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Abstract 

The search for proteasome inhibitors began fifteen years ago. These inhibitors proved to be 

powerful tools for investigating many important cellular processes regulated by the ubiquitin-

proteasome pathway. Targeting the proteasome pathway can also lead to new treatments for 

disorders like cancer, muscular dystrophies, inflammation and immune diseases. This is 

already true for cancer; the FDA approved bortezomib, a potent proteasome inhibitor, for 

treating multiple myeloma in 2003, and mantle cell lymphoma in 2006. The chemical 

structures identified in some of the early proteasome inhibitors have led to the development of 

new anti-cancer drugs (CEP-18770, Carfilzomib, NPI-0052). All these molecules are covalent 

bonding inhibitors that react with the catalytic Thr1-O of the three types of active site. 

This review covers recent developments in medicinal chemistry of natural and synthetic 

proteasome inhibitors. Advances in non-covalent inhibitors that have no reactive group will 

be highlighted as they should minimize side-effects. New structures and new modes of action 

have been recently identified that open the door to new drug candidates for treating a range of 

diseases. 
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Main text 

INTRODUCTION 

Protein degradation is a highly complex, temporally controlled, and tightly regulated process. 

Proteasomes play a major role in cytosolic and nuclear proteolysis and are considered to be 

central to cellular physiology [1,2]. These abundant multicatalytic proteases are essential for 

the regulation of cellular protein quality and quantity in all forms of life. Some substrates are 

degraded by the proteasome without prior ubiquinylation [3], but many are tagged with 

multiple ubiquitin molecules to ensure their destruction by proteasomes (Figure 1).  

 

 

Fig (1). Schematic structure of the eukaryotic 26S proteasome showing the catalytic 

particle CP (or 20S proteasome) capped by two 19S regulatory particles. These particles 

are responsible for recognizing and unfolding ubiquinylated proteins, removing their 

ubiquitin tags, and moving the untagged proteins into the CP, where they are degraded. 

There are two of each of the three distinct catalytically active subunits 1, 2 and 5. 

Ub, ubiquitin; DUB, deubiquitinylating enzyme. 

 

The architecture of constitutive proteasomes and immunoproteasomes is complex. The central 

part is a catalytic particle (CP), the 20S proteasome (~ 700,000 Da). The eukaryote CP is 

composed of 28 subunits arranged in four stacked rings, each having 7 subunits (two outer 

1-7-rings and two inner 1-7-rings) that form three continuous chambers. Only three of the 

 subunits are catalytically active, providing the chymotrypsin-like (CT-L) activity 

(trypsin-like (T-L) activity (2), and caspase-like or post-acid (PA) activity (1). The 

immunoproteasome found in mammals is composed of alternative catalytic subunits (1i, 2i, 

i) that are induced by immune stress. The immunoproteasome generates certain antigenic 
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peptides that are presented to major histocompatibility complex (MHC) class I. The 

constitutive housekeeping proteasomes also generate antigenic peptides. The CP has a gate 

through which substrates enter; this gate is plugged by the -ring N-terminal domains [4]. It is 

opened by the association of the CP and regulatory particles. Proteasomes 20S may be capped 

by regulatory particles like 19S RP, 11S activator (PA28, PA26, REG) and PA-200 (Blm10 in 

yeast) [5]. The 19S RP contains 6 ATPases that help to unfold globular proteins. Both the 

access to the active sites of protein substrates and the release of their breakdown products 

(peptides of 2-23 amino acids) are controlled. Proteasomes are a novel type of protease 

belonging to the Ntn (N-terminal nucleophile) hydrolases [6]. The carbonyl carbon of a 

protein substrate's scissile bond is attacked by Thr1-O, the N-terminal threonine of the mature 

 subunits that is obtained by autolysis (Figure 2).  

 

CO NH CH CO NH CH

R2 R1

CO NH CH CO NH CH CO

R'1 R'2

NH

P2 P1 P'1 P'2Pn - P3 P'3 - P'n
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OH
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Fig (2). Schematic representation of the extended binding site of a proteasome catalytic 

 subunit showing the S and S’ specificity pockets, and the unprimed P residues on the 

left of the scissile peptide bond and the primed P’ residues on its right. After Schechter 

and Berger nomenclature [7]. 

 

Crystallographic studies indicate that the nucleophilic attack is assisted by N-terminal Thr1 

through a water molecule (Figure 3) [8,9]. The oxyanion of the resulting tetrahedral 

intermediate is stabilized by the by hydrogen bonding with the Gly Gly47-N (oxyanion hole). 

The acyl-enzyme is hydrolyzed via a water molecule activated by the deprotonated Thr1 

amino group with regeneration of the Thr1-OHfor a subsequent catalytic cycle.  
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Fig (3). Proposed mechanism for the proteasome-catalyzed hydrolysis of peptides. 

 

Proteasomes are responsible for various cellular processes including protein quality control, 

antigen processing, signal transduction, cell differentiation, cell-cycle progression and 

apotosis [2]. A highly selective inhibitor of proteasome, the peptide boronate bortezomib 

(Velcade®) has been approved for treating patients with relapsed or refractory multiple 

myeloma, and mantle lymphoma [10,11]. Bortezomib stabilizes p21, p27, p53, the 

proapoptotic Bid and Bax proteins, caveolin-1, and the inhibitor IB- preventing activation 

of NF-B cell survival pathways [12]. As bortezomib inhibits NF-B pathways, it sensitizes 

cancer cells to chemo-, radio- and immuno-therapy. This is a solid biological foundation for 

the use of proteasome inhibitors in combination with standard anticancer drugs to enhance the 

sentivity of cells to drugs, and to overcome drug resistance [13]. There are many opportunities 

for pharmacological intervention with protein degradation catalyzed by proteasomes. 

Proteasome inhibitors are potential drugs for treating several diseases including immunologic, 

inflammatory, metabolic and neurological disorders, viral diseases, muscular dystrophies, and 

tuberculosis [14,15]. 

The number of studies on proteasome inhibition has grown exponentionally since the 

discovery of the first inhibitors [16] and crystallographic description of the active sites (figure 

4) [17,18]. This subject has been regularly reviewed [4,5,19-29] and highlighted [30-33]. This 

article summarizes recent advances in the design, synthesis and biological characterization of 

proteasome inhibitors. Several natural products, whose formula are framed, are potent 

proteasome inhibitors and are also reviewed. Proteasome inhibitors are classified according to 

their chemical structure and their mechanism of inhibition. Covalent inhibitors are generally 

electrophilic and react with the catalytic -hydroxyl of Thr1 in the active sites, to reversibly or 

irreversibly inhibit the proteasome, depending on the strength of the chemical bond. We will 

highlight advances in non-covalent inhibitors, which have no reactive group, as they should 

not have the inherent drawbacks associated with reactive warhead inhibitors. 
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Fig. (4). Papers about proteasome inhibition in Chemical Abstracts database 

(SciFinder). 

COVALENT INHIBITORS 

These inhibitors possess an electrophilic reactive group that can react with the catalytic Thr1-

O. This group is usually attached to the C-terminal end of a peptide, or within a non-peptide 

molecule. 

 Peptide aldehydes 

The first reported proteasome inhibitors were the synthetic peptide aldehyde ALLN (Ac-Leu-

Leu-Nle-H also called calpain inhibitor I) and natural leupeptin (figure 5a) [16]. The first 

information about architecture of the proteolytic active site was obtained from the crystal 

structure of ALLN complexed with the archaebacterium proteasome [17] or yeast proteasome 

[18]. The electrophilic aldehyde function reacts with the six catalytic N-terminal threonines to 

form the hemiacetal adduct 1 (figure 5b). The bound inhibitor has a -conformation and forms 

an antiparallel -sheet structure with the protein [4]. Peptide aldehydes inhibitors bind slowly 

and reversibly to proteasome. Although they block a broad range of serine or cysteine 

proteases and are rapidly oxidized to inactive carboxylic acids, they are widely used for in 

vitro and in vivo studies because they enter cells and their effects may be reversed when they 

are removed [19]. For example, the commercially available MG132 (Z-Leu-Leu-Leu-H), a 

potent inhibitor of CT-L activity (Ki = 0.004 M, rabbit 20S proteasome) [34] is one of the 

most popular proteasome inhibitors (figure 5a). Studies on peptide aldehydes as potent 

proteasome inhibitors have been extensively reviewed [1,4,18-21,23,25,27], hence only recent 

developments are reported here.  
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Though tripeptide aldehydes are very flexible, three-dimensional quantitative structure-

activity models that predict their inhibition of proteasome CT-L activity have been obtained 

by analysing 45 known inhibitors [35]. Derivatives 2 of tyropeptin 2a (R1 = iPr, R2 = R3 = H), 

a natural proteasome inhibitor produced by Kitasatospora sp. [36], were designed by 

molecular modelling in order to improve inhibition and then synthesized (figure 5c) [37]. The 

most potent derivative 2b was 20-times more active than tyropeptin (figure 5c). Compound 

2c, also called TP110, inhibits selectively the CT-L activity of the human 20S proteasome 

(IC50 = 0.03 M) and poorly -chymotrypsin (IC50 = 24 M) (figure 5c) [37]. It strongly 

inhibits the growth of several cell lines in vitro (IC50 = 0.01-0.1 M) [38] and induces 

apoptosis in human prostate cancer PC-3 cells [39].  

