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Abstract

In this paper we propose a new edge detector based on
anisotropic linear filtering, local maximization and gamma
correction. The novelty of this approach resides in the mix-
ing of ideas coming both from directional recursive lin-
ear filtering and gamma correction. A peculiarity of our
anisotropic edge detector is that it is based on the use of two
elongated and oriented filters in two different directions. We
show in this paper that unlike classical edge detection meth-
ods, gamma correction does not perturb the edge detection
but enhances clearly the resulting contours obtained, espe-
cially in over-exposed or under-exposed areas of the image.
Consequently, we propose a new edge operator enabling
very precise detection of edge points involved in large struc-
tures. This detector has been tested successfully on various
image types presenting difficult problems for classical edge
detection methods.

1. Introduction

Edges detection methods differ in the types of smooth-
ing filters that are applied, they also differ in the types of
filters used for computing gradient estimates [1] [12] [5] [6]
[9]. The work presented in this paper is motivated by appli-
cations needing a “good” edge detector [1], providing pre-
cise and really informative edge points with the fewest false
detection rate as possible. For example, in the domain of
object finding or recognition in natural scenes, objects may
present various shapes and color aspects. For such cases,
many local methods involving for example points of inter-
est and color invariants fail.

In such applications, edge detection remains a central
key point as it can provide geometrical information. In
most cases, commonly used edge detectors [1] [12] [13]
do not lead directly to object edges, then contours must be
searched among numerous edge points. Furthermore, cross-
ing edges and corners are not well detected with the meth-
ods of [1] and [12]. Indeed, the filtered value is greater
near the corner as on the corner itself. Authors of [5] in-
troduced steerable filters which can be tuned to a specific
orientation by making a linear combination of isotropic fil-
ters. Edge detection techniques using anisotropic Gaussian
filtering have been introduced in [10] and fast implemented

in [6]. These approaches are able to correctly detect large
linear structures. For anisotropic filtering methods like in
[6] and [7], the robustness against noise depends strongly
on the two smoothing parameters of the filter. If these pa-
rameters increase, the detection is less sensitive to noise, but
small structures are considered as noise. Consequently, the
precision of the detected edge points decreases strongly at
corners points and for non straight object contour parts. In
[9] is developped a new anisotropic edge detection method
able to detect crossing edges and corners due to two elon-
gated and oriented filters in two different directions.

In this paper a method for the precise detection of edge
points belonging to large structures is described. Using
gamma correction, we furthermore attempt to detect edges
in parts of an image where objects may be over- or under-
exposed. This method involves anisotropic filtering [9] [8]
and gamma curves [11] to extract contours of objects just
by image differentiation. Our approach precisely detects
corners and crossing edges thanks to two specific Gaussian
oriented kernels in two different directions. Edges are com-
puted on three images: the original image and two gamma-
corrected images. Our edge detector involves directional
linear filtering by means of recursive filters followed by the
computation of an edge operator built with a local direc-
tional maximization of the response of the filters.

In the section 2, we first recall the basics of anisotropic
edge detection. We present a robust edge detector in the
section 3. Then, we describe gamma correction in section
4 and present our edge detector on gray-scale and color im-
ages. We evaluate quantitatively and compare our method
with other approaches in section 5. The section 6 is devoted
to experimental results and comparison with other methods.
Finally, the section 7 concludes this paper.

2 Anisotropic Edge Detection

Anisotropic edge detection can be seen as a generalization
of color edge detection. Suppose that the image is smoothed
with a bank of rotated anisotropic Gaussian kernels:
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whereC is a normalization coefficient,Rθ a rotation ma-
trix of angle θ, (x, y) the coordinates of the pixel and (µ,
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Figure 1. (a) Full and (b) Half Anisotropic
Gaussian kernels at linear portions of con-
tours and at corners.

λ) are the two standard-deviations of the Gaussian filter.
By convolution of the image I with these rotated kernels,
we obtain a collection of smoothed images Iθ which can
be derived along X and Y axis to obtain anisotropic direc-
tional derivatives IθX and IθY . These derivatives can now
be combined in an orientation tensor [6]. Then, gradient is
computed with the largest eigenvalue of the tensor.

