jφR2

s2 + eRs+ fR
. (21)

where ψ's are the amplitudes, c's and f's are the eigen-frequencies, b's and e's are the
terms relative to damping and φ's are the phases. In the case of a perfect double panel,
f = fI = fR, c = cI = cR, φ

I
1 = φI2 = 0 and φR1 = φR2 − π = 0. The relative modal

amplitudes of both plates at each resonance frequency are given by ψI1 , ψ
R
1 , ψ

I
2 and ψ

R
2 .

Since both plates have the same modal damping (b at the in-phase frequencies, and e
at the out-of-phase frequencies) and the modal quantities q are independent, the global
state can be written as :

s.q1globalmn

s.q2globalmn

s2.q1globalmn

s2.q2globalmn

 =


0 0 1 0
0 0 0 1
−c 0 −b 0
0 −f 0 −e

 .


q1globalmn

q2globalmn

s.q1globalmn

s.q2globalmn

+


0
0
1
1

UI(s). (22)
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Figure 1 � Modal displacements of the incident plate q1,1I and of the radiating plate

q1,1R , and their relative phase

The relationship between the modal displacements of the separated plates and those of
the global structure is given by :

qImn(s) = ψI1 .q
1global
mn (s) + ψI2 .q

2global
mn (s), (23)

qRmn(s) = ψR1 .q
1global
mn (s)− ψR2 .q2globalmn (s). (24)

In equation (24), the negative sign preceding the last term indicates that two panels
are out of phase at the second resonance (φR2 = π). The modal displacements of the
incident plateqI1,1 and of the radiating plate qR1,1 are plotted in �gure 1. The same modal
shape appears twice ; once when the two plates are out of phase, once when they are
in-phase ; with di�erent relative amplitudes.

2.2 Actuators

The control actuators considered in this study are square PZT ceramics bonded to
the structure. The generalized forces exerted by these actuators introduced into the
actuation state matrices BI and BR, are given for the mode mn and the patch p by
(Dimitriadis and Fuller [1991]) :

Bp
mn = 4C0εp

(
−
α2
x + α2

y

αxαy

)
(cos (αxx1)− cos (αxx2)) (cos (αyy1)− cos (αyy2)) (25)

with

αx =
mπ

Lx
;αy =

nπ

Ly
; εp =

d31u

ta
, (26)

C0 = −E
1 + υa
1− υ

P

1 + υ − (1 + υa)P

2

3

(
h

2

)2

, (27)

P = −Ea
E

1− υ2

1− υ2a
3ta(h/2)(h+ ta)

2 [(h/2)3 + t3a] + 3(h/2)t2a
, (28)

where Bp
mn is the generalized force of the pth actuator at mode m-n, u is the control vol-

tage, d31 is the piezoelectric transverse coe�cient, C0 is the capacitance, [x1, x2], [y1, y2]
are the coordinates of the square actuator, υ, υa are respectively the Poisson's ratio of
the plate and the actuator, h and ta are the plate and actuator thicknesses,and E and
Ea are their Young moduli.
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2.3 Acoustic model

An acoustic model is required in order to optimize the control gains of the vibroa-
coustic controller and to evaluate the performances of the control system.

2.3.1 Excitation by a di�use �eld

Let us consider the excitation to be an incident acoustic plane wave. The expression
of the acoustic pressure due to the plane wave on the surface is (Roussos [1985]) :

pi(x, y, t) = Pie
j(ωt−kxsinθicosφi−kysinθisinφi), (29)

where Pi is the incident pressure amplitude, θi and φi are the incidence angles, k is the
acoustic wavelength and ω is the frequency. Since the coupling is weak between the �uid
at the incident surface (air) and the incident plate, the excitation can be considered to
be the blocked pressure, corresponding to twice the incident pressure :

pB(x, y) = 2pi(x, y) =
M∑
m=1

N∑
n=1

Pdmnsin

(
mπx

lx

)
sin

(
nπy

ly

)
, (30)

where Pdmn are the modal amplitudes de�ned by :

Pdmn(θi, φi) =

∫ lx

0

∫ ly

0

8

Lx.Ly
Pie

jsinθi(−kxcosφi−kysinφi)sin

(
mπx

lx

)
sin

(
nπy

ly

)
dxdy.(31)

The development of Pdmn(θi, φi) is provided by Roussos [1985]. The incident intensity
is written :

Ii =
P 2
i cosφi
2ρc

. (32)

and the incident acoustic power can be computed from the intensity as :

Wi =

∫
Ii.dS. (33)

In the case of a di�use �eld, the generalized forcing pressure Pddi�usemn can be computed
without weighting coe�cients, as :

Pddi�usemn =

∫ π
2

−π
2

∫ π

0
Pdmn(θi, φi)dθdφ. (34)

This approximation is su�ciently accurate for the purposes of active control simulations.

