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Abstract. In this paper we propose a new perceptual edge detector
based on anisotropic linear filtering and local maximization. The novelty
of this approach resides in the mixing of ideas coming both from percep-
tual grouping and directional recursive linear filtering. We obtain new
edge operators enabling very precise detection of edge points which are
involved in large structures. This detector has been tested successfully
on various image types presenting difficult problems for classical edge
detection methods.
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1 Introduction and Background

This work is motivated by applications needing strongly for a “good” edge de-
tector, providing precise and really informative edge points with the fewest false
detection rate as possible. For example, in the domain of object finding or object
recognition, in natural scenes or in Internet images, objects may present vari-
ous shapes and color aspects. For such cases, many local methods involving for
example points of interest and color invariants fail.

In such applications, edge detection remains a central key point as it can
provide geometrical information. However, commonly used edge detectors does
not lead directly to object contours which must be searched among numerous
edge points. Then to avoid or simplify a difficult geometrical search, many works
on perceptual organisation in computer vision have been carried out [8], [12], [11],
with the aim of selecting edge points involved in large “perceptual” structures.
Independently of these works, new edge detection techniques using anisotropic
filtering have been defined [7], [9]. These methods are able to correctly detect
large linear structures.

In Practice, the generalization of perceptual organization methods for the
automatic segmentation of various image types remains a difficult task in regard
to the necessity of adjusting multiple thresholds and parameters. For the second
class of methods (anisotropic filtering), the robustness against noise depends
strongly on the filter’s smoothing parameter. If this parameter increases, the
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detection is less sensitive to noise (and small structures considered as noise).
Consequently, the precision of detected edge points decreases strongly at corners
points and for non straight object contour parts.

We describe in this paper a new method for the precise detection of edge
points belonging to large structures. Contrary to recent works involving edges,
junctions and texture detection [1] [3] this work does not at this time address tex-
ture. Consequently the method described here is computationally much simpler
and faster. The aim of this method is to obtain the most reliable geometrical in-
formation for object contour extraction as possible by just image differentiation.
The method described, involves directional linear filtering by means of recursive
filters followed by the computation of an edge operator built with a local direc-
tional maximization of the response of the filters. This method is inspired from
perceptual organisation works [11], and anisotropic filtering [9].
Paper Organization :

In the section 2, we remember first the basics of perceptual organization with
saliency networks, and then the basics of anisotropic edge detection with the
anisotropic tensor. In the section 3, we present our method implementing a ro-
bust edge detector on gray-scale and color images having some features pointed
out at section 2. Finally, at section 4, we present the results obtained with our
method and we compare our results with other methods.

2 Perceptual Organization and Anisotropic Edge

Detection

2.1 Perceptual Organization with Saliency Networks

Based on the works described in [12] and [11], let us consider a path crossing a
pixel P of an edge segmented image. We can divide this path into three parts :
the path coming from the left of P , the pixel P under consideration and the path
leaving on the right (see Fig. 1). A quality function of a path can be defined as
the sum of left and right lateral quality terms multiplied by a coupling factor
based on the local curvature of the path at P .

F (P ) = [Fl (P − 1) + Fr (P − 1)]C
(P−1,P+1)

. (1)

For these terms, it has been shown in [12] that some classes of quality functions
involving grey levels and curvature could be optimized with locally connected
saliency networks, by a local to global way. In [11] we have differently written
these quality functions to establish a link with active contour function used
in snakes. These functions are also composed of grey levels and curvature well
separated into two different terms.

2.2 Anisotropic Edge Detection

Anisotropic edge detection can be seen as a generalization of color edge detection
[6]. Suppose that the image is smoothed with a bank of rotated anisotropic
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Fig. 1. A path crossing a considered pixel P.
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where C is a normalization coefficient, Pθ a rotation matrix of angle θ and σ1

and σ2 are the standard-deviations of the Gaussian filter.
By convolution with these rotated kernels, we obtain a collection of smoothed

images Iθ = I∗Gθ which can be derived along X and Y axis to obtain anisotropic
directional derivatives :

IθX =
∂Iθ

∂X
and IθY =

∂Iθ

∂Y
.

These derivatives can now be combined in an orientation tensor [9]. From this
tensor, an anisotropic gradient and its orientation can be computed respectively
with the square root of the largest eigenvalue and its associated eigenvector.
Extension to color is straightforward [6].

3 A Perceptual Edge Detector

As pointed out in section 1, the anisotropic edge detector described in section 2.2
performs well at linear portions of contours, but near corners, the gradient mag-
nitude decreases as the edge information under the scope of the filter decreases
(see Fig. 2.a). Consequently, the robustness to the noise decreases.