3 An Anisotropic Edge Detector Using Half
Smoothing Kernels

As pointed out in section 1, the anisotropic edge detec-
tor described in section 2 performs well at linear portions
of contours (kernels are illustrated in Fig. 1), but near cor-
ners, the gradient magnitude decreases as the edge informa-
tion under the scope of the filter decreases (Fig. 8 and 10
(h) illustrate this problem). Consequently, the robustness
to noise decreases when the two smoothing parameters de-
crease whereas small objects are considered as noise if these
parameters increase.

The simplest solution to bypass this effect is to consider
paths crossing each pixel in several directions. The idea de-
veloped in [9] and [8] is to “cut” the derivative (and smooth-
ing) kernel into two parts, i.e. two directions (see Fig. 2).
As we need only the causal part of the filter, the operation
corresponds to the Heaviside function H . Smoothing the
image with a “cut” kernel by the middle is equivalent to
smooth the image with a bank of rotated “half” anisotropic
Gaussians:
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Figure 2. Rotating filter: (a) Edge operator
(derivation filter on X and half smoothing filter on Y).
(b) Example of a discretized filter. (c) Rotated
filters with an angle of ∆θ. (d) Computation
of η(x, y) from θ1 and θ2.

(a) 128×128 (b) θ=120 (c) θ=180 (d) θ=270

Figure 3. Image and its normalized derivatives
at different orientations θwith µ = 5 and λ = 1.

G(µ,λ)(x, y, θ) = H

(
Rθ

(
x
y

))
g(µ,λ)(x, y, θ). (2)

By convolution with these rotated kernels (see Fig.
2(b)), we obtain a collection of directionally smoothed and
derivated images Iθ = I ∗G(µ,λ)(θ).

For computational efficiency, we proceed in a first step
to the rotation of the image at some discretized orientations
from 0 to 360 degrees (of ∆θ = 1, 2, 5, or 10 degrees, de-
pending on the angular precision needed and the smoothing
parameters) before applying non rotated derivative smooth-
ing filters. As the image is rotated instead of the filters, the
filtering implementation can use an efficient recursive ap-
proximation of the Gaussian filter [2]. As presented in [9],
the implementation is quite straightforward. In a second
step, we apply an inverse rotation of the smoothed image
and obtain a bank of 360/∆θ images (some examples of
derivated images are shown in Fig. 3).

At each pixel of coordinates (x, y), a derivation filter is
applied to obtain a derivative information calledQ(x, y, θ):

Q(x, y, θ) = Iθ ∗ C1.H (−y)x e
−
(

x2

2λ2 + y2

2µ2

)
(3)

where Iθ corresponds to a rotated image of orientation θ and
C1 to a normalization coefficient. Q(x, y, θ) represents a
quality measure of a line issued from a pixel in the direction
θ. This measure is an integration of the slope of the image
function in this perpendicular direction. Some examples of
Q(x, y, θ) are shown on a selection of different point types
in Fig. 5. In the direction of the contour, “half smoothing”
is performed. Now, the edge detection problem becomes an
optimization problem.

For obtaining a gradient ‖∇I‖ and its associated direc-
tion η on each pixel P , we first compute local extrema of the
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Figure 5. Points selection on image in Fig.
3(a) and its associatedQ(x, y, θ) with ∆θ = 5◦.



Original image I I5 I1/5 ‖∇I‖ ‖∇I5‖ ‖∇I1/5‖ ‖∇I‖ANEG

Figure 4. Principle of the ANEG: computation of a gradient on the 3 images I, Iγ , I1/γ and selection
of the highest gradient value called ‖∇I‖ANEG.
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Figure 6. Example of a function Q(x, y, θ).

function Q(x, y, θ), θ1 and θ2 (illustrated in Fig. 6). θ1 and
θ2 define a curve crossing the pixel (an entering and leav-
ing path). Then two of these local extrema are combined to
maximize ‖∇I‖:

θ1 = arg max
θ∈[0,360[

(Q(x, y, θ)), (4)

θ2 = arg min
θ∈[0,360[

(Q(x, y, θ)), (5)

‖∇I‖ = Q(x, y, θ1)−Q(x, y, θ2). (6)

Then we simply estimate η (see Fig. 2(c) and 6 (a)) by
the mean value of θ1 and θ2: η = (θ1 + θ2)/2
‖∇I‖ and η once obtained, edges can easily be extracted

by computing local maxima of ‖∇I‖ in the direction η fol-
lowed by an hysteresis threshold (Fig. 2(c)).

