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Abstract— In this paper we propose a new junctions ridges
and valleys detection method in images based on the dif-
ference of rotating Gaussian semi filters. The novelty of
this approach resides in the mixing of ideas coming both
from directional filters and DoG method. We obtain a new
ridges/valleys junctions anisotropic DoG detector enabling
very precise detection of ridge/valley junctions. Moreover,
this detector performs correctly even if crest lines are highly
bended or noised. This detector has been tested successfully
on synthetic and real images establishing performing results.
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1. Introduction
Anisotropic filters are an important part in image pro-

cessing. Indeed, anisotropic filters provide good results and
are often used in edge detection [7], texture removal [6],
image enhancing and restoration [9]. In several domains,
anisotropic filters allow for a better robustness than classi-
cal method. However, they are seldom used in crest lines
junctions finding.

Ridges and valleys are formed with the points where the
intensity gray level reaches a local extremum in a given
direction (illustrated in Fig. 1). This direction is the normal
to the curve traced by the ridge or respectively the valley at
this point [1]. Crest lines correspond to important features
in many images. Ridges and valleys are attached but not
limited to roads in aerial images or blood vessels in medical
images [4] [5].

Classical corners detection [2] [3] [8] fails to detect
junctions of ridges or valleys in images. Instead, it results
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Fig. 1: Valley and ridge in scalar images. (a) Valley in an
image. (b) Surface representation of a valley. (c) Ridge in
an image. (d) Surface representation of a ridge. The z axis
corresponds to the intensity gray level.

(a) Original image 300 × 300 (b) Harris points detection (in red).

Fig. 2: Harris point detection with σ = 1.

in several points at each side of the junction (illustrated in
Fig. 2(b)).

In this paper, we present a rotating filter (inspired by
[7] and [6]) able to detect junctions of ridges and valleys.
Our ridges/valleys junctions detector implements anisotropic
directional linear filtering by means of difference of two
rotating half smoothing filters. Then, we compute a ridge
and valley junctions operator using a local maximization
or respectively minimization of the response of the filters.
Contrary to several approaches involving corner detection,
this algorithm performs fine at the level of a junction. Finally,
due to its strong smoothing in the directions of the crest line,
the detection is not sensitive to noise.

This paper is organized as follows. In the section 2, we
present an anisotropic smoothing Gaussian filter. We present
a robust crest lines junctions detector using difference of
half directional Gaussian filters in the section 3. The section
4 is devoted to experimental results and results evaluation.
Finally, the section 5 concludes this paper.

2. A Rotating Smoothing Filter
In our method, for each pixel of the original image, we use a
rotating smoothing filter in order to build a signal s which is
a function of a rotation angle θ and the underlying signal. As
shown in [7] and [6], smoothing with rotating filters means
that the image is smoothed with a bank of rotated anisotropic
Gaussian kernels:

G(µ,λ)(x, y, θ) = H

(
Rθ

(
x
y

))
g(µ,λ)(x, y, θ) (1)
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Fig. 3: A smoothing rotating filter. (a) Smoothing filter. (b)
Rotating filters. (c) Discretized filter, λ=1 and µ=10. (d)
Discretized filter, λ=1.5 and µ=10.

with
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where C is a normalization coefficient, Rθ a rotation
matrix of angle θ, x and y are pixel coordinates and µ and
λ the standard-deviations of the Gaussian filter.

The heaviside function H is used to select only the causal
part of the filter (illustrated on Fig. 3(a)). By convolution
with these rotated kernels (see Fig. 3(b)), we obtain a
collection of directional smoothed images Iθ = I∗G(µ,λ)(θ).

For computational efficiency, we proceed in a first step
to the rotation of the image at some discretized orientations
from 0 to 360 degrees (of ∆θ = 1, 2, 5, or 10 degrees, de-
pending on the angular precision needed and the smoothing
parameters) before applying non rotated smoothing filters. µ
and λ define the standard-deviations of the Gaussian filter
(illustrated on Fig. 3(a)). As the image is rotated instead
of the filters, the filtering implementation can use efficient
recursive approximation of the Gaussian filter. As presented
in [7], the implementation is quite straightforward. In a
second step, we apply an inverse rotation of the smoothed
image and obtain a bank of 360/∆θ images (some examples
in Fig. 4).

