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Abstract

Multispectral and hyperspectral flow cytometry (FC) instruments allow measurement of

fluorescence or Raman spectra from single cells in flow. As with conventional FC, spectral

overlap results in the measured signal in any given detector being a mixture of signals from

multiple labels present in the analyzed cells. In contrast to traditional polychromatic FC, these

devices utilize a number of detectors (or channels in multispectral detector arrays) that is larger

than the number of labels, and no particular detector is a priori dedicated to the measurement of

any particular label. This data-acquisition modality requires a rigorous study and understanding of

signal formation as well as unmixing procedures that are employed to estimate labels abundance.

The simplest extension of the traditional compensation procedure to multispectral data sets is

equivalent to an ordinary least-square (LS) solution for estimating abundance of labels in

individual cells. This process is identical to the technique employed for unmixing spectral data in

various imaging fields. The present study shows that multispectral FC data violate key

assumptions of the LS process, and use of the LS method may lead to unmixing artifacts, such as

population distortion (spreading) and the presence of negative values in biomarker abundances.

Various alternative unmixing techniques were investigated, including relative-error minimization

and variance-stabilization transformations. The most promising results were obtained by

performing unmixing using Poisson regression with an identity-link function within a generalized

linear model framework. This formulation accounts for the presence of Poisson noise in the model

of signal formation and subsequently leads to superior unmixing results, particularly for dim

fluorescent populations. The proposed Poisson unmixing technique is demonstrated using

simulated 8-channel, 2-fluorochrome data and real 32-channel, 6-fluorochrome data. The quality

of unmixing is assessed by computing absolute and relative errors, as well as by calculating the

symmetrized Kullback–Leibler divergence between known and approximated populations. These

results are applicable to any flow-based system with more detectors than labels where Poisson
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noise is the dominant contributor to the overall system noise and highlight the fact that explicit

incorporation of appropriate noise models is the key to accurately estimating the true label

abundance on the cells.

Keywords

spectral unmixing; compensation; Poisson regression; multispectral and hyperspectral flow
cytometry

Introduction

Classes of bioparticles are often defined by the type and quantity of biomarkers present in

each analyzed particle. Flow cytometry (FC) typically quantifies the presence of these

biomarkers by tagging them with fluorescent molecules. However, the raw FC

measurements do not directly yield the biomarker quantity or label concentration; instead,

they provide values that are proportional to the number of photons measured by the

individual photodetectors.

The optical pathway of FC instruments is arranged in an attempt to separate signals from

different fluorochromes by routing them into dedicated detectors; however, owing to

spectral overlap and imperfect filters, a complete separation is almost never possible.

Therefore, the fluorescence emitted by every fluorochrome may be simultaneously collected

by more than one detector (in extreme cases, all the detectors). This process can be

mathematically represented as a linear mixing of signals and is a subject of study in various

fields of science ranging from chemometrics to imaging and remote sensing (1–6).

Let r denote the vector of observations of length L (the number of detectors employed in the

FC system), M an L × p spectral-signature matrix (p being the number of labels used in an

experiment), α the vector of length p of abundances in which αi represents abundance

(amount) of the ith label in the measured object, and e a vector of length L which denotes

noise. Therefore, the phenomenon of “spectral spillover” that leads to signal mixing may be

represented using a basic linear spectral mixture equation:

(1)

The linear-mixture model assumes that multiple signals measured from every particle can be

expressed as a linear combination of spectral signatures with appropriate abundances α1,

α2, . . ., αan. The cytometry literature usually refers to these values (however incorrectly) as

“compensated fluorescence.”

In traditional polychromatic FC, the number of detectors employed is equal to the number of

labeled markers; thus, in order to find the abundances (or values linearly correlated with

abundances), the unmixing operation can readily be performed by multiplying the measured

data vectors (or raw fluorescence observations) by the inverse of the spectral-signature

matrix (also called the mixing matrix):
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(2)

where  is the unmixed approximation of α. Although the mixing matrices are a priori

unknown, they can be easily approximated by employing single-stained controls and

normalizing the resultant spectra. This process leading to the recovery of abundances is

known as FC compensation and is described extensively in the FC literature (7,8).

However, the number of detectors employed in an FC experiment does not have to be

limited to the number of fluorochromes and may be significantly larger. This type of optical

arrangement is characteristic of an emerging class of spectral FC systems, which attempt to

measure an approximation of the full spectrum emitted by every analyzed bioparticle. The

measurements produced by a spectral system may represent fluorescence, Raman, or

surface-enhanced Raman scattering characteristics (9–12).

An attempt to recover abundances from spectral measurements leads to a mixing model with

matrices that are not square, resulting in an overdetermined system of equations. This is

seemingly a trivial problem, as the standard compensation approach can easily be extended

by using the pseudoinverse of an overdetermined mixing matrix in a process known as

ordinary least-square (OLS) minimization.

Although overdetermined unmixing is a new issue for FC analysis, it is often used in various

imaging techniques ranging from microscopy to remote sensing (2,3). These techniques

usually rely on OLS to find the optimal vector of abundances. However, the OLS method is

valid only if the noise in Eq. (1) is Gaussian and has equal variance irrespective of the signal

level. Therefore, it is legitimate to inquire whether this widely accepted approach is

appropriate for spectral FC and other techniques based on fluorescence.

In this report, we will demonstrate that, owing to the physics of signal formation in

cytometry, the OLS solution is biased and does not provide a correct estimation of

abundances for spectral FC systems. Therefore, it should not be employed for fluorescence-,

Raman-, or surface-enhanced Raman scattering-based cytometry. We will also propose and

discuss alternative approaches: an approximation based on minimization of percentage error

using weighted least squares (WLS), a technique explicitly addressing the distribution of the

fluorescence signal and employing a generalized linear model (GLM), and a simplified

solution using a variance-stabilization transformation commonly employed in image

denoising.