4 An Anisotropic Edge Detector Using
Gamma Correction (ANEG)

Let us note τL the hysteresis lower threshold and τH
the higher. σ corresponds to the standard-deviations of the
Gaussian filter in [1], α to the width of the smoothing pa-
rameter in [12] and r to the radius of the nucleus in [13].

In order to detect edges inside over or under-exposed ar-
eas of the image, τL and τH must be very small. But com-
puting contours with low threshold parameters may create
undesired contours in other parts of the image (see Fig. 8).
For that reason, we have developed a new edge detector
using gamma correction able to compute over and under-
exposed object edges without generating false contours in-
side objects or textures.

4.1 Gamma Correction
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Figure 7. Gamma curves where X represents
the normalized pixel intensity.

Gamma correction is the name of a nonlinear operation
which modifies pixel intensities in an image [11]. Indeed, in
the case of an over-exposed image, gamma correction can
be used to darken this image and conversely for an under-
exposed image, it can lead to brighter images. Similar ideas
are used in high dynamic range images [4] but not in edge
detection. Gamma correction is defined as follows:

Iout(P ) = (I(P ))γ , γ > 0 and I(P ) ∈ [0, 1] , (7)

where I(P ) and Iout(P ) are respectively the input and
output normalized pixel intensites. Fig. 7 shows the be-
havior of the gamma curve in function of different values
of γ. γ > 1 leads to a darker image whereas γ < 1 leads
to a brighter image (an example of gamma correction on an
image is presented on Fig. 4).

4.2 Edge Detection Using Gamma Correction

Fig. 4 presents the edge detection problem without
gamma correction. Indeed, gradient result ‖∇I‖ obtained
in the image in Fig. 4 shows that the vertical gradients
are stronger than the horizontal ones. However, with the
gamma correction, the horizontal contour becomes brighter
(Fig. 4). In order to solve this problem, we propose a new
anisotropic edge detector using gamma correction (ANEG).

The solution is to compute a gradient with the method
presented in section 3 on the three following images: I , Iγ

and I1/γ and then to combine these three informations ob-
tained. I represents the original image in gray level, Iγ



Original Desired contours: Laplacian SUSAN [13] Shen-Castan [12] Canny [1] Anisotropic Gaussian [6] Half kernels [9] ANEG
300×300 two squares over mask 3×3 r = 3 α = 1 σ = 1 µ=5, λ=1 µ=5, λ=1 µ=5, λ=1

and under-exposed τL =0.01 τL =0.03 τL =0.028 τL =0.01 τL =0.01 τL =0.1

plus the grey rectangle τH =0.01 τH =0.035 τH =0.0285 τH =0.05 τH =0.06 τH =0.1

Figure 8. Different edge detection methods on a particular synthetic image.

represents I corrected with the parameter γ and I1/γ is I
corrected with the parameter 1/γ (γ > 1). These three im-
ages I , Iγ and I1/γ are considered separately as three gray-
scale images. Then, we select the highest gradient value
‖∇I‖ANEG (example in Fig. 4). We can combine them
into the following formulas:

‖∇I‖ANEG = max(‖∇I‖, ‖∇Iγ‖, ‖∇I1/γ‖). (8)

In Fig. 9(b), the pixel belongs to an edge of an object
which can be considered as over-exposed, so from eq. 3, 4,
5, 6 and 8, ‖∇I‖ANEG = ‖∇I5‖. However, in the pres-
ence of noise, ‖∇I‖ANEG is not modified because contrary
to a pixel belonging to an edge (Fig. 9(b)), the local extrema
of Q(x, y, θ) are not so high (see Fig. 9(a)).

After this step, edges are extracted by computing local
maxima of ‖∇I‖ANEG in the direction ηANEG:

ηANEG = arg max
ηI ,ηIγ ,ηI1/γ

(‖∇I‖, ‖∇Iγ‖, ‖∇I1/γ‖) . (9)

4.3 Adaptation to Color Images

A color image I is composed of three image planes: red,
green and blue (R, G and B). The structure tensor in [3]
enables an extension of classical edge detection [1] [12] on
vector images. Similarly, anisotropic edge detection in [6]
has also been extended to color using a tensor in [7].

