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Abstract. Peer-to-Peer (P2P) systems have been very successful for
large-scale data sharing. However, sharing sensitive data, like in online
social networks, without appropriate access control, can have undesirable
impact on data privacy. Data can be accessed by everyone (by potentially
untrusted peers) and used for everything (e.g., for marketing or activities
against the owner’s preferences or ethics). Hippocratic databases (HDB)
provide an effective solution to this problem, by integrating purpose-
based access control for privacy protection. However, the use of HDB has
been restricted to centralized systems. This chapter gives an overview
of current solutions for supporting data privacy in P2P systems, and
develops in more details a complete solution based on HDB.

Keywords: data privacy, P2P systems, DHT, Hippocratic databases, purpose-
based access control, trust.
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1 Introduction

Data privacy is the right of individuals to determine for themselves when, how,
and to what extent information about them is communicated to others [40].
It has been treated by many organizations and legislations that have defined
well accepted principles. According to OEC[ﬂ data privacy should consider:
collection limitation, purpose specification, use limitation, data quality, secu-
rity safeguards, openness, individual participation, and accountability. From
these principles, we underline purpose specification which states that data own-
ers should be able to specify the data access purposes for which their data will
be collected, stored, and used.

With the advent of Online Social Networks (OLSN), data privacy has be-
come a major concern. An OLSN is formed by people having something in
common and connected by social relationships, such as friendship, hobbies, or co-
working, in order to exchange information [I1]. Many communities use OLSNs
to share data in both professional and non-professional environments. Examples
of professional OLSNs are ShanoirEl, designed for the neuroscience community to

3 Organization for Economic Co-operation and Development. One of the world’s
largest and most reliable source of comparable statistics on economic and social
data (http://www.oecd.org/).
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archive, share, search, and visualize neuroimaging data, or medscapeﬂ7 designed
for the medical community to share medical experience and medical data. There
are also non-professional OLSNs for average citizens and amateurs in different
domains such as Carenity ﬂ designed for patients and their relatives to share
medical information about them in order to help medical research. Another
example is DIYbio EL dedicated to make biology accessible for citizen scientists,
amateur biologists, and biological engineers, who share research results. The
most popular OLSN, Facebook, with hundreds millions of users, enables groups
of friends to share all kinds of personal information among themselves.

Scalable data sharing among community members is critical for an OLSN
system. Two main solutions have emerged for scalable data sharing: cloud com-
puting and Peer-to-Peer (P2P). Cloud computing promises to provide virtually
infinite computing resources (e.g., CPU, storage, network) that can be available
to users with minimal management efforts [26]. Data are stored in data cen-
ters, typically very large clusters of servers, operated by infrastructure providers
such as Amazon, Google, and IBM. Among others, cloud computing exhibits
the following key characteristics: (a) elasticity, as additional resources can be
allocated on the fly to handle increased demands, (b) ease of maintenance, which
is managed by cloud providers, and (c) reliability, thanks to multiple redundant
sites. These assets make cloud computing suitable for OLSNs.

However, cloud computing proposes a form of centralized storage that im-
plies many effects on sensitive data: (a) users need to trust the providers and
their servers; (b) providers can use community information to make profits (e.g.,
profiling, marketing, advertising); and (c) users may find their data censored
by providers. In particular, (a) is very hard to enforce as cloud providers can
outsource data storage to other providers, yielding a chain of subcontractors
(typically in different countries, each with a different legislation on data pri-
vacy) which is difficult to track.

As an alternative to a centralized data sharing solution, like the cloud, P2P
provides a fully decentralized infrastructure. Examples of very popular P2P ap-
plications can be found in networking (e.g., Skype), search engines (e.g., YaCy),
OLSN (e.g., Diaspora), and content sharing (e.g., BitTorrent). For instance,
one third of the Internet traffic today is based on BitTorrent. P2P systems
for data-centered applications offer valuable characteristics: (a) decentralized
storage and control, so there is no need to trust one particular server; (b) data
availability and fault tolerance, thanks to data replication; (c) scalability to store
large amounts of data and manage high numbers of users; (d) autonomy, as peers
can join and leave the network at will.

We claim that a P2P solution is the right solution to support the collaborative
nature of OLSN applications as it provides scalability, dynamicity, autonomy;,
and decentralized control. Peers can be the participants or organizations in-

5 http://www.medscape . com/connect/
S http://www.carenity.com
" http://diybio.org
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volved in collaboration and may share data and applications while keeping full
control over their (local) data sources.

However, despite their assets, P2P systems offer limited guarantees concern-
ing data privacy. They can be considered as hostile because data, that can be
sensitive or confidential, can be accessed by everyone (by potentially untrusted
peers) and used for everything (e.g., for marketing, profiling, fraudulence, or
for activities against the owner’s preferences or ethics). Several P2P systems
propose mechanisms to ensure privacy such as OceanStore [22], Past [33], and
Freenet [8]. However, these solutions remain insufficient. Data privacy laws
have raised the respect of user privacy preferences where purpose-based access
is cornerstone. Managing data sharing, with trustworthy peers, for specific pur-
poses and operations, is not possible in current P2P systems without adding new
services.

Inspired by the Hippocratic oath and its tenet of preserving privacy, Hippo-
cratic databases (HDB) [2] have incorporated purpose-based privacy protection,
which allows users to specify the purpose for which their data are accessed.
However, HDB have been proposed for centralized relational database systems.

Applied to P2P systems, HDBs could bring strong privacy support as in the
following scenario. Consider an OLSN where patients share their own medical
records with doctors and scientists, and scientists share their research results
with patients and doctors. Scientists have access to patient medical records if
their access purpose is for research on a particular disease. Doctors have access
to research results for giving medical treatment to their patients. In this context,
Hippocratic P2P data sharing can be useful. Producing new P2P services that
prevent peers from disclosing, accessing, or damaging sensitive data, encourages
patients (resp. scientists) to share their medical records (resp. results) according
to their privacy preferences. Thus, the challenge is to propose services to store
and share sensitive data in P2P systems taking into account access purposes.

This chapter is organized as follows. Section [2] surveys data privacy in P2P
systems and gives a comparative analysis of existing solutions. Section [3|surveys
HDBs. Section [4] introduces PriMod, a privacy model that applies HDB prin-
ciples to data sharing in P2P systems. Section [5| describes PriServ, a privacy
service that supports PriMod in structured P2P networks. Section [f] presents
the PriServ prototype. Section [7] concludes.

2 Data privacy in P2P systems

P2P systems operate on application-level networks referred to as overlay net-
works. The degree of centralization and the topology of overlay networks have
significant influence on properties such as performance, scalability, and security.
P2P networks are generally classified into two main categories: pure and hy-
brid [29]. In pure P2P networks, all peers are equal and they can be divided
in structured and unstructured overlays. In hybrid P2P networks (also called
super-peer P2P networks), some peers act as dedicated servers for some other
peers and have particular tasks to perform.



Unstructured P2P overlays are created in an ad-hoc fashion (peers can join
the network by attaching themselves to any peer) and data placement is com-
pletely unrelated to their organization. Each peer knows its neighbors, but does
not know the resources they have. Many popular applications operate as un-
structured networks like Napster, Gnutella, Kazaa, and Freenet [8]. In those
systems, content is shared among peers without needing to download it from a
centralized server. Those systems vary, among others, in the way data is indexed,
that implies the way data is searched. There exist two alternatives for index-
ing: centralized and distributed. In centralized indexes, a peer is responsible for
managing the index of the system. This centralization facilitates data searching
because requesting peers consult the central peer to obtain the location of the
data, and then directly contact the peer where the data is located. Napster is
an example of a system that maintains this type of index. In the distributed ap-
proach, each peer maintains part of the index, generally the one concerning the
data they hold. Data searching is typically done by flooding, where requesting
peers send the request to all of its neighbors which forward the request to all
of their neighbors if they do not have the requested data, and so on. For large
networks, a Time to Live (TTL) is defined to avoid contacting all peers at every
request. Gnutella is a system that maintains this kind of index.

Structured P2P systems have emerged to improve the performance of data
searching by introducing a particular structure into the P2P network. They
achieve this goal by controlling the overlay topology, the content placement, and
the message routing. Initial research on P2P systems led to solutions based on
Distributed Hash Tables (DHTs) where a hash function maps a key to each peer
(such key is considered as the peer’s identifier). Data placement is based on
mapping a key to each data item and storing the (key,data) pair at the peer
which identifier is equal or follows the key. Thus, the distributed lookup protocol
supported by these systems efficiently locates the peer that stores a particular
data item in O(logN) messages. Representative examples of DHTs are Chord
[36], Pastry [34], and Tapestry [41]. The reader can find an analysis of data
sharing in DHT-based systems in [32].

Hybrid P2P networks contain a subset of peers (called super-peers) that
provide services to some other peers. These services can be data indexing, query
processing, access control, meta-data management, etc. With only one super-
peer, the network architecture reduces to client-server. The organization of
super-peers follows a P2P approach and they can communicate with each other
in sophisticated manners. An example of these systems is Edutella [28].

Peers may be participants that share data, request information, or simply
contribute to the storage system. Considering that there are peers that own
data and do not necessarily act as servers of those data, we distinguish between
three kinds of peers:

— Requester. A peer that requests data.
— Server. A peer that stores and provides data.
— Owner. A peer that owns and shares data.



This section surveys the P2P systems that deal with data privacy. Depend-
ing on their main application, the data privacy issues are different. We divide
these systems into two main classes: those focusing on distributed data storage
(Section and those focusing on massive data sharing (Section[2.2)). We com-
pare them, in Section based on their privacy protection guarantees and the
techniques they use.

2.1 Privacy in distributed data storage systems

Distributed data storage systems are mainly used by users who want to benefit
from large storage space and possibly share data with some other users. Usually,
the users of these systems require the following privacy guarantees:

— Data storage: data are available for owners.

— Data protection against unauthorized reads: servers do not have the ability
to read the data they store.

Data protection against corruption and deletion: servers do not have the
ability to corrupt or delete the data they store.

— A peer does not claim the property of data owned by another peer.

Various techniques and protocols should be employed together to ensure such
guarantees. For instance, replication can be used to guarantee data availability,
but to limit privacy breaches, data replicas must be stored at trusted servers.
Thus, trust and access control techniques can be used with replication in order
to ensure data privacy. In addition, data digital checksums and encryption can
be used to protect ownership rights as well as data from unauthorized reads.

Past [33], OceanStore [22], and Mnemosyne [I2] are examples of systems that
use such techniques.

Past is a large-scale, Internet-based, global storage utility that provides scal-
ability, high availability, persistence, and security. It relies on Pastry and uses
smartcards, self certifying data, and certified-based trust in order to protect data
content from malicious servers.

OceanStore is a cooperative infrastructure that provides a consistent, highly-
available, durable, and secured storage utility. It relies on Tapestry and uses
symmetric cryptography and access control techniques to protect data privacy
from malicious peers.

Mnemosyne is a storage service that provides a high level of privacy by
using a large amount of shared distributed storage to hide data. It relies on
Tapestry and uses steganographic data, data whose presence among random
data cannot be detected. This allows to protect data from malicious reads and
suppressions.

