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Abstract

In this paper, we present a new color image regularization method using a rotating smoothing filter.
This approach combines a pixel classification method, which roughly determines if a pixel belongs to a ho-
mogenous region or an edge with an anisotropic perceptual edge detector capable of computing two precise
diffusion directions. Using a now classical formulation, image regularization is here treated as a variational
model, where successive iterations of associated PDE (Partial Differential Equation) are equivalent to a dif-
fusion process. Our model uses two kinds of diffusion: isotropic and anisotropic diffusion. Anisotropic
diffusion is accurately controlled near edges and corners, while isotropic diffusion is applied to smooth re-
gions either homogeneous or corrupted by noise. A comparison of our approach with other regularization
methods applied on real images demonstrate that our model is able to efficiently restore images as well as
handle diffusion, and at the same time preserve edges and corners well.

Key Words: Anisotropic diffusion, edge detection, steerable filters, half Gaussian kernels.

1 Introduction

Variational models and Partial Differential Equations (PDE’s) are widely used in image restoration [22, 2, 33,
28]. Images are actually considered as evolving functions over time and the iterations of a discretized PDE,
similar to a diffusion process, have shown to be equivalent to linear filtering. Furthermore, PDE’s enable
smoothing the image while preserving important structures or details [5, 3]. Enhancement filters, such as the
Kuwahara filter [11], based on local area flattening and his improvements like the Nagao filter [19] or more
recently using Gaussian function, the Papari et al. filter [20], keep roughly sharp boundaries. Nonetheless,
these filtering techniques, including the well known bilateral filter [27], are not adapted to preserve small
objects when edge contrast is less important than noise level. Moreover, they fail to capture directional features
and can create undesirable block artifacts.

Additionally, edge detection is often used to locate boundaries in order to first control a diffusion process
and, then preserve contours present in the image. In [22], diffusion is isotropic on homogenous regions, yet
decreases and becomes anisotropic near boundaries. Diffusion is controlled however using finite differences,
hence highly noisy images may generate many undesired artifacts. The Mean Curvature Motion (MCM ) or
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mean curvature flow method consists in diffusing only along the contour direction or isophotes (i.e. curves of
the image surface of constant intensity) [6], even in homogeneous regions. As shown in [3], the usage of a
mean-curvature denoising tends to round corners and a non-convex object evolves into a convex one that will
eventually disappear in finite time. In most diffusion approaches, Gaussian filtering is used for gradient esti-
mation, such that the diffusion becomes more robust to noise [2, 30, 28, 32]. The intention in these approaches
is twofold: (a) to restrict the diffusion process along the tangent direction (perpendicularly to the gradient near
edges), and (b) to tune the diffusion using the gradient magnitude [2] or in function of the eigenvalues of the
structure tensor [33, 32, 30, 28]. In regions considered as homogenous, the diffusion is isotropic, whereas at
edge points, diffusion is anisotropic or inhibited. Nevertheless, it remains difficult to distinguish between heavy
noise and small objects that need to be preserved from the diffusion process.

In the scalar (luminance only) case, anisotropic diffusion is based on the local gradient variation. For a
color image, it is necessary to take into account vector-valued information [8], provided that the different
color channels are not be restored independently. A diffusion process that is always conducted in the contour
directions is proposed in [23], meaning that in homogenous regions, the diffusion is not isotropic. In [29], a
diffusion method that isotropically smoothes within homogenous regions is presented, and it applies a tangent
smoothing technique along the vector edge elsewhere (MCM). This anisotropic diffusion scheme does not
control the diffusion at corners. In [32, 30], the authors have presented anisotropic denoising methods based
on a tensor field, which is capable of preserving image features such as texture and corners. In [28], the author
takes the curvatures of specific integral curves into account during the restoration process, thus preserving better
edges and corners. However, when the anisotropic coefficient is too large, the diffusion of a heavy noise yields
a fiber effect or stripes inside homogeneous regions. These diffusion methods are indeed well adapted for the
preservation of thin structures in the image, yet in order to remove high noise while preserving contours, the
standard deviation σ of the Gaussian filter must be not too small for the gradient estimation. This solution will
consequently blur edges, smooth small objects and break corners during the diffusion process.