The simplest solution to bypass this effect is to consider paths crossing each
pixel in several directions. We simply “cut” the smoothing kernel in two parts : a
first part along the path coming from the left and a second part along the path
leaving on the right as seen in Fig. 2.b). In the direction of the contour, “half
smoothing” is performed, in the perpendicular direction a derivation filter is
applied to obtain a derivative information. In order to obtain edge information,
we have to combine entering and leaving paths. Now, the edge detection prob-
lem becomes an optimization problem similar to path optimization in saliency
networks.
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Fig. 2. Anisotropic Gaussian kernels at linear portions of contours and at corners,
a) Full anisotropic Gaussian kernels. b) Half anisotropic Gaussian kernels (smoothing
along the contour, derivation in the orthogonal direction of the edge).

3.1 Filters and their Implementation

Considering edge detection, it is now well established that the Gaussian and its
derivatives form optimal filter in the sense of the SNR, localization and unique-
ness of detection [2]. Due to their euclidean invariance and also to the emergence
of scale-space theory, these filters have received a great attention in edge detec-
tion. But several other filters based on the exponential filter presenting also op-
timality features have been pointed out by [4], [13]. These filters do not present
isotropic invariance but are interesting for their lower computational complexity
in regard to Gaussians [5]. The Shen filter can be implemented recursively at
order 1 and Deriche filter at order 2, as the Gaussian filter can be recursively
implemented at order 4 with a good approximation.

In our case, firstly, we aren’t concerned with isotropic property of filters.
Secondly, the better SNR of the Gaussian filter in regard to the exponential
filters is not fundamental as we are going to use a large standard-deviation in
the smoothing direction (in any way this important smoothing will remove the
noise). According to these considerations, we can use any of the three filters for
smoothing. If we need small computational complexity, we will prefer Shen filter
to the Gaussian filter. At the contrary, for derivation, we will preferably use the
first derivative of the Gaussian according again to SNR considerations.

In order to obtain all the rotated filtering (see Fig. 3 b) ), we just proceed
in an inverse rotation of the image at discredited orientations from 0 to 360
degrees (of 1, 2, 5, or 10 degrees, depending on the precision needed and the
smoothing parameter) before applying non rotated filters. We always use the
“half smoothing” filter along the Y direction, and the derivation filter along
the X direction (as illustrated in Fig. 3 a) ). As the image is rotated instead
of the filters, the filtering implementation is quite straightforward. The “half
smoothing” uses slightly different implementations that those described in [13],
[4] or [5].

It is well known that for implementing a recursive filter, we need to decom-
pose the filter function into causal and anti-causal parts. In this case, we need
exactly “half filtering”, for normalization considerations. We then decompose
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Fig. 3. a) Edge operator (derivation filter on X and half smoothing filter on Y). b)
Rotated filters with an angle of θ.

the smoothing filter as :

F (x) = F+(x) + F−(x)

where :

F+(x) =







F (x) if x > 0
1

2
F (x) if x = 0

0 if x < 0
(2)

and

F−(x) =







0 if x > 0
1

2
F (x) if x = 0

F (x) if x < 0 .

Only the filter of equation 2, representing the “half smoothing” will be imple-
mented. If the chosen filter is the Gaussian, we will speak of σξ for the standard-
deviation of the smoothing filter and of ση for the standard-deviation of the
derivation filter. But for a Shen smoothing filter (equation 3), we will continue
speaking of σξ, in this case we just define it as : σξ = 1/

√
2α since the Shen filter

is defined as :
F (x) = C e−α|x| . (3)

3.2 Edge Extraction

After the filtering stage, for each pixel, we obtain a quality measure Q(x, y, θ) of
a path entering this pixel at the orientation θ. This measure is an integration of
the slope of the image function in this direction. For obtaining an edge operator
E(x, y) and a gradient direction η(x, y), we have now to combine two entering
paths (inspired by [11]). For a fast practical computation of E(x, y), we first
compute local extrema of the function Q(x, y, θ), θ1 and θ2 (illustrated in Fig.
4 b) ). Then two of these local extrema are combined to maximize E(x, y).

E(x, y) = Q(x, y, θ1) −Q(x, y, θ2)
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Fig. 4. a) Computation of η(x, y) from θ1 and θ2. b) Example of a function Q(x, y, θ)
(the x-axis corresponds to the value of Q(x, y, θ) and the y-axis to θ).