2.2 Privacy in massive data sharing systems

Massive data sharing systems are mainly used by users who want to (a) share
data in the system and (b) request and download data from the system. (b) is



probably the main reason why this type of system is so well-known and used,
in particular, in multimedia file sharing. One important difference with data
storage systems is that, in massive data sharing, data are massively duplicated.
In this type of system, users search for privacy guarantees related to data and
users.

1. The data privacy guarantees are:
— Data storage: data are available to authorized owners and requesters.
— Data protection against unauthorized reads: servers do not have the
ability to read the data they store.
— Data protection against corruption and deletion: servers do not have the
ability to corrupt or delete the data they store.
— A peer does not claim the property of data owned by another peer.
— Limited disclosure: data are not provided to unauthorized requesters.
2. The user privacy guarantees (usually referred to as anonymity guarantees)
are:
— Users are not monitored in the system by other peers.
— Users freedom of behavior is not limited by the system.
— Users are protected against identity theft.

Data privacy guarantees in massive data sharing systems are similar to those
of distributed data storage systems, the only difference is limited disclosure. As
said before, data privacy can be protected by techniques such as access control,
trust management, data encryption, and digital checksums. The difference here
is the potential number of requesters. On the other hand, user privacy can
be protected by using different anonymity techniques. However, ensuring user
privacy may cause undesired effects on data privacy. Users want to protect their
data privacy while remaining anonymous to behave freely, which increases the
risk of violating the data privacy of others. This loop is probably the main
reason we did not find in the literature systems that guarantee both data and
user privacy.

Protecting data privacy. Data privacy in massive data sharing systems can
be illustrated with the following systems.

Office SharePoint Workspaceﬂ previously known as Office Groove, is
a desktop application designed for document collaboration within teams (i.e.,
workspaces). It is based on a partially centralized P2P system. Each user has a
private editable copy of the workspace. Workspace copies are synchronized via
the network in a P2P manner. Office SharePoint Workspace uses access control,
trust, and encryption techniques in order to protect data privacy.

Piazza [38] is a data management system that enables sharing of XML
documents in a distributed and scalable way. It is based on an unstructured P2P
system. Although the goal and emphasis of Piazza is data sharing and not data
privacy, the creators of Piazza proposed in [27] new techniques for publishing a
single data instance in a protected form, thus enforcing data privacy.

8 http://office.microsoft.com/en-us/sharepoint-workspace
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OneSwarm [I4] is a P2P service that provides users with explicit control
over their data privacy by letting them determine how data are shared. It re-
lies on BitTorrent and was designed to provide privacy-preserving data sharing.
OneSwarm uses asymmetric cryptography, access control, trust, and communi-
cation anonymity in order to protect data privacy.

Other systems address the censorship problem which can have effects on data
privacy since censorship can be a reason for data suppression. In some systems
such as Usenet newsﬂ anyone who sees a message can post a cancel message
to delete it, allowing censorship. Many systems have been proposed to resist to
censorship. Dagster [37] is a censorship-resistant publishing scheme that inter-
twines legitimate and illegitimate data from web pages, so that a censor cannot
remove objectionable content without simultaneously removing legally protected
content. Tangler [39] is another censorship resistant publishing scheme based
on the idea of intertwining data. Newly published documents are dependent on
previous published blocks. This dependency, called entanglement, provides a
user some incentive to replicate and store the blocks of other documents. Thus,
data blocks are resistant to censorship and suppression.

Censorship-resistant schemes protect data only from suppression. Data pri-
vacy is not fully protected since any user can access these data.

Protecting user privacy. User privacy in massive data sharing systems can be
illustrated with the following systems. They mostly use anonymity techniques
to guarantee anonymous publishing and sharing.

Freenet [3] is a free P2P system that ensures anonymous file sharing, brows-
ing, and publishing. It provides users with freedom of behavior by ensuring their
anonymity. Freenet has its own key-based routing protocol (similar to that of
a DHT), uses symmetric cryptography, and user and communication anonymity
in order to guarantee user privacy.

SwarmScreen [7] is a privacy preserving layer for P2P systems that disrupts
community identification by obfuscating users’ network behavior. SwarmScreen
relies on BitTorrent and was designed to provide user privacy through plausible
deniability. Since a user behavior can be deduced by her interests, SwarmScreen
connects the user to other users outside of her community of interest, which can
disguise her interests and thus her behavior.

Many systems such as ANts P2P|E| and MUTEE have been proposed
as anonymous P2P file sharing softwares. They use anonymity in order to
make the user untrackable, hide her identity and encrypt everything she is send-
ing/receiving from others.

Censorship-resistant systems such as Dagster and Tangler usually use ano-
nymity techniques to hide users identities. Thus, it is not possible to enforce
censorship on data belonging to a specific user.

9 http://usenet-news.net/
10 http://antsp2p.sourceforge.net/
" http://mute-net.sourceforge.net
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2.3 Evaluation

In this section, we evaluate the P2P systems summarized in Table[]] We compare
them in terms of privacy properties guaranteed and techniques used.

Application P2P systems Focus on Relies on Goals
Scalable,
Past Pastry hlighly—avallable7
persistent, and secure
Data storage
storage
Consistent,
i . highly-available,
OceanStore Tapestry durable, and secured
storage
Mnemosyne Protec.tmg data Tapestry Steganographic data
privacy storage
Office SharePoint Partially Document sharing,
Workspace centralized P2P team collaboration
Scalable XML
Piazza Unstructured P2P sharing, data
management system
Massive data . Privacy preserving
- OneSwarm BitTorrent -
sharing data sharing
Dagster Protecting daﬁa Not specified Censorship rgsmtant
from censorship data sharing
Own routing Censorship resistant
Tangler .
protocol data sharing
Protecting user Own routing Ar{onymous file
Freenet X sharing, freedom of
privacy protocol
speech
SwarmScreen BitTorrent Privacy preserving
data sharing

Table 1. Sample of P2P systems

Privacy properties. The data and user privacy properties we analyze are the
following:

— Data protection against unauthorized reads.

Data protection against corruption and deletion.

— Limited disclosure.

Anonymity.

— Denial of linkability. Peers have the ability to deny the links they have with
other peers.

Content deniability. Peers have the ability to deny their knowledge on data
content.

The two last properties are taken from [31].

Tables 2] and [3] provide a comparison of the privacy properties guaranteed by
the P2P systems we evaluate. In these tables, a cell is kept blank when a privacy
property is not guaranteed by the P2P system. N/A is used when information
about a privacy property is not available in the literature.
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P2P Privacy properties guaranteed
Systems . . Protection against Limited disclosure
Protection against .
L corruption and
unauthorized reads . Owners Requesters
deletion
Yes, due to data Yes, due to
Past . access control N/A
digital checksums
(smartcards)
. Yes, due to data Yes, due to
OceanStore |Yes, due to encryption digital checksums access control N/A
Mnemosyne |Yes, due to encryption
Office Yes, due to
. . Yes, due to |access control
SharePoint |Yes, due to encryption
access control and trust
‘Workspace .
techniques
Piazza Yes, due to encryption Yes, due to Yes, due to
access control | access control
Yes, due to
OneSwarm |Yes, due to encryption Yes, due to |access control
access control and trust
techniques
Dagster Yes, due to encryption
Tangler Yes, due to encryption
. Yes, due to data
Freenet Yes, due to encryption digital checksums
SwarmScreen

Table 2. Comparison of P2P systems based on the privacy properties guaranteed

Data protection against unauthorized reads. In order to protect data from unau-
thorized reads, data encryption is used. Data encryption prevents server peers,
and possibly malicious eavesdroppers and routing peers, from reading private
data.

OceanStore, Mnemosyne, Office SharePoint Workspace, Piazza,
OneSwarm, Dagster, Tangler, and Freenet use data encryption. In Mnemo-
syne, Dagster, Tangler, Freenet, and SwarmScreen, data are public. In
Past, servers are not controlled and data are not encrypted, so data are not
protected against unauthorized server reads.

Data protection against corruption and deletion. 1t is hard to prevent data from
being corrupted or deleted. However, data integrity techniques and digital check-
sums can be used to help users to verify if data have suffered unauthorized
changes.

OceanStore and Freenet use digital checksums to verify that data con-
tent has not been tampered with. Past uses smarcards to sign data in order to
authenticate them and verifies if they have been modified or corrupted. Thus, al-
though private data are not protected against corruption and deletion, malicious
changes can be detected. Countermeasures can be taken against malicious peers
in order to demotivate any future corruption. In other systems, data checksums
are not used, so data changes cannot be detected.
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P2P Privacy properties guaranteed, cont.
Syst - -
ystems Anonymity Denial of Content
Authors Servers Readers linkability deniability
Past Yes, due to Yes, due to Yes, due to Yes, due to
Pseudonymity | Pseudonymity | Pseudonymity | Pseudonymity
OceanStore Yes, due. to
encryption
Yes, due to
Mnemosyne i
encryption
Office Yes, due to Yes, due to Yes, due to Yes, due to
. Yes, due to
SharePoint workspaces workspaces workspaces workspaces encrvotion
‘Workspace anonymity anonymity anonymity anonymity yp
. Yes, due to
Piazza .
encryption
iny for (?nly for Yes, dl'le t<.) Yes, due to
OneSwarm third-party third-party |communication encrvotion
monitoring monitoring anonymity yp
Yes, due to Yes, due to Yes, due to Yes, due to
Yes, due to
Dagster anonymous anonymous anonymous anonymous .
. . . . . . . . encryption
communication | communication | communication | communication
Yes, due to Yes, due to Yes, due to Yes, due to Yes. due to
Tangler anonymous anonymous anonymous anonymous en& tion
identities identities identities communication yp
Yes, due to Yes, due to Yes, due to Yes, due to
Yes, due to
Freenet anonymous anonymous anonymous anonymous j
. . . o . s . . encryption
communication identities identities communication
Yes, due to Yes, due to Yes, due to Yes, due to
SwarmScreen anonymous anonymous anonymous anonymous
communication | communication | communication | communication

Table 3. Comparison of P2P systems based on the privacy properties guaranteed,

cont.

Limited disclosure. In order to limit data disclosure, access control is used to

prevent unauthorized requesters from accessing data.
In addition to access control, encryption is used to prevent unauthorized dis-

closure due to collusion between servers and requesters. Even if an unauthorized
requester receives encrypted data, it cannot access data content without having

the corresponding decryption keys.
In addition, trust techniques can be used to make owners feel more comfort-

able about the use of their data as they can verify the trustworthiness of the

requester.

Past and OceanStore use access control to limit disclosure only for autho-

rized data ownersB Freenet, Dagster, and Tangler do not use access control
since the peers are anonymous. Piazza uses access control to limit disclosure for
authorized users. Office SharePoint Workspace and OneSwarm use access
control but also trust techniques, thus, data disclosure is limited not only to
authorized peers but also to trustworthy ones.

User anonymity. Four types of anonymity guarantees are defined in [I0]:
1. Author (i.e., owner) anonymity: which users created which documents?

