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Abstract. In this paper we propose a new ridge/valley detection method
in images based on the difference of rotating Gaussian semi filters. The
novelty of this approach resides in the mixing of ideas coming both
from directional filters and DoG method. We obtain a new ridge/valley
anisotropic DoG detector enabling very precise detection of ridge/valley
points. Moreover, this detector performs correctly at crest lines even if
highly bended, and is precise on junctions. This detector has been tested
successfully on various image types presenting difficult problems for clas-
sical ridges/valleys detection methods.

Key words: Ridge/valley, directional filter, Gauss filter, difference of
Gaussian, anisotropic.

1 Introduction

Anisotropic filters are an important part in image processing. Indeed, anisotropic
filters provide good results and are often used in edge detection [5] [10], tex-
ture removal [9], image enhancing [12] and restoration [11]. In several domains,
anisotropic filters allow for a better robustness than classical method. However,
they are seldom used in crest lines finding.

Ridges and valleys are formed with the points where the intensity gray level
reaches a local extremum in a given direction (illustrated in Fig. 1). This di-
rection is the normal to the curve traced by the ridge or respectively the valley
at this point [3]. Crest lines correspond to important features in many images.
Ridges and valleys are attached but not limited to roads in aerial images [7] or
blood vessels in medical images [1] [6].

Classical edge detection [2] fails to detect ridges or valleys in images. Instead,
it results in two edges at each side of the ridge or the valley (illustrated in Fig.
1(e)). Edges can be used to detect straight lines using a Hough transform. It
is advisable to compute edges using [5] which creates straight contours [13].
However, this method is adapted only for straight lines [4].

According to [6], crest lines extraction can be divided in three main categories
of segmentation algorithms. The first refers to pattern recognition and filtering
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Fig. 1. Valley and ridge in scalar images. (a) Valley in an image. (b) Surface represen-
tation of a valley. (c) Ridge in an image. (d) Surface representation of a ridge. The z
axis corresponds to the intensity gray level. (e) Edge detection on the image in (a).

techniques (for example differential geometry [1] [14] and morphology), the sec-
ond to model-based approaches (snakes) [8] [7], and the third to tracking-based
approaches.

Filtering techniques are well adapted in ridge and valley extraction because
they are able to smooth the noise and amplify the crest line information by com-
puting surface curvature [1] [14]. However, results obtained by these approaches
can present important false detection rate in noisy images. It is mainly because
the high pass filtering used for the second derivative is sensitive to the noise
level.

In this paper, we present a rotating filter (inspired by [9] [1] and [10]) able
to detect ridges and valleys. Our ridge/valley detector implements anisotropic
directional linear filtering by means of difference of two rotating half smoothing
filters. Then, we compute a ridge or valley operator using a local directional max-
imization or respectively minimization of the response of the filters. These direc-
tions correspond to the orientation of a crest line or a junction of ridges/valleys.
Contrary to several approaches involving crest lines, this algorithm performs fine
even on highly bended ridges or valleys. Moreover, our detector is robust at level
of crest lines junctions and bended lines due to these two rotating half smoothing
kernels. Finally, due to its strong smoothing in the directions of the crest line,
the detection is not sensitive to noise.

This paper is organized as follows. In the section 2, we present an anisotropic
smoothing Gaussian filter. We present a robust crest line detector using difference
of half directional Gaussian filters in the section 3. The section 4 is devoted to
experimental results, comparison with an other methods and results evaluation.
Finally, the section 5 concludes this paper and presents future works.

2 A Rotating Smoothing Filter

In our method, for each pixel of the original image, we use a rotating smoothing
filter in order to build a signal s which is a function of a rotation angle θ and
the underlying signal. As shown in [10] and [9], smoothing with rotating filters
means that the image is smoothed with a bank of rotated anisotropic Gaussian
kernels:
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(a) Smoothing filter (b) Rotating filters (c) Points selection on an original image 712×220.

Fig. 2. A smoothing rotating filter and points selection on an original image.

(a) θ = 34 degrees, µ = 10, λ = 1 (b) θ = 270 degrees, µ = 10, λ = 1

(c) θ = 34 degrees, µ = 10, λ = 1.5 (d) θ = 270 degrees, µ = 10, λ = 1.5

Fig. 3. Image in Fig. 2(c) smoothed using different parameters and different orienta-
tions.