The reported data represent simulations and real multispectral measurements obtained using

a 32-channel experimental system designed at Purdue University (12). The goal of the

simulations is to demonstrate the known and proposed approaches in a simple and

straightforward fashion without reference to any particular biological application. This

simulation also allows us to validate unmixing algorithms by comparing abundances known

a priori to the estimated values after unmixing.

In the case of the real experimental data, we are able to compare the unmixed abundances to

abundances obtained by measuring control samples. Additionally, the changes in
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distribution of estimated intensities introduced by different unmixing methodologies

demonstrate their impact on the estimation of fluorochrome concentration and on the

relative position of biological populations in the feature space.

Materials and Methods

Multispectral Measurement of Human Lymphocytes

Multispectral detection system—The example multispectral data were collected using

a prototype of a multispectral 32-channel fluorescence system that has already been

extensively described elsewhere (12). Briefly, the fluorescence emission is collected at 90°

to the laser direction using an A10766 compact spectrometer (Hamamatsu, Japan). The

spectrometer unit includes a polychromator that according to the manufacturer's data has a

grating groove density of 600 g/mm, a spectral range from 200 to 900 nm, a focal length of

approximately 100 mm, and an F value of 3.3. The dispersed signal is projected onto a

Hamamatsu 7260-01 32-channel multianode PMT linear array photodetector (Hamamatsu).

The detailed specifications of the linear-array PMTemployed were provided in the

Supporting Information of a recent report published in Cytometry Part A (12).

Flow cytometer—The FC fluidics used for the multispectral detection was based on a

customized FC500 flow cytometer (Beckman Coulter, Miami, FL). The system was

equipped with two air-cooled lasers: a uniphase argon ion, 488 nm, 20 mW output, and a

Coherent red solid-state diode, 635 nm, 25 mW.

The flow cell consists of a 150- × 450-μm rectangular-channel BioSense enhanced quartz

optics, mounted with vertical (upward) flow path. The liquid sheath was distilled water

filtered through a 0.2-μm filter. The pressure applied to the sheath tank was kept constant at

28 psi (~191 kPa). The lymphocyte concentrations in the various samples analyzed were in

the range of 1,000–3,500/μL. The sample flow rate was maintained at approximately 1,000

events per second. In order to handle the modified forward-scatter detection subsystem and

the 32 channels of fluorescence recorded using the multi-anode PMT device, the data-

control electronics of the FC500 instrument was upgraded to the system designed for the

Beckman-Coulter Gallios flow cytometer. The Beckman-Coulter electronics was also used

to control the flow cytometer fluidics.

Flow cytometry data acquisition—Control of the modified FC500 acquisition (start

and stop acquisition, clean, rinse, etc.) as well as light-scatter data collection was performed

by the CXP software package (Beckman Coulter). Acquisition of the fluorescence data was

implemented using the custom-built Cytospec package developed by Valery Patsekin and J.

Paul Robinson (Purdue University), which recorded all values simultaneously for each

single particle analyzed. All the output files were saved into a custom binary format and

subsequently converted into comma-separated values (.csv).

Monoclonal antibodies—CD45-FITC, CD4-PE, CD8-ECD, and CD3-Cy5 human

monoclonal antibodies (catalog number 6607013) were obtained from Beckman Coulter.

CD19-PECy7–labeled human antibody (catalog number 25-0199) was obtained from

eBioscience (San Diego, CA).
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Blood collection and sample preparation—Venous blood was collected under

human-use protocol 0506002740 by a standard venipuncture procedure using 7-mL EDTA

Venoject tubes. A 100-μL aliquot of whole blood was taken from the venous sample, mixed

with 10 μL antibody solution, and incubated for 10 min at room temperature. All samples

were prepped on a standard Q-prep using the 35-second cycle and the ImmunoPrep reagent

system (Beckman Coulter).

Simulations and data analysis—All data processing, as well as the simulations, was

performed using R language for statistical computing (13). The simulated FC data sets were

generated using a hierarchical stochastic process. In the first step, a “true abundance” for

each fluorochrome was simulated for each cell using a random-number generator (RNG)

sampling from either normal, truncated-normal, or log-normal distributions with defined

means and coefficients of variation (CVs). Cell- by-cell photon noise due to the stochastic

nature of photon emission was then simulated using a Poisson RNG with mean parameter

equal to the simulated abundance. This resulted in a photon emission vector (PEV) of

integer values of length p describing the number of emitted photons for each label. The PEV

was then mixed by multiplying it by the multispectral spillover matrix, which was

normalized columnwise to 1. This resulted in a mixed-PEV (MPEV) of values of length L.

In the third step, simulating the generation of photoelectrons and measurement of the

detected signals [detection vector (DV)], a gamma RNG was used to produce a vector of

random numbers distributed according the gamma distribution, with shape parameter equal

to the corresponding value in the MEPV plus one, and scale parameter equal to one. The

utilized gamma distribution was selected as a generalization of the Poisson distribution for

real numbers (see Supporting Information Materials for details).

All simulations were conducted using an eight-anode PMT array. Therefore, the spillover

matrix contained eight-point approximations of spectra of two simulated fluorochromes (see

Supporting Information Fig. S1). The spectra were assumed to be Gaussians with varying

standard deviations. The example demonstrated in this report used spectra with full width at

half maximum approximately equal to 2.76 detector channels (σ = 1.175), and maxima at

detector channels 3 and 6, respectively.

It is important to note that the simulations were performed assuming idealized conditions;

therefore, no electronic noise of the FC instrumentation was simulated. As can be seen by

inspecting Eq. (1), mixing (and hence unmixing) occurs on an individual cell basis, and the

population from which the cells (intensity vectors r) arise does not affect the unmixing

process. Thus, the techniques described in this article are relevant to a broad range of sample

types.