2.3.2 Radiated pressure

The acoustic power Wr can be computed using the well-known Rayleigh integral
or the radiation resistance matrix of the structural modes M and the modal velocities
(Elliott and Johnson [1993]). This formulation allows the radiation to be introduced
into the state space formulation of the double panel :

Wr = q̇HMq̇, (35)

where the superscript H denotes the Hermitian.M can be calculated from the radiation
resistance matrix of elemental radiators and modal shapes. The structure is discreti-
zed into elementary radiators radiating into free space, which are small compared to
the acoustic wave length. The sound power radiated by a set of elemental sources is
calculated as :

Wr =
Se
2
<{vHp} = vHRv, (36)
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with

Rij =
Se
2
<{Zij} =

ω2ρS2
e

4πc

sin krij
krij

, (37)

where v and p are respectively the velocity and pressure vectors of the radiators, k is
the acoustic wave length, Se is the surface area of the radiator, c is the speed of sound in
the medium, ω is the frequency, ρ is the mass density of air and rij denotes the distance
between elemental sources. < indicates the real part and Z and R are respectively
the acoustic transfer impedance and the radiation resistance matrices of the elemental
radiators. After the change of variable de�ned in equation(7), M and Wr become :

Wr(ω) = vHR(ω)v = q̇HφHR(ω)φq̇, (38)

M(ω) = φHR(ω)φ. (39)

Then, for any structures and any set of frequencies, the radiation resistance matrix
of the structural modesM can be calculated and approximated using a Laplace-domain
multiple-input, multiple output transfer function M(s). M(s) is then factorized into a
stable causal radiation �lter G(s) (40), and W (s) is given by (41) :

M(s) = GT (−s)G(s), (40)

Wr(s) = Q̇r(−s)TM(s)Q̇r(s), (41)

where Q̇r(s) are the modal velocities of the radiating plate in the Laplace domain.

Transmission Loss (TL)

In the following, the acoustic transmission loss factor TL is computed according its
de�nition :

TL = log
Wi

Wr
. (42)

2.3.3 Introduction of acoustics into the state-space formulation

The radiation �lters (RF) G(s) are converted into a state space form and then
introduced into an augmented state space of the system (Baumann [1991]; Baumann
et al. [1992]) : {

ṙ = AGr +BGq̇
z = CGr +DGq̇

, (43)

with z being the result of the velocity components passing through the radiation �lter.
z2 is the sound power.

 { q̇
q̈

}
ṙ

 =

[
A 0

0 BG AG

] { q
q̇

}
r

+
 0
E
0

w, z = [ 0 DG CG
]  { q

q̇

}
r


(44)
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3 Control

In the framework of small and lightly damped structures, modal control can be
e�ective due to low modal overlap. When the panel is excited by an acoustic wave, the
excitation level is frequency dependent and varies as a function of the mode indices. The
low order modes (odd - odd) are highly excited. Likewise, these modes are responsible
for most of the radiated sound power, such that by controlling only these highly excited
and highly radiating modes, a substantial reduction in sound power can be achieved.
Modal control allows focussing control energy exclusively on these modes, using a small
number of actuators, while requiring a small number of sensors for modal reconstruction
(Gaudiller and Der Hagopian [1996]).

When a structure is excited by a di�use �eld below its critical frequency, the trans-
mission is "mass controlled" (Fahy [1985]). The mass addition e�ect at low frequencies
lowers the resonance frequencies to a less audible frequency range, while reducing vi-
bration amplitudes, and the overall transmission loss is increased. In the case of �nite
structures with modal behavior, transmission losses, below the critical frequency, are
also governed by damping. Consequently, actively controlling mass and damping modi-
�es the modal distribution of the panel. The natural frequencies of the high radiation
modes can be lowered through the addition of an active modal mass. At resonance
frequencies, the amplitude of the vibrations can be reduced by modal damping. .

The double panel, equipped with actuators and sensors is excited by a di�use �eld
(Figure 2). The modal control strategy used is illustrated in Figure 3. The controller is
driven by modal accelerations and modal velocities. Sensor signals from the structure
(a) are used for modal reconstruction using a modal observer (d) following which the
modal state (displacement and velocities) is derived (c). Then, the modal control gains
(b) are applied in to the "observed" modal velocities and accelerations to generate active
modal damping and active modal mass.