Fellutamide B is a natural product isolated from Penicillium fellutanum that is a potent 

stimulator of the release of nerve growth factor from fibroblasts and glial-derived cells. It is 

also a potent inhibitor of the human 20S proteasome CT-L activity (IC50 = 0.009 M) and a 

less potent of T-L (IC50 = 2 M) and PA (IC50 = 1 M) activities (figure 5c) [40]. The X-ray 

structure of fellutamide in complex with yeast proteasome has revealed new aspects of 

binding to active sites [40]. Fellutamide B and other proteasome inhibitors increase the 

transcription of the nerve growth factor gene, which may lead to a new strategy for 

developing neurotrophic agents [40]. 

The N-(2-diethylaminoethyl)benzamide group has been linked to peptide aldehydes so as to 

selectively deliver the proteasome inhibitor to malignant melanoma cells (figure 5d) [41,42]. 

Compound 3 (R1 = pyrrolidino-N=N) inhibits the growth of several melanoma cells (IC50 = 

0.02-0.2 M) (figure 5c). Studies using radiolabelled 3 (R1 = 125I) and mice carrying 

melanoma have shown that 3 retains some selectivity toward malignant tissues in vivo [42]. 

A series of peptidyl-aldehydes was screened in order to identify those with relative specificity 

for the immunoproteasome [43]. The most potent immunoproteasome-specific inhibitor, IPSI-

001 (figure 5c), preferentially targeted the β1i subunit of the immunoproteasome in vitro and 

in cellulo. This agent induced accumulation of ubiquitin-protein conjugates, proapoptotic 

proteins, and activated caspase-mediated apoptosis. IPSI-001 potently inhibited proliferation 

in myeloma patient samples and other hematologic malignancies. Importantly, IPSI-001 was 

able to overcome conventional and novel drug resistance, including resistance to bortezomib 

[43]. 
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Fig. (5). Structures of some peptide aldehydes (a). Their binding to the catalytic 

threonine leading to the reversible adduct 1 identified from the crystal structure of 

proteasome/peptide aldehydes complexes [4,40] (b). Structures of recently discovered 

peptide aldehydes: fellutamide B, compounds 2, 3 and IPSI-001 (c). 

 Peptide boronates 

The U.S. FDA approved the first proteasome inhibitor bortezomib [34] (PS-341 or Velcade® 

of Millenium Pharmaceuticals, Cambridge, MA) (figure 6) for treating of multiple myeloma 

in 2003 and mantle cell lymphoma in 2006 [44-46]. Since then, peptide boronates have 

become one of the most popular and best known family of proteasome inhibitors. The many 

studies and developments in this area, especially with bortezomib, have been well reviewed 

[4,19,47]. We will only summarize the main results and focus on the most recent advances. 

Boronic acid derivatives are more active and selective than their structurally analogous 

aldehydes, and have no effect on cysteine proteases [4,19]. The CT-L activity is preferentially 

inhibited by low nanomolar concentrations [4,19]. X-ray diffraction studies have shown that 

the inhibitor boron atom reacts covalently with the active site Thr1-O to form a quasi-

irreversible tetrahedral boronate adduct 4 (figure 6) [4]. Bortezomib is currently being 

evaluated in several clinical trials for its action on several types of cancer, either alone or 

combined with conventional chemotherapeutics [45,48-53]. Bortezomib treatment often has 

severe side effects, including nausea, diarrhea, peripheral neuropathy [52,54,55]. Its use is 

also restricted by the fact that it must be given intravenously. Cephalon, Inc. company 

recently developed a new orally active, potent, and selective boronate proteasome inhibitor, 

CEP-18770 (figure 6) to overcome these drawbacks [56,57]. They first modified the P2 

residue of a previously reported boronic ester derivative 5 (figure 6) by replacing the 
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nitroarginine moiety of 5 with threonine [56]. Eleven molecules possessing different P3 

residues (alkyl, naphthyl, quinolyl, biaryl moieties) were then synthesized and the proteasome 

inhibitory capacity was evaluated. All the compounds inhibited the CT-L activity of the 

human erythrocyte 20S proteasome with IC50 values from 0.8 to 42 nM, and most of them 

were more potent in vitro than bortezomib [56]. CEP-18770 was found to be the best in terms 

of several biological and pharmacological properties. It can enter cells and has very good 

enzymatic (IC50 = 3.8 nM), cellular (EC50 = 13.5 nM, human leukemia cell line Molt-4) and 

antiproliferative (IC50 = 13.7 nM, A2780 ovarian carcinoma cell line) activities [56]. Its 

selectivity for proteasome is very good. Its oral bioavailability (39% in mice) is better than 

that of bortezomib (11%) [56]. Like bortezomib, it has a favorable tumor selectivity profile 

and so is a good candidate for treating multiple myeloma and other hematologic malignancies 

[57]. This compound is currently in clinical development (phase I) as an anticancer agent 

(solid tumors, non Hodgkin lymphoma). 

Several less extensive SAR studies have also been reported, leading to the synthesis of other 

new boronic acid compounds that inhibit purified 20S proteasome (figure 6). They include the 

boronic chalcone derivative [58] AM 114 (IC50 = 1 M for CT-L activity), the boron peptide 6 

analogue of belactosin C [59] (IC50 = 0.28 M, 8.54 M and > 10 M for CT-L, PA and T-L 

activities, respectively), the lactam boronic acid based inhibitor [60] 7 (IC50 = 8 nM for CT-L 

activity) and the derivative of tyropeptin 8 (IC50 = 6.3 nM, 5.6 M and > 40 M for CT-L, T-

L and PA activities, respectively) [61]. 
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Fig. (6). Structures of bortezomib and its adduct 4 with proteasome. Structures of some 

recently synthesized boronic acid derivatives: CEP-18770, AM 114, compounds 5-8. 

 Epoxyketones 

There was a major development ten years ago when microbial natural products epoxomicin 

[62] and eponemycin [63] (figure 7), which were isolated because of their in vivo antitumor 

activity, were shown to be potent irreversible and most specific proteasome inhibitor [20,64-

67]. The crystal structure of the yeast proteasome in complex with epoxomicin revealed its 

unique mechanism of action due to its two adjacent electrophilic atoms [4,19,68]. Both Thr1 

hydroxyl and amino groups react with the epoxyketone moiety to form a very stable six-

membered morpholino adduct 9 (figure 7). The peptide moiety classically binds in the S 

substrate binding pockets of the proteasome active sites. Several other natural epoxyketone 

derivatives [69,70], isolated from microbial metabolites, have been identified as proteasome 

inhibitors. Many medicinal chemistry efforts have focused on developing novel more potent 

epoxomicin analogues with improved in vivo activity. Optimization of the residues P2-P4 by 

screening aliphatic or aromatic amino acids resulted in the selective inhibitor of proteasome 

CT-L activity, YU 101 (figure 7), which has excellent antiproliferative and anti-inflammatory 

properties [71]. The same optimization strategy was used to develop a series of PA selective 

peptide epoxyketone inhibitors including the more efficient molecule YU 102 (figure 7) [72]. 

The success of bortezomib obviously stimulated the development of competitive products by 

other companies and one of the major objectives was to overcome side-effects and resistance 

to this peptidyl boronic acid. One second-generation proteasome inhibitor is carfilzomib 

(PR-171) (figure 7), a synthetic tetrapeptide epoxyketone related to epoxomicin that was 

developed by Proteolix, Inc. (South San Francisco, CA, USA) using a medicinal chemistry 

approach. Carfilzomib is currently being evaluated in phase I and phase II clinical trials for 

the treatment of multiple myeloma, non-Hodgkin's lymphoma and solid tumors [73,74]. 

Carfilzomib is an analogue of YU-101 (figure 7) that has the same activity as bortezomib and 

salinosporamide A (NPI-0052), but is more selective for the CT-L active site (IC50 = 6 nM, 

3600 nM, 2400 nM for CT-L, T-L, PA activities of human 20S proteasome). It may be more 

tolerable in vivo because it is completely specific for proteasome and does not inhibit other 

proteases at concentration up to 10 M [73]. The NH2-terminal morpholino moiety on 

carfilzomib also makes it much more soluble in water than YU-101 (figure 7) (>1000-fold), 

and so easier to use in vivo [73]. Carfilzomib efficiently inhibits proteasome in vivo, promotes 

apoptosis in a variety of tumor cell lines and allows treatment to continue despite any 
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resistance to bortezomib [74]. It is well tolerated even with a much more aggressive schedule 

than that used with either bortezomib or salinosporamide A [73]. Proteolix, Inc. have recently 

focused on designing orally available analogues of carfilzomib that do not lose their potency, 

selectivity and antitumor activity, in order to make treatment more flexible and more 

convenient for patients than intravenously administered agents. They have completed a 

systematic SAR optimization and in vivo pharmacodynamic screening [75]. Initial results 

show that tripeptide epoxyketones are better than tetrapeptides derivatives when given orally. 

More than 100 N-cap variants, including a variety of five- or six-membered aromatic or non-

aromatic heterocyclic amides and ureas, have been evaluated and thirty natural and non-

natural amino acids have been tested for P1-P3 modifications [75]. One of the many 

analogues synthesized, PR-047 (figure 7), has been found to be potent and has favorable 

pharmacological properties [75,76]. This optimized tripeptide epoxyketone selectively 

inhibits the CT-L activity of the human proteasome with an IC50 of 36 nM (ELISA-based 

active site binding assay with intact cells). It is completely bioavailable when given orally and 

its antitumor activity is comparable to that of intravenously administered carfilzomib in 

several animal models [75]. Thus PR-047 (figure 7) is a promising molecule that will 

certainly give rise to further developments in the treatment of malignant diseases. 