This paper introduces a rotating filter (inspired by [17, 14, 13]) able to detect homogenous regions and edges
regions, even in images containing heavy noise. Then, it presents an anisotropic edge detector capable of
defining two directions for pixels belonging to edges. Lastly, a new anisotropic diffusion method is introduced
in order to accurately control diffusion near edges and corners points while isotropically diffusing inside noisy
homogeneous regions. More specifically, this detector provides two different directions for edge and corner
points (modulo 360◦), as opposed to [2], in which only one direction is considered (modulo 180◦). The
diffusion is, therefore controlled by both the gradient value and the angle between these two directions which
are determined by means of an anisotropic edge detector similar to that described in [17]. These different stages
are presented in Fig. 1.

Section 2 presents a new type of filter, recently introduced by [17], which potentially addresses a large num-
ber of applications. Based on half Gaussian kernels, this filter provides a great flexibility, and can be declined
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Figure 1: Various steps of our diffusion scheme, control the smoothing process on edges and corners.
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(a) Half smoothing filter (b) Discretized half Gaussian filter µ = 5, λ = 1

Figure 2: Thin rotating smoothing half-filter with large smoothing in the Y direction and small smoothing in
the X direction.

either for smoothing, or for derivation as shown in Section 4. Section 3 makes use of the smoothing filter to
associate a signature with each point of an image. This signature characterizes well homogeneous regions as
”flat areas”. On the contrary, section 4 addresses edge detection by using derivation half Gaussian kernels. This
original approach provides two oriented edge directions, thus allowing to follow precisely angular contours like
corners. In Section 5, the technique of anisotropic filtering is presented. Our model is driven by a PDE, and acts
as an iterated diffusion process. We show that with the supplied control function, the diffusion process smooths
correctly homogeneous regions as well as edges. Section 6 briefly describes the numerical interpolation of the
PDE. Section 7 is devoted to experimental results and a comparison with other existing methods.

2 A Rotating Smoothing Half-Filter

In our method, for each pixel of the original image, we introduce a rotating half smoothing filter (as illustrated
in Fig. 2) in order to build a signal s, which is a function of a rotation angle θ and the underlying signal. As
shown in [17, 14, 12, 13], smoothing with rotating filters implies that the image is smoothed with a bank of
rotated anisotropic Gaussian half-kernels:

G(µ,λ)(x, y, θ) = C · Iθ ∗H (−y) · e
−
(

x2

2λ2
+ y2

2µ2

)
(1)

where Iθ corresponds to a rotated image∗ of orientation θ, C is a normalization coefficient, (x, y) are pixel
coordinates, and (µ, λ) the standard deviations of the anisotropic Gaussian filter. Since we only require the
causal part of this filter along Y axis, we simply “cut” the smoothing kernel by the middle, in an operation that
corresponds to the Heaviside function H .

Some examples of smoothed images using our half-kernels G(µ,λ)(x, y, θ) are shown in Figs. 3 (b) and (c).

3 Pixel Classification

This work considers that the image is represented by function defined as : I(x, y) : R2 → Rd. The case where
d = 1 corresponds to gray-level images and d > 1 to color images.

∗As explained in [17], the image is oriented instead of the filter (like the oriented filter presented in [16]) so as to decrease algorithmic
complexity and to allow use of a recursive Gaussian filter [7]. As a matter of fact, for implementation purpose we replace the filtering
of the initial image I0 by a filter oriented along the varying direction θ with the filtering of an image Iθ , rotated by an angle −θ, by the
constant filter of orientation 0. This last operation is described by eq. (1) and is completely equivalent to a rotated filtering.
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3.1 Pixel description

In this subsection, we consider the d = 1 case. As explained above, the application of the rotating filter at one
point of an image in a 360◦ scan, provides each pixel with a characterizing signal s(θ). Fig. 3(d) offers an
example of s-function measured at 6 different points of a noisy image. Each plot depicts the s(θ) function of a
particular point in polar coordinates. From these pixel signals, we are now able to extract the descriptors that
discriminate edges and regions.