Results

The Gaussian Model of Spectral Unmixing

Figure 1 shows a simulation of signal distribution obtained from three cell populations

generated without applying a mixing matrix (ground truth). Therefore, the plots represent

the DV values (abundance with noise present) for M = 1 (identity matrix). The same cell

populations were used to generate DV outputs from the eight-anode PMT (see Supporting
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Information Fig. 1 for the mixing matrix M). These simulated PMT outputs were

subsequently unmixed according to the various algorithms described below.

The basic spectral-mixing model as expressed by Eq. (1) is nonidentifiable, meaning that

there is no unique solution unless additional information, particularly the noise model, is

specified (5). In remote sensing, it is common to state explicitly that e represents additive

Gaussian noise with an expected value of zero and covariance matrix σ21. Following these

assumptions, in the case for which the number of detectors is larger than the number of

labels, spectral unmixing can performed by solving an LS problem (2,14):

(3)

Assuming no additional constraints, the OLS approximation value of α can be obtained by

the closed-form equation

(4)

Unmixing the simulated data using OLS results in some cells with negative abundances, and

the estimated low-intensity populations have a distorted, characteristically “spread” shape

compared to the true α (compare Figs. 1 and 2A). Not only were the low-intensity

populations pushed toward zero, they were affected by this bias more than the high-intensity

population (double positive) as well. The distortion of the low-intensity population is

illustrated in Figure 3B and measured by symmetrized Kullback-Leibler divergence (SKLD)

between the distribution of the true abundances and the distribution recovered by OLS (15).

Since the negative abundance values have no physical interpretation, the result obtained

using OLS is obviously problematic. If the vector  is assumed to be proportional to

biomarker abundances, the negative results would suggest negative photon emission,

negative concentration, and consequently negative quantity of biomarkers. This result

violates the physical constraints of the system described by Eq. (1). When OLS was applied

to mixed data in which the noise arising from emission and detection processes was not

present, the recovered abundances did not exhibit any of the spreading seen in Figure 2A

(data not shown).

Unmixing of the experimental data set yields similar results, with the problem especially

acute for weak signals. Large portions of abundances representing autofluorescence (AF) are

pushed below zero (Fig. 5A). Again, this result violates the physical constraints and cannot

possibly be correct. The unstained controls show measurable and obviously positive values

of AF intensity, contradicting the computed estimation (Fig. 6).

We will next apply more sophisticated unmixing approaches traditionally employed in the

field of imaging in an attempt to obtain  vectors that do not violate the physical constraints

of the model.
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The Non-Negative Least-Squares Unmixing

In order to avoid the problem of obtaining negative abundances after unmixing, many

imaging applications explicitly employ a non-negativity constraint in the model. An

additional constraint is also included, stating that the unmixed abundances must sum to

100% of the mixed input signal (per the law of conservation of energy). The constrained

formulation of the problem leads to the following model:

(5)

where αi and ri are the elements of α and r vectors.

Unlike the unconstrained model in Eq. (3), Eq. (5) does not have a closed-form solution.

Therefore, the vectors α must be found numerically, for instance, by employing the

traditional Lawson-Hanson algorithm or a newer approach by Bro and De Jong (16,17).

As we can see in Figures 2B and 5B, negative abundance values were indeed eliminated,

and the results returned are physically feasible. However, the populations recovered by non-

negative least-squares (NNLS) seem to be “clipped,” and the data points (events) pile up on

the axes. In addition, the artificial spreading of the dim populations demonstrates that this

result is not a good approximation of the true populations seen in Figure 1. Even though the

solution provided by Eq. (5) is not the same as the ad hoc approach of simply solving Eq. (3)

and setting the negative results to zero, it yields results quite similar to that method.

The Alternative Poisson Noise Model

A detailed understanding of the assumptions employed in the formulation of the linear

mixing model is the key to obtaining more accurate unmixing results. As stated above, the

LS formulation proposed in Eqs. (3) and (5) explicitly assumes that the errors are

represented by additive white Gaussian noise with zero mean and a variance that does not

change with the signal intensity (homoskedasticity). However, since FC observation of

single cells in flow involves detection of photons emitted by the fluorescent molecules on

the surface of or inside the cells, the errors cannot be distributed this way. The noise

variance is not identical for every measured cell, and it is not identical for high- and low-

intensity signals (18,19).

This is a consequence of the fact that the process of photon emission and detection involves

Poisson processes. Photons are emitted by fluorochromes at random time intervals and the

distribution of their arrival at the photocathode is closely approximated by a Poisson

distribution (20). However, even if for the purpose of our model an assumption is made that

the variance in the photon emission is zero and that the photons arriving at the photocathode

are equally spaced in time, the number of emitted photoelectrons is not constant, as the

probability of photoelectron emission is also governed by a Poisson process (20–22).

The final measured signal is proportional to the number of photoelectrons generated on the

last photocathode. In the idealized case in which no additional noise sources are present and

the detector offers 100% efficiency, the model of FC observation could be expressed as
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(6)

The important consequence of the model shown in Eq. (6) is heteroskedasticity of the data,

that is, the fact that the expected variance increases with the increased signal, in contrast to

the stable variance assumptions described previously. Therefore, unmixing approaches that

specifically incorporate the Poisson nature of signal and noise should arrive at better results

for FC data, since the unmixing model then more accurately reflects the underlying physics

of signal formation.

Percentage Error Estimation via WLS

A common approach, owing to its mathematical simplicity, is to continue with the

assumption that the observations include a normally distributed noise component with a

variance that grows with the signal intensity. Essentially, it mimics the Poisson behavior of

signal using Gaussians and results in the fact that measurements with lower variance have

proportionally more influence on the estimate of abundances than they would under LS (23).