PR-957 is the first proteasome inhibitor that selectively inhibits the chymotrypsin-like subunit 

of immunoproteasome (figure 7) [77]. This epoxiketone is related to carfilzomib and 

selectively inhibits low-molecular mass polypeptide 7 (LMP7). PR-957 blocks presentation of 

LMP7-specific, MHC-I-restricted antigens in vitro and in vivo. It also blocks the production 

of IL-23 by activated monocytes and interferon- and IL-2 by T cells. It attenuates 

progression of experimental arthritis in mouse. 
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Fig. (7). Structures of some epoxyketones and the morpholino irreversible adduct 9 formed 

between yeast proteasome and epoxomicin.  

 -Lactones and derivatives 

  Lactacystin and derivatives 

Another very important family of covalent proteasome is the -lactam--lactones. There have 

been promising developments in both fundamental research and therapeutic applications of 

these compounds. The first natural non–peptidic proteasome inhibitor identified was (+)-

lactacystin (figure 8a) [78,79]. It was isolated from a strain of Streptomyces and acts as a pro-

drug in vivo, where it spontaneously generates the cell permeable biologically active clasto-

lactacystin--lactone, also known as omuralide (figure 8a), with the concomitant elimination 

of N-acetylcysteine [80,81]. Low nanomolar concentrations of omuralide efficiently inhibit 

proteasome CT-L activity, but do not inhibit various serine and cysteine proteases, except for 

cathepsin A and cytosolic tripeptidyl peptidase II [80,82,83]. Analysis of the crystal structure 

of the yeast proteasome/omuralide complex demonstrated that the prone to nucleophilic 

opening -lactone moiety is crucial for inhibition and reacts only with the catalytic Thr1 of 

subunit 5 to form a stable covalent ester adduct 10 (figure 8b) [4,84]. This mechanism is 

novel in that the resulting hydroxyl group C-6-OH of the adduct 10 is well positioned to block 

the access of nucleophilic water and thus prevents hydrolysis of the inhibitor-Thr1 ester bond 

[4]. The threonine amino group, which is bound by a hydrogen bond in the adduct 10, is also 

partially protonated and so cannot catalyze the deacylation step. The dimethyl group of 

omuralide also plays a significant role in selectivity by allowing non-covalent hydrophobic 

interactions with the S1 pocket of the CT-L active site. There is growing interest in omuralide 
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because it is a low-molecular-weight molecule that is a very potent and selective proteasome 

inhibitor. Its interesting biological properties and original chemical structure have made this 

molecule a challenge for many synthetic chemists. Several strategically important syntheses 

and biological evaluations of omuralide and its analogs have so been reported and reviewed 

[81,85-88]. The SAR requirements are very stringent and most changes to the structure of the 

natural product omuralide led to a dramatic loss of activity (figure 8c). The -lactone ring, the 

non-alkylated lactam moiety, and all stereochemical features are essential. Omuralide is 

nearly optimal for inactivation of 20S proteasome and only replacement of the C-7 methyl 

group by longer aliphatic chains enhanced its inhibitory potency 2 to 3-fold. The analog with 

a C-7 n-propyl substituent, PS-519 (also known as MLN-519, Millenium, Inc.) has been 

evaluated in phase I clinical trials clinical for acute stroke [89]. 
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Fig. (8). Structures of the natural lactacystin and its active form omuralide obtained 

spontaneously in aqueous medium (a). Omuralide inhibits proteasome by forming of a 

stable acyl-enzyme 10, as deduced from X-ray crystallography (b). Summary of SAR 

studies (c). Doted line indicates a hydrogen bond. 

  Salinosporamide and derivatives 

Another very promising natural -lactam--lactone is salinosporamide A [90] (also known as 

NPI-0052 and developed by Nereus Pharmaceuticals, Inc.) (figure 9a). It was recently isolated 

from the marine actinomycete Salinispora tropica and is currently in clinical trials for the 

treatment of multiple myeloma and other cancers [91]. This molecule is given by i.v. injection 

and can be used with patients who have developed resistance to several classical anticancer 

agents since it remains effective on multiple myeloma cells isolated from patients 

refractory/resistant to bortezomib, lenalidomide and/or thalidomide [91]. Salinosporamide A 
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is 35-times more potent than omuralide and irreversibly inhibits all three catalytic functions of 

the rabbit 20S proteasome (IC50 = 2.6, 21 and 430 nM for CT-L, T-L, PA activities, 

respectively) [92]. It is also very selective since it is at least 1000-times less potent against 

other proteases like chymotrypsin, trypsin, cathepsin A and cathepsin B [93]. 

Salinosporamide A (figure 9a) has a fused -lactam--lactone bicyclic ring like omuralide, but 

has a unique substituent pattern including a methyl group at the ring junction, a cyclohexene 

instead of an isopropyl group and more importantly, a chloroethyl group replacing the C-7 

methyl substituent in omuralide [90]. The crystal structure of salinosporamide A in complex 

with the yeast 20S proteasome provided fundamental informations that has led to better 

understanding of how its acts [84,94]. As with omuralide, the catalytic threonine first reacts 

with the -lactone moiety to form an ester adduct, but the chlorine atom subsequently acts as 

a leaving group giving rise to a cyclic ether end product 11 (figure 9b). The full protonation of 

the threonine amino group and the ether position prevent hydrolysis of the ester linkage 

[4,95]. Although the factors responsible for the great potency and irreversibility of 

salinosporamide A remain to be fully elucidated, the chlorine atom elimination seems to be a 

crucial step [94,95]. Nereus, Inc. have also carried out an extensive SAR studies program 

(figure 9c), with biological evaluation of both natural analogs (salinosporamides B [96] and 

D-J [97]) and synthetic or semi-synthetic analogs [92,95,98]. Analogs bearing substituents 

with good leaving potential (Cl, Br, I, OMs, OTs, ODs) irreversibly inhibit rabbit 20S 

proteasome CT-L activity with IC50s of 2.5 to 4.3 nM [92,95]. The fluorosalinosporamide [95] 

analog with weak living potential has intermediate properties and reversibly inhibits 

proteasome CT-L activity with an IC50 of 10 nM, similar to those of congeners having no 

leaving group (IC50s 7.5 to 26 nM) [92,95]. The inhibitory properties can then be fine tuned 

by changing the nature of the leaving group [99]. Other structural modifications such as 

removal [97], oxidation or epimerization of the C-5-OH [92], C-2 epimerization [92], 

extension of the carbon side chain of the C-3 substituent [92], hydrogenation of the 

cyclohexene ring or halohydrin formation [92], lead to significant to dramatic decrease in 

inhibitory potency. In contrast, epoxidation of the cyclohexene ring seems to be quite well 

tolerated since the best corresponding analog was only 2- to 4-fold less potent than 

salinosporamide A [92]. Finally Corey’s group synthesized “antiprotealide” (figure 10) [100], 

a hybrid of salinosporamide A and omuralide. This was also recently identified as natural 

product metabolite of Salinospora tropica [101]. However replacement of the 

salinosporamide A cyclohexene ring by the omuralide-derived isopropyl group results in a 8-

fold less potent inhibitor of rabbit 20S proteasomal CT-L activity [101]. Despite all these 
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structural modifications, the natural product salinosporamide A is cost-efficiently produced by 

fermentation and remains the most therapeutically promising compound of the -lactam--

lactone family [91].  

 

Fig. (9). Structure of the natural salinosporamide A (a). Mechanism of inhibition leading 

to the formation of adduct 11 between salinosporamide A and the proteasome (b). 

Summary of SAR studies (c). 

  Cinnabaramides and derivatives 

This class of inhibitors was recently expanded by the isolation of cinnabaramides A-G [102], 

from a terrestrial strain of Streptomyces. These molecules have the essential features of both 

salinosporamide A and lactacystin. The most potent of them, cinnabaramides A, F and G 

(figure 10) (IC50 = 1, 6 and 0.6 nM for human 20S proteasomal CT-L activity, respectively) 

are about as potent as salinosporamide A and are 43 to 430-fold more potent than lactacystin 

[102]. But why these molecules, which have no leaving group to allow the formation of a 

cyclic ether, are active has not yet been elucidated. Similarly, cinnabaramides have yet to be 

shown to have the same anticancer properties as salinosporamide A.  
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  Belactosin and derivatives 

Belactosins A and C (figure 11) were isolated from Streptomyces sp. UCK14 and have 

interesting antitumor activity. They inhibit the growth of human cancer HeLa S3 cells with 

IC50 values of 51 and 200 M respectively [103,104]. The in vitro capacities of belactosins A 

and C to inhibit the CT-L activity of rabbit 20S proteasome (IC50  0.21 M) is comparable to 

that of lactacystin [104]. The CT-L active site threonine residue is acylated via opening of the 

belactosin -lactone ring [4]. This is analogous to the way omuralide acts. Some structural 

modifications of these natural products such as acetylation of the free amino group or 

esterification of the carboxyl group significantly increase their antitumor activity. The more 

cell permeable benzyl ester derivative KF33955 (figure 11) is a much more potent (100-times) 

inhibitor of the growth of HeLa S3 cells (IC50 = 0.46 M) than is belactosin A. It inhibits 

rabbit 20S proteasome CT-L activity (IC50 = 0.048 M) more efficiently than belactosin A 

and is very selective, since it does not inhibit other proteases like elastase, ICE or cathepsin 

B) [104]. A series of more potent stereo- and regioisomeric analogs of belactosin A(< 2-fold)  

were described during a SAR study using a stereochemical diversity strategy focusing on the 

central cyclopropane amino acid segment [105,106]. One of the synthetic precursors, the 

tripeptide lactone 12 (figure 11), is a highly efficient proteasome inhibitor (IC50 value of 15 

nM for CT-L activity of the human 20S proteasome), which is 20-times more active than 

belactosin A 5-times more active than lactacystin [106]. Finally synthetic homobelactosin C 

(figure 11) [107], with low nanomolar IC50 values against human pancreoma and colon cancer 

cells, has attracted special attention because of the unique way it complexes with the 

proteasome 5 subunit [4,108]. Homobelactosin C, like other lactones, is covalently linked to 

Thr1 via an ester function, but it is the only proteasome inhibitor identified to date that binds 

via its aminocarbonyl side chain to the S’ specificity pockets [4,108].  

