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ABSTRACT

In this paper we propose a new perceptual curve detection
method in images based on the difference of half rotating
Gaussian filters. The novelty of this approach resides in the
mixing of ideas coming both from directional filters, per-
ceptual organization and DoG method. We obtain a new
anisotropic DoG detector enabling very precise detection of
perceptual curve points. Moreover, this detector performs
correctly at perceptual curves even if highly bended, and is
precise on perceptual junctions. This detector has been tested
successfully on various image types presenting real difficult
problems for classical detection methods.

Index Terms— Perceptual grouping, curve extraction,
ridge/valley detection, anisotropic DoG filters.

1. INTRODUCTION

In computer vision, perceptual organization has been often
used for the extraction of curves in images. Many works
address the problem of qualifying visual quality of curves
which is often referenced as saliency [1] [2] [3] [4] [5]. In
this paper we revisit perceptual grouping and saliency with
an anisotropic filtering point of view. At the contrary of most
of the works concerning perceptual organization, the method
proposed here is not only able to deal with binary line images
but is also able to segment directly complex images such as
aerial images or enhance gradient images, for example, for
edge detection purpose.

Anisotropic filters take an important part in image pro-
cessing. Indeed, anisotropic filters provide good results and
are often used in edge detection [6] [7], texture removal [8],
image enhancing and restoration [9]. In several domains,
anisotropic filters make possible better robustness than clas-
sical method. However, they are seldom used in line or curve
detection.

A curve in an image can be represented by a ridge or a
valley on the image surface, ie. points where the gray level
reaches a local extremum in a given direction (illustrated in
Fig. 1). This direction is the normal to the curve lying along
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Fig. 1. Valley and ridge in scalar images. (a) Valley in an
image. (b) Surface representation of a valley. (c) Ridge in
an image. (d) Surface representation of a ridge. The z axis
corresponds to the intensity gray level. (e) Edge detec-
tion on the image in (a).

the ridge (or respectively the valley). Ridges and valleys cor-
respond to important features in images. For example in aerial
images, they are often attached to roads [10], they may also be
issued from edge detection method, or they can simply belong
to curves in line drawing images.

Classical edge detection [11] fails to detect ridges or
valleys in images as it provides two edges at each side of
the ridge or the valley (illustrated in Fig. 1(e)). On dashed
lines images, applying edge detection methods result in small
squares and applying anisotropic edge detection methods [6]
[7] result in two parallel lines (illustrated in Fig. 2).

Lines extraction methods can be divided in three main cat-
egories of segmentation algorithms. The first refers to pattern
recognition and filtering techniques (for examples differential
geometry [10] and morphology), the second to model-based
approaches (snakes) [12], and the third to tracking-based ap-
proaches.
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Fig. 2. Discontinuous valley and ridge in scalar images. (a)
Discontinuous valley in an image. (b) Surface representation
of (a). (c) Ridge in an image. (d) Surface representation of
a ridge. The z axis corresponds to the intensity gray
level. (e) Edge detection on the image in (a). (f) Anisotropic
edge detection on the image in (a)



Filtering techniques [10] are well adapted in ridge and
valley extraction because they are able to smooth the noise
and amplify the curve information by computing surface cur-
vature. However, results obtained by these approaches can
present important false detection rate in noisy images. It is
mainly because the high pass the second derivative filtering is
sensitive to noise.

In this paper, we present a rotating filter (inspired by [7],
[8] and [10]) able to detect ridges and valleys. Our curve
detector involves anisotropic directional linear filtering by
means of difference of two half rotating smoothing filters.
Then, we compute a ridge or valley operator using a local
directional maximization or respectively minimization of the
response of the filters. Contrary to several approaches involv-
ing curves, the method presented here performs fine even on
highly bended ridges or valleys. Finally, due to its strong
smoothing in the directions (we define two directions for a
curve crossing a pixel : entering and leaving directions) of the
curve, the detection is not sensitive to noise. Furthermore, as
the method proposed here involves recursive filters, the com-
putational time is small, then it could be easily implemented
for real-time video.

This paper is organized as follows. In the section 2, we
present an anisotropic smoothing half Gaussian filter. We
present a robust curve detector using difference of two half
directional Gaussian filters in the section 3. The section 4 is
devoted to experimental results. Finally, the section 5 con-
cludes this paper.

2. A ROTATING SMOOTHING FILTER
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(a) Smoothing filter (b) Discretized filter (c) Rotating filters

Fig. 3. A smoothing rotating filter. For (b) top: µ = 10 and
λ = 1. For (b) bottom: µ = 10 and λ = 1.5.