These requirements can be met by utilizing a special case of WLS and minimizing the mean

absolute percentage error (MAPE) instead of the squared error as with OLS. Therefore, the

percentage error may be defined as (observed value – predicted value)/observed, which we

will express as

(7)

where j is an L × 1 sum vector of 1, and jT is its transpose (the sum vector is used to find the

sum of the elements of the computed vector), α is a vector of abundances and r is the actual

FC measurement of a cell, r̄ is a vector of reciprocal values to the elements of vector r
(Hadamard inversion), and ○ denotes element-wise multiplication (Hadamard product).

The closed-form solution to Eq. (7) allows us to compute  directly (see Supporting

Information Materials for details):

(8)

It is easy to observe that Eq. (3) is a special case of Eq. (8) in which W = 1 (identity matrix).

As intended, the weights are inversely proportional to the signal, providing us with a simple

solution that recognizes the increase of variance (uncertainty) with the increase of signal.

The results shown in Figures 2C and 3C demonstrate that the MAPE approach improved the

abundance estimations for the simulated data. However, the cellular data seem to be

distorted and some populations were pushed below zero (Fig. 5C). Owing to the presence of

weights, the observed signals cannot contain zeros. Therefore, the vectors r must be shifted

by a small value before unmixing. Since the shift impacts the shape and location of the

unmixed abundance distribution, we choose the shift value empirically in order to minimize

SKLD between the controls and the unmixed distributions.
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GLM Formulation of the Unmixing Process

The OLS regression can be considered as a specific case of a more general theory of

regression mathematics known as GLMs. The theory of GLM is well described in Refs. 24

and 25, and a detailed discussion of this topic is beyond the scope of this article. The GLM

approach fits the data by maximizing the log-likelihood and can be used with response

variables that have distributions other than Gaussian and/or are not homoskedastic. Thus, the

GLM approach allows solution of Eq. (1) for cases in which e is not normally distributed, as

shown in Eq. (6).

In the idealized case, the distribution of noise e can be approximated by a Poisson

distribution. However, the detectors used in FC instruments do not report photon counts

directly but convert light into analog electronic signals (even though this information is

subsequently digitized). Therefore, the raw detector output is better represented by real

rather than natural numbers. Faithful modeling of true continuous distributions of analog

signals produced by a PMT is a difficult topic beyond the scope of this article, as the

Poisson model ceases to be appropriate if the secondary emission statistics is taken under

careful consideration (22). However, if we assume a noiseless and uniform secondary

emission process in which gain does not vary for different photoelectrons, we may

approximate the FC data using just a simple continuous generalization of a Poisson

distribution, which expresses it as a special case of the well-understood gamma distribution

(see Supporting Information Materials for details).

Incidentally, this framework allows us to use a gamma RNG to produce real (floating point)

rather than integer-based data directly during in silico FC measurements, as mentioned in

the Materials and Methods.

Furthermore, it can be demonstrated that the log-likelihood function for this specific gamma

distribution is the same as that for the Poisson distribution (see Supporting Information

Materials). Therefore, in order to find the solution to Eq. (3), we followed the approach to

the identity-link Poisson regression suggested by Venables and Ripley (26) and minimized

the deviance function  that assesses the goodness of fit by comparing the log-likelihood

under the saturated model (i.e., the model in which the number of parameters is equal to the

number of observations) to the log-likelihood under the proposed Poisson model:

(9)

The log(.) notation denotes element-wise logarithm.  is a vector of reciprocal values to

the elements of vector Mα (Hadamard inversion) and ○ denotes element-wise multiplication

(Hadamard product).

In contrast to the OLS approach, the minimization of deviance in the Poisson regression

problem has no general closed-form solution. Therefore, the vector  is found using

optimization methods. Furthermore, a sum-to-one equivalent constraint can be added as a

soft penalty, providing the complete unmixing model:
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(10)

The additional penalty parameter λ in Eq. (10) allows us to control the level of certainty in

the model. This parameter can be set to 0 or to some very low value if the accuracy (or

completeness) of M is suspect. In other words, in the experimental setting in which not all

the fluorochromes present are known, we cannot expect that the entire signal is unmixed

utilizing only the spectra describing the known fluorochromes.

Simulated data unmixed using Poisson GLM is shown in Figure 2D. It is evident that the

clusters look very similar to the distribution of true abundances shown in Figure 1.

In order to quantitatively assess the ability of the various unmixing algorithms to recover the

original simulated abundances, we calculated the root mean square error (RMSE) and mean

normalized error (MNE) to measure the differences between the simulated true abundances

(Fig. 1) and the unmixed estimations (Fig. 2). The RMSE values were similar for OLS and

Poisson unmixing (Figs. 4A–4C). However, the MNE values improved when Poisson

unmixing was used, demonstrating that the relative error can be minimized without

significantly affecting the absolute values (Figs. 4D–4F). The SKLD between the Poisson-

unmixed estimation of the negative populations and the true abundance is minimal (Fig.

3D), as both distributions almost completely overlap (Fig. 3E).

The effect of unmixing under experimental conditions was assessed by examining the AF

profile of unstained controls. We compared it using SKLD to the estimated AF determined

by the various unmixing algorithms (Fig. 6). The SKLD measure indicated that the AF

recovered using Poisson unmixing was the most similar to the actual AF (Fig. 6D). The

Poisson algorithm, which properly unmixed the low abundance (dim) signal, did not have a

significant effect on the abundance estimation of the bright CD45 signal (Fig. 7).

Unmixing via Variance-Stabilizing Transformation

The field of imaging often uses variance stabilization as a first step in image denoising

operations. Therefore, it is interesting to establish whether unmixing of measurements that

are known to be Poisson distributed can be performed using an OLS minimization following

the transformation of the mixing model into something approximately Gaussian. The

transformation proposed by Bar-Lev and Enis, or Anscombe and Freeman–Tukey

transformations belonging to a wider class of variance-stabilization functions described by

Bar-Lev and Enis, can be used for this purpose (27,28).