G(µ,λ)(x, y, θ) = C.H

(
Rθ

(
x
y

))
e
−
(
x y

)
R−1

θ

 1
2 µ2 0

0 1
2λ2

Rθ

x
y


(1)

where C is a normalization coefficient, Rθ a rotation matrix of angle θ, x and y
are pixel coordinates and µ and λ the standard-deviations of the Gaussian filter.

As we need only the causal part of the filter (illustrated on figure 2(a)), we
simply “cut” the smoothing kernel by the middle, this operation corresponds
to the Heaviside function H [10]. By convolution with these rotated kernels
(see figure 2(b)), we obtain a collection of directional smoothed images Iθ =
I ∗G(µ,λ)(θ).

For computational efficiency, we proceed in a first step to the rotation of the
image at some discretized orientations from 0 to 360 degrees (of ∆θ = 1, 2, 5,
or 10 degrees, depending on the angular precision needed and the smoothing
parameters) before applying non rotated smoothing filters. µ and λ define the
standard-deviations of the Gaussian filter (illustrated on figure 2(a)). As the im-
age is rotated instead of the filters, the filtering implementation can use efficient
recursive approximation of the Gaussian filter. As presented in [10], the imple-
mentation is quite straightforward. In a second step, we apply an inverse rotation



4 Lecture Notes in Computer Science

of the smoothed image and obtain a bank of 360/∆θ images (some examples are
available in Fig. 3).

3 Ridge/Valley Lines Detection using Difference of
Directional Gaussian Filters

3.1 Difference of Rotated Half Smoothing Filters (DRF)
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(a) A DRF (b) DRF in the thin net directions (c) Discretized filter

Fig. 4. DRF filter descriptions. For (c) top: µ = 10 and λ = 1. For (c) bottom: µ = 10
and λ = 1.5.

As presented in Fig. 4(a), we want to estimate at each pixel a smoothed
second derivative of the image along a curve crossing this pixel. In one dimension,
the second derivative of a signal can be estimated thanks to a DoG operator.
For our problem, we have just to apply two filters with two different λ and the
same µ to obtain directional derivatives (one example of two discretized filters
is available in Fig. 4(d)). Then, we compute the difference of these two filters
to obtain the desired smoothed second derivative information in the thin net
directions (illustrated in Fig. 4(b)).

(a) θ = 34 degrees (b) θ = 270 degrees

Fig. 5. DRF result of Fig. 2(c) at different orientation θ using the following parameters:
µ = 10, λ1 = 1 and λ2 = 1.5 (normalized images).
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Fig. 6. Examples of functions D(x, y, θ) on the points selection in Fig. 2(c) using
µ = 10, λ1 = 1, λ2 = 1.5. The x-axis corresponds to the value of θ (in degrees) and
the y-axis to D(x, y, θ).

3.2 Pixel Classification

Applying by convolution the DRF filter to each pixel of an image (by means of a
technique of rotated images, as defined above), we obtain for each pixel a signal
which corresponds to a 360/∆θ scan in all directions (see Fig. 5). Our idea is
then to characterize pixels which belong to a crest line (a ridge or a valley), and
thus to build our detector.

LetD(x, y, θ) be the pixel signal obtained at pixel P located at (x, y).D(x, y, θ)
is a function of the direction θ such that:

D(x, y, θ) = G(µ,λ1)(x, y, θ) −G(µ,λ2)(x, y, θ) (2)

where x and y are pixel coordinates. µ, λ1 and λ2 correspond to the standard-
deviations of the Gaussians. Some examples are represented on Fig. 6.

We define a ridge/valley operator Σ(x, y) by the following expression:

Σ(x, y) = D(x, y, θM1
) +D(x, y, θM2

) +D(x, y, θm1
) +D(x, y, θm2

) (3)

where θM1
, θM2

are the directions of the local maxima of the function D and
θm1

, θm2
the directions of the local minima (see example in Fig. 8(a)). Conditions

of detection are as follows:
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if Σ(x, y) > Σth, the pixel P belongs to a ridge line,
if Σ(x, y) < −Σth, the pixel P belongs to a valley line,

where Σth > 0.
On a typical valley (for example point 1 in Fig. 6), the pixel signal at the

minimum of a valley contains at least two negative sharp peaks. For ridges (for
example point 7 in Fig. 6), the pixel signal at the maximum of a ridge contains
at least two positive peaks. These sharp peaks correspond to the two directions
of the curve (an entering and leaving path). In case of a junction, the number
of peaks corresponds to the number of crest lines in the junction (see point 4 in
Fig. 6). We obtain the same information for bended lines (illustrated in point 2
on Fig. 6). However, at the level of an edge, the absolute value of Σ is close to
0 because the absolute value of D at θM1 , θM2 , θm1 and θm2 are to each other
close (see points 6 and 7 on Fig. 6). Finally, due to the strong smoothing, D is
close to 0 in the presence of noise without neither crest line nor edge (illustrated
in point 10 in Fig. 6), that is why our method is robust to noise.