The anisotropic edge detector described in section 3 can
be applied on gray-scale images, but it can also be adapted
separately to the three planes of a color image as three gray-
scale images. Indeed, as this filter does not compute deriva-
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Figure 9.Q(x, y, θ) function using gamma cor-
rection (γ=5) of points 5 and 6 of the noisy
image in Fig. 5. µ= 5, λ= 1 and ∆θ=5o .

tive images along x and y direction, we do not need any ten-
sor [3] to extend the edge detector to color images. Thus, we
calculate the highest gradient value ‖∇I‖ using max which
is the favouring norm to color :

‖∇I‖ = max(‖∇R‖, ‖∇G‖, ‖∇B‖) , (10)

ηI = arg max
ηR,ηG,ηB

(‖∇R‖, ‖∇G‖, ‖∇B‖) . (11)

After this step, edges can easily be extracted by comput-
ing local maxima of ‖∇I‖ in the η direction.

Gamma correction can be applied on a color image, we
use the gamma correction on the three image channelsR, G
and B. From these three planes, we obtain three groups of
three images: I, Iγ and I1/γ . Thus, from eq. (11) and (12):

‖∇Iγ‖ = max(‖∇Rγ‖, ‖∇Gγ‖, ‖∇Bγ‖), (12)

‖∇I1/γ‖ = max(‖∇R1/γ‖, ‖∇G1/γ‖, ‖∇B1/γ‖), (13)

ηIγ = arg max
ηRγ ,ηGγ ,ηBγ

(‖∇Rγ‖, ‖∇Gγ‖, ‖∇Bγ‖) ,

ηI1/γ = arg max
η
R1/γ ,ηG1/γ ,ηB1/γ

(‖∇R1/γ‖, ‖∇G1/γ‖, ‖∇B1/γ‖).

Finally, from previous equations and eq. (2), we obtain:

‖∇I‖ANEG = max(‖∇I‖, ‖∇Iγ‖, ‖∇I1/γ‖), (14)

ηANEG = arg max
ηI,ηIγ ,ηI1/γ

(‖∇I‖, ‖∇Iγ‖, ‖∇I1/γ‖) .

Now, edges using gamma correction are extracted by
computing local maxima of ‖∇I‖ANEG in the direction
ηANEG followed by an hysteresis threshold.

5 Quantitative Evaluation

In order to carry out some quantitative results, we have
conducted a number of tests with synthetic images includ-
ing a black square (Fig. 10). In our test, we performed edge
detection and compared the result to the original image,
pixel per pixel. We thus obtained a quantified error by mak-
ing the difference between the two images. We analyzed the
effect of adding a uniform white noise on the original im-
age using the following formula: Im = (1− L)I0 + L.IN ,
where I0 is the original image, IN an image of random uni-
form noise and Im the resulting noisy image. As expected,
the number of errors increases monotonically with the noise
level L. Curves plotted on Fig. 11 represent (a) the number
of true negative pixels, i.e. undetected edges points, and (b)
the number of false positive pixels, i.e. unexisting contour



(a) I (b) I5 (c) I1/5 (d) ‖∇I‖ (e) ‖∇I5‖ (f) ‖∇I1/5‖ (g) (h) (i)

Figure 12. Result of the ANEG detector with µ = 5, λ = 1 (a) Original image I 128× 128, (g) ‖∇I‖ANEG.
(h) ANEG with τL = 0.15 and τH = 0.2. (i) Result of [9] (i.e. edges on (a)), τL = 0.08 and τH = 0.1.

(a) Original (b) L = 0.5 (c) L = 0.9 (d) True contours

(e) ANEG on the (f) [6] on the (g) Detail of corner (h) Detail of corner
image in (b) image in (b) detected by ANEG detected by [6]

Figure 10. Images 400×400 with different lev-
els of noise L and comparison with [6]. For
(e), (f), (g) and (h): µ= 10, λ= 1 and ∆θ=5o.

points, which both constitute errors. Fig. 11(c) and (d) show
magnified details of (a) and (b). For each approach, we have
also computed the number of correctly detected corners in
Fig. 11(e) among the 4 corners of the square presented in
Fig. 10(a). Compared to Canny [1] and Shen-Castan [12]
approaches, the three anisotropic edge detection methods
(Gaussian anisotropic [6], Half Kernels [9] and ANEG) per-
form well and show a good robustness to noise. However,
Half Kernels and ANEG methods are better than Gaussian
anisotropic at detecting corners (see details of zoomed cor-
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Figure 11. Influence of noise level on different
edge detection methods.

ners on Fig. 10(g) and (h)).
In conclusion, Half Kernels and ANEG provide satisfy-

ing results, even in presence of high noise. This evaluation
has been made on a synthetic image, allowing us to pro-
vide quantitative results, provided that actual contours are
known with a one-pixel precision. In the next section, we
show that similar results are obtained on real images.