 

Fig. (11). Structures of belactosin derivatives and one of their synthetic precursors. 

  Related -lactams 

One of the major drawbacks of -lactones is their poor stability in water. To overcome it, -

lactam derivatives have been designed as proteasome inhibitors. Compound 13 (figure 12), 
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which is related to omuralide, inhibits proteasome more slowly but is more stable under 

physiological conditions [109]. Four highly potent -lactam compounds 14a-d (figure 12) 

have been designed based on molecular modeling studies [110]. These molecules have IC50 

values of 1.4 nM to 20 nM, and the IC50s for three of them are below 5 nM (human 20S 

proteasome CT-L activity). They are also at least 350-times less potent against the TL and PA 

activities [110]. In addition, they have pronounced antiproliferative effect (IC50 = 1200-32 nM 

for human breast carcinoma cells) [110]. Mass spectroscopy showed that they interact 

covalently with the proteasome and the R configuration at C-3 is a key structural requirement, 

since S-epimers are 70- to 2000-times less potent [110].  

 

Fig. (12). Structures of some synthetic -lactam proteasome inhibitors.  

 Polyphenols 

Considerable research has been directed towards identifying new proteasome inhibitors from 

natural sources. Interest has recently focused on natural polyphenols, especially those found 

in green tea, because of their wide spectrum of biological activities, including 

chemopreventive and antitumor effects (figure 13) [111,112]. Their use in the prevention and 

the treatment of cancer is now well documented and phase I-III clinical trials are currently 

under way to explore the anticancer activities of green tea in humans [111,112]. However, it 

was recently reported that green tea polyphenols block the anticancer effects of bortezomib 

[113,114]. 

Dou et al. reported that tea polyphenols containing ester bond-containing potently and 

selectively inhibit the CT-L activities of prokaryotic 20S proteasome (IC50 = 86-194 nM) and 

26S proteasome of living tumor Jurkat cells (1-10 M) at concentrations similar to those 

found in the serum of green tea drinkers [115]. One of the major components of green and 

black tea, (-)-epigallocatechin-3-gallate [(-)-EGCG] (figure 13), has the greatest inhibitory 

activity with good selectivity (no inhibition of other proteases like calpain-I and caspase-3) 

and induces apoptosis at concentrations of 1 to 10 M. It is not very toxic for normal cells. 

Several SAR studies have been performed. Those based on the EGCG skeleton were done to 

design more effective novel anti-cancer agents [115-126]. The ester bond [115], all rings 
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[116], the number of free hydroxyl groups in the B- or D-rings [117-123] are essential 

features of a potent inhibitor, but the oxygen in C ring can be replaced with the CH2 isostere 

[116]. Replacing the ester bond-oxygen of (-)-EGCG with nitrogen (EGCG-amide) decreases 

inhibitory potency 3-fold [124]. Synthetic enantiomeric analogues are as potent and selective 

as the respective natural catechin gallate esters for inhibiting proteasome CT-L activity in 

vitro and in vivo, probably due to the partial symmetry of the A-C rings [119,124,126]. In 

silico docking and determination of nucleophilic susceptibility led the authors to propose that 

the irreversible and time-dependent inhibition of proteasomal CT-L activity by ester bond-

containing flavonoids, especially (-)-EGCG, is due to acylation of the active site Thr1 and that 

the aromatic rings bind to the hydrophobic S1 pocket, thus increasing the stability of the 

polyphenols/proteasome complex [124], [127]. However, introducing a hydrophobic benzyl 

group into the A-ring of EGCG analogs does not significantly affect inhibitory potency [117]. 

The instability and poor bioavailability of (-)-EGCG in physiological conditions compromise 

its use as anti-cancer agent, but the peracetylated analogue (Pro-E) (figure 13) is a potential 

potent prodrug as it is more stable, readily bioavailable and inhibits the growth of several 

tumor cell lines up to 2 fold than natural (-)-EGCG [118,122,128]. Analogues bearing a para-

amino group in the D-ring in place of the hydroxyl group are also more effective inhibitors of 

proteasome activity and induce apoptosis [125]. Some other natural flavonoids have been 

examined for their ability to inhibit proteasome and induce apoptosis in human tumor cells. 

The four most potent compounds are apigenin, quercetin, kaempferol and myricetin (figure 

13); their IC50 values against the prokaryotic 20S proteasome CT-L activity are 1.8, 3.5, 10.5 

and 10 M [129]. Genistein (figure 13) inhibits rabbit 20S proteasome CT-L activity with an 

IC50 of 26 M [130]. However no extended SAR studies on these tricyclic molecules have yet 

been performed. 
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Terpenoids 

There has been growing interest the past few years in the potential of chemopreventive or 

antitumor natural terpenoids as original proteasome inhibitors. Seven natural ginsenosides 

isolated from Panax ginseng used in traditional herbal medicine have been screened for their 

ability to inhibit pig 26S proteasome (figure 14) [131]. All these steroid saponins selectively 

inhibit CT-L activity, but they are not very potent: the IC50 of the best compound, ginsenoside 

Rd (figure 14), is 107.5 M. Combining ginsenosides does not increase their inhibitory 

potency. Similarly, 10 naturally occurring agosterols, isolated from a marine sponge, were 

tested. Agosterol C (figure 14) is the most efficient and inhibits CT-L activity of partially 

purified rat liver proteasome with an IC50 of 19 M [132]. Celastrol [133] and Withaferin A 

[134] (figure 14), two natural triterpenes used in traditional medicine, have been found to 

inhibit rabbit 20S proteasome CT-L activity (IC50 = 2.5 and 4.5 M, respectively) and the 26S 

proteasome of human prostate cancer cellular (IC50  2.5 and 20 M, respectively). They also 

inhibit tumor growth in vivo in xenografts (54 to 93%, daily treatments of 1-3 mg/kg and 4-8 

mg/kg, respectively) [133], [134]. Computer modelling and SAR studies have shown that the 

conjugated ketone moiety (C2 and C6 in Celasterol and C1 and C24 in Withaferin A) is critical 

and could react with Thr1-O suggesting that inhibition is covalent [133,134]. Two other 

natural pentacyclic triterpenes, betulinic acid [135] (activates CT-L activity with an EC50 of 

5.5 M) and glycyrrhetinic acid [136] (selectively inhibits CT-L activity with an IC50 of 22.3 

M), were identified during a search for proteasome modulators (Fig. 14). The hydroxyl 

group and the carboxylic acid moiety were further chemically modified. These modifications 

of the betulinic acid activator resulted in seven analogues that preferentially inhibit CT-L 

activity at medium/low micromolar concentrations [135]. The best compound 15 (figure 14) 

inhibits the CT-L (IC50 = 6.7 M) and T-L (IC50 = 20.1 M) activities of human 20S 

proteasome but not the PA activity [135]. In the same way, modifications of the glycyrrhetinic 

acid hydroxyl group gave proteasome inhibitors that are 3- to 100-times more potent [136]. 

Twenty one analogues were synthesized. Five compounds 16a-e (figure 14), which are 

acylated with aromatic or long chain aliphatic carboxylic diacid, inhibit CT-L activity of 

human 20S proteasome at a submicromolar level (IC50 = 0.22-0.87 M), but are less potent 

inhibitors of  T-L and PA activities [136]. The most potent compound 16e is also active 

against MT4 living cells [136]. 

Flavonoids and terpenoids extracted from abundant natural sources have structural features 

different from those of other known proteasome inhibitors. Chemical modifications could lead 



 21

to drugs for treating diseases such as cancers and inflammatory diseases. However no 

crystallographic structures of these molecules in complex with proteasome are yet available 

and their inhibitory mechanisms and modes of action remain to be clarified.  
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Fig. (14). Examples of natural and synthetic terpenoids. 

 Peptide vinyl derivatives 

Three classes of vinyl derivatives substituted by electron withdrawing groups (sulfone, ester 

or amide) are proteasome inhibitors that behave as Michael acceptors of the catalytic Thr1 
hydroxyl group. 