Then we simply estimate η(x, y) by a linear combination of θ1 and θ2 with
the coefficients Q(x, y, θ1) and Q(x, y, θ2) (see Fig. 4 a) ).

Once we have obtained E(x, y) and η(x, y), edges can easily be extracted
by computing local maxima of E(x, y) in the η(x, y) direction followed by an
hysteresis threshold.

3.3 Adaptation to Color Images

A color image is composed of three image planes : red, blue and green. Our
perceptual detector above can be applied on gray-scale images, but it can also
be adapted separately to the three planes of a color image as three gray-scale
images. We can combine them into the following formula :

‖∇I‖color = max(‖∇R‖, ‖∇G‖, ‖∇B‖) ,
ηcolor = arg max‖∇R‖,‖∇G‖,‖∇B‖(ηR, ηG, ηB) .

After this step, edges can easily be extracted by computing local maxima of
‖∇I‖color in the ηcolor(x, y) direction followed by an hysteresis threshold.

4 Results and Computational Time

We present results obtained both on synthetic and real images using our percep-
tual edge detector with derivative and half-smoothing Gaussian filters.

4.1 Synthetic Images

The first group of images (Fig. 5) is composed of two synthetic images. The
first binary image (Fig. 5 a) ) contains geometrical shapes without noise, dotted
lines and a perceptual triangle. The image is filtered with σξ = 15, ση = 1
and a discretization angle of 10 degrees. Note that all contours are detected,
moreover the triangle on the down right of the image is completely visible with
our perceptual edge detector and dotted lines are detected as straight lines. The
second synthetic gray-scale image containing small geometrical objects, (Fig. 5
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Fig. 5. a) Synthetic input image with lines, dotted lines, nearby squares and circles.
b) Result of the perceptual edge operator. c) Noisy synthetic input image. d) Result
of the perceptual edge operator.

c) ) is small (128× 128) and noisy. The amplitude of the noise is greater than the
amplitude of the edges (the white figure is very difficult to segment correctly both
with classical edge detection and with the method described at section 2.2). The
three objects and their corners are easily extracted using our perceptual edge
detector with σξ = 10, ση = 1, the hysteresis lower threshold is equal to 0.01,
the higher threshold is equal to 0.15 and the discretization angle is equal to 2
degrees. As stated in section 3.1, if objects to segment are small, the parameter
σξ should not be too “high” (σξ = 10 is a good compromise).

4.2 Real Gray-scale Images

The second group of images (Fig. 6) consists of an omnidirectional image and
a real textured image. The first image (Fig. 6 a) ) (omnidirectional) contains
a lot of warped objects. Within this experiment, we compare the anisotropic
method described at section 2.2 and our perceptual edge detector. The first
result (Fig. 6 b) is obtained with the anisotropic Gaussian filter with σξ = 10,
ση = 1, the hysteresis lower threshold is equal to 0.01, the higher threshold
is equal to 0.1 and the discretization angle is equal to 10 degrees. The second
result (Fig. 6 c) ) is obtained with our perceptual edge detector using the same
parameters (except the higher threshold which is equal to 0.5) and gives better
results on many small details. Contours of small objects are more accurate,
corners also are better defined, even in blurred regions of the image. Also, the
second circle at the center of the image is detected almost complete with our
perceptual edge operator. All these details (corners, circle in the center) are
important for the calibration of this kind of sensor as well as various applications
in robotics [10]. At Fig.6 d) we plot the obtained Q(x, y, θ) function of θ at the
pixel indicated by the yellow cross on the Fig. 6 c). In the second image of this
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Fig. 6. a) Omnidirectional image. b) Edges obtained with the Gaussian anisotropic
edge detector. c) Result of the perceptual edge operator. d) Q(x, y, θ) function in one
pixel (indicated by the yellow cross in the Fig. c) ) of the perceptual edge operator.
(the x-axis corresponds to the value of Q(x, y, θ) and the y-axis to θ). e) Difficult real
image. f) Edges obtained containing a vertical component.

group (Fig.6 e) ), we have been interested here in the extraction of the panel and
its post. The image is filtered using our perceptual edge operator, with σξ = 50,
ση = 1, the hysteresis lower threshold is equal to 0.01, the higher threshold is
equal to 0.15 and the discretization angle is equal to 2 degrees. We then have
thresholded connex components presenting vertical angles. The panel and its
post are correctly extracted (Fig. 6 f) ).

4.3 Real Color Images

We have tested our method on color images. The result of the first image is
compared with the Gaussian anisotropic edge detector [9], the color Gaussian
detector [5], the color Deriche detector [4] and the gPb [1].