The Bar-Lev/Enis transformation (BET) is defined as

The transformation has been shown to exhibit optimal variance-stabilizing performance for a

Poisson distribution for
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Therefore, the compensation process can be expressed as an LS minimization of transformed

values:

The results demonstrate that the simulated data set was correctly compensated following the

mixing model correction (Supporting Information Fig. S3). However, the real 32-channel

data unmixing did not provide a major improvement over NNLS results (Supporting

Information Fig. S4).

Discussion

The presented work proposes a new approach to the problem of unmixing in multispectral

FC. We extend the well-established concept of unmixing as used in other fields such as

remote sensing, spectral imaging, and chemometrics and modify it for use with cytometry

systems that utilize a number of detectors larger than the number of labels (9–12).

First, we used simulations to evaluate various unmixing algorithms. This allowed us to

compare the unmixed abundances with the known input values that were used for the

simulations. Understandably, each unmixing algorithm is able to recover the simulated

abundance in the absence of noise, as in that case the linear mixing process is a completely

reversible operation [see Eq. (1) with e = 0]. However, once realistic Poisson noise was

introduced, the unmixing algorithms yielded different results (Fig. 2). This key observation,

that noise alone is sufficient to reproduce the “spreading” artifacts that are widely seen with

traditional compensation (29), led to the hypothesis that a more refined treatment of the

noise in the unmixing model should result in improved recovery of the actual abundances.

The abundances estimated by the OLS and NNLS algorithms were the most dissimilar to the

simulated input data (Figs. 2A and 2B and 3). The reason is that both algorithms are based

on the implicit assumption that the data are homo-skedastic (2). The problem of unmixing is

mathematically equivalent to multiple regression, and these two algorithms arrive at a

solution by minimizing the  norm between the actual observation and the regression result.

However, the simulated values are contaminated with Poisson noise, resulting in a variance

that depends on the magnitude of the observed intensities (therefore, the data are

heteroskedastic). The optimal way of minimizing the  norm is to fit the high values as

closely as possible, while the precise estimate of the low (dim) values remains relatively

unimportant since their absolute contribution to the  norm is negligible. This results in

highly unrealistic estimates of low-abundance populations. Similar results were obtained for

cellular data acquired with a spectral flow cytometer (Fig. 5). The data unmixed with OLS

showed large numbers of events with negative abundance values, particularly for dim

signals (as in the case of AF) (Figs. 5A and 6). Even after unmixing, some populations
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demonstrated artifactual correlations (“diagonal” orientation), which are often considered an

indication of “undercompensated” data. Data unmixed with NNLS (Fig. 5B) naturally did

not exhibit negative values, but very dim populations seemed abruptly truncated at zero.

These results demonstrate that LS minimization is not appropriate for overdetermined FC

data with Poisson noise present.

It is important to appreciate the relevance of negative values from the observed FC signals

as compared with the unmixed label abundances. Since the FC measurements are usually not

performed on calibrated scales or on an absolute scale of true photon counts, the

observations from FC instruments may indeed span from negative to positive values. These

negative values do not necessarily signify the presence of any particular noise type. They

can also be safely rescaled before being used in any unmixing model. However, a valid

unmixing model should avoid negative values for the unmixed label abundances, which

should be proportional to actual photon emission, hence positive. However, as the in silico

experiment demonstrated, even if all the observed values from the FC instrument are strictly

positive the resultant unmixing may produce negative values for the label abundances if

heteroskedasticity is not properly addressed. In the context of a linear mixture with mixing

matrix columnwise normalized to one [as in Eq. (1)], these negative abundances have no

physical interpretation and indicate an inappropriate unmixing model.

Based on these observations, we hypothesized that minimization algorithms that weighted

the magnitude of the error in relation to the size of the observed signal should result in

superior performance. The first tested alternative involved MAPE unmixing, which indeed

provided a significant improvement over OLS in the simulated data set (Fig. 2C). The

MAPE algorithm “stabilizes” the variance by effectively weighting each observation by the

square root of the observation. This minimizes the relative instead of the absolute error.

Since MAPE can be performed using a closed-form solution, it might be recommended as a

quick and computationally inexpensive strategy to cope with the bias of the OLS method.

However, MAPE requires that all observations be <0. In theory, if measured on an absolute

(or relative but calibrated) scale all measurements from an FC instrument should be positive

since even in the absence of a fluorescence signal the observation should include additive

noise (owing to stray light, intrinsic dark-current noise, offset signal, etc). Yet, in practice,

the tested multispectral data sets contain a number of zero values owing to the discriminator

threshold level. The common ad hoc solution of shifting these values from zero to some

small constant for the calculation of the weights may distort the relationship between

“bright” populations, as shown in Figure 5C.

The more sophisticated alternative treatments of zero were developed in the field of

compositional analysis (30). There are also alternative formulations of percentage error that

are not constrained to having observations <0; however, these formulations do not have a

closed-form solution and require an iterative algorithm for minimization (25). We did not

explore this further; instead, we reasoned that, if an iterative approach was required, it was

preferable to use the more rigorous technique discussed further below.

The second tested alternative involved using our a priori knowledge of the physics of

fluorescence signal formation and finding appropriate solutions utilizing our understanding
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of the noise characteristics of the system. The proposed model approximates the process of

fluorescence signal detection using a PMT employing a special case of gamma distribution

that extends the Poisson distribution to the continuous domain. This model not only allowed

us to offer GLM-based signal estimation but also was directly applicable to in silico

experiments and simulations, surpassing the limitations of a traditional discrete Poisson

model.