(a) (b)

(c) (d)

Fig. 4: Image in Fig. 2(a) smoothed using different pa-
rameters and different orientations. (a) θ = 34 degrees,
µ = 10, λ = 1 (b) θ = 34 degrees, µ = 10, λ = 1.5 (c)
θ = 270 degrees, µ = 10, λ = 1 (d) θ = 270 degrees,
µ = 10, λ = 1.5

3. Ridge and Valley Junctions Detection
using Difference of Directional Gaussian
Filters
3.1 Difference of Rotated Half Smoothing Fil-
ters (DRF)

As presented in Fig. 5(a), we want to estimate at each
pixel a smoothed second derivative of the image along a
curve crossing this pixel. In one dimension, the second
derivative of a signal can be estimated thanks to a DoG
operator. For our problem, we have just to apply two filters
with two different λ and the same µ to obtain directional
derivatives (illustrated in Fig. 5(a)). Then, we compute the
difference of these two filters (developed in [5]) to obtain
the desired smoothed second derivative information in crest
line directions (illustrated in Fig. 5(b)).

3.2 Pixel Classification
We apply by convolution the DRF filter to each pixel

of an image and we obtain for each pixel a signal which
corresponds to a 360/∆θ scan in all directions (see Fig. 6).
Our idea is then to characterize pixels which belong to a
junction of crest lines (ridges or valleys), and thus to build
our detector.
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Fig. 5: DRF filter descriptions. (a) A DRF. (b) DRF in the
thin net directions. (c) and (d) DRF results of Fig. 2(a) with:
µ=10, λ1=1 and λ2=1.5 (normalized images) at different
orientations (degrees).

Let D(x, y, θ) be the pixel signal obtained at pixel P
located at (x, y). D(x, y, θ) is a function of the direction
θ such that:

D(x, y, θ) = G(µ,λ1)(x, y, θ)−G(µ,λ2)(x, y, θ) (2)

where x and y are pixel coordinates. µ, λ1 and λ2 cor-
respond to the standard-deviations of the Gaussians. Some
examples are represented on Fig. 6.

We define a ridges/valleys junction operator J(x, y) by
the following expression:

J(x, y) =

4∑
k=1

(D(x, y, θMk
) +D(x, y, θmk)) (3)

where θMi
are the directions of the local maxima of the

function D and θmi the directions of the local minima, i ∈
{1, 2, 3, 4} (see example in Fig. 7(c)). The conditions of the
detection are as follows:

if
{
J(x, y) > Jth
D(x, y, θM1

) < 2D(x, y, θM3
)

(4)

the pixel P belongs to a junction of ridges,

if
{
J(x, y) < −Jth
D(x, y, θm1

) > 2D(x, y, θm3
)

(5)

the pixel P belongs to a junction of valleys,
where Jth > 0.
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(b) Several different functions D(x, y, θ)

Fig. 6: Examples of functions D(x, y, θ) on the points
selection in (a) under the green cross using µ = 10, λ1 =
1, λ2 = 1.5. The x-axis corresponds to the value of θ (in
degrees) and the y-axis to D(x, y, θ).

On a typical junction of valleys (for example points 7,
8 and 9 in Fig. 6), the pixel signal contains at least three
negative sharp peaks. For ridge junctions, the pixel signal
contains at least three positive peaks. These sharp peaks
correspond to the ridge/valley directions, while the number
of peaks corresponds to the number of rigdes/valleys in the
junction. For straight lines or bended lines (for examples
points 1, 2 and 3 on Fig. 6), the pixel signal will contain
only two sharp peaks, so the second condition in eq. (4) and
(5) will remove these cases.

However, at the level of an edge, the absolute value of J
is close to 0 because the absolute value of D at θM1

, θM2
,

θm1 and θm2 are close (see point 4 on Fig. 6). Finally, due
to the strong smoothing, D is close to 0 in the presence of
noise without neither crest line nor edge (illustrated in point
5 in Fig. 6), that is why our method is robust to noise.
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Fig. 7: (a) Exemple of θMi
and θmi in a function D at a level

of a ridges junction. (b) θMi
correspond to the directions

of ridges. (i∈{1, 2, 3, 4}) (c) Image of J from the image
presented in Fig. 2(a) using ∆θ=2 (degrees), µ=10, λ1=1,
λ2=1.5. This image is normalized. (d) Junctions detection
eq. (5).

3.3 Junction of Ridges and Valleys Extraction
Once J(x, y) computed (see Fig. 7(d)), we simply process
to the spacial local maxima of J for ridge junctions and the
spacial local minima of J for valleys.