  Peptide vinyl sulfones 

Synthetic peptide vinyl sulfones 17-18 were originally designed to target cysteine proteases 

[137] but were found to be potent irreversible proteasome inhibitors twelve years ago (figure 

15a) [138,139]. The cell permeable reference compound at that time was 17a (R1 = Me, R2 = 

R3 = R4 = iBu, R5 = Z), also called Z-Leu-Leu-Leu-VS (VS for vinyl sulfone). More than 800 

tripeptide or tetrapeptide compounds 17 or 18 have been prepared, mainly by combinatorial 

approaches in order to optimize inhibition of one, two or three activities of 20S proteasome by 

varying the nature of R1 - R7 substituents [138-144]. The selectivity for inhibiting proteasome 

rather than cysteine proteases like the cathepsins was also optimized to reach at least 4 orders 

of magnitude. For instance, compound 18a (R1 = Me, R2 = iBu, R3 = Me, R4= (CH2)2CO2tBu, 

R6 = CHEtMe, R7 = Z) is a potent inhibitor of human 20S proteasome CT-L activity (IC50 = 
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2.5 nM), and is a poor inhibitor of cathepsin B (IC50 = 29 mM) and cathepsin S (36 M) 

[143]. Compound 18b (R1 = Me, R2 = CH2CONH2, R
3 = iBu, R4 = (CH2)3NHC(NH)NH2, R

6 

= side chain of proline, R7 = Ac) irreversibly inhibits the T-L activity of the 20S proteasome 

while compound 18c (R1 = Me, R2 = CH2CONH2, R
3 = iBu, R4 = iBu, R6 = CH2C6H4OH, R7 

= Ac) blocks all proteasome active sites [140]. The crystal structures of compounds 18b and 

18c in complex with yeast proteasome show that the covalent adduct 19 with proteasome N-

terminal threonines is formed. The inhibitor part of the adduct has similar conformations 

within the three S1 pockets (figure 15b) [8]. Their selectivity is due to favourable interactions 

of the R4 residue with the S3 pockets of the three types of active sites [8]. A number of 

compounds 18 compounds inhibit the growth of the human prostate cancer cell line PC3 at 

submicromolar concentrations [143]. The main advantage of using peptide vinyl sulfones is 

that radioactive [138,141], affinity [138,141,145,146] or fluorescent [147-149] probes can be 

attached to their N-terminus (figure 15c). Figure 15c shows representative labelled vinyl 

sulfone peptides 20, 21 and 22. Their efficient covalent bonding allows the labelling and 

visualization of the targeted 1, 2 or 5 proteasome subunits. Their many applications 

include clinical profiling of proteasome activity, analysis of the subunit specificity of 

inhibitors, and analysis of proteasome function and dynamics in living cells [29,148,150].  

 

Fig. (15). Structures of peptide vinyl sulfones 17-18 (a). Mechanism of their binding to 

the catalytic threonine and formula of the irreversible adduct 19 identified by X-Ray 

crystallography (b). Proteasome inhibitors 20-22 used to label proteasome active sites 

and derivative 23 used for Staudinger ligation (c).  
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Compound 20 is a radio label for the 5 subunit [138]. The highly fluorescent compound 21 

reacts with the proteasome terminal threonine. It can be used to rapidly and sensitively detect 

active proteasome subunits by in-gel detection and fluorescent microscopy in living cells 

[147]. Compound 22 binds irreversibly to terminal threonine of PA active site. Staudinger 

ligation with 23 followed by SDS-PAGE and Western blotting enables direct visualization of 

proteasome 1 and 1i subunit [145,146].  

  Peptide vinyl esters 

The vinyl ester moiety, which is an excellent Michael acceptor has been introduced at the C-

terminal end of peptides. About 70 compounds 24 with various structures at R1, R2 and R3 

have been prepared and assayed for their capacity to inhibit human (lymphoblastoid cell lines) 

20S proteasome (figure 16) [151-154]. These compounds are potent, selective inhibitors of 

the T-L activity (IC50 = 0.02-0.04 M for 24a-d): CT-L activity is more weakly inhibited 

(IC50 = 2-10 M for 24a-d) and PA activity not inhibited. No structural data are yet available 

on the way compounds 24 bind to proteasome. Enzymatic assays carried out with 24a and 

24b indicate that inhibition is irreversible, suggesting that the conjugate double bond is 

susceptible to Michael addition of the catalytic Thr1-O in T-L site [151]. They are strickingly 

different from the analogous Z-Leu-Leu-Leu-VS: Z-Leu-Leu-Leu-VS selectively inhibits CT-

L activity (under the same conditions as for 24a, IC50 = 0.061 M for CT-L activity and IC50 

= 2.43 M for T-L activity) [153]. Compounds 24c-d can enter cell and inhibit the T-L 

activity of proteasome in cells (IC50 = 0.05-0.2 M).[154] These vinyl ester derivatives 24 are 

quite stable in culture medium (t1/2 > 200 min) and do not significantly inhibit other proteases 

(IC50 > 10 M) [152]. Compounds 24a-b do not affect cell proliferation and modulate the 

generation and presentation of immunogenic peptides presented by MHC class I molecules 

[151]. 

Constrained pseudopeptide vinyl esters at the C-terminal end 25 and 26 have also been 

prepared (figure 16) [155]. The dehydrophenylalanine derivative 25a inhibits TL and CT-L 

activities of human 20S proteasome to the same degree (IC50sof 1.3 and 0.9 M), while 25b 

selectively inhibits the T-L activity (IC50 = 0.08 M). The tetrahydroisoquinoline derivatives 

26 inhibit the PA activity of human 20S proteasome (IC50 = 0.9 M for R1 = R2 = R3 = iBu). 

Molecular modelling of cyclic analogues of vinyl ester derivatives that can adopt a -sheet 

secondary structure led to the synthesis and evaluation of vinyl ester-based cyclopeptides 27 

(figure 16) [156,157]. Compounds 27 potently and selectively inhibit the CT-L activity of the 
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human 20S proteasome (IC50 = 0.04 M for 27a) [156] or PA activity (IC50 = 0.07 M for 

27b), depending on their structure [157]. Simulation of the interaction of derivative 27a with 

the CT-L active site of the yeast 20S proteasome suggests that the vinyl ester reacts with the 

proteasome catalytic threonine [156]. Compounds 27 are also resistant to proteolysis and can 

permeate cell membranes [156,157]. 

A total of 30 peptidyl vinyl esters 28 bearing different R1 substitutents were designed using 

computer-aided drug design protocols and prepared (figure 16) [158]. The best of them 

weakly inhibits the proteasome CT-L activity (IC50 = 48 M, R1 = (3S)-2-oxo-3-

pyrrolidinylmethyl) and has weak antiproliferative activity. 

A vinyl ester tripeptide has been recently incorporated at the C-end of a gene delivery peptide 

[159]. The resulting peptide forms DNA condensates that enhance gene expression 100-fold 

compared to a control peptide lacking the inhibitor. It is also not toxic to cells in culture. 

Intrinsic proteasome inhibition may also be used to boost the efficiency of peptide-mediated 

non viral gene delivery. 

 

Fig. (16). Structures of peptide vinyl esters derivatives 24-28. 

  Syrbactins 

The class of syrbactins refers to potent natural proteasome inhibitors that share biosynthetic 

pathways by related gene clusters. These 12-membered macrocyclic lactams contain an ,-

unsaturated carboxamide function and are linked to a pseudopeptidic side chain (figure 17) 

[160,161]. Syringolins [162,163] and glidobactins [164,165] are natural products that belong 

to this class. Syringolin A is produced by strains of the plant pathogen Pseudomonas syringae 

pv. Syringae. It has been recently identified as a virulent factor that facilitates infection by 

inhibiting the plant cell proteasome (figure 17) [160]. In vitro biochemical assays show that it 

irreversibly inhibited all three catalytic activities of human erythrocyte 20S proteasome. It 
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inhibits CT-L (K'i = 0.85 M) and T-L (K'i = 6.7 M) activities best. Crystallographic 

analysis of syringolin A in complex with yeast proteasome indicates that syringolin A binds 

covalently to the catalytic threonine of the three active sites to form the adduct 29, resulting in 

a Michael addition of the Thr1 hydroxyl group to the ,-unsaturated carboxamide function 

activated by Gly 47 (figure 17) [160]. Syringolin A also inhibits proteasome function in vivo 

(in Arabidopsis seedlings and human cultured cells) [160] and has antiproliferative and pro-

apoptotic effects on ovarian and neuroblastoma cancer cells [166]. Syringolin A methyl ester 

has been prepared; it inhibits human 20S proteasome in a way similar to syringolin A, as 

might be expected from their X-ray structures [161]. Syringolin B inhibits human 20S 

proteasome, but it is at least 10-times less potent than syringolin A (figure 17).  

Glidobactins A-F have been isolated from several bacteria. They have a broad spectrum of 

antifungal activities. They are cytotoxic to tumor cell lines and prolong the life span of mice 

inoculated with P388 leukemia cells [164,167]. Glidobactin A (figure 17) irreversibly inhibits 

the CT-L and T-L activities of the human 20S proteasome, with respective K'i values of 0.05 

M and 2 M but does not inhibit PA activity at 20 M [160]. Studies on the crystal structure 

of glidobactin A in complex with the yeast proteasome reveal that it inactivates the CT-L and 

T-L activities in the same way as syringolin A [160]. Analysis of the binding modes of 

syringolin A, syringolin B and glidobactin A led to the design and synthesis of analogue 30, 

which contains the more constrained and favorable di-unsaturated macrocycle as well as a 

lipophilic side chain (figure 17). Analogue 30 is a very potent proteasome inhibitor, with K'i 

values of 8 nM for CT-L, 80 nM for T-L and 900 nM for PA activities [161]. 
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Fig. (17). Structures of syrbactins and their synthetic derivative 30. Mechanism of action 

of syrbactins with the catalytic threonine and formula of the irreversible adduct 29 

identified by X-Ray crystallography. Doted lines indicate hydrogen bond.  