Incident 

pressure

Panels
Air layer

Radiated 

sound power

Control unit

Figure 2 � Design of the control system for the double panels. Red squares : actuators,
Blue squares : sensors.
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Figure 3 � Modal Control scheme

3.1 Controller

The control is driven by modal accelerations and modal velocities obtained from the
derivation of the reconstructed state vector. The active modal mass can be considered as
a virtual mass concentrated on controlled modes. Consequently, the amplitudes of mass
controlled modes are reduced beyond resonances due to frequency shifts. The control u
is given by :

u = −Kẋc = −
Nc∑
k=1

[Kv(k)q̇k +Ka(k)q̈k], (45)

with xc the state vector of the controlled modes, Ka(k) and Kv(k) the matrix gains
relative to modal accelerations and velocities at the kth mode. Then, the active mass
and damping can be expressed in the modal equation as :

[1 + Ka(k).B
p
k︸ ︷︷ ︸

Active Modal Mass

]q̈k + [2ξkωk + Kv(k).B
p
k︸ ︷︷ ︸

Active Modal Damping

]q̇k + ω2
kqk =

EkWDist −Bp
k

∑
k 6=l

Kv(l)q̇l +Ka(l)q̈l︸ ︷︷ ︸
Excitation of controlled modes

. (46)

The reconstructed state feeds the controller, whose control gain matrix K is com-
puted with an optimal control algorithm, using an energetic cost function which takes
the control energy and vibration (47) or sound power (48), into consideration. These
are de�ned as :

J =

∫ ∞
0

(xTQx+ uTRu)dt, (47)

JRad =

∞∫
0

(
zT z + uTRu

)
dt with z = L−1

(
G(s)Q̇r(s)

)
, (48)

where Q and R are the weighting matrices. Note that in the case of sound power control,
some non-radiating modes may be highly excited.
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3.2 Modal reconstruction

Several methods may be used for modal control. Here, in order to minimize the
number of sensors, a Luenberger observer (Luenberger [1966]) is preferred to modal
�lter techniques requiring a large observation area, and as many sensors as modes need
to be observed in order to achieve accurate modal reconstruction. The observer estimates
the state variables in real time (Figure 3 (d)). It uses a reduced model of the structure
and a proportional control (Matrix gain L) that allows the error between the actual and
estimated sensor outputs to be minimized. The observer is tuned such that its dynamics
are between two and �ve times faster than those of the controller, in order to minimize
noise ampli�cation e�ects. The reconstructed state x̂Obs is estimated from :

˙̂xObs = AObsx̂Obs +BObsu+ L(yStruct − CObsx̂Obs), (49)

in which yStruct describes the sensor outputs given by the "non reduced" model :

˙̂xStruct = AStructx̂Struct +BStructu+ EStructwStruct (50)

yStruct = CxStruct, (51)

where AStruct is the "structure state matrix" and AObs is the "observer state matrix"
used for the modal reconstruction. BStruct, BObs, CStruct and CObs are respectively the
structure and observer actuation state matrices (B) and observation matrices (C). G and
L are respectively the control gain and observer gain matrices. In practice, the number
of modes reconstructed through the observer is limited. In simulations, this number is
usually smaller than the number of modes considered in the state space system. These
numbers depend directly on the control objectives and the number of sensors.

3.3 Observed controlled structure

The state of the controlled structure can be written as :

XStruct(s) =
[
s
[
I +BStructK [s [I +BObsK]−AObs + LCObs]

−1
LCStruct

]
−AStruct

]−1

EStructWStruct(s).

(52)

During steady state, the control signal is given by :

U(s) = −K [s (I +BObsK)−AObs + LCObs]
−1 LCStruct s XStruct(s). (53)
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4 Application

4.1 The model

In this simulation, 25 modes are used to describe the double panel. Sensor patches
are located on both plates (3 on the incident plate and 2 on the radiating plate). Their
locations allow a good modal coupling coe�cients for observed modes. The modal ob-
server allows reconstructing the state of the �rst eleven modes (0 to 500Hz) from the
�ve sensors. Then, the 2 actuators bonded to the incident plate are used to control the
�rst �ve modes (10 resonances) within the [0 ; 350 Hz] frequency band. Their locations
were chosen to maximize the coupling coe�cients with the radiating modes. Moreover,
by positioning actuators on the incident plate, it is possible to take advantage of the
passive properties of the double panel in the case of eventual spillover. The double panel
and PZT properties used in the simulation are provided in table 1.

Plate density ρPlates = 2700Kg/m3 Plate width Lx = 0.3m
Plate Young's modulus E = 69 ∗ 109Pa Plate length Ly = 0.38m
Modal damping ratio ξmn = 0.005 Top Plate thickness hI = 0.001m
Air density ρs = 1.23Kg/m3 Bottom Plate thickness hR = 0.0016m
Plate Poisson's ratio υB = υT = 0.33 Air cavity thickness hs = 0.084m

Patch density ρpatch = 7600Kg/m3 Patch width l = 0.07m
Patch Poisson's ratio υpatch = 0.3 Patch length L = 0.07m
Patch Young's modulus Ea = 60 ∗ 109Pa Patch thickness ta = 0.001m