In our method, for each pixel of the original image, we use
a rotating smoothing filter in order to build a signal s which is
a function of a rotation angle θ and the underlying signal. As
shown in [7] and [8], smoothing with rotating filters means
that the image is smoothed with a bank of rotated anisotropic
Gaussian kernels:

G(µ,λ)(x, y, θ) = C.H
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where C is a normalization coefficient, Rθ a rotation matrix
of angle θ, x and y are pixel coordinates and µ and λ the
standard-deviations of the Gaussian filter (see Fig. 3(a)).

As we need only the causal part of the filter (illustrated
on Fig. 3(a) and (b)), we simply “cut” the smoothing kernel
by the middle, this operation corresponds to the Heaviside
functionH [7]. By convolution with these rotated kernels (see
figure 3(b)), we obtain a collection of directional smoothed
images Iθ = I ∗G(µ,λ)(θ).

Fig. 4. Points selection on an original image.

(a) θ=34 degrees, µ=10, λ=1 (b) θ=270 degrees, µ=10, λ=1

(c) θ=34 degrees, µ=10, λ=1.5 (d) θ=270 degrees, µ=10, λ=1.5

Fig. 5. Image in Fig. 4(c) smoothed using different parame-
ters and different orientations.

For computational efficiency, we proceed in a first step
to the rotation of the image at some discretized orientations
from 0 to 360 degrees (of ∆θ = 1, 2, 5, or 10 degrees, de-
pending on the angular precision needed and the smoothing
parameters) before applying non rotated smoothing filters. µ
and λ define the standard-deviations of the Gaussian filter.
As the image is rotated instead of the filters, the filtering im-
plementation can use efficient recursive approximation of the
Gaussian filter [13]. As presented in [7], the implementation
is quite straightforward. In a second step, we apply an inverse
rotation of the smoothed image and obtain a bank of 360/∆θ
images (some examples are available in Fig. 5).
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Fig. 6. DRF filter descriptions.

3. PERCEPTUAL RIDGE/VALLEY LINES
DETECTION USING DIFFERENCE OF
DIRECTIONAL GAUSSIAN FILTERS

3.1. Difference of Rotated Half Smoothing Filters (DRF)

As presented in Fig. 6(a), we want to estimate at each pixel a
smoothed second derivative of the image along a curve cross-
ing this pixel. In one dimension, the second derivative of a
signal can be estimated thanks to a DoG operator. For our
problem, we have just to apply two filters with two differ-
ent λ and the same µ to obtain directional derivatives. Then,
we compute the difference of these two filters to obtain the
desired smoothed second derivative information in the curve
directions (illustrated in Fig. 6(b)).

3.2. Pixel Classification

(a) θ = 34 degrees (b) θ = 270 degrees

Fig. 7. DRF result of Fig. 4(c) at different orientation θ using
the following parameters: µ = 10, λ1 = 1 and λ2 = 1.5
(normalized images).

Applying by convolution the DRF filter to each pixel of an
image (by means of a technique of rotated images, as defined
above), we obtain for each pixel a signal which corresponds
to a scan in 360/∆θ directions (see Fig. 7). Our idea is then
to characterize pixels which belong to a curve (a ridge or a
valley), and thus to build our detector.

Let D(x, y, θ) be the pixel signal obtained at pixel P lo-
cated at (x, y). D(x, y, θ) is a function of the direction θ such
that:

D(x, y, θ) = G(µ,λ1)(x, y, θ) −G(µ,λ2)(x, y, θ) (3)

where x and y are pixel coordinates. µ, λ1 and λ2 cor-
respond to the standard-deviations of the Gaussians. Some
examples are represented on Fig. 8.
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Fig. 8. Examples of functions D(x, y, θ) on the points selec-
tion in Fig. 4(c) using µ = 10, λ1 = 1, λ2 = 1.5.. The x-axis
corresponds to the value of θ (in degrees) and the y-axis to
D(x, y, θ).

We define a ridge/valley operator Σ(x, y) by the following
expression:

Σ(x, y) = D(x, y, θM1 ) +D(x, y, θM2 )

+D(x, y, θm1 ) +D(x, y, θm2 ) (4)



where θM1 , θM2 are the directions of the local maxima
of the function D and θm1

, θm2
the directions of the local

minima (see example in Fig. 10(a)). Conditions of detection
are as follows:

if Σ(x, y) > Σth, the pixel P belongs to a ridge,
if Σ(x, y) < −Σth, the pixel P belongs to a valley line,

where Σth > 0.
On a typical valley (for example point 1, 3 and 4 in Fig.