 Other peptides or pseudopeptides bearing an electrophilic warhead 

Other electrophilic warheads have been introduced at the C-terminus of peptides or 

pseudopeptides in order to target the nucleophilic Thr1-O. Early studies using -keto 

aldehyde [168] or -keto amide functions [169] have been reviewed previously [23,25]. The 

carboxyl function at the C-terminus end of tripeptides based on the Leu-Asp-Leu or Leu-Leu-

Leu sequences has been replaced by hydroxymetyl, carboxaldehyde, dichlorovinyl or -

ketoamide substituents [170]. The 22 prepared compounds include selective inhibitors of one 

or two proteasomal activities. The most efficient derivatives 31 (figure 18) inhibit the human 

20S proteasome CT-L activity (IC50 = 0.07 to 1 M), are cell permeable and induce 

accumulation of polyubiquitinated proteins and apoptosis of HeLa cells [170].  

Electrophilic bromomethylene or boronic acid functional groups have been inserted into 

peptidomimetics 32 in order to obtain better physiological stability (figure 18) [171]. 

Although these compounds inhibit the growth of cancer cells (IC50 = 0.6-80 M), they are not 

good inhibitors of 20S proteasome CT-L activity (IC50 > 50 M). 

Compounds 33 [143] and 34 [172] (figure 18) contain the -keto heterocycle functionality, 

which is often used in used in active-site-directed inhibitors of diverse serine and cysteine 

proteases [173]. The -keto 1,3,4-oxadiazole derivative 33 is a reversible, very potent, 

selective inhibitor of human 20S proteasome CT-L activity (Ki = 0,0007 M, about 1000-fold 

lower than that for cathepsin inhibition). It inhibits the growth of the human prostate cancer 

PC3 cells at submicromolar concentrations [143]. The -keto furane derivative 34 is far less 

active (IC50 = 7.8 M) against CT-L activity of 20S proteasome [172].  

Semicarbazones 35 (figure 18), which are stable derivatives of aldehydes that contain the 

electrophilic C=N-N-CO-N motif, are selective, efficient inhibitors of 20S proteasome CT-L 

activity (IC50 = 0.1-1.6 M). They are more potent ( 20-fold) than the corresponding 

aldehydes [174]. Nanomolar concentrations of compound 35 (R1 = CH2Ph, R2 = R3 = 

CH2indole, R4 = OCH2Ph) block the activation of NFB and induce apoptosis in myeloma 

cell lines and purified primary patient cells [175]. Preliminary in vivo studies provided the 

rationale for a preclinical evaluation of 35 against myeloma [175]. 
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Fig (18). Structures of peptides or pseudopeptides bearing an electrophilic warhead. 

NON-COVALENT INHIBITORS 

Non-covalent inhibitors have been investigated less extensively, but they could be of 

therapeutic interest as they probably have fewer side-effects. They do not have a reactive 

group, which is often associated with instability, poor specificity, and excessive reactivity 

[176]. They interact with the proteasome active sites via weak bonds (hydrogen, hydrophobic, 

electrostatic and/or van der Waals). 

 Ritonavir, aminobenzylstatin derivatives and analogues 

Clinical observations of HIV-1-infected patients treated by the antiprotease Ritonavir suggest 

that this compound inhibits the presentation of epitopes by class I MHC (figure 19) [177]. 

This may due to Ritonavir inhibiting the proteasome CT-L activity by. This transition-state 

analog of HIV-1 protease contains a benzylstatin moiety (-CRi-CH(CH2-C6H5)-CH2-

CH(OH)-CRi+1) [178]. Ritonavir has cytostatic and cytotoxic effects on glioma cells, but 

they can develop resistance in vitro [179]. In contrast, it does not control tumor growth in 

vivo, probably because the therapeutic dose was not reached in the tumor [179]. 

High-throuput screening by Novartis Pharma AG showed that the synthetic 2-

aminobenzylstatin derivative 36 that was originally designed to target the HIV-1 protease 

inhibits proteasome (figure 19) [21,25,176,180-182]. This lead compound is a non-covalent 

proteasome inhibitor [180]. It inhibits the CT-L activity of the human 20S proteasome (IC50 = 

0.9 M) much better than the T-L and PA activities (IC50 > 20 M). It has been optimized 

using modelling of the interactions of compounds 37 with the proteasome CT-L active site 

based on X-ray structures of the HIV protease / derivative 36 and the yeast proteasome / 

ALLN complexes [181]. Its postulated mode of binding is illustrated in figure 19. A library of 

30 compounds 37 was prepared using modular synthetic chemistry (figure 19) [180,182]. The 

inhibitory activity of the initial hit 36 was improved 100-fold: compound 37a (R1 = 1-

CH2naphtyl, R2 = tBu, R3 = 3,4,5-triOMe, R4 = OH, R5 = OMe) potently inhibits CT-L 
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activity of human 20S proteasome (IC50 = 7 nM), and also proliferation of MDA-MB-435 

cells (IC50 = 1.5 M) [182]. The SAR generated during the optimization of 37a were 

exploited to design the scaffold of compound 38 so as to improve cellular activity (figure 19) 

[176]. The main hypothesis was that the two amide bonds of the tert-leucine residue and the 

statin 4-benzyl group did not interact with the enzyme. In compound 38, the statin moiety of 

molecule 37a is replaced by a 3,4,5-trimethoxyphenylalanine residue which interacts with the 

S3 pocket; the N-terminal part is mimicked by a single phenoxy-substituted benzylic group 

that interacts with the accessory subsites AS1 and AS2. Compound 38 is a potent non-

covalent inhibitor of human 20S proteasome CT-L activity (IC50 = 15 nM); it is also more 

active than 37a in cellular settings, since its efficiently blocks proteasome activity in cultured 

cells (IC50 = 20 nM) and the proliferation of MDA-MB-435 cells (IC50 = 60 nM). 

 

Fig. (19). Structures of Ritonavir and aminobenzylstatin derivatives 36-38. The model of 

interactions with S1 and S3 CT-L subsites and accessory subsites AS1 and AS2 used to guide 

the medicinal chemistry optimization is shown. 

 TMC-95 and derivatives 

Researchers at Tanabe Seiyaku Co Ltd discovered compounds TMC-95A, B, C, and D during 

the screening of a fermentation broth of Apiospora montagnei Sacc. TC 1093 (isolated from a 

soil sample) for proteasome inhibitors (figure 20) [183,184]. These 4 natural diastereomers 

have a unique cyclic tripeptidic structure containing L-tyrosine, L-asparagine, highly oxidized 

L-tryptophane, a biaryl linkage between the aromatic side chains and unusual N- and C-

terminal groups. TMC-95A is the most abundant stereoisomer that is also the most active 

[184]. It potently inhibits the CT-L (IC50 = 5.4 nM), T-L (IC50 =200 nM) and PA (IC50 = 60 

nM) activities of human 20S proteasome [184]. TMC-95B inhibits the human proteasome to a 

similar extent, indicating that the stereogenic center of the N-terminal side chain is not 
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important. However, the -carbon stereochemistry of the oxidized Trp residue is essential, 

since TMC95 C and D are 50-times less active than TMC-95A [184]. TMC-95A inhibits the 

CT-L activity of 20S proteasomes from other species (bovine [185] and yeast [186]) with 

practically identical potency. However, TMC-95A is a more potent inhibitor of the T-L 

activity in yeast proteasome than of the T-L activity of human or bovine proteasomes; it 

inhibits the PA activies in the reverse order. 

The crystal structure of TMC-95A in complex with yeast 20S proteasome shows that TMC-

95A is linked to the three proteolytically active -subunits through a tight network of 

hydrogen bonds without any chemical modification of the N-terminal threonines (figure 20) 

[4,187]. These non covalent interactions lead to the formation of an antiparallel  sheet 

between TMC-95A and the amino acid residues of the S1 and S3 binding pockets. An 

additional hydrogen bond involves the oxygen of the oxindole group. The C-terminal (Z)-

propenyl moiety acts as the P1 and the asparagine as the P3 residues. The crystal structure 

adequately explains relative activities of TMC-95A, B, C and D: the tyrosine residue interacts 

weakly with the hydrophobic S4 subsite, the N-terminal 3-methyl-2-oxopentanoyl group does 

not seem to contribute to the stabilisation of the complex, and the R1 stereochemistry of the 

hydroxyl group in TMC-95C and D would cause a steric clash with residue 21. 

The selectivity of TMC-95A inhibition is very good: 30 M TMC-95A does not inhibit m-

calpain, cathepsin L and trypsin [184]. TMC-95A is also cytotoxic against HCT-116 human 

colon carcinoma cells (IC50 = 4.4 M) and HL-60 human promyelocytic leukemia cells (IC50 

= 9.8 M) [184]. Lastly, TMC-95A (1 to 20 M) induces neurite outgrowth from PC12 cells 

[188]. 