3.2 Flat area detection

The main idea behind analyzing a 360◦ scan signal is to detect significant flat areas, which actually correspond
to homogeneous or noisy regions of the image. Fig. 4(a) shows the pixel signal s(θ) extracted from a point
belonging to a contour. After smoothing, the derivative sθ(θ) is calculated and represented on Fig. 4(b). From
sθ(θ), flat areas can be detected as intervals (i.e. angular sectors) with a small derivative (close to zero), yielding
sets of values exceeding a given threshold sth in amplitude. Let us denote α the largest angular sector. It can
be considered that a flat area is detected whenever 30◦ < α < 360◦. As shown in Fig. 4(c), flat area detection
can be viewed as a rough edge detection method. The noise removal method consists in isotropically diffusing
within homogenous regions and anisotropically diffusing at edge points. The image in Fig. 3(a) will therefore
be smoothed anisotropically in the black (or red) regions of Fig. 4(c) and isotropically in the white regions. In
our diffusion method, we use the orientations for the diffusion computed from a new anisotropic edge detector
(see next section), which also defines two precise directions, thus resulting in an accurate diffusion (Section 5).

3.3 Flat area detection for color images

In this subsection, we will now consider the case d > 1. Let us denote Ii(16i6d) the ith component of a color
image I. The aim here is to compute flat areas from each color channels Ii.To proceed, we apply the flat area
detection technique presented in Section 3.2 to each Ii. Let us also note αi the largest angular sector at a pixel
for the channel Ii. If we detect at least one flat area for a given channel (i.e. ∃i \ 30◦< αi(16i6d)< 360◦), then
the diffusion will be anisotropic (with a threshold sth common across to all channels). Otherwise, if no flat area
has been detected in any channel, then the diffusion will be isotropic.

4 Edge Detection Using Half-Kernels

Steerable filters [9, 10] or anisotropic edge detectors [21] perform well in detecting large linear structures (see
Fig. 5(a)). Close to corners however, the gradient magnitude decreases as the edge information under the scope
of the filter decreases. Consequently, the robustness to noise concerning small objects becomes very weak.

0.5

1

90270

180

0
Point 1

0.1

0.2

90270

180

0
Point 2

0.5

1

90270

180

0
Point 3

0.5

1

90270

180

0
Point 4

0.25

0.5

90270

180

0
Point 5

0.5

1

90270

180

0
Point 6

++

++
++

++

++

++

1

4
3

5
6

1

4
3

6

2

(a) Points selection in green (b) Smoothed image (c) Smoothed image (d) Polar representation of
on a noisy image 420×395 θ = 10 degrees θ = 275 degrees s(θ) for each point of (a)

Figure 3: Point selection and associated signal, µ = 10, λ = 1 and ∆θ = 5◦.



Name1 et al. / Electronic Letters on Computer Vision and Image Analysis 12(1):17-32, 2013 21

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

s(θ)

degrees
0 30 60 90 120 150 180 210 240 270 300 330 360

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

s
θ
(θ)

degrees

α
1

_

_

(a) Original signal s(θ) (b) First derivative of s(θ) (c) Regions where s(θ) contains flat areas

Figure 4: Flat area detections using s(θ). µ = 10, λ = 1 and ∆θ = 5◦. Regions where s(θ) contains flat areas
are represented in black (left) and red (right); white pixels correspond to homogeneous regions (left).

A simple solution to bypass these effects would be to consider paths crossing each pixel in several directions.
Wedge steerable filters introduced by Simoncelli and Farid [25] are composed of asymmetric masks providing
orientation of edges in different directions issued from a pixel. Akin to orientational histograms, where the
saliency of the gradient measure is calculated at each of the discretized orientations, these filters allow for
a characterization of junctions [34, 18]. The work in [16] also introduces an asymmetric operator based on a
sliding rectangular window where the orientation is defined as being the angle that corresponds to the maximum
homogeneity, i.e., the minimum variance. Unlike the Gaussian function, which is an optimal solution for the
Canny criteria [4], in the direction of the edges, these oriented filters have a constant amplitude on almost the
whole extent of the mask.