8), the pixel signal at the minimum of a valley contains at least
two negative sharp peaks. For ridges (for example point 7 in
Fig. 8), the pixel signal at the maximum of a ridge contains
at least two positive peaks. These sharp peaks correspond to
the two directions of the curve (an entering and leaving path).
In case of a junction, the number of peaks corresponds to the
number of curves in the junction (see point 5 in Fig. 8). We
obtain the same information for bended lines (illustrated in
point 2 on Fig. 8). In the case of perceptual curve or junction,
these informations are also similar (shown in point 8, 9 and
10 on Fig. 8).

However, at the level of an edge, the absolute value of Σ is
close to 0 because the absolute values of D at θM1

, θM2
, θm1

and θm2 are close to each other but of different signedness
(see points 6 on Fig. 8).

Finally, due to the strong smoothing, sharp peaks which
correspond to the directions of curves are easily extracted in
the presence of noise (illustrated in point 4 and 5 in Fig. 8),
that is why our method is considerately robust to noise.

3.3. Ridges and Valleys Extraction
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Fig. 9. η extraction (Σ(x, y) > Σth). (a) η computation from
θM1

and θM2
. (b) η corresponds to the direction perpendicular

to the curve at the level of a pixel P.

Once Σ(x, y) computed, we simply estimate η(x, y) (see Fig.
9(a) and (b)) by:{

η(x, y) = (θM1
+ θM2

)/2, when Σ(x, y) > Σth
η(x, y) = (θm1

+ θm2
)/2, when Σ(x, y) < −Σth.

Thus, from Σ(x, y) and η(x, y) (an example in Fig.
10(b)), curves can easily be extracted computing local max-
ima of Σ(x, y) in the direction η(x, y) (for ridge detection

and the minima for valley detection). Finally, we apply a
hysteresis operator on the detected curves. Let us note τL
the hysteresis lower threshold and τH the higher. For typical
adjustment of the threshold, we adopt τL = Σth and τH is
tuned by the user.

(a) Σ image (b) η image

Fig. 10. Example of Σ and η image (η in degrees, modulo
180) using ∆θ = 2 (degrees), µ = 10, λ1 = 1, λ2 = 1.5. All
these image are normalized.

4. RESULTS

We present results obtained both on synthetic and real images
using our DRF detector. Then, we show that our method is
able to extract curves and complete object contours after an
edge detection in noisy real images.

4.1. Result on Perceptual Synthetic Images

(a) (b) (c)

Fig. 11. Valley detection on perceptual images. Top to bot-
tom: original image and valley detection. (a) Four perceptual
squares (118×120). Perceptual valley detection with ∆θ = 2
(degrees), µ = 15, λ1 = 1, λ2 = 1.5, τL = 0.02 and τH =
0.12. (b) Perceptual pentagone (100×100). Perceptual valley
detection with ∆θ = 2 (degrees), µ = 10, λ1 = 1, λ2 = 1.5,
τL = 0.01 and τH = 0.05. (c) Poggendorff illusion image
(210×315). Perceptual valley detection with ∆θ = 2 (de-
grees), µ = 30, λ1 = 1, λ2 = 1.5, τL = 0.0 and τH = 0.04.

In the first group of images (Fig. 11), the DRF detector is
able to complete dashed lines, even for corner points. Let us



(a) Original image (b) Σ image (c) Valley detection

Fig. 12. Perceptual valley detection on a Kanizsa triangle
(230 × 220). ∆θ = 2 (degrees), µ = 20, λ1 = 1, λ2 = 1.5,
τL = 0.01 and τH = 0.06.

note that the noise in Fig. 11 (b) does not disturb the percep-
tual curve extraction.

The DRF detector has been tested on the classical Kanizsa
triangle, the optical illusion in Fig. 12. Just as perceived by
a human eye, the equilateral triangle can be reconstituted by
the DRF, using a parameter µ large enough. Besides, a large
µ does not generate any false detection.

(a) Original (b) Valley detection (c) Chaining

Fig. 13. Perceptual valley detection. (a) Original image (100
× 100). (b) Perceptual valley detection result with ∆θ = 2
(degrees), µ = 5, λ1 = 1.5, λ2 = 2.25, τL = 0.001 and
τH = 0.01. (c) Chaining on (b) with a minimal size of chain
equal to 12.

In Fig. 13, the difficulty is to extract the chromosome
form since small objects disturb the perception. The DRF ex-
tract correctly the form and after a chaining, we are able to
reconstruct almost entirely the chromosome without present-
ing a lot of false perceptual curves even at the level of bended
lines.

Clearly, our method fits well human perception and can
be used efficiently for analysis and interpretation of images
[14]. A result database is available online [15].

4.2. Result on Real Images

In Fig. 14(e), crests lines are not very sharp, however our
detector is able to extract most of the roads and junctions.
Our ridge detection superposed on the original image shows
the precision and the relevancy of the DRF.