An FC signal is primarily the result of a cascade of random processes resulting in an

overdispersed Poisson distribution (21). However, the output from a PMT is an analog

signal (as opposed to integer values, which would be obtained using the detectors in photon-

counting mode) (31). Thus, in silico simulations of signal formation, as well as unmixing

equations, must take this fact into consideration. Simplistic simulations utilizing Poisson

RNGs would produce only integer values for the number of photons emitted by the

fluorochromes and for the photoelectrons generated on each photo-cathode. Spectral mixing

would indeed generate real numbers but only as an artifact of matrix multiplication. Yet,

these values would be subsequently truncated to integers to simulate photon detection at the

photocathode via another Poisson process. The application of a gamma function described in

the Supporting Information Materials to model the continuous yet Poisson nature of detected

signals solves this problem and justifies the use of Poisson GLM as the basis for unmixing

algorithms.

The explicit application of Poisson regression led to superior results for both simulated and

real data (Figs. 2D, 3, 5D, 6, and 7). Since we know the input values in the case of the

simulated data, the simplest direct metrics of unmixing quality are RMSE and MNE,

showing the difference between simulated input data and the unmixed estimations. For the

reported in silico experiments, the RMSE values are similar for OLS and Poisson unmixing,

as expected (Figs. 4A–4C). However, the MNE values indeed improved when a Poisson

model (allowing for heteroskedasticity), rather than a homoskedastic Gaussian, was applied,

demonstrating that a relative error can be minimized without significantly affecting the

absolute values (Figs. 4D–4F). The visual examination of the scatter plots alone reveals the

large impact of the proper noise model. The low-abundance populations are not spread

below zero, and the variance within populations is not artificially extended (Fig. 2D). The

high abundance (double-positive) population produced after unmixing looks almost

indistinguishable from the one obtained using OLS. This is because the OLS and Poisson

unmixing return virtually identical results when all the values in the vector r are similar

(resulting in homogeneity of variance).

The unmixing of real 32-channel data was also improved when a Poisson model was used

(Fig. 5D). As with the simulations, the effect of unmixing on low-intensity populations

demonstrates the dramatic impact of the proper noise model. The OLS and NNLS

algorithms resulted in a completely distorted AF distribution compared to the known control

(Fig. 6). The Poisson-estimated AF abundance does not contain negative values and its

distribution is most similar to the controls, as shown by SKLD (Fig. 6D). Although the

application of the Poisson model does not lead to perfect results owing to a slight positive

bias, it produces a good-quality approximation of the control AF, surpassing the estimation

produced by Eq. (4), which yields values that fall below zero. These negative values
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indirectly affect the shape and location of other populations. We also demonstrated that the

high-intensity population of CD451 cells was also estimated correctly (Fig. 7).

A key component of GLM-based unmixing is the so called “link function” (25). The

canonical link for Poisson GLM is the logarithm function. However, multispectral FC

requires the use of the identity link since the observed Poisson-distributed fluorescence

signals are linearly dependent on the abundances. The use of an identity-link function is not

common for a Poisson regression but has been investigated (4).

A common general approach to regression of heteroskedastic data is an iterative version of

WLS—iteratively reweighted least squares. This algorithm uses the Newton-Raphson

technique to approximate the maximum likelihood of a GLM (25). However, in the case of

identity-link Poisson, the simple iteratively reweighted least squares is not guaranteed to

converge (32). Therefore, we do not consider this method to provide any advantage over

direct numerical minimization of deviance (26). The detailed analysis of various alternative

approaches to stable computation of ML estimates in identity-link Poisson regression is

beyond the scope of this article.

As in the case of MAPE, the observed signal should not be zero, since the deviance residual

is undefined for such values. However, the deviance residuals for observations close to zero

approach zero. This is not the case with MAPE, as the small r leads to increasing values of

error. If any element of Mα is zero, the deviance function  also breaks down. Therefore,

one simple solution is to addDa small constant to r and disallow α for which there are zeros

in Mα. Consequently, the obtained result may demonstrate a small positive bias (Figs. 5D

and 6). Again, a more sophisticated treatment of zero values is possible using the

methodology developed within the field of compositional analysis (30).

The Poisson deviance can be seen as an estimate of the KLD between two spectral vectors

(33). Therefore, the described unmixing model can also be discussed within the context of

generalized spectral unmixing proposed in the field of remote sensing. In this framework, it

has also been shown that minimizing a symmetrized version of divergence results in

superior results in terms of accuracy of spectral matching compared with minimizing the 

norm of the error (34). Therefore, our result independently confirms conclusions reached by

the remote-sensing community.

Finally, as the third alternative to OLS, we utilized a variance-stabilizing transformation to

unmix the data. Similar solutions are routinely used in the field of microarray analysis and

imaging (35,36). The use of BET yielded more realistic results when applied to simulated

data (Supporting Information Fig. S3); however, when applied to experimental data, it

resulted in data that were similar to those produced by NNLS (Supporting Information Fig.

S4). We can only speculate that the lack of robustness caused the BET to perform worse

than Poisson-based unmixing approaches. Although our signal-formation model is based on

known physics of fluorescence, it is still a simplification. As indicated in the previous

sections, a more laborious model might include overdispersion owing to nonideal PMT

characteristics as well as the Gaussian noise component added by the system electronics.

Yet, the BET is optimized for a simple Poisson distribution. The work in the field of
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microarray data processing suggests that more appropriate variance-stabilization transforms

can be found empirically using custom-built functions based on power transformation (36).