Inspired by [24, 1], the idea developed in [17] was to “cut” the derivative (and smoothing) Gaussian kernel in
two parts: a first part along an initial direction, and a second part along a second direction (see Figs. 5 (b) and
6). At each pixel whose coordinates are (x, y), a derivation filter is applied to obtain a derivative information
called Q(x, y, θ):

Q(x, y, θ) = Iθ ∗ C1 ·H (−y) · x · e
−
(

x2

2λ2
+ y2

2µ2

)
(2)

where C1 represents a normalization coefficient. As diagrammed in Fig. 6 (c), Q(x, y, θ) represents the slope
of a line derived from a pixel in the perpendicular direction to θ (see Fig. 8(b) for several Q(x, y, θ) signals
obtained from different image derivatives, like in Fig. 7).

To obtain a gradient magnitude measure ‖∇I‖ and its associated direction η on each pixel P , we first
compute the global extrema of the functionQ(x, y, θ), with θ1 and θ2 (as illustrated in Fig. 8 (c)). Two of these
global extrema can then be combined to obtain ‖∇I‖:

(a) Full anisotropic Gaussian kernel (b) Half anisotropic Gaussian kernel

Figure 5: Anisotropic Gaussian kernels at linear portions of contours and at corners. Each ellipsoid represents
a region where the major and minor axis are proportional to the standard deviation of the Gaussian kernel.
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‖∇I‖ = max

θ∈[0,360[
Q(x, y, θ)− min

θ∈[0,360[
Q(x, y, θ)

θ1 = arg max
θ∈[0,360[

(Q(x, y, θ))

θ2 = arg min
θ∈[0,360[

(Q(x, y, θ))

(3)

Once ‖∇I‖, θ1 and θ2 have been obtained, the edges can be easily extracted by computing local maxima
of ‖∇I‖ in the direction of the angle η = (θ1 + θ2)/2 followed by a hysteresis threshold (see [17] for further
details). In this paper, we are solely interested in the two directions (θ1, θ2) and the gradient magnitude used in
our diffusion scheme discussed in Section 5.2.

Due to their lengths, rotating filters enable computing two precise diffusion orientations in the edge direc-
tions, even at high noise levels. More details about the effect of noise can be found in [12], where the authors
have evaluated this edge detector for different noise levels and compared it to other approaches in order to show
its efficiency as seen in [7, 21].

4.1 Adaptation to Color Images

The anisotropic edge detector described above can also be adapted separately to each d channel of a color. As
a result, the rationale used for gray-level images (d > 1) is extended. The value of the highest gradient ‖∇I‖
and the two directions θColor1 and θColor2 were calculated as follow:

 ‖∇I‖ = max(‖∇Ii‖) ,
(θColor1 , θColor2 ) = arg max

(θi1,θ
i
2)

(‖∇Ii‖) , (4)

(a) Original image (b) Image derivative at θ=10◦ (c) Image derivative at θ=275◦ (d) Gradient image

Figure 7: Image derived using various orientations with µ = 10 and λ = 1 and a negative of the gradient image
(normalized images).
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where (θi1, θ
i
2) are derived from the eq. 3 on channel Ii. Then, the two directions θColor1 and θColor2 can then be

used in our color anisotropic diffusion scheme.

5 Anisotropic Diffusion in Two Directions with PDE

5.1 Diffusion scheme in two positive directions

Unlike several other diffusion schemes [2, 33, 32, 30, 28], our control function does not solely depend on the
image gradient or the structure tensor values, but instead on a pre-established classification map of the initial
image. As stated in Section 3, this classification is a rough approach between region and edges. Moreover, in
[2, 32, 30, 28], only one direction is considered at edges and corner points, which has the effect of rounding
small structures, especially when the parameter σ used for the gradient estimation is large. Consequently, these
schemes behave like the MCM scheme [6], e.g. a square is transformed into a circle after a certain number
of iterations. In order to minimize this effect, we consider in [14] both directions provided by the curvature of
the signal s(θ) (see Section 3.3) only in image areas where flatness has been detected (Fig. 4(c)). This method
introduces a new diffusion process to remove the textures; however, this scheme generates a blur effect at the
edges because the two directions corresponding to the curvature of s(θ) lack adequate precision and moreover
an efficient method for controlling the diffusion is missing.