4.3. Result on Perceptual Contours

Edge detection can return incomplete contours and false
edges, especially in the case of noisy image (illustrated in

(a) Original image 1000×1000

(b) Ridge detection

(c) Our ridge detection superposed on (a)

Fig. 14. Ridges detection on aerial images. ∆θ = 5 (degrees),
µ = 10, λ1 = 1, λ2 = 1.5, τL = 0.001 and τH = 0.0025.



Fig. 15(b)). As the DRF detector performs in the case of
perceptual curves, perceptual edges are enhanced. After two
iterations, only remains objects contours [14].

(a) Original image (b) Edge detection of (a)

(c) Perceptual valley detection on (b) (d) Perceptual valley detection on (c)

Fig. 15. Valley detection on contours. (a) Original image
(500 × 437). (b) Edge detection [11], σ = 2, τL = 0.03 and
τH = 0.04. (c) Valley detection on (b), ∆θ = 2 (degrees),
µ = 20, λ1 = 1, λ2 = 1.5, τL = 0.02 and τH = 0.025. (d)
Valley detection on (c), ∆θ = 2 (degrees), µ = 20, λ1 = 2,
λ2 = 3, τL = 0.01 and τH = 0.02.

5. CONCLUSION

We have presented a new, precise and robust detection
method of perceptual curves based on the difference of two
rotating half smoothing linear filters and local maximiza-
tion/minimization. Our method is able to detect ridges and
valleys even if they are discontinuous and highly bended.
Moreover, due to the use of two half rotating smoothing ker-
nels, our approach enables to compute the two directions of
a curve, which can provide important informations for exam-
ple for image diffusion. Finally, the strong smoothing in the
direction of the curve allows the method to be highly robust
to noise. This detector has been tested successfully on var-
ious image types presenting difficult problems for classical
perceptual and curve detection methods.

6. REFERENCES

[1] L. Alquier and P. Montesinos, “Representation of linear
structures using perceptual grouping,” in 1st workshop
on Perceptual Organization in Computer Vision, 1998.

[2] A. Berengolts and M. Lindenbaum, “On the distribution
of saliency,” IEEE transactions on pattern analysis and
machine intelligence, pp. 1973–1990, 2006.

[3] G. Guy and G. Medioni, “Inferring global perceptual
contours from local features,” International Journal of
Computer Vision, vol. 20, no. 1, pp. 113–133, 1996.

[4] L. Herault and R. Horaud, “Figure-ground discrimina-
tion: A combinatorial optimization approach,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 15, no. 9, pp. 899–914, 1993.

[5] A. A. Sha’ashua and S. S. Ullman, “Structural Saliency:
The Detection of Globally Salient Structures Using Lo-
cally Connected Network,” in International Conference
on Computer Vision, 1988, pp. 321–327.

[6] J.M. Geusebroek, A. Smeulders, and J. Van De Wei-
jer, “Fast anisotropic gauss filtering,” Computer Vision
ECCV 2002, pp. 99–112, 2002.

[7] P. Montesinos and B. Magnier, “A new perceptual edge
detector in color images,” in Advanced Concepts for
Intelligent Vision Systems. Springer, 2010, pp. 209–220.

[8] B. Magnier, P. Montesinos, and D. Diep, “Texture Re-
moval by Pixel Classification using a Rotating Filter,”
in IEEE 36th International Conference on Acoustics,
Speech and Signal Processing, 2011.

[9] J. Weickert, Anisotropic diffusion in image processing,
vol. 256, Citeseer, 1998.

[10] N. Armande, P. Montesinos, and O. Monga, “Thin nets
extraction using a multi-scale approach,” Scale-Space
Theory in Computer Vision, pp. 361–364, 1997.

[11] J. Canny, “A computational approach to edge detection,”
Readings in computer vision: issues, problems, princi-
ples, and paradigms, vol. 184, 1987.

[12] T. Lindeberg, “Edge detection and ridge detection with
automatic scale selection,” International Journal of
Computer Vision, vol. 30, no. 2, pp. 117–154, 1998.

[13] R. Deriche, “Recursively Implementing the Gaussian
and Its Derivatives,” in Proc. Second International Con-
ference On Image Processing, Singapore, Sept. 7-11
1992, pp. 263–267.

[14] D.G. Lowe, Perceptual organization and visual recog-
nition, Ph.D. thesis, Stanford University, 1984.

[15] B. Magnier, D. Diep, and P. Montesinos, “DRF results,”
http://www.lgi2p.ema.fr/˜magnier/
Demos/DRFresults.html.