Note that Σth can be a parameter for the hysteresis threshold (see next
section).

3.3 Ridge and Valley Extractions
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Fig. 7. η extraction (Σ(x, y) > Σth). (a) η computation from θM1 and θM2 . (b) η
corresponds to the direction perpendicular to the crest line at the level of a pixel P.

Once Σ(x, y) computed, we simply estimate η(x, y) (see Fig. 7(a) and (b)) by:{
η(x, y) = (θM1 + θM2)/2, when Σ(x, y) > Σth
η(x, y) = (θm1 + θm2)/2, when Σ(x, y) < −Σth.

Thus, from Σ(x, y) and η(x, y) (an example in Fig. 8(b)), crest lines can
easily be extracted computing local maxima of Σ(x, y) in the direction η(x, y)
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(for ridge detection and the minima for valley detection, examples can be seen
in Fig. 8(c) and (d)).

(a) Image of Σ (b) η image (η in degrees, modulo 180)

(c) Maxima of Σ in the η direction (d) Minima of Σ in the η direction

Fig. 8. Example of different steps for lines extraction in the image presented in Fig.
2(c) using ∆θ = 2 (degrees), µ = 10, λ1 = 1, λ2 = 1.5. All these images are normalized.

4 Results

We present results obtained both on synthetic and real images using our DRF
detector. Let us note τL the hysteresis lower threshold and τH the higher.

4.1 Results on Synthetic Images

Fig. 9. Ridges and valleys detection on a noisy synthetic images (712 × 220). Left
to right: noisy image (uniform noise), ridges detection and valleys detection. ∆θ = 2
(degrees), µ = 10, λ1 = 1, λ2 = 1.5, τL = 0.03 and τH = 0.08.

Fig. 9 shows results of ridges and valleys detection on a noisy synthetic
image. Ridges are correctly detected as well as valleys, whereas our detector is
not misled by the contour of the black object and the noise. At the end of this
section an evaluation of the robustness of our detector in presence of noise is
provided.
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(a) Original image 312×312 (b) Valley detection (c) Superposition of (b) on (a)

Fig. 10. Valley detection of blood vessels in brain. ∆θ = 5 (degrees), µ = 5, λ1 =
1, λ2 = 1.5, τL = 0.0001 and τH = 0.005.

4.2 Results on Real Images

We have tested our detector on several different real images and compared our
method with the one described in [1].

In the first image of blood vessels, Fig. 10, the aim is to extract thin nets.
This image is not corrupted by noise, so it is quite easy with the DRF detector
to compute dark as well as bright crest lines. Valley highly bended are easily
extracted from the image. Superposition of valleys detected on the original image
shows satisfying results in terms of precision.

(a) Original image (b) Result of [1] (c) Our result

Fig. 11. Valley detection of watermarks in a paper. (b) σ = 1.5, τL = 0.5 and τH = 0.8.
(c) ∆θ = 5 (degrees), µ = 10, λ1 = 1, λ2 = 1.5, τL = 0.001 and τH = 0.008.

In Fig. 11, the aim is to extract vertical watermarks. As this image is very
noisy, the task to extract valleys caused by watermarks is very hard by classical
methods. However, our detector performs well, the rate of noise of the results is
much smaller than the method proposed in [1].

Roads often appears as ridges in satellite images. In, Fig. 12 roads are clearly
visible as opposite in Fig. 13, where our method detects ridges even if they are
highly bended. Moreover, it performs well at junctions. We have compared our
results with the method presented in [1] and [14], these results clearly shows
the superiority of our approach. In Fig. 13(e), crests lines are not very sharp,
however our detector is able to extract most of the roads.
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(a) Original image (b) Result of Ziou [14] (c) Result of [1] (d) Our result

Fig. 12. Ridge detection on a satellite image (277 × 331). For (c) : σ = 1.5, τL = 0.5
and τH = 0.7. For (d): ∆θ = 2 (degrees), µ = 3, λ1 = 1.33, λ2 = 2, τL = 0.002 and
τH = 0.01.