4. Results
4.1 Results on Synthetic Image

In the first result, the aim is to detect junctions of
the sudoku grid. But our method is also able to detect
junctions inside the numbers 1, 4, 6 and 9 following certain
parameters. Our algorithm is also able to extract junctions
of only large valley with adapted parameters λ1, λ2 and µ.

4.2 Results on Real Image
Roads often appears as ridges in satellite images. In Fig. 9,

our method detects junctions of ridges even if they are highly
bended. We have compared our results with the method of
Harris [2], these results clearly shows the superiority of our
approach.

4.3 Results Evaluation
In order to carry out some quantitative results, we have

also conducted a number of tests with synthetic images
including thin one-pixel wide ridges or valleys. Fig. 10

(a) All junctions, even numbers, µ = 5, λ1 = 1, λ2 = 1.5

(b) Junctions of lines, µ = 10, λ1 = 1, λ2 = 1.5

(c) Junctions of large lines, µ = 15, λ1 = 2, λ2 = 3

Fig. 8: Junctions detection on a sudoku grid (in red). ∆θ = 2
(degrees). In (a) Jth = 0.25 . In (b) Jth = 0.3 . In (c)
Jth = 0.35 .



(a) Original image 150×200 (b) Harris detector, σ = 1.

(c)Our junctions detection (in red) superposed on (a)

Fig. 9: Junctions detection on an aerial image. In (c) : ∆θ =
2 (degrees), µ = 10, λ1 = 1, λ2 = 1.5 and Jth = 0.05.

(a) Original (b)True junctions

(d) L = 0.8 (e) L = 0.9

Fig. 10: Images 300×160 with different levels of noise L.

shows an example of such valleys and junctions with a
simple image composed of a square and a circle containing
each a cross.

In our test, we performed a valley junctions detection and
compared the result to the ground true data image, pixel
per pixel. We thus obtained a quantified error by making
the difference between the two images. We have used the

following parameters: λ1 = 1, λ2 = 1.5, µ = 10 for a noise
free image.

4.3.1 Influence of noise:

We analyzed the effect of adding a uniform white noise
on the original image using the following formula:

Im = (1− L)I0 + L.IN

where I0 is the original image, IN an image of random
uniform noise and Im the resulting noisy image. As ex-
pected, the number of errors increases with the noise level
L (see Fig. 11(a) and (b)). As a result, the number of
errors remains relatively low even at a high level of noise
(L = 0.8), showing the good robustness of our algorithm
because strong smoothing in the directions of the crest lines
does not relocate the junctions detection (Fig. 7(b)).
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(a) Error total of our detector
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Fig. 11: Error evaluation of our approach.



5. Conclusion
We have presented a new, precise and robust detection

method of junctions ridges and valleys based on the differ-
ence of two smoothing half rotating linear filters and local
maximization/minimization. Due to these two half rotating
smoothing kernels, our approach enables to compute the
principal directions of junctions of crest lines. Finally, the
strong smoothing in the direction of the crest lines enables
the method to be highly robust to noise.

References
[1] M.P. Do Carmo. Differential geometry of curves and surfaces, in:

Prentice Hall (1976)
[2] C. Harris and M. Stephens, “A combined corner and edge detector,"

in: Proceedings of the 4th Alvey Vision Conference, pp. 147–15, 1988
[3] L. Kitchen and A. Rosenfel, “Gray-level corner detection," in: Physical

Review Letters 1 (PRL) vol. 1(2), pp. 95–102, 1982
[4] T. Lindeberg, “Edge detection and ridge detection with automatic scale

selection," in: International Journal of Computer Vision (IJCV), vol.
30(2), pp. 117–154,1998

[5] B. Magnier, P. Montesinos and D. Diep, “Perceptual Curve Extrac-
tion," in: IEEE Image, Video, and Multidimensional Signal Processing
Workshop on Perception and Visual Signal Analysis (IVMSP), 2011

[6] B. Magnier, P. Montesinos and D. Diep, “Texture Removal by Pixel
Classification using a Rotating Filter," in: IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), 2011

[7] P. Montesinos, B. Magnier, “A New Perceptual Edge Detector in Color
Images," in: Advanced Concepts for Intelligent Vision Systems (ACIVS),
vol. 1, pp. 209–220, 2010

[8] S. M. Smith, J. M. Brady, “SUSAN - a new approach to low level image
processing," in: International Journal of Computer Vision (IJCV), vol.
23(1), pp. 45–78, 1997

[9] J. Weickert. Anisotropic diffusion in image processing, Citeseer, (1998)