12 These systems are not meant for massive data sharing, thus information about data
disclosure for requesters is not available.
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2. Server anonymity: which peers store a given document?
3. Reader (i.e., requester) anonymity: which users access which documents?
4. Document anonymity: which documents are stored at a given peer?

Past guarantees author and server anonymity due to pseudonymity techniques.
Each user holds an initially unlinkable pseudonym in the form of a public key.
The pseudonym is not easily linked to the user’s real identity. If desired, a user
may have several pseudonyms to hide that certain operations were initiated by
the same user. Past users do not need to reveal their identity, nor the data they
are retrieving, inserting, or storing.

Office SharePoint Workspace guarantees author, server, and reader ano-
nymity, due to anonymous workspaces. Let us recall that inside workspaces,
anonymity is not preserved.

OneSwarm and SwarmScreen guarantee author and reader anonymity
due to anonymous communication but only from third-party monitoring. In
OneSwarm, users’ identities are known by servers in order to perform access
control, so their anonymity is not guaranteed. Server anonymity is also not
guaranteed because they must be easily located when publishing or requesting
data.

Dagster and Tangler guarantee author, server, and reader anonymity, due
to anonymous communication and anonymous identities. Because all connec-
tions between the server and the owner/requester are over an anonymous chan-
nel, there is no correlation between their identities and the documents they are
publishing or requesting.

Freenet guarantees author, server, and reader anonymity due to anonymous
communication. For reader and server anonymity, while a peer can get some
indication on how early the request message is on the forwarding chain by using
the limit on the number of hops (hop-to-live), the true reader and server are
kept private due to anonymous communication. Author anonymity is protected
by occasional resetting of the data source field in response messages. The peer
appearing as the data source does not imply that it actually supplies that data.

Document anonymity is discussed later.

Denial of linkability. Linkability refers to identifying the correlation between
users. Knowledge on linkability can be denied by using anonymous communica-
tion. Denial of linkability can protect peers from third-party monitoring.

Past uses pseudonymity techniques, thus knowledge on linkability may be
denied by peers. Office SharePoint Workspace guarantees denial of linkabil-
ity outside workspaces due to anonymous workspaces. OneSwarm, Dagster,
Tangler, Freenet, and SwarmScreen guarantee denial of linkability, due to
anonymous communication.

Content deniability. Content deniability refers to whether peers can deny the
knowledge on the content stored or transmitted (document anonymity). Knowl-
edge on content can be denied if the content is not readable by the peer that
holds it.
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In all systems that use data encryption, knowledge on data content can be
denied. This is the case of OceanStore, Mnemosyne, Office SharePoint
Workspace, Piazza, OneSwarm, Dagster, Tangler, and Freenet. In Past
and SwarmScreen, servers can access data, so they cannot deny the knowledge
on the data content they store.

Privacy techniques. The privacy techniques we analyze are the following:

— Access control. Data access can be controlled with respect to the identity of
the user, her role, and the access purpose of the requester.

— Anonymity techniques. A user (resp. a data) is made indistinguishable from
other users (resp. data), thus providing her anonymity among a group of
users (resp. data set).

— Trust techniques. The behavior of users is predicted.

— Cryptography techniques. Data can be made “unreadable” by converting
ordinary information (plain text) into unintelligible cipher text.

Table (] provides a summary of the techniques used to ensure privacy by the
systems we evaluate.

Access control. Access control is essential to guarantee that data will not be read
or shared with unauthorized peers.

In Past, access control is based on the use of smartcards which generate and
verify various certificates. Users may access data or not within the access rights
related to their certificate.

In OceanStore, access control is based on two types of restrictions: reader
and writer restrictions. In the reader restriction, to prevent unauthorized reads,
the data decryption keys are distributed by the data owner to users with read
permissions. To revoke read permissions, the data owner requests users to delete
replicas or re-encrypt them with new encryption keys. A recently-revoked reader
is able to read old data from cached copies or from misbehaving servers that fail
to delete or re-encrypt. This problem is not specific to OceanStore, even in
conventional systems, as there is no way to force readers to forget what has been
read. To prevent unauthorized writes, they must be signed so that well-behaved
servers and clients can verify them against an Access Control List (ACL). The
data owner can define an ACL by datum by providing a signed certificate. ACLs
are public so that servers can check whether a write is allowed. Thus, writes are
restricted at servers by ignoring unauthorized updates.

In Office SharePoint Workspace, access control is based on the use of
membership lists and workspace rules. Users are identified by accounts and
passwords that allow them to log in workspaces. If they can log in a workspace
W, they are listed in the membership list of W. A user can access or remove
data from W as long as she is a member of W and, in addition, respects the
workspace usage rules.

In Piazza, the access to a published XML document is restricted to parts
of the document in accordance with the data owner preferences. Data owners
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Systems - -
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Trust . .
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. colors encryption
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Anonymous Symmetric
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communication encryption N
verifying keys
Random
SwarmScreen N
communication

Table 4. Comparison of P2P systems based on used privacy techniques

in Piazza can specify access control policies declaratively and generate data in-
stances that enforce them. By granting decryption keys to users, the data owner
enforces an access control policy. Once published, the data owner relinquishes
all control over who downloads and processes the data. Requesters can access
the data conditionally, depending on the keys they possess.

In OneSwarm, persistent identities allow users to define per-file permis-
sions. These permissions (i.e., capabilities) restrict access to protected data.
For example, OneSwarm can be used to restrict the distribution of a photo file
to friends and family only.

Anonymity techniques. Anonymity can enable censorship resistance and freedom
of behavior without fear of persecution. Anonymity is mostly used to hide user
identity. If user identity is hidden, access control cannot be deployed. On the
other hand, if anonymous communication channels are used, a channel listener
is not able to understand the messages sent on the channel or who has sent it.
A way to provide anonymity is to give users fake identities. Fake identities
can be ensured by smartcard techniques where the real identity of the user is
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only known by the authority which distributes the smartcards. In this case, the
authority must be considered as a TTP. In Past, smartcards are used to allow
users to obtain necessary credentials to join the system in an anonymous fashion.

Systems like Office SharePoint Workspace organize users into anonymous
groups called workspaces. Users are known within their workspace and they are
anonymous for users in other workspaces. This choice can be explained by the
fact that users do not need to be anonymous to their friends or to co-workers
who are authenticated in order to access their workspace.

In OneSwarm, anonymity is only used to protect a user identity from a
third-party monitoring. Users in OneSwarm perform their queries by using
anonymous routes. However, a server has the complete knowledge of the query
initiator identity, so access control is possible.

Dagster, Freenet, and Tangler maintain privacy by using anonymous com-
munication.

In Dagster, an anonymous channel between owners or requesters and servers
is created by using AnonymizeIE a trustworthy third party (TTP). Instead
of requesting web data directly, a user sends the request to Anonymizer that
forwards the request appropriately. The content is then delivered to Anonymizer
that returns it to the requesting user. Anonymizer can only be used to retrieve
data content and the user is required to trust that it will not reveal her identity
and the requested data content.

In Freenet, rather than moving directly from sender to recipient, messages
travel through peer to peer chains, in which each link is individually encrypted,
until the message finally reaches its recipient. Each peer knows only about
its immediate neighbors, so the end points could be anywhere in the network.
Not even the peer immediately after the sender can tell whether its predecessor
was the message’s originator or was merely forwarding a message from another
peer. Similarly, the peer immediately before the receiver cannot tell whether its
successor is the final recipient or will continue to forward it.

In Tangler, privacy is maintained by using anonymous communication but
also identities. Tangler ensures that a user can retrieve data without reveal-
ing their identity. Users publish documents by anonymously submitting blocks
to servers. Servers can communicate with each other both directly and anony-
mously (by using other servers as a mixed network [6]).

In SwarmScreen, privacy is maintained by using random connections. They
propose a privacy-preserving layer for P2P systems that disrupts community
identification by obfuscating users’ network behavior. Users can achieve plau-
sible deniability by simply adding some percentage (between 25 and 50 %) of
additional random connections that are statistically indistinguishable from nat-
ural ones.

13 Anonymizer is an online service that attempts to make activity on the Internet
untraceable. It accesses the Internet on the user’s behalf, protecting personal infor-
mation by hiding the source identifying information. http://www.anonymizer.com/.
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Trust techniques. Trust techniques are used in P2P systems in order to reduce
the probability of data privacy violation. The right to access data can be given
to peers who are trustworthy and forbidden to peers who are untrustworthy.

Mainly, P2P systems that preserve privacy in distributed data storage do not
trust data servers. The potential malicious behavior of peers that store data (i.e.,
servers) can be prevented with cryptography techniques. The systems analyzed
here use trust techniques to verify trustworthiness of peers who want to access
data stored on servers.

In Past, server peers trust owner peers thanks to a smartcard held by each
peer wanting to publish data in the system. Smartcards are given by TTPs called
brokers who are fully trusted by owner and server peers. A smartcard ensures
the integrity of identifiers and trustworthiness assignment of the user which held
it. Without a TTP, it is difficult to prevent attackers from misbehaving in the
system.

On the other hand, in systems that provide massive data sharing, data owners
are usually considered trustworthy and cryptography techniques are used to
prevent the malicious behavior of servers. These systems are thus interested in
verifying trustworthiness of requesters who want to access private data.

In Office SharePoint Workspace, peers can determine how much can they
trust other peers through their authentication status. A peer A can optionally
organize its contacts by how they were authenticated or check their authenti-
cation status by the color of their name. The names of directly authenticated
contacts, which are trustworthy, are displayed in green. Other contacts in A’s
workspace, which are also trustworthy, are displayed in teal. Contacts in other
workspaces trusted by the A’s domain administrator are displayed in blue. Con-
tacts that are not authenticated are displayed in black, and duplicated names
that conflict are displayed in red. The color of the name can be used in the
verification of trustworthiness of the requester. Requesters who have their name
in black or red are considered untrustworthy and thus they may not gain data
access.

In OneSwarm, data are located and transferred through a mesh of untrusted
and trusted peers populated from user social networks. Peers explicitly define
a trust level for a persistent set of peers. This requires some notion of identity
to allow peers to relate real-world trust relationships to overlay connections.
Public keys can be used as identities in order to verify trustworthiness of the
peers. These public keys can be exchanged in three ways. First, requesters
discover and exchange keys with owners over the local area network. Second,
peers can rely on existing social networks, e.g., Google Talk or Facebook, to
distribute public keys. Third, peers can email invitations to friends. Invitations
include a one-time use capability that authenticates the recipient during an
initial connection, during which public key exchange occurs. OneSwarm also
supports key management within a group. It allows peers to subscribe to one
or more community servers. A community server maintains a list of registered
peers and can delegate trust regarding a subset of their peers.
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Cryptography techniques. Cryptography is largely used by P2P systems in order
to protect private data from unauthorized access. Encryption techniques are
used to prevent malicious servers from reading private data, while digital check-
sums are used to detect if malicious peers are modifying or corrupting private
data.

Usually, symmetric-key encryption is used to protect data content. Symmet-
ric key generation is less expensive than asymmetric key generation. Since a
large number of keys is needed to encrypt data, P2P systems have found more
interest in symmetric-key encryption.