5.2 New perceptual diffusion scheme

In [2], the aim is to both restrict the diffusion process along the tangent direction to the gradient and perform
tuning by mean of the gradient magnitude. Tensorial smoothing in [33, 32, 30, 28] is tuned by the eigenvalues
in the directions of the eigenvectors. The diffusion process proposed in [26] is to diffuse mainly along the
positive sense of the orientation issued from the asymmetric filter in [16]. This smoothing process is well
adapted concerning sharp edges. As diagrammed in Fig 1 (a), the goal here is to diffuse only in the (θ1, θ2)
directions in regions of pixels classified as edge points. The principle of this diffusion scheme has been briefly
presented in [15], we give here some more details and we extend the method to the color images. We will
begin by controlling the diffusion as a function of the gradient magnitude and, then, as a function of the angle
between the two diffusion directions (θ1, θ2). Figs. 10 (b) and (c) display a diffused image without a control
function where edges are lost and blurred.

The new diffusion process presented in Figs. 1 (a) and (b) is now described by the following PDE :

∂It
∂t

= FA(I0)∆It + fc · (1− FA(I0)) ·
∂2It
∂θ1∂θ2

(5)
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where

fc =
u(‖∇I0‖) + v(β)

2
(6)

represents the control function† for both the gradient magnitude and the angle of the edge orientations (as
plotted in Fig. 9 (b)), t is the diffusion time, I0 the original image, It the diffused image at time t, (θ1, θ2) the
two directions of the smoothing (diffusing only along the positive sense) and lastly, FA indicates regions where
flat areas have been detected (see Section 3.2):

• FA = 0 in contour regions

• FA = 1 in homogeneous regions.

The diagram and the flowchart in Fig. 1 allow a better understanding of the method.
In order to control the diffusion in function of gradient magnitude in eq. 6, let us use the following function u:

u(‖∇I‖) = e
−
( ‖∇I‖

k

)2

, with k ∈ ]0, 1] . (7)

Using the anisotropic perceptual edge detector, we are now able to control the diffusion as a function of the
angle between θ1 and θ2 (see eq. 3) which is labelled β such that β = (θ1 − θ2), with θ1 > θ2. At a pixel level,

†Functions u(‖∇I‖) and v(β) are here combined in an additive manner. An alternative is to consider their product i.e. fc =
u(‖∇I0‖) ∗ v(β), and reduce the corner smoothing of parts that have small gradient, but require important diffusion (e.g. a pixel inside
a homogeneous region).
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(a) Original image (b) Diffused image (c) Close-up in (b) (d) Diffused image, (e) Close-up in (d)

without a control function with our control function

Figure 10: Diffused image without any control function, where blurring effect is excessive, and with our
method; the blurring effect is small at the edges.

the closer β is to 0, the smaller the effect of diffusion. On the other hand, as β moves closer to 180◦, smoothing
becomes more pronounced. The angular control function v can thus be defined as follows:

v(β) = e
−
(

180−β
180·h

)2

, with h ∈ ]0, 1] . (8)

For high value of gradient or for sharp angle, diffusion is restricted. u and v functions are plotted with different
parameters (k, h) in Figs. 9 (a) and (c). However, as opposed to [2], we are not seeking to inhibit diffusion at
edges because the two diffusion directions θ1 and θ2 are sufficiently precise to preserve the contours. Thus, in
practice, the values k=0.5 and h=0.8 enable an accurate control of the diffusion along edges and corners.

5.3 Diffusion scheme in vector-valued images

As opposed to diffusion methods presented above, we have used neither a norm nor a tensor field [8, 32, 28] as
part of our diffusion scheme for vector-valued images. Instead, before synthesizing the regularized color image
It, we diffuse each image channel Ii(16i6d) using the diffusion scheme from Section 5.2. At this point, the color
diffusion PDE is as follows :

∂Iit
∂t

= FA(I0)∆I
i
t + fc · (1− FA(I0)) ·

∂2Iit
∂θColor1 ∂θColor2

(9)

with fc = u(‖∇I0‖)+v(βColor)
2 , I0 is the original vector-valued image, and βColor =

(
θColor1 − θColor2

)
[180◦].