Position Actuator 1 XA1 = 0.04;YA1 = 0.04 Position Actuator 2 XA2 = 0.155;YA2 = 0.115
(m) ZA1 = 0 (m) ZA2 = 0

Position Sensor 1 XS1 = 0.04;YS1 = 0.04 Position Sensor 2 XS2 = 0.155;YS2 = 0.115
(m) ZS1 = 8.4e−3 (m) ZS2 = 8.4e−3

Position Sensor 3 XS3 = 0.3;YS3 = 0.08 Position Sensor 4 XS4 = 0.16;YS4 = 0.24
(m) ZS3 = 0 (m) ZS4 = 0

Position Sensor 5 XS5 = 0.04;YS5 = 0.2 Disturbance level 96dB
(m) ZS5 = 0

Table 1 � Simulation parameters

In the case of a di�use �eld disturbance in the low frequency domain, odd-odd
modes are highly excited and contribute signi�cantly to the radiated sound power due
to their high radiation e�ciency. Consequently, controlling these modes may lead to
an considerable reduction of transmitted sound. The radiation resistance matrix of the
structural modes of a double panel is presented in �gure 4. This �gure shows that levels
and slopes of the self radiation (diagonal terms) and mutual radiation (non-diagonal
terms) di�er depending on the mode indices.

4.2 Results

Usually, for simple structures, the transmission losses of the Frequency Weighted
(FW) and Radiation Filter (RF) controllers have the same characteristics Lhuillier et al.
[2008]. They provide good isolation at resonance frequencies. Consequently, in �gure 5,
presenting the transmission loss index, the downwards peaks disappear, but the general
behavior of the TL does not change.

In these simulations, the mass - damping control strategy uses damping gains stem-
ming from (48) and an active mass is added to the �rst mode (1-1) due to its strong
contribution to radiated sound power at low frequencies.

In �gure 5,the transmission losses of the uncontrolled and controlled double panel
are shown (for Mass-damping and vibro-acoustic control). The modelled, controlled and
observed modes are indicated by crosses, diamonds and circles, respectively. The strong
increase of the transmission loss index at the �rst resonance frequencies is due to an
increase in modal damping (from 0.5% to 6% for the �rst mode). The in�uence of
an additional mass can be seen to result in a lowering of its frequency, mainly in the
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Figure 4 � Radiation Resistance matrix of structural modes

vicinity of the �rst mode. This e�ect is also observable at frequencies situated between
the resonances of the other modes, where the �rst mode produces signi�cant modal
contributions to sound power (�gure 4). One can note the very good control e�ciency
on mode three, which was unheeded by usual controls. Consequently the fourth mode
four, which is near the third mode, almost disappears and the frequency where the TL
is minimum is translated to the right.

Simulations with a higher number of modes were performed to evaluate the in�uence
of a truncated model used by the observer. Figure 6 shows the Transmission Loss in a
wider frequency range up to 2500 Hz. From 1200 Hz to 2500 Hz, one can noticed that
Mass-Damping control generates a small spillover whereas other controls do not a�ect
the isolation. The eventual spillover increasing the motion of the incident plate is �ltered
by the air cavity coupling the two panels. The Transmission Loss remains higher than
80dB.

The magnitude of the command signal, in the case of a 96dB di�use �eld distur-
bance, is showed in Figure 7. The acceleration control voltages tend to be higher than
those required for the vibroacoustic controller (damping on radiating modes). It can be
assumed that transmission losses are signi�cantly enhanced between 100Hz and 200Hz,
due to the increase in control voltage of actuator 2, at frequencies between the �rst mode
resonances (in-phase and out-of-phase). However, these voltage increases are small and
clearly feasible in practice.
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5 Conclusion

A modal mass - damping active control is proposed to reduce the transmission of
sound through �nite double panels. This control has been developed in the framework
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Figure 7 � Magnitude of the actuator control voltages for di�erent controllers

of an acoustic system designed to control sound transmission at low frequencies. A state
space model has been constructed, including the equations of the structure, the actua-
tors, the acoustic excitation and the acoustic radiation. The implementation of various
active controls is also described. It is shown that modal-mass-damping control reduces
the peaks at the resonance frequency through damping, in the same way as a radiation
�lters controller, and also improves the panel's general transmission loss behavior, due
to the in�uence of an additional virtual mass. Contrary to the in�uence of damping, the
mass e�ect is not restricted to frequencies in the vicinity of the resonance frequency of
the controlled modes. Indeed, the addition of an active modal mass lowers the eigen-
frequency of the mass-controlled mode, and reduces its velocity at frequencies beyond
the resonance frequency. All of these phenomena lead to a slight increase in TL, for the
case of small control voltage modi�cations. In comparison to vibroacoustic control, the
voltages of this new controller are not very high, thus indicating that our approach is
feasible. Real experiments will raise a whole set of new problems, in particular that of
determining the accurate structural model needed by the controller.
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