Conclusions

The research reported herein was based on the simple rationale that the goal of unmixing is

to gain knowledge regarding the contribution of different fluorochromes to the total

measured signal regardless of the signal intensity. The visualization approach commonly

used in FC involving scatter plots, as well as the traditional FC terminology describing

samples as “positive” or “negative,” suggests that practitioners are indeed interested in

minimizing the error of estimation for low-abundance signals (negative population) just as

much as for high-abundance signals (positive population) when both are present in the

mixture. The reason is that classification of cells into negative, dim, and positive categories

is often important in both research and clinical settings. If the estimated abundances are

proportional to the quantity of fluorochrome present in bioparticles, this proportionality

should always hold, no matter what the measured signal intensity range. In addition, any

quantitative estimates of biological phenomena from underlying abundance of fluorescence

markers are obviously confounded in the presence of unmixed negative abundances,

especially when those observations arise primarily as a result of improper treatment of noise

in the system.

The use of more detectors than labels (an overdetermined case) provides a unique

opportunity from a data-analysis point of view. Since the noise in each detector is

independent of the noise in all the other detectors, applying appropriate regression

techniques allows us to arrive at a “best-fit” value for each label that is superior to the value

that would have been determined if the number of detectors equaled the number of labels.

The reported results show that Poisson unmixing provides the most accurate representation

of the true underlying signal, and we expect that with the proliferation of spectral FC

instruments the presented framework will be commonly employed for unmixing of spectral

data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Our special thanks to J. Paul Robinson (Purdue University) for allowing us to access the prototype of the
multispectral flow cytometry system and to Dr. Tom Goldstein (Rice University) for assistance with mathematical
notation and implementation of GLM.

Grant sponsors: National Institute of Biomedical Imaging and Bioengineering (grant number 1R21EB015707),
PhRMA Foundation (2012 Research Starter Grant in Informatics), and De Novo Software Inc.

LITERATURE CITED

1. Settle JJ. On the relationship between spectral unmixing and subspace projection. IEEE Trans
Geosci Rem Sens. 1996; 34:1045–1046.

2. Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Process Mag. 2002; 19:44–57.

Novo et al. Page 15

Cytometry A. Author manuscript; available in PMC 2014 September 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Zimmermann, T. Microscopy techniques. Vol. 95. Advances in Biochemical Engineering/
Biotechnology. Springer Verlag; Berlin/Heidelberg: 2005. Spectral imaging and linear unmixing in
light microscopy.; p. 245-265.Available from: http://dx.doi.org/10.1007/b102216. [July 12, 2012]

4. Palkki RD, Lanterman AD. Chemical mixture estimation under a Poisson Raman spectroscopy
model. Opt Eng. 2010; 49:113601–113611.

5. Wolbers M, Stahel W. Linear unmixing of multivariate observations: A structural model. J Am Stat
Assoc. 2005; 100:1328–1342.

6. Akerjord M-A, Christophersen N. Assessing mixing models within a common framework. Environ
Sci Technol. 1996; 30:2105–2112.

7. Bagwell CB, Adams EG. Fluorescence spectral overlap compensation for any number of flow
cytometry parameters. Ann N Y Acad Sci. 1993; 677:167–184. [PubMed: 8494206]

8. Roederer, M. Compensation in flow cytometry.. In: Robinson, JP.; Darzynkiewicz, Z.; Dobrucki, J.;
Hyun, WC.; Nolan, JP.; Orfao, A.; Rabinovitch, PS., editors. Current Protocols in Cytometry. Vol.
1.14. John Wiley & Sons; Hoboken, NJ: 2002. Available from: http://www.currentprotocols.com/
protocol/cy0114. [July 14, 2012]

9. Goddard G, Martin JC, Naivar M, Goodwin PM, Graves SW, Habbersett R, Nolan JP, Jett JH.
Single particle high resolution spectral analysis flow cytometry. Cytometry Part A. 2006; 69A:842–
851.

10. Watson DA, Brown LO, Gaskill DF, Naivar M, Graves SW, Doorn SK, Nolan JP. A flow
cytometer for the measurement of Raman spectra. Cytometry Part A. 2008; 73A:119–128.

11. Nolan JP, Sebba DS. Surface-enhanced Raman scattering (SERS) cytometry. Methods Cell Biol.
2011; 102:515–532. [PubMed: 21704852]

12. Grégori G, Patsekin V, Rajwa B, Jones J, Ragheb K, Holdman C, Robinson JP. Hyper-spectral
cytometry at the single-cell level using a 32-channel photodetector. Cytometry Part A. 2012; 81A:
35–44.

13. Ihaka R, Gentleman R. R: A language for data analysis and graphics. J Comput Graph Stat. 1996;
5:299–314.

14. Settle JJ, Drake NA. Linear mixing and the estimation of ground cover proportions. Int J Rem
Sens. 1993; 14:1159–1177.

15. Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951; 22:79–86.

16. Lawson, CL.; Hanson, RJ. Solving Least Squares Problems. Society for Industrial and Applied
Mathematics; Philadelphia, PA: 1995. p. 350

17. Bro R, De Jong S. A fast non-negativity-constrained least squares algorithm. J Chemometr. 1997;
11:393–401.

18. McCutcheon MJ, Miller RG. Fluorescence intensity resolution in flow systems. J Histochem
Cytochem. 1979; 27:246–249. [PubMed: 374582]

19. Ubezio P, Andreoni A. Linearity and noise sources in flow cytometry. Cytometry. 1985; 6:109–
115. [PubMed: 3979215]

20. Coates PB. Photomultiplier noise statistics. J Phys Appl Phys. 1972; 5:915–930.

21. Prescott JR. A statistical model for photomultiplier single-electron statistics. Nucl Instrum Meth.
1966; 39:173–179.

22. Lachs G. The statistics for the detection of light by nonideal photomultipliers. IEEE J Quant Electr.
1974; 10:590–596.