In OceanStore, data are encrypted using symmetric keys. Encryption keys
are distributed to users who are allowed to access data.

In Piazza, published data are encrypted with symmetric keys in order to
restrict peers from accessing data in accordance with the owners’ preferences.

In Freenet, all data are encrypted with symmetric keys before publication.
This is done mainly for political or legal reasons where servers might wish to
ignore the content of the data stored. Data encryption keys are not included in
network messages. Owners distribute them directly to end userﬂ at the same
time as the corresponding data identifiers. Thus, servers cannot read their own
files, but users can decrypt them after retrieval.

In Office SharePoint Workspace, data are encrypted on the commu-
nication channels. Data that may be temporarily stored on servers are also
encrypted using symmetric keys kept by owners, thus preventing potentially
malicious servers from reading data. However, a user has the choice to delegate
her identity management to servers hosted by Microsofﬂ or a TTP. If so, this
one will have access to the encryption keys.

Other systems like Mnemosyne, Dagster, and Tangler use block encryption.

In Mnemosyne, data are divided into blocks. In order to store data, each
block is encrypted using the cryptographic hash function SHA-256 and the Ad-
vanced Encryption Standar (AES), and written to a pseudo-randomly chosen
location. With a good enough cipher code and key, the encrypted blocks will be
indistinguishable from the random substrate, so an attacker cannot even identify
the data. On the other hand, users who have the data name and key can recon-
struct the pseudo-random sequence, retrieve the encrypted blocks, and decrypt
them.

In Tangler, data are broken into a number of small blocks (shares). Each of
these blocks is treated independently and stored on a subset of the participating
servers. Blocks are then entangled with other random blocks, which obscures
the real content of the block and makes it unreadable. In order to reconstruct a
data block, users have to retrieve a minimum number of blocks of the appropriate

14 Freenet does not use access control techniques thus key distribution is not restricted.

5 Microsoft kept their right to collect some information about use of the Office
SharePoint Workspace software and other activities “outside” of workspaces, as ex-
plained in their privacy statement at http://office.microsoft.com/en-us/help/
privacy-supplement-for-microsoft-office-groove-2007-HA010085213.aspx


http://office.microsoft.com/en-us/help/privacy-supplement-for-microsoft-office-groove-2007-HA010085213.aspx
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shares. By simply stripping away the random value, users can find the original
data block.

In Dagster, data are separated into blocks, then the user generates a sym-
metric key for each block. Each block is encrypted with the corresponding key
and sent to servers using anonymous channels. In order to reconstruct data, a
number of blocks is needed along with the decryption keys.

Other systems, such as OneSwarm, combine public key encryption with
symmetric encryption. While symmetric keys are used to encrypt data, public
keys are used to share symmetric keys in a secure manner.

Having private data encrypted prevents unauthorized peers from reading
their content. This contributes to protect data content privacy, although it
does not protect data from being corrupted or deleted. To protect data from
suppression and corruption, cryptographic hash functions (digital checksums)
can be used.

In OceanStore, the data are named using a secure hash over the data con-
tent, giving them globally unique checksums. This provides data integrity, by
ensuring that requested data have not been corrupted, since the checksum of
corrupted data will be different than the globally unique checksum.

In Freenet, when a user publishes data which she later intends to update,
she first generates a public-private key pair and signs the data with the private
key. Data are published under a pseudo-unique binary key (i.e., hash key), but
instead of using the hash of the data contents, the data identifier itself is used
(a signature-verifying key). Signature-verifying keys can be used to verify that
data content has not been tampered with.

In Past, the user smartcard generates reclaim certificates, containing the
data identifiers and included in the user request. When processing a request,
the smartcard of a server peer first verifies that the signature in the reclaim
certificate matches the one in the data certificate stored with the data. This
prevents unauthorized users from reclaiming the ownership of data.

To summarize our evaluation, we can see that depending on the target ap-
plication, the majority of the compared P2P systems guarantee:

Protection against unauthorized reads, by using data encryption.

Protection against corruption and deletion, by using data checksums.

Limited disclosure, by using access control and trust techniques.
— Anonymity and denial of linkability, by using anonymity techniques.

— Content deniability, by using data encryption.

However, these P2P systems do not support purposes. Purpose specification
is essential for privacy protection as recommended by the OECD guidelines, and
should be taken into account in the complete data management cycle.
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Hippocratic databases

Inspired by the Hippocratic oath and its tenet of preserving privacy, Hippo-
cratic databases (HDB) aim at incorporating privacy protection within relational
database systems [2]. The important concepts of HDBs are the following.

— Privacy policies. A privacy policy defines for each column, row, or cell of

a table (a) the usage purpose(s), (b) the external recipients, and (c) the
retention period.

— Privacy authorizations. A privacy authorization defines which purposes each

user is authorized to use on which data.

HDBs define ten founding principles to protect data privacy according to

users preferences .

1.

10.

Purpose Specification. For personal information stored in the database, the
purposes, for which the information has been collected, shall be associated
with that information.

. Consent. The purposes associated with personal information shall have the

consent of the owner of the personal information.

. Limited Collection. The personal information collected shall be limited to

the minimum necessary for accomplishing the specified purposes.

. Limited Use. The database shall run only those queries that are consistent

with the purposes for which the information has been collected.

. Limited Disclosure. The personal information stored in the database shall

not be communicated outside the database for purposes other than those for
which there is a consent of the owner of the information.

. Limited Retention. Personal information shall be retained only as long as

necessary for the fulfillment of the purposes for which it has been collected.

. Accuracy. Personal information stored in the database shall be accurate and

up-to-date.

. Safety. Personal information shall be protected by security safeguards against

theft and other missappropriations.

. Openness. An owner shall be able to access all information about her stored

in the database.

Compliance. An owner shall be able to verify compliance with the above
principles. Similarly, the database shall be able to address a challenge con-
cerning compliance.

In an HDB, queries are submitted along with their intended purpose. Query

execution preserves privacy by using query rewriting and restrictions by column,
row, or cell.

Purpose specification. Purpose specification is the cornerstone of an HDB. It
states that purposes should be specified and attached to data items to control
their usage. In order to do this, simple specification language such as Platform
for Privacy Preferences (P3P) [9] can be used as a starting point. P3P is a
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standard developed by the World Wide Web Consortium. Its goal is to enable
users to gain more control over the use of their personal information on web
sites they visit. P3P provides a way for a Web site to encode its data-collection
practices in a machine-readable XML format, known as a P3P policy [9], which
can be programmatically compared against a user’s privacy preferences [23]. In
[20021] authors propose ideas for reducing the complexity of the policy language
which include arranging purposes in a hierarchy. Subsumption relationships may
also be defined for retention periods and recipients.

Limited disclosure. Limited disclosure is another vital component of an HDB
system. It states that the private data shall not be disclosed for purposes other
than those defined by the data owner. A scalable architecture for enforcing lim-
ited disclosure rules and conditions at the database level is proposed in [25]. For
enforcing privacy policies in data disclosure, privacy policies can be stored and
managed in the database. These policies are expressed in high-level privacy spec-
ification languages (e.g., P3P). Enforcing privacy policies does not require any
modification to existing database applications. Authors provide techniques for
enforcing a broad class of privacy policies by automatically modifying all queries
that access the database in a way that the desired disclosure semantics is en-
sured. They examine several implementation issues, including privacy metadata
storage, query modification algorithms, and structures for storing conditions and
individual choices.

HDB implementation. Subsequent works have proposed solutions for implement-
ing HDBs. In [I], authors address the problem of how current relational DBMS
can be transformed into their privacy-preserving equivalents. From specifica-
tions of privacy policies, they propose an algorithm that defines restrictions (on
columns, rows, and cells) to limit data access. In [4], authors propose query
modification techniques and access control to ensure data privacy based on pur-
poses. They propose to organize purposes in a tree hierarchy where the root
is the most general purpose and the leafs the more specific ones. In this way,
if data access is allowed for a purpose x, all descendant purposes of x are also
allowed. They also propose data labeling (with allowed purposes) at different
granularity levels (table, column, row, or cell). In addition, they propose some
SQL modifications to include purposes, for instance Select column-name From
table-name For purpose-name.

HDBs are the first privacy techniques that include the notion of purpose in
relational databases. They are essential to users who would like to know for
which purpose their data are used. However, enforcing HDBs in P2P systems is
a challenge which we address in the next sections.

4 PriMod

P2P systems analyzed in Section [2f can not be used in our illustrative example on
the medical OLSN, (introduced in Section [1|) where participants are allowed to
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use medical data depending on the purpose specification made by data owners.
Thus, a new privacy solution for P2P-based OLSNs is necessary that:

— Allows to specify access purposes by using HDB principles.
— Limits data disclosure by using purpose-based access control.
— Protects data against unauthorized reads.

— Allows to detect corruption or unauthorized deletion.

PriMod [I5JI817], a data privacy model for P2P systems, is proposed to
answer the need of data owners to share their sensitive data in a P2P system
while preserving data privacy. It makes no assumptions about the P2P system
organization. The unique important hypothesis is that each peer has a unique
identifier in the system for all its Connectionﬂ Figure |1 shows how the pur-
pose notion is mainspring of PriMod functionalities. PriMod allows owners to
specify their privacy policies (PPs) and to publish data for specific purposes and
operations. They can choose between publishing only their data references (e.g.,
filenames, primary keys, etc.) or publishing encrypted data content. Requesters
can search for sensitive data but must specify the access purpose and opera-
tion in their requests, thus they are committed to their intended and expressed
use of data. Requesters can also ask which sensitive data they can access for a
particular purpose.

Specify
PP

Publish
data
content

Search
allowed
references

Purpose
notion

Publish
data
references

Request
data

Fig. 1. Purpose as mainspring of PriMod

16 In [535], authors have treated peer identification. We are fully aware of the impact
of identification on user privacy. However, peer identities do not necessarily reveal
users real identities thus user privacy can be somehow protected.
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To summarize, the PriMod assets are the following:

— It benefits from P2P assets in data publishing and sharing while offering
data privacy protection based on access purposes.

— It can be easily integrated to any P2P system.

— It proposes/uses privacy policies concepts and defines models for trust and

data management.

It offers operations for publishing data content, publishing references, re-

questing, and purpose-based searching.

— Data owners can define their privacy preferences in privacy policies.

— Sensitive data are associated with privacy policies. This association creates
private data ready to be published in the system.

— Requests are always made for particular purposes and operations.

— Trust techniques are used to verify trustworthiness of requester peers.

In the following, Section [{.] presents the privacy policy model of PriMod.
Section presents the data model. Section introduces the functions of
PriMod.

4.1 Privacy policy model

In PriMod, each data owner should define her privacy preferences. Those privacy
preferences are registered in PPs independently of data. Once defined, they are
attached to appropriate data. PPs are dynamic because they can vary with
time. For instance, at the end of the medical treatment, a doctor will only
allow reading access to other doctors for analyzing the patient medical record.
Updating diagnosis will not be allowed anymore. We consider that each owner
is responsible for defining and maintaining her PPs in an independent way.

Inspired from the Platform for Privacy Preferences (P3P) [9], Figure [2| shows
a PP model. This model does not claim to be exhaustive, but shows information
about PPs that can include:

Authorized Users. It is a list of users who are authorized to access data, a kind
of ACL. A user can be an individual or a group.

