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Abstract. The increasing size of structured data that are digitally avail-
able emphasizes the crucial need for more suitable representation tools
than the traditional textual list of results. A suitable visual representa-
tion should both reflect the database’s structure for navigation purpose
and allow performing visual analytical tasks for knowledge extraction
purpose. In this paper we present a visual navigation method that uses
a Galois lattice to represent the database’s structure. Our method takes
advantage of this structure to provide a progressive and coherent nav-
igation in the database. Two views are jointly presented. The first one
represents the overall structure of the database while in the second one
more precise views are successively given during the navigation process.
Moreover, beyond the navigation task, we aim to propose a visual as-
sistance for more analytical tasks. We show how this representation,
combined with data analysis techniques, can be used both for navigation
and attribute selection while keeping users’ mental map.

Key words: Formal Concept Analysis, Information Visualization

1 Introduction

The size of digitally available indexed document sets increases every day. How-
ever, associated exploring tools are often based on the same traditional model:
users send their query and are then answered back with huge lists of results.
There is a crucial need for more suitable representation tools where the seman-
tics of the documents are better exploited and may be used as a guideline during
navigation through the database. Formal concept analysis (FCA) helps to form
conceptual structures from data. Such structures may be used to visualize inher-
ent properties in data sets and to dynamically explore a collection of documents.
Indeed the associated mathematical formalization is useful not only to organize
the database but also to infer some of the reasoning during the information re-
trieval process. we aim to propose a visual assistance for more analytical tasks.
We show how this representation, combined with data analysis techniques, can
be used both for navigation and attribute selection while keeping users’ mental
map. This paper presents a method that combines FCA and Information visu-
alization techniques to assist visual navigation in large collections.
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The following section will present the context of our research. The state of the art
is presented in section 4, particularly concerning information retrieval using FCA
and visualization techniques to explore large databases. Section 5 develops our
method that combines FCA and visualization tools to assist users for browsing
a large collection. Section 6 deals with our proposal for visual attribute selection
method. The last section concludes with some of the limits to and perspectives
of our approach.

2 Context and Problem Setting

Searching for technical solutions to improve innovation within big companies, I-
Nova, our industrial partner, develops collaborative platforms to internally share
some parts of the company’s knowledge. The major problem consists in visualiz-
ing and browsing a large collection of indexed documents. The current platform
makes use of a classical search engine which lists retrieved indexed documents
(patents, here) corresponding to a certain set of keywords. Two main problems
arise: human operators cannot have an overall view of the whole collection and
they cannot evaluate changes in the result sets when adding or removing a key-
word, because a new list is displayed for each new query. These drawbacks are
particularly semantically noisy for the browsing process. We may note here that
this problem is the same as the one encountered by people using web search
engines like Google.
Much research has been done to graphically represent indexed document sets in
general [19], of which several aim to represent patent databases. In MultiSOM
[13], the keywords are divided into subsets corresponding to different aspects of
the indexation (costs, techniques, etc.) and a self-organized map is computed
one by one for each subset, presenting different points of view on the database.
When focusing on a specific item of the collection on one particular map, the user
can switch to another map presenting the position of the item in the collection
with respect to another aspect. This solution solves the problem of providing an
overall view of the collection. However users have lost the ability of selecting a
subset of patents through a set of keywords and they have no information about
why one patent is close to another in the overall view.
Because on the one hand browsing an overall view may be unsuitable for fo-
cusing on a particular keyword and on the other hand displaying local results
without any overall information causes users to get lost, we present in this paper
a method that assists users’ navigation from overall to local views. The idea is
to “sum up” the collection by coherent local views corresponding to subsets of
patents/keywords. These views are ordered as a lattice, defining possible nav-
igation paths that will be suggested to users. The views’ lattice is actually a
concept lattice [10]. Using FCA and concept lattice for information retrieval is
not new [8] but in these approaches, contents of nodes, i.e. local view, are still
displayed as a list of results, retaining all the above mentioned problems. Studies
on visualization exploration process have been done but mainly in the medical
or scientific imagery domain, focusing more on optical transitions between vi-



Using Concept Lattice for Visual Navigation and Attribute Selection 3

sualizations [2] than on semantic aspects of the information that is displayed.
Before going further towards the solution that we propose, let us give some basic
FCA definitions.