23. Tofallis C. Least squares percentage regression. J Mod Appl Stat Meth. 2009; 7:526–534.

24. McCullagh, P.; Nelder, JA. Generalized linear models. 2nd ed.. Chapman and Hall/CRC; Boca
Raton, FL: 1989. p. 532

25. Fox, J. Applied Regression Analysis and Generalized Linear Models. 2nd ed.. Sage Publications,
Inc; Thousand Oaks, CA: 2008. p. 688

26. Venables, WN.; Ripley, BD. Modern applied statistics with S. 4th ed.. Springer; Berlin: 2002. p.
512

27. Bar-Lev SK, Enis P. On the classical choice of variance stabilizing transformations and an
application for a Poisson variate. Biometrika. 1988; 75:803–804.

Novo et al. Page 16

Cytometry A. Author manuscript; available in PMC 2014 September 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1007/b102216
http://www.currentprotocols.com/protocol/cy0114
http://www.currentprotocols.com/protocol/cy0114


28. Anscombe FJ. The transformation of Poisson, binomial and negative-binomial data. Biometrika.
1948; 35:246–254.

29. Roederer M. Spectral compensation for flow cytometry: Visualization artifacts, limitations, and
caveats. Cytometry. 2001; 45:194–205. [PubMed: 11746088]

30. Martín-Fernández, JA.; Palarea-Albaladejo, J.; Olea, RA. Dealing with zeros.. In: Pawlowsky-
Glahn, V.; Buccianti, A., editors. Compositional Data Analysis. John Wiley & Sons Ltd; New
York, NY: 2011. p. 43-58.Available from: http://onlinelibrary.wiley.-com/doi/
10.1002/9781119976462.ch4/summary. [September 2, 2012]

31. Snow C. “Kit.” Flow cytometer electronics. Cytometry Part A. 2004; 57A:63–69.

32. Marschner IC. Stable computation of maximum likelihood estimates in identity link Poisson
regression. J Comput Graph Stat. 2010; 19:666–683.

33. Hastie T. A closer look at the deviance. Am Stat. 1987; 41:16–20.

34. Chang, C-I. Spectral information divergence for hyperspectral image analysis.. Geoscience and
Remote Sensing Symposium, 1999; IGARSS '99 Proceedings. IEEE 1999 International; New
York. IEEE; 1999. p. p509-511.

35. Huber W, Von Heydebreck A, Sultmann H, Poustka A, Vingron M. Variance stabilization applied
to microarray data calibration and to the quantification of differential expression. Bioinformatics.
2002; 18:S96–S104. [PubMed: 12169536]

36. Lin SM, Du P, Huber W, Kibbe WA. Model-based variance-stabilizing transformation for Illumina
microarray data. Nucleic Acids Res. 2008; 36:e11. [PubMed: 18178591]

Novo et al. Page 17

Cytometry A. Author manuscript; available in PMC 2014 September 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://onlinelibrary.wiley.-com/doi/10.1002/9781119976462.ch4/summary
http://onlinelibrary.wiley.-com/doi/10.1002/9781119976462.ch4/summary


Figure 1.
Density plot representing simulated abundances of two fluorochromes; 15,000 cells were

simulated in this in silico experiment. The abundances were drawn from log-normal

distributions. The negative populations have logmean of log(10) and CV = 0.2 (σ = 0.1), the

positive population has logmean of ln(10000) and CV = 0.2. The simulated data set includes

emission shot noise and detection noise but no spectral overlap (i.e., M = 1). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2.
The results of spectral unmixing. For the purpose of visualization, the data have been

transformed using a generalized log transformation (see Supporting Information Materials

for details, and Fig. S1 for the mixing matrix M): OLS-based unmixing (A), NNLS-based

unmixing (B), MAPE-based unmixing (C), and Poisson-based unmixing (D). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.
Comparison of unmixing results for a simulated low-intensity (negative) population. Plots A
—D illustrate the shape of distributions: the distribution of original signal measured in the

absence of spectral mixing (A), OLS-based unmixing (B), MAPE-based unmixing (C), and

Poisson-based unmixing (D). Plot E shows overlap of the unmixed distributions and the

original abundance. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 4.
Distributions of RMSE and MNE for simulated flow-cytometry data. The distribution of

RMSE is similar for OLS-based (A) and Poisson-based unmixing (C), and different than

error distribution for MAPE unmixing (B). The distribution of relative (normalized) error is

broader for the OLS method (D) and much narrower for MAPE (E) and Poisson-based (F)

techniques. The median MNE for OLS is 0.3, and the 75th percentile is 0.87. In contrast, the

median relative error for Poisson-based unmixing is only 0.1, with 75th percentile of 0.32.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Novo et al. Page 21

Cytometry A. Author manuscript; available in PMC 2014 September 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://wileyonlinelibrary.com


Novo et al. Page 22

Cytometry A. Author manuscript; available in PMC 2014 September 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Unmixing of a 32-channel multispectral data set. OLS-based unmixing (A), NNLS unmixing

(B), MAPE-based unmixing (C), and Poisson-based unmixing (D). The data were

transformed using glog function with m = 0.02 (see Supporting Information Materials, and

Fig. S2 for the estimated mixing matrix M). Note that the density plots illustrating

autofluorescence (the top row) are zoomed in on the low-intensity region. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6.
Comparison of the true autofluorescence (A) with the estimated autofluorescence recovered

using OLS- (B), MAPE- (C) and Poisson-based (D) unmixing. Plot E illustrates the overlap

between the recovered distributions and the known control. The difference between the

unmixed values and the true autofluorescence is provided in plots B—D as a SKLD. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7.
Comparison of the true measured CD45-FITC signal (A) with the estimated abundance

recovered using OLS- (B), MAPE- (C) and Poisson-based (D) unmixing. Plot E illustrates

the overlap between the recovered distributions and the known control. The difference

between the unmixed values and the control is provided in plots B—D as a SKLD. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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