(a) Original image 500×500 (b) Our ridge detection on (a) (c) Result of [1] on (a)

(d) Original image 1000×1000 (e) Our ridge detection superposed on (d)

Fig. 13. Ridges detection on aerial images. In (b) and (e): ∆θ = 5 (degrees), µ =
10, λ1 = 1 and λ2 = 1.5. (b) τL = 0.02 and τH = 0.06. (e) τL = 0.01 and τH = 0.0025.
(c), σ = 1.5, τL = 0.55 and τH = 0.65.
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The last figure shows the efficiency of our method against noise. In Fig. 14,
we have tested ridges and then valleys detection. This result satisfy greatly us
because our approach is able to detect both short valleys created by letters in
the image and ridges between these same letters while detecting other ridges.
Moreover, the noise in this image does not affect our detection. We provide
quantitative results of noisy images in the next paragraph. A result database is
available online [15].

(a) Original image 403 × 351 (b) Ridge detection (c) Valley detection

Fig. 14. Ridges an valleys detection (in red) on a noisy real image. ∆θ = 5 (degrees),
µ = 5, λ1 = 2, λ2 = 3, τL = 0.01 and τH = 0.03.

4.3 Results Evaluation

(a) L = 0.1 (b) L = 0.5 (c) L = 0.7 (d) L = 0.8 (e) L = 0.9

Fig. 15. Images 160×80 with different levels of noise L.

In order to carry out some quantitative results, we have also conducted a
number of tests with synthetic images including thin one-pixel wide ridges or
valleys. Fig. 15 shows an example of such valleys with a simple image composed
of a square and a circle.

In our test, we performed a valley detection and compared the result to the
original image, pixel per pixel. We thus obtained a quantified error by making the
difference between the two images. In artificial intelligence, confusion matrices
are often used to evaluate classifier errors. An example of such a confusion matrix
is shown in Table 1, with the following parameters: λ1 = 1, λ2 = 1, µ = 5 for a
noise free image.

In this example, we see that 346 pixels over the 372 that build the figure
were correctly found, whereas 60 pixels (34 + 26) were mistaken.
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(a) Error of our detector (b) Comparison of total error with [1]

Fig. 16. Error evaluation of our approach.

Table 1. Confusion matrix showing detection errors

Detection positive Detection negative

Actual pixels true 346 26

Actual pixels false 34 12394

Influence of noise: We analyzed the effect of adding a uniform white noise on
the original image using the following formula:

Im = (1 − L)I0 + L.IN

where I0 is the original image, IN an image of random uniform noise and Im the
resulting noisy image. As expected, the number of errors increases monotonically
with the noise level L. Two curves have been plotted on Fig. 16(a) the number of
true negative pixels and the number of false positive pixels which both constitute
errors. For low level of noise (L < 0.8), small variations of the number of errors
are caused by the sampling effect: lines in the image are projected on a square
grid and binarized, generating some inaccuracies of quantization. In particular,
the drawing of a circle may slightly differ from one detection to the other, leading
however to perceptually equivalent representations.

As a result, the number of errors remains relatively low even at a high level
of noise, showing the good robustness of the DRF filter.

Comparison with another method: In a second part, we compared the
results of the DRF filter with those obtained by the method in [1] called TNE.
The total number of errors, i.e. false positive + true negative, has been plotted in
Fig. 16(b). Both methods show the same robustness to noise, but the DRF filter
clearly outperforms those from the TNE method. Noise relocates the maxima
position in the TNE method. So the crest lines are detected with a distance of
one pixel. Whereas with our approach, strong smoothing in the directions of the
crest line does not relocate the detection (Fig. 7(b)).
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5 Conclusion

We have presented a new, precise and robust detection method of ridge and valley
based on the difference of two smoothing half rotating linear filters and local
maximization/minimization. Our method is able to detect ridges and valleys even
if they are highly bended. Moreover, due to these two half rotating smoothing
kernels, our approach enables to compute the two directions of a crest line and
the two principal directions at junctions. Finally, the strong smoothing in the
direction of the crest line enables the method to be highly robust to noise. This
detector has been tested successfully on various image types presenting difficult
problems for classical crest line detection methods. Next on our agenda is to
extend this approach to a detection of isolated junctions. This contribution will
lead to improve the DRF detector which treats only at present two directions
corresponding to the maxima/minima of the signal at each pixel.
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