Synthetic organic chemists have shown considerable interest in TMC-95A because of its 

unusual chemical structure, its potency and its unique inhibition mechanism [189]. Several 

total syntheses have been achieved, but they have not provided sufficient material for broad 

biological evaluation [190-192]. Simpler and more accessible TMC-95 macrocyclic analogues 

39-42 have been synthesized in order to explore their SAR (figure 20) [185,186,193-199]. 

X-ray structural analysis of TMC-95A in complex with the yeast proteasome led to the design 

of the 39 molecules, which contain the important TMC-95A structural elements implicated in 

binding [186,193,194]. Compound 39a (R6 = CH2CONH2, R
5 = NHn-propyl) inhibits all three 

activities of yeast proteasome. Compound 39a has almost capacity to inhibit T-L activity as 

TMC-95A, but is significantly less potent against the CT-L activity (100-fold lower), 

suggesting that the propyl chain does not interact with the subsite S1 as well as the Z-
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propenamide chain [186,193]. Compounds 39b (R6 = CH2CHMe2, R
5 = Nle-(COCH2)-Gly-

Ala-Ala-NH2) [194] and 39c (R6 = CH2CHMe2, R5 = NleNH2) [186] were designed to 

increase selectivity for the CT-L active site of the yeast proteasome, but they were found to be 

slightly less inhibitory than 39a. Both were weaker inhibitors of the yeast proteasome T-L and 

PA activities than 39a. The C-terminal amide in 39c was also hydrolyzed. Analysis of crystal 

structures of derivatives 39a or 39c in complex with the yeast 20S proteasome showed non-

covalent binding and that the rigidity of the macrocyclic core, although favouring the -type 

backbone conformation, severely limits the choice of groups acting as P1 residues [4,186]. 

This information led to the design of molecules 40, which have a conformationally less 

restricted biaryl ether macrocycle (figure 20) [4,27,195,196]. Five compounds 40a-e were 

studied. Kinetic measurements with compound 40a showed that it inhibits yeast proteasome 

CT-L (Ki = 5.5 M) and T-L (Ki = 74 M) activities to a similar degree (two fold lower Ki) as 

39a. Compound 40b is a weak inhibitor of only CT-L activity (Ki = 65 M) [195]. The X-ray 

structures of yeast proteasome in complex with derivatives 40a or 40c indicate a non-covalent 

binding, but only to the T-L active site. Compounds 40d and 40e with arginine residues were 

prepared because the S1 pocket of T-L active site accommodates basic residues particularly 

well. The crystallographic data for derivatives 40d or 40e in complex with yeast proteasome 

show that a covalent acyl-ester bond is formed with the active site Thr1-O and the C-terminal 

arginine carbonyl group, corresponding to the first step in catalytic amide hydrolysis. Mass 

spectrometry analysis of the medium after incubation of yeast proteasome with compound 

40d showed that the C-terminal amide was hydrolysed within 2 hours [196]. Groll and 

Borissenko have analyzed the limitations of applying crystallographic data to the design of 

proteasome inhibitors [4]. 

Ten simpler, more accessible analogues 41 were designed and prepared by modifying the 

protocol used in the total synthesis of TMC-95A (figure 20) [185,197]. Replacing the 

Z-propenamide group that interacts with the subsite S1 by the allylamide group resulted in 

derivative 41a which is closely related to TMC-95A or B but is considerably more accessible. 

It is fully able to inhibit bovine 20S proteasome and is only slightly less potent than the 

natural products (~ 3-fold lower Ki for CT-L, ~ 10-fold lower Ki for T-L, ~ 5-fold lower Ki 

for PA). The propyl derivative 41b is less potent (10 to 20-fold lower Ki). The source of 

stereogenicity in N-terminal ketoamide (R7= (R) or (S)-COCHMeEt) could be eliminated, 

since 41c and 41d have almost the same activities as the natural products. The lack of the 
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amide group in R5 (R5 = CH2OH) results in analogues that are 1000-fold less active than the 

natural products. 

Molecules 42 containing the macrocyclic skeleton of TMC-95 were prepared soon after the 

first total syntheses of TMC-95A. In these, the complex oxindole was replaced by a simple 

indole (R6 = Me, iBu, CH2CONH2) (figure 20) [198]. They proved to be poor inhibitors of the 

rabbit 20S proteasome [199]. Then linear analogues 43 and 44 based on the tripeptide 

sequence Y-N-W of TMC-95 were prepared in order to determine how the catalytic activities 

of the 20S proteasome are influenced by elements derived from TMC-95 (figure 20). 

Compounds 43 containing the phenyl indole link but not the peptide sequence did not inhibit 

rabbit 20S proteasome. However, the linear peptide compounds 44, which are readily 

prepared, can be optimized to inhibit one, two or all three proteasome activities, mostly by 

varying the R6 side chain and C-terminal R5 group [199]. For instance, compound 44a only 

inhibited CT-L activity (Ki = 0.48 M), while compounds 44b and 44c inhibit both CT-L and 

T-L activities, and compound 44d inhibits CT-L and PA activities. The CT-L, PA and T-L 

activities are all inhibited by compounds 44e or 44f and the inhibition constants are 

submicromolar, despite the absence of the entropically favourable constrained macrocycle. 

These readily synthesized linear analogues are reasonably stable in culture medium [199]. The 

most potent in vitro inhibitors were tested on cancer cells and their cytotoxic effect increased 

in the order 44c < 44b < 44e < 44d. Compound 44d has an IC50 of 15 M on HeLa cells, 

close to that of TMC-95A for human tumor cell lines [199]. 
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Fig. (20). Structures of the natural compounds TMC-95A-D and their synthetic cyclic 

(39-42) and linear (43,44) derivatives. The hydrogen bond network of TMC-95A in 

complex with the T-L active site of the yeast proteasome is shown as broken lines (schematic 

representation from X-ray structure). The interactions with the proteasome S1 and S3 subsites 

are shown. 

 

 Peptides and pseudopeptides 

  Natural peptides: argyrin A, PR-39 and PR-11 

 Argyrin A is a natural cyclic octapeptide isolated from the myxobactrium Archangium 

gephyra [200]. It has been identified as a potent antitumor drug (figure 21) [201], that inhibits 

human 20S proteasome as efficiently as bortezomib [201]. Its mechanism of inhibition has not 

yet been elucidated. Xenotransplanted tumors in mice (human colon cancer) are significantly 

reduced after argirin A injections, in a way comparable or even more pronounced than the 

response to bortezomib. Argyrin A acts by preventing the breakdown of the cyclin kinase 
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inhibitor p27kip1 degradation [201]. The way argyrin A kills cancer cells is distinct from that 

of bortezomib [202]. 

A natural proline-rich, arginine-rich antibacterial peptide (39 amino acid residues), PR39, 

stimulates angiogenesis and inhibits inflammatory responses. It acts as a non-competitive and 

reversible inhibitor of the proteasome CT-L (Ki = 0.025 M, human 20S proteasome) and PA 

activities [203]. Its N-terminal fragment containing eleven residues, PR11 (RRRPRPPYLPR), 

is the shortest sequence that inhibits proteasome. Compounds PR-39 and PR-11 also inhibit 

myocardial ischemia-reperfusion injury in rats [204]. 

  Synthetic modified peptides 

The arecoline peptides 45 and 46 were designed to be covalent inhibitors, but they seem to 

inhibit human proteasome without forming a covalent bond with the catalytic threonines 

(figure 21) [205]. Arecoline 47, a natural amino vinyl ester that could be a potential Michael 

acceptor for the catalytic threonine, was introduced as the C-terminal residue of peptide 45 or 

N-terminal residue of peptides 46 (figure 21). The arecoline moiety in compound 45 does not 

improve the inhibitory activity of the reference compound Z-Leu-Leu-Leu-NHBn, indicating 

that it does not react with the proteasome N-terminal threonine. The N-terminal conjugates 46 

significantly inhibited the CT-L and T-L activities of human proteasome. Respective IC50 

values were 0.5 M and 2.2 M for 46a (R2 = CH2OH, R3 = iPr). Compounds 45 and 46 also 

inhibited proteasome in cellular settings and had good stability in culture media (t1/2 > 300 

min) [205]. 

Lipotripeptides 48 (figure 21) and lipohexapeptides (CH3-(CH2)n-CO-TITFDY, n = 4-16) 

inhibit the CT-L and PA activities of yeast 20S proteasome at micromolar concentrations 

[206]. The structural features can be varied to selectively inhibit one or more of the three 

types of proteasome activities. The non specific lipid group may have two actions: to improve 

inhibition and deliver the inhibitor to the cell membrane [206]. The fluorinated 

pseudopeptides that incorporate a trifluoromethyl--hydrazino acid scaffold 49 [207] are new 

inhibitors of the rabbit 20S proteasome, that are easily synthesized (figure 21). Their 

differential capacities to inhibit CT-L, T-L and PA activities vary with their structure. For 

compound 49a (R1 = CH2)4NH2 and R2 = CO-CH2-(3-phenoxy) phenyl) IC50 values were 1.6 

µM (CT-L activity), 2.7 µM (PA activity) and 8.4 µM (T-L activity). Compounds 49 have no 

effect on the challenging proteolytic enzymes calpain I and cathepsin B. 