6 Experimental Results

In our results, ∆θ = 5◦ for all anisotropic filters ([6] [7]
[9] and ANEG). In the vectorial case, we use the same pa-
rameters µ and λ for each channel of the image and each
corrected image. The γ (and respectively 1/γ) parameter is
the same for each channel of the image. γ=5 is sufficient
to detect edges in over- or under-exposed areas of images.
Thresholds τL and τH are chosen in function of a maximum
of desired contours and a minimum of undesired contours.
The choice of the parameters µ and λ is to be done in func-
tion of the size of the original image and the size of contours
that we want to detect. Actually, if we need small details or
contours in a small image, µ should be small (for example
µ=5), whereas, for long structures, µ should be larger (for
example µ=10). For its part, parameter λ corresponds to
the width of the filter and does not need to be very large
because it is linked to the desired precision on the edge.

The first result on a gray-scale image is presented in Fig.
12, the parameters of the half smoothing kernel are µ = 5
and λ = 1. The result of our detector is less noisy than the
result of [9] and contours are more regular. So the ANEG
detector appears to be more robust to noise than [9]. More-
over, our result is more precise and continuous than [1] [12]
and [6] (Fig. 13(a) (b) (c)). Fig. 13(c) and (e) show that
gamma correction followed by eq. 2 is not adapted for edge
detection with isotropic [1] and anisotropic filter of [6].

In results presented in Fig. 14(e), edges are more con-

(a) [1]σ=1 (b) [12] α=1 (c) [6] (d) [1] σ=1 (e) [6]
τL =0.01 τL =0.05 τL =0.1 τL =0.05 τL =0.01
τH =0.8 τH =0.08 τH =0.22 τH =0.12 τH =0.03

Figure 13. Results issued from Fig.12(a). For
(c) and (e): µ= 5, λ= 1 and ∆θ= 5◦. Gamma
correction in (d) and (e).



(a) Peppers original (b) [1] σ= 1 (c) [12] α= 1 (d) [9] µ= 5, λ= 1 (e) ANEG µ= 5, λ= 1
266× 266 τL = 0.001, τH = 0.01 τL = 0.04, τH = 0.05 τL = 0.01, τH = 0.2 τL = 0.01, τH = 0.25

(f) Original color image 321× 165 (g) [1], σ= 1, τL = 0.001, τH = 0.1 (h) [12], α= 1, τL = 0.1, τH = 0.15

(i) [7], τL = 0.01, τH = 0.3 (j) [9], τL = 0.01, τH = 0.5 (k) ANEG, τL = 0.3, τH = 0.4

Figure 14. Result on natural color images. For (i), (j) and (k): µ = 10, λ = 1.

tinuous than in Fig. 14(b), (c) and (d), especially the green
pepper in the middle which is correctly detected.

In the last image, Fig. 14(f), classical [1] [12] and
anisotropic Gaussian edge detection [7] fails to detect the
car because their results are perturbed by the texture. The
result of [9] is better but the ANEG brings more details in
over- and under-exposed parts of the car (especially wheels)
without creating false edges inside the texture.

Somme results on different images are available online.1

7 CONCLUSION

We have proposed in this paper an anisotropic edge de-
tector using gamma correction in color images. This detec-
tor is formed by two half rotating smoothing kernels. Due
to its strong smoothing in the directions of the edges, the
detection is not sensitive to noise. Moreover, it stays local-
ized at the level of the edges because of its small smoothing
in the perpendicular direction of the contours. As a result,
Gamma correction does not introduce false edges detections
but it enables to find edges in parts of the image where ob-
jects are over-exposed or under-exposed. Finally, this edge
detector performs fine at corners, so next on our agenda is to
extend this method to corners and junctions detection using
the two directions of the kernels. Potential applications are
camera calibration and interest points matching.

1www.lgi2p.ema.fr/~magnier/Research/ANEG/Demos
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