Purpose. An access purpose states the data access objective. With this concept,
an owner is able to specify the purposes for which its data can be accessed by
users.

Operations. An operation determines what a peer can do with data. We use
three basic operations, read, write, and disclose, but others can be defined.

— Read. A peer can read the data content.

— Write. A peer can modify the data content with the following operations:
insert, update, delete.

— Disclose. A peer is able to disclose shared data for other peers. Disclosure
can be limited or unlimited. If a peer disclosure right is limited, it cannot
give disclosure rights on the data to other peers.
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Fig. 2. Privacy policy (PP) model

Conditions. Conditions state the access conditions a user should respect, the
obligations a user should accomplish after accessing data, and the limited time
for data retention.

— Access condition. Conditions state under which semantic condition data
can be accessed. This may concern data values, for example age>10.

— Obligation. Obligations state the obligation a user must accomplish after
the data access. For example, researcher Ri should return research results
after using the patient records.

— Retention time. The retention time states the time limit of retention of
the data. For example, the local copy obtained by a requester of a patient
record should be destroyed after 1 year of use.

Minimal trust level. It is the minimal trust level a requester peer should have in
order to gain access to data.

4.2 Data model

In order to respect PPs, they should be associated with data. In the following,
we use relational tables, however any type of data can be considered (files, XML
documents, rich text files, etc.).

Data table. Each owner peer stores locally the data it wants to share (see Table
5). Those data can be stored in relational tables called data tables. The unique
restriction about data tables is that primary keys should be generic and imper-
sonal to respect privacy and to not disclose any information. If considered data
are files, their identifiers or names should be impersonal.
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Data table DT}

Id (PK) SS Name [Country [ Birthdate | Gender | Smoker | Diagnosis
NO

Patl 001044001001 Alex France 2000 Male No cardiovascular
disease
NO

Pat2 900344001001 Bea France 1990 Female No cardiovascular
disease

Table 5. Data table of doctor Dj

Privacy policy table. Data contained in PPs are stored in a table named privacy
policies table (see Table@. To simplify, all elements of Figureare not included.
In this table, one tuple corresponds to one PP. The same PP can be used with
different data. Each policy contains operations (read, write, or disclose), allowed
users, access purposes, conditions (if they exist), and the required minimal trust
level of allowed users.

Privacy policy table PPTj
Id (PK) Operation User Purpose Condition Minimal
trust level
PP1 Read Pharmacists, Consulting Birthdate < 2000 0.5
Doctors record
Researching on
PP2 Read Researchers cardiovascular — 0.6
disease

Table 6. Privacy policy table of doctor Dj

Purpose table. Information about the available purposes are stored in a table
named purpose table. A tuple of the purpose table contains the purpose identifier,
the purpose name, and the purpose description. We recall that in HDB, purposes
can be organized in a hierarchy. To simplify, in PriMod, we make abstraction of
such hierarchy.

Trust table. Each peer maintains a local trust table that contains the trust level
of some peers in the system. A tuple of the trust table contains the identifier of
a peer, its trust level, and a cell defining if this peer is consider as a friend or
not locally.
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Private data table. This table joins data to privacy policies. It allows fine-grained
access control by specifying which table, column, line, or cell can be accessed
by preserving which privacy policy. For instance, in PD1 of Table [7] only some
columns of the data table DTj (those who do not disclose patients identities) are
concerned by the privacy policy PP1 where pharmacists and doctors can read
records of patients who were born before 2000.

Private data table j

Id (PK) Data Privacy
Table Column Id| Policy
PD1 DTj Birthdate, Gender, Smoker, Diagnoses PP1
PD2 DTj |[Country, Birthdate, Gender, Smoker, Diagnosis PP2

Table 7. Private data table of doctor Dj.

Purpose-based data reference table. To ease data searching, a purpose-based in-
dex is necessary. Information about the references of data allowed for particular
purposes and operations for particular requesters are stored in a table named
purpose-based data reference table (PBDRT for short). This purpose-based index
allows requesters to know which data they can accessed for a particular purpose
and operation. Each tuple of this table is identified by a key, obtained for in-
stance by hashing the couple (purpose, operation) (see Table . Besides the
key, a tuple contains the identifiers of requesters and the list of data references
the are allowed to access.

Purpose-based data reference table j (PBDRT j)
Key (PK) requesterID DataRefList
hash(diagnosis, write)| Doctorl {DataRefl}
Doctor2 {DataRefl, DataRef2}
hash(research, read) Doctorl {DataRefl}
Scientist1 {DataRefl}
Scientist2 [{DataRefl, DataRef3, DataRef5}
hash(accessing, read) Patient1 {DataRefl}
Patient2 {DataRef2}
Patient3 {DataRef3, DataRef5}

Table 8. Purpose-based data reference table (PBDRT) of doctor Dj.
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4.3 PriMod functions

PriMod proposes the next set of functions.

Publishing data. PriMod provides two ways of publishing sensitive data indi-
cating the PP that users should respect. An owner may choose to publish her
data content or only data references. In the first case, data storage is protected
from malicious servers by using cryptography techniques. In the second case,
there is no need of data encryption since references do not show any private
information about the data if they are well-chosen (i.e., personal information
such as security numbers and addresses should not be used in references).

Boolean publishData(data, PPId). Owner peers use this function to publish data
content in the system. The second parameter is the privacy policy that dictates
the usage conditions and access restrictions of the published data. This function
returns true if data content is successfully distributed, false otherwise. It is
similar to a traditional publishing function. To protect data privacy against
potential malicious servers, before distribution, data content is encrypted (by
using symmetric cryptography) and digital checksums are used to verify data
integrity. Symmetric keys are stored locally by the owner. Requesters must
contact owners to retrieve keys and decrypt requested data.

Boolean publishReference(data, PPId). Owner peers use this function to publish
data references in the system while data content are stored locally. This func-
tion returns true if data references are successfully distributed, false otherwise.
Servers store data references and help requesters to find data owners to obtain
data content. Publishing only data references allows owners to publish private
data while being sure that data content will be provided to right requesters.
This hypothesis can not be guaranteed in the previous function because mali-
cious servers may misbehave by returning encrypted data to unauthorized peers.

Requesting data. For requesters, how data have been published is transparent
and a unique function to request data is proposed by PriMod.

Data request(dataRef, purpose, operation). Requester peers use this function to
request data (dataRef) for a specific purpose (e.g., researching, diagnosis, or
analysis) to perform a specific operation (i.e., read, write, or disclose). This
function returns the requested data if the requester has corresponding rights,
otherwise it returns null. This function compels requesters to specify the access
purposes and the operations that they have the intention to apply to requested
data.

This explicit request is the cornerstone of this work, it commits requesters to use
data only for the specified purposes and to perform only specified operations.
Legally, this commitment may be used against malicious requesters if it is turned
out that obtained data have been used differently.



27

Guaranteed properties
P2P Model Protection against | Protection against Limited disclosure Content
unauthorized corruption and deniability
X Owners | Requesters
reads deletion
. Yes, due to Yes, due to data Yes, due Yes, due to
PriMod . . to access .
encryption digital checksums control encryption
Privacy Techniques
. Trust Data _ Data
Access control Anonymity . R integrity
techniques | encryption .
protection
Use of . Use of
Use of |Symmetric content
purpose-based . .
trust levels|encryption | hashing as a
access control
checksum

Table 9. PriMod: used privacy techniques and guaranteed properties

TrustLevel searchTrustLevel(requesterID). Owner peers use this function to search
the trust level of the requester requesterID. This function returns the trust level
of the requester if it is found else it returns null. This trust level is used in the
requesting process to verify the trustworthiness of the requester in order to give
him access rights.

Purpose-based reference searching. PriMod provides users with a function
for purpose-based reference searching based on the PBDRT. This function allows
requesters to know which data they are authorized to request for a particular
purpose and operation. This prevents users from denying knowledge about their
access rights. The allowed data reference lists (contained in the PBDRT) can
be created transparently while publishing data. These lists can be published
periodically in the system.

DataRefList dataRefSearch(purpose, operation). Requester peers use this func-
tion to know the data they are authorized to access for a specific purpose and
operation. This function returns a list of data references of data the requester
is authorized to acces (dataRefList). If the list is empty, the function returns
null. This request by peer protects privacy because it avoids that all users know
which are the access rights of other users and know the complete list of available
data (global schema).

4.4 Analysis

Table [9] compares PriMod to works shown in Section

— Private data in PriMod are protected against malicious reads, corruption,
and deletion by using encryption and data checksums.
— Data disclosure is limited by using access control only for requesters.
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— Unlike all the models presented, the notion of purpose is omnipresent in
PriMod.

— PriMod does not guarantee anonymity since it is not designed to protect
user behavior but only data privacy.

— Trust levels are used to prevent malicious behavior of requesters.

5 PriServ

PriServ is a privacy service that implements PriMod. Figure [3] shows the Pris-
erv’s architecture, which is on top of a DHT layer. This DHT layer has two
functional components: one is in charge of the routing mechanism that supports
the lookup() function as well as the dynamicity of peers (join/leave of peers); the
other ensures key-based data searching and data distribution by implementing
the put() and get() functions. These two layers provide an abstraction from the
DHT.

Application

APPA Services

put(key, object) get(key)

Distributed Storage

L
p

lookup(key)
Overlay DHT-based P2P Network

DHT Layer

Internet

Fig. 3. Global architecture

Conceptually, PriServ is an APPA (Atlas Peer-to-Peer Architecture) service
[3]. APPA is a data management system for large-scale P2P and Grid applica-
tions. The PriServ implementation uses Chord for its efficiency and simplicity,
however, any DHT can be used. PriServ uses the traditional get() and put()
functions of DHTSs to locate and publish data, each incurring O(logN) messages.

— put(key, data) stores a key k and its associated data object in the DHT.
— get(key) retrieves the data object associated with k in the DHT.

Data keys in PriServ are created by hashing the triplet (dataRef, purpose,
operation). We consider that dataRef is a unique data reference, purpose is
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the data access purpose and operation is the operation that can be executed on
requested data with respect to the corresponding privacy policy. Thus, the same
data with different access purposes and different operations have different keys.

5.1 PriServ architecture

Figure [ shows the component-based architecture of PriServ. It provides five in-
terfaces to the application layer: publishReference(), publishData(), request(),
dataRefSearch(), and dataRefPut(). The first four correspond to PriMod op-
erations. The last one allows users to construct a distributed purpose-based
index used in the dataRefSearch() function. PriServ also provides two retrieve
functions necessary for the interaction between requesters and owners. As said
before, it uses the two traditional interfaces of the DHT layer (put() and get()).