 34

 

Fig. (21). Structures of peptides or pseudopeptides which inhibit 20S proteasome. 

 Non peptide molecules with no electrophilic function 

Aclacinomycin A (or aclarubicin) is an anthracycline drug used to treat cancers; it targets 

topoisomerase II and interferes with DNA synthesis (figure 22) [208]. It also inhibits bovine 

20S proteasome and is selective for the CT-L activity [209]. Tetra-acridine 50 (figure 22) and 

several analogues are inhibitors of topoisomerase II-mediated DNA decatenation [210]. 

However, cytotoxicity studies using sensitive and resistant cancer cell lines and reference 

inhibitors indicate that topoisomerase II is not the only target of these molecules. The way 

compound 50 inhibits the CT-L, T-L and PA activities of human 20S proteasome (IC50 = 0.2, 

5, 1 M) in vitro explains its potent cytoxocity. This dual activity could represent a novel 

anti-cancer approach that circumvents tumor resistance [210].  

The macrocyclic polyketide kendomycin has antibacterial activity and is strongly cytotoxic 

against several tumor cell lines (figure 22). Investigation of its mode of action in mammalian 

cells showed that the cytoxocity effects of kendomycin are at least partly due to proteasome 

inhibition [211]. 
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Fig. (22). Structures of organic inhibibitors with no electrophilic function. 
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MISCELLANEOUS: ORGANOMETALLIC COMPLEXES 

Organometallic complexes play crucial roles in many biological processes and are widely 

used in medicine to treat various diseases [212,213]. The best known example is the anti-

cancer agent cisplatin complex PtCl2(NH3)2 [214]. A few years ago, screening of the NCI 

Diversity Set Library identified the copper complex NCI-109268 (figure 23) as an inhibitor of 

the proteasome CT-L activity (IC50 of 6 M) of both Jurkat T cell extract and rabbit 20S 

proteasome [215]. Organometallic complexes were later investigated more intensively as 

possible proteasome inhibitors. The screening of a series of metal salts with a two oxidation 

state (Cu2+, Ni2+, Mn2+, Co2+, Cr2+, Fe2+, Cd2+, Zn2+, Ag2+, Mo2+, Mg2+, Ca2+) showed that 

only copper salts are potent, selective inhibitors of rabbit 20S proteasome CT-L activity (IC50 

= 16 M) [215]. While both inorganic and organic copper compounds inhibit proteasome in 

vitro in a time-dependent and irreversible manner, only organic copper derivatives cause 

ubiquitinated proteins to accumulate in cells and induce apoptosis in vivo [215-221]. The 

organic ligands quinoline [215-217], dithiocarbamate [216,218-220] and phenol derivatives 

[221] have been shown to generate the most promising complexes. Complexes 51 [217] and 

52 [221] (figure 23) inhibit the proteasome CT-L activity in several prostate cancer cells (51, 

IC50  4 M) and in intact human leukemia Jurkat T-cells (52, IC50 = 3.82 M). The 

disulfiram-copper complex 53a (figure 23) is also a potent proteasome inhibitor of rabbit 20S 

proteasome CT-L activity (IC50 = 7.5 M). Treatment for 24h with 20 M of compound 53a 

decreased the activity of the 26S proteasome in breast cancer cells by 95% and triggered 

apoptosis [218]. Complex 53a (figure 23) is also very selective for tumor cells since it is not 

toxic for normal breast cells [218]. Cancer cells contain high concentrations of copper and it 

has been demonstrated that the non-toxic ligand disulfiram binds to this endogenous metal to 

generate complex 53a in situ (figure 23). When cultured breast cancer cells containing copper 

at concentrations similar to those found in patients were treated with the disulfiram ligand 

alone, their proteasome were inhibited and they became apoptotic. Disulfiram significantly 

inhibits tumor growth (by 74%) when given to mice bearing tumor xenografts [218]. These 

results suggest that copper accumulated in breast cancer cells and tissues could be used in 

selective chemotherapy. Metals other than copper, such as zinc (II) [222], gallium(III) [223] 

and gold(III) [224,225] can generate proteasome inhibitor complexes. Zinc 54a, gallium 54b 

and gold 53b (figure 23) complexes inhibit the CT-L activity of rabbit 20S proteasome (IC50 

= 11.7, 16 and 7.4 M, respectively) and 26S proteasome in cells (IC50 = 17 M in intact 

human prostate cancer C4-2B cells, 54a; IC50 = 4.4 M in human prostate cancer C4-2B cells 
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extract, 54b; > 80% inhibition of breast cancer cells growth at 20 M, 53b). Gallium 54b and 

gold 53b complexes (figure 23) can also have the same effect in vivo, inhibiting the growth of 

of xenografted tumor in mice (66% for 54b and 50% for 53b after treatment for 29 days) by 

inhibiting proteasome and triggering apoptosis. The inorganic KAuBr4 salt inhibits rabbit 20S 

proteasome (IC50 = 1.2 M for T-L activity) as does copper (II), but it does not inhibit cellular 

26S proteasome [224]. One hypothesis is that the metal ion inhibits the proteasome and that 

the organic ligand carries this ion into the tumor cells and prevents the metal from non-

specifically interacting with many proteins [218]. Exactly how these organometallic 

complexes inhibit proteasome has not yet been elucidated, but they probably act by the 

coordination of the metal center to amino acids in the active sites, such as the amino-terminal 

threonine residue [221]. The greater inhibitory activity of several organometallics against 26S 

proteasome in cells rather than the 20S catalytic particle may be because they target the 

JAMM domain of the 19S caps in the 26S proteasome [219]. Metal-based proteasome 

inhibitors require further investigation as they may open up a new approach to the design and 

development of more potent, more specific therapeutic agents, especially anti-cancer drugs. 

 

 

Fig. (23). Structures of some organometallic complexes acting as proteasome inhibitors 

 

CONCLUSION 

The ubiquitin-proteasome system plays a central role in a broad array of basic cellular 

processes. Modulation of its activity may provide ways of treating many diseases. The 

proteasome, which is an enzyme common to the entire pathway, has emerged as a promising 

target for cancer therapy. The proteasome inhibitor bortezomib is used to treat multiple 

myeloma and mantle lypmhoma. In cancer, proteasome inhibitors may inhibit the activation 

of the pro-apototic NF-B or the degradation of several cell cycle regulators. But the margin 

between the beneficial effects of proteasome inhibitors and their toxicity may be narrow, 
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especially when treatment is prolonged. That is why the discovery of suitable proteasome 

inhibitors is still a challenge, and we especially need inhibitors with fewer side-effects. 

Considerable efforts have been made over the past few years to discover structurally different 

proteasome inhibitors using medicinal chemistry or isolation from a variety of living 

organisms. Analysis of crystals of proteasome-inhibitor complexes has contributed 

significantly to this development, although some interactions between the enzyme and the 

inhibitor are still not clear. Inhibitors may be peptides or non-peptides and may act without 

forming a covalent bond or by forming a covalent bond with the active site Thr1-O. Some 

natural compounds, such as the non-covalent TMC-95A, and covalent epoxomicin and 

syringolin have original mechanisms of action that can be used to inspire the design of novel 

synthetic compounds. In silico screening is also useful for discovering new compounds that 

interact with one and more of the three types of proteasome active sites as recently reported 

for small organic compounds [226]. The potential of the less-well investigated non covalent 

inhibitors must be explored, as they should not have the inherent drawbacks often associated 

with reactive warhead groups. In cancer therapy, proteasome inhibitors have been associated 

with sensitizing effects when given in association with chemotherapy or radiotherapy. A 

combination of a poorly toxic proteasome inhibitor with standard drugs is a strategy that 

should be explored for treating a wide variety of tumors including solid ones. Finally, 

proteasome inhibitors may be useful for treating a variety of other disorders, such as immune 

diseases, neurodegeneration, stroke, cachexia, inflammatory and viral diseases. This suggests 

that research to discover agents that block proteasome activities will be very active in the 

coming years. 
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ABBREVIATIONS 

Ac: acetyl 

ALLN: Ac-Leu-Leu-Nle-H 

Arg: arginine 

Asp: aspartic acid 

Bn: benzyl 

CP: catalytic particle 
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CT-L: chymotrypsin-like 

D: aspartic acid 

DNA: deoxyribonucleic acid 

Ds: dansyl or 5-(dimethylamino)naphthalene-1-sulfonyl 

DUB: deubiquitinylating enzyme 

Et: ethyl 

F: phenylalanine 

Gly: glycine 

i.v.: intravenous 

I: isoleucine 

iBu: isobutyl or 2-methylpropyl 

IL: interleukin 

iPr: isopropyl or 1-methylethyl 

L: leucine 

Leu: leucine 

LMP7: low-molecular mass polypeptide 7 

Me: methyl 

MHC: major histocompatibility complex 

Ms: mesyl or methanesulfonyl 

N: asparagine 

Nle: norleucine 

Ntn: N-terminal nucleophile 

P: proline 

PA: post-acid or caspase-like  

Ph: phenyl 

R: arginine 

SAR: structure-activity relationships 

T: threonine 

tBu: tert-butyl or 1,1-dimethylethyl 

Thr: threonine 

T-L: trypsin-like 

Ts: tosyl or para-toluenesulfonyl 

Ub: ubiquitin 

W: tryptophan 
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Y: tyrosine 

Z: benzyloxycarbonyl 
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