6 Model discretization

Computing the finite difference approximations via partial derivatives needs a numerical interpolation scheme
[33, 3]. Theoretically, in the scalar case, along an edge, F (I0) = 0 and eq. 5 becomes ∂It

∂t = ∂2It
∂θ1∂θ2

. The

Figure 11: Discretization diffusion in the two directions (θ1, θ2).
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discretization scheme is represented by a difference between a derivative on the left (θ1 direction) and another
derivative on the right (θ2 direction). As shown in Fig. 11, the current pixel Pt results from the interpolations
in the θ1, and θ2 directions which are labeled (iθ1 , iθ2). Then, the next pixel is given by:

Pt+1 = Pt + ε · (iθ1 + iθ2 − 2 · Pt), (10)

where ε represents the diffusion coefficient (ε = 0.15 in our experiments).
If the diffusion directions (θ1 , θ2) are constant along isophote lines in these two directions, thus ∂It

∂θ1
= ∂It

∂θ2

and then ∂It
∂t = 0. As these diffusion directions are estimated from half anisotropic Gaussian kernels, they are

not calculated locally, so in most of cases, we obtain ∂It
∂θ1
6= 0 and ∂It

∂θ2
6= 0. The opposite case could be possible

in a synthetic image without noise.

7 Experimental results

In this Section, we present a number of quantitative and qualitative results. In order to derive some of these
qualitative results, we have conducted a number of tests using real images. We analyzed the effect of adding
a uniform white noise on the original image I0 via the following formula: Im = (1 − L) · I0 + L · IN , with
L ∈ [0, 1], where IN is an image of random uniform noise, Im the resulting noisy image and L the level of
noise.

7.1 Qualitative results

We have labeled our approach ”PR” for Perceptual image Restoration. In the images presented in Figs. 13 (b),
16 (b) and (h), the aim has been to smooth the noise present in the various images while preserving all objects.
In our scheme, (µ, λ,∆θ) = (5, 1.5, 5◦) for flatness detection and the value of the threshold in amplitude sth
equals 0.05. This parameter set has proven to be experimentally efficient in most cases of image illumination
and noise level and Fig. 12 shows where flatness has been detected in different channels of color images.
Parameters used in anisotropic edge detection for the purpose of detecting (θ1, θ2) are (µ, λ,∆θ) = (5, 1, 2◦).
Compared to the previous case of region detection, parameter values have been slightly modified in order to
provide better accuracy on directions (θ1, θ2). The result of our anisotropic diffusion is presented in the Figs.
13 (k), (l), Figs. 16 (e), (f) and (k), (l) after 5 or 10 iterations, respectively.

Figure 12: Regions where s(θ) contains flatness in the different channels of the images presented in Fig. 16:
left to right (red, green, blue and color).
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(a) Original image 256×256 (b) Noisy image, L = 0.4 (c) Perona-Malik, 100 iterations

(d) Kuwahara filter (e) Papari et al. filter, σ=1 (f) Bilateral filter, 2 iterations

(g) MCM , 20 iterations (h) Alvarez et al., 20 iterations, σ=1 (i) Weickert, 50 iterations, σ=1

(j) Tschumperlé, 20 iterations, σ=1 (k) Our algorithm, 5 iterations (l) Our algorithm, 10 iterations

Figure 13: Regularization of an image containing small objects by mean of several different methods.
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Figure 14: PSNR and SSIM evolution vs. noise level for the different tested images.

Let us now compare our results with the bilateral [27], Kuwahara [11] and Papari et al. [20] filters as well
as with the PDE’s approach adopted by Alvarez et al. [2], Perona-Malik [22], Weickert [32], Tschumperlé [28]
and the MCM [6]. For the bilateral, Kuwahara , Nagao filters and Perona-Malik method, results are noisy
within the various images. The tensorial approach of Weickert and the MCM algorithm round corners and
diffuse the noise anisotropically, creating undesirable stripes. Alvarez et al. and Tschumperlé’s approaches
remove the noise but winds up with blurring the edges.

7.2 Perceptual evaluation

PSNR offers a quantitative evaluation of the difference between images; however, results reported by Fig. 14
(bottom) do not reveal any obvious distinction from one method to the next, even though perceptual differences
can be observed. A measurement can be identified that estimates the similarity between two images. This better
metric to estimate the similarity between two images is the Structural SIMilarity (SSIM), since it measures
similar structures through comparing two images [31]. This measurement will yield values between 0 and 1.
When the result is 1, the structures are considered to be very well preserved.