Application Layer

boolean dataRefList | l
" 3 _ > data request(dataRef, purpose, > A )
boolean publishReference( publishData( operation) dataRefSearch( dataRefList dataRefPut( )
data, PPID) data, PPID) purpose, operation)
PriServ Service
nuik pr——
key createKey(dataref, (g
purpose, operation) borolean check(data, checksum) Data Checksum
L) @ manager
Key manager | key createKeyPriServ(dataRef, e = 9
purpose, operation, requester) - cipherKey get(data, PP)
)
4
data decode(
Policy boolean check(PPID, requester) o cipherData, cipherKey) Clp he r mana ge r
\4
manager userPrivacyPolicy cipherData encode(data, PP)
getUserPrivacyPolicy(PPID) (g
o
time getCurrentTime() Time
privacyPolicy get(PPID) o Priserv @ manager
boolean localPut(data, PPID,
] orchestrator userPrivacyPolicy, ACL, owner, key)|
Trast Trust searchTrustLevel(requester) Py
Levels manager — b boolean distributedPut(
P data, cipherData, PPID,
void m(tlla_llzeﬁogg,er(/oggen ® userPP, ACL, owner, key) —
Sl (5EY) boolean putindexContent( e/gz;llve
Log ——— A content, key) DATA
Local logResult getLog(dataRef) g
manager ® o localData localGet(key) Stora ge
Id getldFromName(String name) dataP2P distributedGet(key) manager
ld manager hd ~ dataRefList getList(key)
4
ownerData retrieve(key, requester, checksum) o @ data retrieve(key, requester) > 9
boolean put(key, dataP2P) dataP2P get(key)
Sensitive
ayer b
DATA

Fig. 4. PriServ architecture
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Inside PriServ, several components are gathered around an orchestrator which
organizes PriServ activities. The orchestrator may execute three different work-
flows depending on the role of the peer (owner, requester, or server/storer).

Storage manager. Its role is to manage data storage. Data storage is made
locally before data are stored in the P2P system. To store data in the P2P
system, this component invokes the put() and get() functions of the DHT layer.

Policy manager. Its role is to manage owner PPs. Data owners organize their
privacy preferences in PPs. From PPs, this component creates “user privacy
policies” that should be respected by requesters. From PPs, this component
extracts the list of authorized users. This list is a kind of access control list
(ACL) that contains only allowed users. To simplify, we consider that users may
belong to groups, so, this ACL contains mainly a list of groups of users and
maybe some individual users known in advance.

Trust manager. Its role is to manage trust levels. We consider that each peer
stores locally a list of peers and their corresponding trust levels. If a required
trust level does not exist locally, the trust manager asks for it to other peers.
In PriServ, three ways of obtaining trust levels are used, namely, with-friends,
without-friends, and with-or-without-friends. Section explains those algo-
rithms.

Cipher manager. Its role is to manage cryptography in PriServ. It offers a
function that creates a symmetric cipher key for each pair (data, PP). It also
offers two functions to encrypt and decrypt data. In this work, symmetric-key
algorithms can be used because they are generally much less computationally
intensive than other cryptography algorithms. However, PriServ is independent
of the encryption technique used.

Data checksum manager. Its role is to check the integrity of data. This compo-
nent offers a function to calculate digital data checksums (e.g., by using MD5).
Digital checksums can be used by owners to verify if servers have tampered
with the data. PriServ is independent of the techniques used to create data
checksums.

Key manager. Tts role is to generate data keys used in the put() and get()
functions. It creates data keys by hashing the triplet (data references, purposes,
operations). This component offers two functions, the first one, used during the
put() process, returns the created data key and the second, used during the get()
process, returns the created data key and adds it the identifier of the requester.

Id manager. Its role is to identify peers from their names (e.g., URI). Peer
identifiers are used in access control to authorize or prohibit access to data.

Log manager. Its role is to manage logs. It stores logs in a dedicated database
on each peer. These logs can be used for recovery and auditing process.
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Time Manager. Its role is to give the current time. It is used for synchronizing
clocks of all connected peers.

PriServ orchestrator. 1t is the central component of PriServ. According to the
role of the peer, the orchestrator executes a different workflow by using the
components introduced before.

— Owner orchestrator. Its role is to orchestrate the owner functionalities.
It is responsible for publishing in the P2P system references or data depend-
ing on the called function (publishData() or publishReference()). It is also
responsible for directly returning data or symmetric keys during the request-
ing process (retrieve()). It interacts with the application layer for publishing
and with the requester orchestrator for retrieving.

— Requester orchestrator. Its role is to orchestrate data requesting. It
interacts with the application layer for requesting and with the owner or-
chestrator for retrieving.

— Server orchestrator. Its role is to orchestrate the server functionalities.
For that, it interacts with the DHT layer to store data for the P2P system
and to return stored data.

5.2 PriServ mean functions

PriServ implements the PriMod functions so it offers to the application layer two
ways for publishing and allows searching data and data references for a particular
purpose and operation. The main procedures are publishReference(), publish-
Data(), request(), dataRefSearch(), dataRefPut(), and searchTrustLevel(). All
but the last function use the DHT organization. The searchTrustLevel() function
uses instead an unstructured P2P approach as we will see latter.

In the following, consider 6 peers with identifiers PQﬂ P25, P31, P33, P51,
and P60. Consider also that:

— P23 is an owner peer.
— P31 and P25 are requester peers.
— P33, P51, and P60 are server peers.

Boolean publishReference(data, PPId). Owners use this function to publish data
references under a particular PP. Publishing only data references and storing
data locally allow owners to provide themselves their data to right requesters.

When the owner orchestrator receives the publishReference() call from the
application, it uses the algorithm shown in Figure [f] to publish data references
in the P2P system and to store data locally. The object sent to the P2P system
contains the conditions that data requesters should respect (userPP) when using
the data (see Figure , the ACL that servers should verify, and the owner id of
the data reference.

17 To distinguish data keys from peer keys, we prefix peer keys with letter P.
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Owner orchestrator

0 publishReference(data, PPID)

1 begin

2: privacyPolicy = policyManager.get (PPID);

3: userPP = policyManager.getUserPrivacyPolicy(PPID) ;

4 key = keyManager.createKey(data.dataref, privacyPolicy.purpose,
privacyPolicy.operation) ;

5: storageManager.localPut(data, PPID, userPP, privacyPolicy.ACL,
owner, key);

6: key2 = keyManager.createKey(null, privacyPolicy.purpose,

privacyPolicy.operation) ;
T: storageManager.addRef (key2, data.getDataref(), privacyPolicy.ACL);
8: end;

Owner storage manager
9:  localPut(data, PPID, userPP, ACL, owner, key)

10: begin
11: dataTable.localSave(data);
12: privateDataTable.localSave(data.dataRef, PPID);
13: dataP2P = createDataP2P(userPP, ACL, owner);
14: DHT.put (key,dataP2P);
15: end;
Fig. 5. Algorithm of the publishReference() function
P23 Private table publishReference(d1,pP1) P23
Key | Privacy Policy | etc. publishReference(d1,PP2) Qwner P31
34 PP1 — | publishReference(d2,PP1)
20 PP2 . put(34, dataP2P1) Requester
58 PP3 put(40, dataP2P2)

P23 Trust table

RequesterlD | TrustLevel Friend
P31 0.65 No
P51 0.85 Yes
P60 0.30 No

Data keys

hash1(dri1, purpose1, operation1) = 34
hash1(dr1, purpose2, operation1) = 40
hash1(dr2, purposel, operation2) = 58

P51

P60 Server
P2PDatal = (userPP, P23, {P51}) Server P51 Reference table
P2PData2 = (userPP, P23, {P31}) Koy | Ownor| userPP | ACL
P2PData3 = (userPP, P23, {P51}) P60 Reference table 32 P23 P51
di=datai Key | Owner [userPP|ACL 20 P23 P31
dr i = data reference of resource i 58 P23 - [P35t

Fig. 6. Example of the publishReference() function
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Figure[0]illustrates this algorithm. P23 shares data with keys 34, 40, and 58.
hashl is used to produce these keys from data identifiers (IDri), purposes, and
operations. From the DHT principle, P51 is the server peer responsible for key
34 and 40 and P60 for 58. Only data references of P23 are published with its
identifier by using the put function.

Boolean publishData(data, PPId). Owners use this function to publish data con-
tent under a particular PP (PPId). To protect data privacy against potential
untrusted servers, before distribution, data content is encrypted (by using sym-
metric cryptography), and digital checksums are used to protect data integrity
from servers.

When the owner orchestrator receives the publishData() call from the appli-
cation, it uses the algorithm shown in Figure [7] to publish the data content in
the P2P system and to store locally a copy of the data.

Owner orchestrator

0 publishData(data, PPID)

1 begin

2: privacyPolicy = policyManager.get (PPID);

3 userPP = policyManager.getUserPrivacyPolicy(PPID) ;

4 key = keyManager.createKey(data.dataref, privacyPolicy.purpose,

privacyPolicy.operation) ;

5: cipherData = cipherManager.encode(data, privacyPolicy);
6: storageManager.distributedPut(data, cipherData, PPID,
userPP, privacyPolicy.ACL, owner, key);
7: key2 = keyManager.createKey(null, privacyPolicy.purpose,
privacyPolicy.operation);
8: storageManager.addRef (key2, data.getDataref(), privacyPolicy.ACL);
9: end;

Owner storage Manager
10: distributedPut (data, cipherData, PPID, userPP, ACL, owner, key);

11: begin

12: dataTable.localSave(data);

13: privateDataTable.localSave(data.dataRef, PPID);

14: dataP2P = createDataP2P(cipherData, userPP, ACL, owner);
15: DHT.put (key, dataP2P);

16: end;

Fig. 7. Algorithm of the publishData() function

Figure [§] illustrates this algorithm. P23 shares data with keys 36, 42, and
59. hashl is used to produce keys from data identifiers (IDri), purposes, and
operations. P51 is the server peer responsible for key 36 and 42, and P60 for
key 59. P2P data are created by P23 by encapsulating encrypted data, the
P23 identifier, and the corresponding ACL that contains requesters’ identifiers
allowed to access this data. Then, P2P data are published by using the put
function.
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publishData(d3,PP1)
publishData(d3,PP2)
publishData(d4,PP3)

P23 Private table

K Privacy Encrypted | Decryption
Y Policy ACL Data Key

36 | PP1 {P25} 43" Sk11

42 | PP2 {P27,P31} Sk12

59 | PP3 (P60} d4" Sk22

Data keys

hash1(dr3, purpose1, operation1) = 36
hash1(dr3, purpose2, operation1) = 42
hash1(dr4, purpose1, operation2) = 59

P2PData1= (d3", userPP, P23, {P25})

P2PData2= (d3", userPP, P23, {P31, P27}) P60 Server
P2PData3= (d4", userPP, P23, {P60}) Server P51 Reference table
Key | Encrypted
P60 Reference table Data | userPP[Owner|  ACL
Key | Encrypted | yserpp| owner| AcL 36 d3" — | p2s {P25}
Data 42 (P27, P31}
59 d4" - | P23 [tPe0y

Fig. 8. Example of the publishData() function

Data request(dataRef, purpose, operation). Requesters use this function to re-
quest data (dataRef) for a specific purpose to perform a specific operation. This
function compels requesters to specify the access purposes and the operation
that they will apply to requested data. When a requester orchestrator receives
the request() call from the application, it uses the algorithm shown in Figure @
For requesters, the way data have been published is transparent (publishData
or publishReference), so they always use this request function.