The first result (Fig. 7 b) ) is obtained with the anisotropic Gaussian filter
with σξ = 10, ση = 1, the discretization angle is equal to 5 degrees with hysteresis
lower threshold equal to 0.001 and higher threshold equal to 0.15. The second
result (Fig. 7 c) ) is the result of our perceptual edge detector with σξ = 10, ση =
1, the discretization angle is equal to 5 degrees with hysteresis lower threshold
equal to 0.05 and higher threshold equal to 0.15. The Fig. 7 d) is obtained using
the color Gaussian edge detector with σ = 1, hysteresis lower threshold is equal to
0.01 and higher threshold is equal to 0.1. The Fig. 7 e) is obtained using the color
Deriche edge detector with α = 1, hysteresis lower threshold is equal to 0.001 and
higher threshold is equal to 0.04. As compared to the anisotropic Gaussian filter,
our perceptual edge detector gives better results on many small details, this can
be seen at the arm of the man in the picture, moreover, our perceptual detector
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is more robust to noise on complex textures. Results obtained by Gaussian and
Deriche filtering are more noisy. If we increase the threshold, many important
edge points disappear. We have also compared our result with gPb (Fig. 7 f) )
and we obtain more details.

a) b) c)

d) e) f)

Fig. 7. a) Real color image. b) Edges obtained with the Gaussian anisotropic edge
detector. c) Result of the perceptual edge operator. d) Contours obtained with the
isotropic Gaussian operator. e) Results of the color Deriche operator. f) Results with
the gPb operator.

The second image (Fig. 8 a) ) contain difficult textures, the aim is to segment
the car. The first result (Fig. 8 b) ) is obtained with the anisotropic Gaussian
filter with σξ = 10, ση = 1, the discretization angle is equal to 5 degrees with
hysteresis lower threshold equal to 0.001 and higher threshold equal to 0.3. If the
higher threshold decreases, the noise caused by leaves increases, on the contrary,
if the higher threshold becomes greater than 0.3, contours of the car disappear.
The second result (Fig. 8 c) ) is the result of our perceptual edge detector with
σξ = 10, ση = 1, the discretization angle is equal to 5 degrees with hysteresis
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a) c)

b) d)

Fig. 8. a) Real color image. b) Edges obtained with the Gaussian anisotropic edge de-
tector. c) Result of the perceptual edge operator. d) Results with the isotropic Gaussian
edge operator.

lower threshold equal to 0.01 and higher threshold equal to 0.5. We are able to
extract the edge of the car from “leaves” texture. The third result (Fig. 8 d) ) is
obtained with the Gaussian isotropic edge detector, with σ = 1, hysteresis higher
threshold is equal to 0.2 and lower threshold is equal to 0.01. If the hysteresis
higher threshold becomes greater than 0.2, we lost totally edges of the car and
the noise remains so this result can not be exploited. We present other results
with our perceptual detector in Fig. 9 and an images data base with results is
available on-line [14].

4.4 Computational Time

The code of our detector is written in C++ on a Linux Operating System. For
testing the detector with derivative and half-smoothing Gaussian filter, we have
used a 8-core processor running at 2.6 GHz. For processing a 256x256 grey level
image (with a discretization angle of 5 degrees), the whole process takes 1.3
seconds. Note that this process is divided in two stages : derivation stage and
gradient stage. At the derivation stage, derivation images are computed and
written to the disk. At the gradient stage, derivation images are loaded again,
to optimize input and output directions, then the gradient and its angle are
written to the disk. Within this experiment 72 derivation images are computed
and written and loaded again. Only the derivation stage is parallelized on the 8
processors. Many time could be saved firstly by the parallelization of the gradient
stage and secondly by avoiding the saving of derivation images. The memory
occupation for the whole process is small and the detector is not limited by
image size. For example, images of size 1000x1000 can be easily computed with
2 GB of RAM.
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Fig. 9. Image contours selection using our perceptual edge detector with σξ = 10,
ση = 1 and the discretization angle is equal to 5 degrees.
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5 Conclusion

We have presented a new precise, robust and fast perceptual edge detector based
on anisotropic linear filtering and local maximization. Our method is designed
for the detection of edge points which are involved in large structures. It enables
a really precise detection for edges even in very noisy cases. This detector has
been tested successfully on various image types presenting difficult problems for
classical edge and detection methods. At this time, threshold parameters are
almost stable, in the future we plan to bring automatic threshold.
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