We have therefore conducted the SSIM measurements plotted in Fig. 14 vs. the level of noise on the two
images shown in Figs. 13 (a), 16 (a) and (g). With a low level of noise, less than 50%, our method performs
well with only 5 iterations. However, when the noise exceeds this threshold, 10 iterations become necessary.
The difference in SSIM decreases between 5 and 10 iterations for noise of less than 50% when the image is
composed of fine textures (such as the fruits in Fig. 16 (g)). Our approach removes the light textures that are
diffusing isotropically, thus resulting in a loss of information compared to the original image. Nevertheless,
when the image is composed mainly of small objects, the SSIM result seems more suitable for our approach
with five iterations for the images in Fig. 13 (a) and 16 (a). On the other hand, for an image consisting of large
objects, like the fruits in Fig. 16 (g), SSIM curves cross from a noise level of around 40% for 5 or 10 iterations.
Beyond this level, 10 iterations become necessary. The bilateral filter yields good results when the noise is
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Figure 15: SSIM evolution of our method vs. noise level for the Lena and Fruits images, respectively, as a
function of the number of iterations.

small, but the SSIM values decrease rapidly. In general, Tschumperlé’s scores provide better results than the
bilateral filter. Our method however, with 10 iterations offers the best results in terms of SSIM when the noise
level lies between 30 and 70%. Above 70%, the noise is too high to make any visual comparison.

Lastly and opposed to several other diffusion schemes [2, 32, 30, 28] that necessitate a large parameter σ
to smooth all of the noise, our method does not require a wide filter (eq. 2) in order to control the diffusion
at the edges. The anisotropic edge detector, formed by two half-rotating smoothing kernels, actually provides
considerable smoothing in the edge directions (parameter µ), which in turns adds robustness in the contour
extraction against noise. Moreover, since the filter is thin (parameter λ), it remains localized on the edges due
to its limited smoothing in the direction perpendicular to the contours [12]. A key parameter in this set-up is
the threshold sth (Section 3.2); we have estimated that sth=0.05 is well adapted for the detection of contours
regions with the smoothing filter introduced (Fig. 12).

In order to show the influence of the number of iteration, we analyzed the SSIM metric for the restored
images as a function of the number of iterations for the diffusion process and the noise level. Fig. 15 shows
that 5 iterations are sufficient in term of SSIM metric. Once noise is less than 50%, no more than 10 iterations
of diffusion are necessary.

8 Summary and Conclusion

We have proposed in this paper a new method for regularizing vector-valued images by means of pixel classi-
fication. This classification has been carried out thanks to a rotating smoothing filter followed by a PDE that
portraits diffusion.

Our approach makes an extensive usage of filters, and in particular, of a family of half Gaussian rotating
filters. This technique is very attractive because of the simplicity of the filters and the intelligibility of their
functioning, which helps finding perceptuel features close to human vision in images. These rotating filters
have been used in a number of applications such as edge and ridges detection, texture suppression or image
regularization [17, 14, 13, 12, 15]. In the method presented in this paper, a smoothing rotating filter first enables
classification between edges and homogeneous regions, so that either isotropic or anisotropic smoothing can be
used. The proposed regularization is a three steps process:

1. Filtering to smooth the image for region classification.

2. Derivative of the half Gaussian filtering for a precise detection of edges and their directions.

3. Application of a diffusion PDE to accurately control the intensity and the angle of the diffusion process,
and to eliminate noise, while preserving information on edges and small objects.
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Our method has been applied successfully on heavy noised real images. Compared to the existing algorithms,
as shown with the measures of Structural SIMilarity (SSIM), it turns out to be more efficient at preserving
sharp edges and corners. Eventually , inside homogeneous regions, the PDE diffusion process eliminates noise
without creating any undesirable artifacts like stripes or fiber effects.
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(a) Original image 512×512 (b) Noisy image, L = 0.6 (c) Bilateral filter

(d) Tschumperlé, 20 iterations, σ=1 (e) Our algorithm, 5 iterations (f) Our algorithm, 10 iterations

(g) Original image 512×480 (h) Noisy image, L = 0.5 (i) Bilateral filter

(j) Tschumperlé, 20 iterations, σ=1 (k) Our algorithm, 5 iterations (l) Our algorithm, 10 iterations

Figure 16: Image restoration on vector-valued images containing small objects.