Figure illustrates the data requesting algorithm on the example where
encrypted data are published (see Figure . P31 requests data for purpose2 and
operationl that corresponds to key 42, so the storage manager does a get(42).
The peer which identifier is equal to or follows 42 is P51. P51 returns P23 which
is the owner peer of 42 and the encrypted data corresponding to 42. In this
example, we consider that P51 misbehaves and returns a corrupted data cr’3.
P31 calculates a checksum of the received data, then it contacts directly P23 to
retrieve the decryption key corresponding to 42 (retrieve(42, P31, checksum)).
P23 verifies the information contained in the privacy policy of 42 (PP2). In this
example, consider that the trust table of P23 contains the trust level of P31 that
we suppose is 0.7. As the trust level of P31 is higher than the level required in
PP2 that is 0.6 (see Table|§[)7 the access is granted. P23 calculates the checksum
of the data corresponding to 42 and compares it to the checksum value sent by
P31. P23 finds out that the checksums are not equal and deduces that someone
has misbehaved. Since P31 has a corrupted data, P23 sends the encrypted data
with the encryption key.

During the request process, the servers do an access control based on the ACL
sent by the owner during the publishing process. The data owner is always con-
tacted by the requester either to request the data content (if only references have
been published) or the decryption key (when encrypted data content have been
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Requester orchestrator

0:

1
2:
3 .

O 00 N O O

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

data request(dataRef, purpose, operation)
begin
data = null;
key = keyManager.createKeyPriServ(dataRef, purpose,
operation, requester);
dataP2P = storageManager.distributedGet (key) ;
if (dataP2P contains cipher data) then
checksum = dataCheckSumManager.getCheckSum(dataP2P.cipherData);
ownerData = dataP2P.owner.retrieve(key, requester, checksum);
if (ownerData contains a cipherKey) then
data = cipherManager.decode(dataP2P.cipherData,
ownerData.cipherKey) ;
else
if (ownerData contains data) then
data = ownerData.data;
end if;
end if;
end if;
if (dataP2P contains a data reference) then
data = dataP2P.0Owner.retrieve(key, requester);
end if;
return data;
end;

Requester storage manager

21:
22:
23:
24 :
25:

dataP2P distributedGet (key)
begin
dataP2P = DHT.get (key);
return dataP2P;

end;
Fig. 9. Algorithm of the request() function
request(dr3, purpose2, operation)
hash1(dr3, purpose2, operation1) = 42
searchTrustL(P31,0) = ")
if TL(P31)>0,60 P23 checksum = getCheckSum(d3")
P23 Private table then access granted Owner P31
Key Privacy ACL Encrypted Decryption
Policy Data Key Requester
36 | PP1 {P25} d3" Sk11
42 | PP2 {P27,P31} Sk12
59 | PP3 {P60} d4" Sk22
81, userPP,P23)
Data keys

hash1(dr3, purpose1, operation1) = 36
hash1(dr3, purpose2, operation1) = 42
hash1(dr4, purposel, operation2) = 59

P51
P60 Server

Server P51 Reference table
P60 Reference table Key E”S;Y‘Z‘ed userPP| Owner ACL
Key | Encrypted | serpp| Owner| ACL
Data ﬁ d3" - P23 (P25}
59 | d4" | - | P23 [{P60} 42 (P27, P31}

Fig. 10. Example of the request() function
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published). Before retrieving data, owners check the trust level of requesters as
you will see in the function searchTrustLevel().

To use this request function, it is necessary to know the references of available
data in the system. This information is maintained in an index that can be
centralized or distributed (see Section. A centralized index represents a point
of failure and potential bottlenecks. Besides, it implies to trust one single peer (or
server) that has the control and the responsibility of maintaining this important
meta-information. We argue that when preserving privacy, the distribution of
control is essential, which is why PriServ implements a distributed index.

DataRefList dataRefSearch(purpose, operation). PriServ implements the purpose-
based reference searching function of PriMod. The index represented by PBDRT
(see Table[8)) in PriServ is implemented in a distributed way by using the DHT
organization. The couple (purpose,operation) is hashed to create the keys of
the index. Keys are assigned to peers that are responsible of maintaining in-
formation about the peers that can request data for the purpose and operation
represented by the key. The hash function used to produce these keys may be
different from the one used to publish data. Thus, each peer maintains a PB-
DRT of all the keys for which its id is the closest in the DHT organization, which
gives a partial view of the global index.

During the publishing process, the key for the purpose and operation is cre-
ated and a new data reference is added to the PBDRT index (a) when publishing
references (lines 6-7 of Figure |5) and (b) when publishing encrypted data (lines
7-8 of Figure@. The addRef() function used by owners during publishing follows
the algorithm of Figure

Owner storage manager

0 addRef (key, dataRef, ACL)

1 begin

2: dataP2P=createDataP2P(dataRef, ACL);
3 DHT.put (key, dataP2P);

4 end;

Fig.11. Algorithm of the addRef() function

When the requester orchestrator receives the dataRefSearch() call from the
application, it uses the algorithm shown in Figure[I2] The requester orchestrator
asks the key manager to create a key by hashing the purpose and the operation.
Then, it asks its storage manager to obtain the data references it has access
rights for the specified purpose and operation from the P2P system. The storage
manager gets the data reference list corresponding to the key by invoking the
get() function of the DHT.

Figure [13] illustrates the dataRefSearch() function. P25 requests data ref-
erences it has right access for purposel and read that corresponds to key 37
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Requester orchestrator
0: dataRefList dataRefSearch(purpose, operation)

1 begin

2: dataRefList = null;

3 key = keyManager.createKeyPriServ(null, purpose, operation,
requesterID);

4: dataReflList = storageManager.getList (key) ;

5: return dataRefList;

6: end;

Requester storage manager
7: dataReflList getList(key)

8: begin

9: dataRefList = DHT.get (key);
10: return dataReflist;

11: end;

Fig. 12. Algorithm of the dataRefSearch() function

(get(37)). The peer whose identifier is equal to or follows 37 is P51. P51 returns
the data reference list {dri, dr8} corresponding to key 37 and requester P25.
You can see that P25 can request drl for which owner is P23 but also dr8 for
which owner is not shown in the figure.

To optimize the update of the index, a periodic publication of references can
be done by using the dataRefPut() algorithm shown in Figure The idea is
that, if an owner publishes many data for the same (purpose, operation) only one
update is done. For that, a local PBDRT is maintained and flushed periodically.
With this periodical update, lines 6-7 of Figure [5| (resp. lines 7-8 of Figure
should be suppressed. See the local PBDRT of P23 in Figure

The last function that PriServ implements focuses on searching the trust level
of requesters. PriServ uses trust levels to make the final decision of sharing or not
data. The trust level reflects a peer reputation wrt other peers. A peer can have
different trust levels at different peers. The peer reputation influences its trust
level. Peers which are suspicious have lower trust level than peers considered
as honest. A peer can have locally the trust levels of some well known peers or
peers it has interacted with. If a peer P does not have a particular trust level
it can ask for it to its friends. A friend is a peer considered as honest from the
point of view of P and the number of friends can vary from one peer to another.

The implementation of the searchTrustLevel() function does not use the DHT
organization, but uses an unstructured overlay. Thus, this function has been
redefined to take into account a Time To Live (TTL).

TrustLevel searchTrustLevel(requesterID, nestedLevel). Trust levels are consid-
ered in the range [0..1]. A peer with a trust level of 1 is completly trustworthy.
A peer with a trust level of 0 has very bad reputation. During requesting, if
the trust manager of the data owner has the trust level of the requester it does
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dataRefSearch(purpose1, read) P25

Requester

hash2(purpose1, read) = 37
Local PBDRT of P23

Key requesterlD | DataRefList
dr1
hash2(purpose1, read) = 37 :i a2 P31
hasho A drt P23 Requester
ash2(purpose2, write) = 5. P31 o Owner

{dr1,dr8}

P51
Server
Global PBDRT of P51
Key |requesterlD | DataRefList

P25 dr1, dr8
P60 dr2

Global PBDRT of P60 P60
Key [ requesterlD | DataRefList Server
50 p27 dr1

P31 dr1, dr5, dr9

37

Fig. 13. Example of the dataRefSearch() function

Owner orchestrator

0 dataRefPut ()

1 begin

2 for each key i contained in the localPBDRT do

3: contentKey = localPBDRT.getContent (key);

4: storageManager .putIndexContent (contentKey, key);
5 end for;
6 end;

Owner storage manager
7:  putIndexContent(contentKey, key)

8:  Dbegin

9: dataP2P=createDataP2P (contentKey) ;
10: DHT.put (key, dataP2P);

11: end;

Fig. 14. Algorithm of the dataRefPut() function
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not have to contact other peers. Otherwise, PriServ defines three methods for
searching the requester trust level. Choosing one of them depends on the num-
ber of friends of the owner. Briefly, the three methods are explained below, and
only the algorithm of the first one is presented. More details can be found in

[16].

© 00 ~NO O WN - O

18:
19:
20:
21:
22:
23:

24:
25:
26:
27:

trustLevel searchTrustLevel(requesterID, nestedLevel)
begin
requesterTrustlLevel = 0;
if (nestedLevel has reached maxDepth) then
if (trustLevel of requesterID in trustTable) then
requesterTrustLevel=trustLevel of requesterlID;
else
return -1;
end if;
else
if (trustLevel of requesterID in trustTable) then
requesterTrustlLevel=trustLevel of requesterID;
else
nestedLevel is incremented;
nbPeersContacted = 0;
for each friend do
FTL = trustLevel of friendID;
RTL = friendTrustManager.searchTrustLevel(requesterID,
nestedLevel) ;
if (RTL !'= -1) then
FTL*RTL is added to requesterTrustLevel;
nbPeersContacted is incremented;

end if;
end for;
requesterTrustLevel = requesterTrustLevel/
nbPeersContacted;
end if;
end if;
return requesterTrustLevel;
end;

Fig. 15. Algorithm of the searchTrustLevel() function: with-friends version

With-friends algorithm. This version of the searchTrustLevel function considers
that each peer has at least one friend (Figure . With this assumption, the
data owner asks its friends for the trust level of the requester. Each received
trust level (RTL) is weighted with the trust level (FTL) of the sending friend.
The final trust level is computed from the received trust levels as the average,
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the maximum, the minimum, etc. This searching is recursive. If a friend does
not have the requested trust level, it asks for it to its friends and the number
of nested levels (nestedLevel) is incremented. Recursion is limited to maxzDepth.
The maximum number of contacted friends can also be limited to a predefined
number.

Without-friends algorithm. In this algorithm, we consider that peers have no
friends. In this case, data owners ask for the trust level of the requester to the
subset of known peers from the DHT, i.e., their finger table .

With-or-without-friends algorithm. Here, peers may have friends or not and
priority is given to ask for trust levels to friends. If a data owner has some
friends, it asks them for the trust level by using the with-friends algorithm, else
it asks the peers in its finger table by using the without-friends algorithm.

5.3 PriServ validation

We validated PriServ in three steps, with costs analysis, simulations, and im-
plementation of a Java prototype. The costs analysis and results of simulation
with SimJava are presented next, the prototype is presented in Section [f]

Publishing costs. Publishing data in the system conserves the logarithmic cost of
the traditional put function. By using the DHT, O(logN) messages are needed
to publish each key. In PriServ, the number of keys is equal to the number of
entries (ept) of the private data table. Additional costs induced by the cipher
key generation and the data encryption are negligible wrt. the network costs.
Thus, the publishing cost is:

ept

Cpublish = ZO(logN) = O(ept * logN)
i=1

The maximum value of ept is equal to the number of shared data (nbData)
multiplied by the number of purposes (nbPurpose) multiplied by the number of
operation (nbOperation). At worst, each data item is shared for all purposes
and all operations:

CMazx pypiisn = O(nbData x nbPurpose x nbOperation * logN)

We can see that the number of purposes and operations affects the publishing
cost. Previous studies have shown that considering ten purposes allows to cover a
large number of applications [30J24]. Used with ten purposes (by data item) and
three operations (read, write, and disclosure), PriServ incurs a small overhead.
Overall, the publishing cost remains logarithmic.
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Requesting costs. Concerning the requesting cost, it is the addition of two costs:
get() cost and the retrieving cost. We disregard access control, checksum calcu-
lation, and decryption costs, which are negligible wrt. network costs. The get()
cost is in O(logN) and the server returns its answer in one message. For data
retrieval, a requester needs one additional message to contact the data owner
that answers in another message.

To summarize, the requesting cost is:

CRequesting = CpHTGet + CRetrieving
=O(logN)+1+2
=O(logN) +3
= O(logN)

Trust level searching cost. The trust level searching cost (Csrr) depends on the
trust searching algorithm:

— With-friends algorithm. In this case, the owner sends a message to each of
its friends that in turn do the same in a nested search. This cost depends
on the number of friends (NF) and the maximum depth of the nested search
(MaxDepth).

MaxDepth
CSTLWF = Z NF * = O(NFMazDepth)
i=1

— Without-friends algorithm. In this case, the owner sends a message to each
of the peers in its finger table, which in turn do the same in a nested search.
This cost depends on the number of fingers, which is log N, and the maximum
depth of the nested search (MaxDepth).

MaxDepth

Csriwor = Z (logN) * = O((logN )MaxDepthy

i=1

— With-or-without-friends algorithm. In this case, if the owner has friends, it
sends a message to each of its friends. Otherwise, it sends a message to each
of the peers in its finger table. A peer contacted by an owner does the same
in a nested search. The trust level searching cost depends on the number of
friends (NF), the number of fingers, which is log N, and the maximum depth
of the nested search (MaxDepth).

CSTLWWF = O((max(logN, NF))MamDepth)

The trust level searching cost C'spr, can be one of the three costs Csrr, -,
Csriwors O Cstrwwr- Note that if NF > log N, Csrryw - is equal to
Csrriwpe, €lse it is equal to Csrry, - In all cases Corry, - can be used for
Csrr:
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Csrr = O((maz(logN, NF))MazDepthy

To summarize,

Chpublishing = O(nbData * nbPurpose x nbOperation * logN )

CRequesting = CRequest + CRretrieve = O(lOgN)
OSTL = O((max(logN, NF))MaIDepth)

For the simulation, we used SimJava [I3] and the Chord protocol was simu-
lated with some modifications in the put() and get() functions. Tests consider
N peers, peer keys are selected randomly between 0 and 2". N is set to 11,
which corresponds to 2'' peers. This number of peers is enought to simulate
collaborative applications like the medical one. MaxDepth is set to 11 and the
number of friends is set to 2.
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Fig. 16. Comparison of the three algorithms of trust level searching

Trust level searching introduces a large overhead because of flooding in the
unstructured network. Figure[I6]compares the three algorithms seen above. The
with-friends case introduces the smallest cost while the without-friends case
introduces the highest cost. However, intuitively, the probability to find the
trust level is higher in the without-friends algorithm than in the with-friends
algorithm. This is due to the fact that the number of contacted peers is higher
in the without-friends algorithm, which increases the probability to find the
trust level. We estimate that the with-or-without-friends algorithm is the most
optimized because it is a tradeoff between the probability to find the requester
trust level and the trust level searching cost.
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Fig. 17. Stabilization of the cost of trust level searching

Figure[I7]shows that the trust level searching cost decreases with the number
of requests and stabilizes. When peers ask for a trust level, answers are returned
in the requesting order and the trust tables are updated with the missing trust
level. Thus, the trust tables evolve with the number of searches. After a while,
these tables stabilize. Thus, the number of messages for searching trust levels
is reduced to a stable value. This value is not null because of the dynamicity of
peers. Simulations consider that the number of peers joining the system is equal
to those leaving the system. Thus, there are always new peers which do not
know the requester trust level. We also observe in the figure that the trust level
searching cost in the without-friends algorithm stabilizes first. This is due to the
fact that a larger number of peers are contacted. The with-or-without-friends
algorithm comes in second place, and the with-friends algorithm comes last. As
can be seen in the comparison of the three algorithms, we find again that the
with-or-without-friends algorithm is the most optimized because it is a tradeoff
between the time to stabilization and the trust level searching cost.

6 PriServ prototype

A prototype of PriServ for privacy-preserving data sharing applications for on-
line communities was developed [19]. The prototype uses the Java language,
SCA (Service Component Architecture) toolslﬂ and RMI (Remote Method In-
vocation). Figure [18]shows the owner peer implementation with SCA.

18 http://www.oasis-opencsa.org/sca
http://www.obeo.fr/pages/sca/
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PriServ was tested and validated by PeerUnif""|on Grid5000%°} Grid5000 is a
scientific instrument for the study of large scale parallel and distributed systems.
The tests were done on a population of 180 peers on 42 Grid5000 nodes. Several
results have validated the performance of the prototype concerning:
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= Wire
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+ 83 Java (0508)
+ ®y Java (0S00)

Fig.18. Owner peer modeled with SCA

— Respect of privacy policies of owners. PriServ limits data access if a requester
does not intend to respect the owner privacy policy. The test results show the
failure of the request each time the access purpose or operation are different
from the intended purpose and operation specified while publishing data.

— Limited access only for authorized requester. The test results show that 100
% of queries from an unauthorized requesters are systematically rejected by

Servers.

— Traceability of the data distribution. The test results show that it is possible
to review, automatically, all the requesters who had access to data, and to
check the list of those who have tried to access them. This allows the data
owner to be sure that its data privacy requirements are respected.

6.1 Medical PPA

Privacy-Preserving Applications (PPA) manage sensitive data (financial projects,
unpublished research results, patients records, etc.). PriServ is illustrated with

19 http://peerunit.gforge.inria.fr/
20 http://www.grid5000. fr/
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Fig. 19. Dashboard of the storage system (DHT)

the collaborative medical research application of Section [T} The participants of
this applicaiton are scientists, doctors, and patients. In order to control disclo-
sure of sensitive information (e.g., medical records owned by doctors, research
results owned by scientists) without violating privacy, data access should respect
the privacy preferences of their owners. In this medical PPA:

— Patients and doctors who own and manage private medical records can be
considered as owners. Scientists who may use medical records for scientific
research can be considered as requesters. Servers are peers of the storage
system.

— Doctors may define the privacy preferences of patients in privacy policies
and attach them to their medical records. For instance, a doctor may allow
writing access on her information to scientists for adding comments on her
diagnosis.

— Scientists may define their own privacy preferences and attach them to their
research results. For instance, a scientist may allow reading access on her
results to doctors for giving diagnosis.

PriServ is used for these scenarios:
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Fig.20. GUI of the medical PPA that uses PriServ

— After defining their privacy preferences on their medical records, doctors and
patients can publish their data in the system while preserving their privacy.

— Scientists can search for data by using procedures that respect the privacy
preferences of the data owners.

Through a GUI, we show scenarios that exhibit important aspects of private
data management: privacy policy management, data publishing, data searching,
and data reference searching.

Figure shows the interface through which the DHT is launched. Once
launched, the DHT creates server peers whose number can be specified. Then the
main user creates owners and requesters by specifying their names and clicking on
create user. The interface of each user newly created will appear automatically.
For instance, Figure [20] shows the user interface of DoctorHouse.

Scenarios. The key features of the prototype, are demonstrated through the
following scenarios of the medical PPA:

Privacy policies management. This scenario is used to show how DoctorHouse
(an owner) can specify his privacy preferences by defining his own privacy policies
(see Figure|21)). He is also able to attach different policies to a datum in order to
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Fig. 21. Privacy policy specification interface

control the access to his data. He also has an interface that shows information
about his privacy policies.
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Fig. 22. Publishing and requesting interfaces

Data publishing. This scenario shows how DoctorHouse can publish sensitive
data in the P2P system (see Figure ). He can specify for which privacy
policy his data will be published. He also has the choice between publishing
encrypted data or data references. He can also have a view of his published data
and the policies attached to them.

Data searching. This scenario shows how ScientistJammy can search for data
(see Figure 22]b). He has a choice between: (a) a local search on his own local
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data, (b) a P2P data requesting. Searching is made only if he selects the purpose
and the operation for the requested data.

Data reference searching. This scenario shows how ScientistJammy can search
for data references for particular purpose and operation (see Figure c). For
this, we show that he will be able to have a list of references for data which
he can access for particular purpose and operation. Then, he can access data
content by specifying the data reference that he has gotten, the purpose and the
operation in the data searching interface.

The PriServ web site ishttps://sites.google.com/site/gddlina/priserv
and the prototype code can be found at http://sourceforge.net/projects/
priserv/.

7 Conclusion

This chapter gave an overview of current solutions for supporting data privacy
in P2P systems. Our evaluation of existing solutions is made based on the tech-
niques used to protect privacy of data and users (i.e., access control, anonymity,
trust, and cryptography) and the guaranteed privacy properties (i.e., protec-
tion against unauthorized reads, corruption and deletion, limited disclosure,
anonymity guarantees, denial of linkability, and content deniability). This anal-
ysis showed that while the notion of purpose of Hippocratic databases (HDB)
is gaining more attention, in particular, because of the OECD guidelines, it has
not been used in P2P systems.

Then we developed in more details a complete solution (Primod and Pris-
erv) for data privacy in P2P systems that supports the notion of purpose of
HDB. PriMod, a privacy model for P2P systems, integrates the purposes no-
tion as mainspring. Purposes are omnipresent in several process of sensitive
data management. Data owners specify, through personal privacy policies, the
access purpose for their data. Data publication attaches the allowed access pur-
poses. Data requesters specify the access purpose in their requests, thus they
are committed to their intended and expressed use of data.

PriServ is a privacy service that implements PriMod. The PriServ prototype
combines purpose and operation-based access control, trust techniques, cryp-
tography techniques, and digital checksums. A privacy-preserving data sharing
application for online social networks illustrates this approach.

Several improvements can be made to PriMod and PriServ. The purpose-
based index should be anonymized to avoid servers to know the partial view
of the index they store. A more semantically rich query language may also
be proposed. But above all, auditing solutions should be proposed to verify
compliance of data use with the specified privacy preferences. This is still an
open and challenging issue.
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