3 Formal Concept Analysis Background

In this section we briefly recall FCA basic definitions from [1][10]. A formal
context is a triple (G,M, I) where G is a set of objects, M a set of attributes and
I is a binary relation between the objects and the attributes, i.e. I ⊆ G×M . For a
set O ⊆ G of objects and a set A ⊆ M of attributes, we define the set of attributes
common to the objects in O, by f : 2G → 2M f(X) = {a ∈ A|∀o ∈ X, (o, a) ∈ I},
the set of objects which have all attributes in A, by: g : 2M → 2G g(Y ) = {o ∈
O|∀a ∈ Y, (o, a) ∈ I}. The pair (f, g) is a Galois connection between (2G,⊆) and
(2M ,⊆). A formal concept of the context (G,M, I) is pair (O,A) with O ⊆ G,
A ⊆ M and A = f(O) and O = g(A). A is called the intent and O the extent

of the concept (A,O). Let L be the set of concepts of (G,M, I) and let ≤L

be a partial order defined as follows: (A1, O1) ≤L, (A2, O2) ≤L, (A1, O1) ≤L

(A2, O2) ⇔ A1 ⊆ A2 ⇔ O2 ⊆ O1. The pair (L,≤L) is called the Galois lattice
or Concept lattice of (G,M, I). The simplified extent of a concept (O,A) is the
set of objects which belong to O and do not belong to any lower concept. In
other words, the simplified extent denotes objects that do not have any other
attributes than those in A. In the following we denote indifferently objects as
documents or patents and attributes as terms or keywords.

4 State of the Art

Searching for a solution to assist the navigation through a large database, we
focus particularly on two aspects in the following state of the art: applications
that use FCA techniques for information retrieval and visualization techniques
that may be used to graphically parse large sets of data.

4.1 Formal Concept Analysis for Information Retrieval

The powerful classification skills of Formal Concept Analysis have found many
applications for information retrieval. Some of them have been listed in [16].
Since the early works of [11] on an information retrieval system based on docu-
ment/term lattices, a lot of research leading to significant results has been done.
In [5], Carpineto and Romano argue that, in addition to their classification
behaviors for information retrieval tasks, concept lattices can also support an
integration of querying and browsing by allowing users to navigate into search
results. Nowadays several industrial FCA-based applications like Credo [5] or
Mail-Sleuth [9] are available. Mail-Sleuth is an e-mail management system pro-
viding classification and query tools based on FCA. This tool allows users to
navigate into data and intervene in the term classification by displaying con-
cept lattices. Upstream research has studied the understandability of a lattice
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representation by novice users [9]. Image-Sleuth [8] proposes an interactive FCA-
based image retrieval system in which subjacent lattices are hidden. Users do
not interact with an explicit representation of a lattice. They navigate from one
concept to another by adding or removing terms suggested by the system. This
ensures a progressive navigation into the lattice.

4.2 Visualization Techniques to Browse Large Databases

Graphical solutions for visualizing a mass of abstract information have been
studied for several decades, leading to the emergence of the information visual-
ization domain [3]. Even with the use of a visual representation, the navigation
into a large collection may not be obvious. Schneiderman has defined a visualiza-
tion information paradigm called “focus + context” which recommends to first
provide an overall view, then to let the user identify an area of interest (focus)
and finally to display locally contextual information (context) [17]. Starting from
an overall view helps users to maintain a unique mental map but they still have
to achieve the focus task on their own.
In the particular case of document visualization, [3] defines two categories of
solutions: on the one hand visualizations of the inner structure of a document
(WebBook [4]) and on the other hand visualizations of a document collection,
e.g. DocCube [14]. The work presented in this paper belongs to this second cat-
egory which can also be divided into two parts depending on how the structure
of the collection is managed. Some tools show this structure by representing
clusters of documents (e.g. Grokker ) using tiling based visualization techniques
such as TreeMaps [12]. Some other tools do not show the collection’s structure
and represent the collection by a set of points into two or three dimensions dis-
patched according to a semantic distance usually based on indexed vectors (e.g.
DocCube).
The choice between these two strategies depends on the users’ needs. Showing
the structure allows a more progressive navigation through clusters but reduces
the probability of visual insight which the observation of similarity distances
may offer. We have tried to benefit from both solutions by using the first one
for the overall view and the second one for local views (see section 5).

4.3 Knowledge Maps and Multidimensional Scaling

The tests and validations of our approach are done through an agent oriented
software environment that we developed. Molage (for Molecular Agents) al-
lows visual manipulation of entities using several visual functionalities (zoom,
fisheye, semantic lenses, filtering, etc.). Each entity may be typed and described
by several attributes (descriptors). The collection of those entities may represent
a multimedia database, e.g. music titles described by moods, textual documents
characterized by a keywords’ vector, pictures that are classified according to
their subject, etc.
Considering the set of descriptors, each entity is characterized in a m dimensions’



Using Concept Lattice for Visual Navigation and Attribute Selection 5

space. The collection is projected onto a 2 dimensional plane using a MultiDi-
mensional Scaling projection (MDS - [15]). The method consists in minimizing
a ’stress’ function between n points (originally described in an m-dimensional
space) after those points have been projected onto a space with fewer than m
dimensions. The minimization is performed through the compression or exten-
sion of the (Euclidian) distances between the points in the smaller dimension
[2]. This type of MDS approach is known as Force Directed Placement or Spring
Embedding Algorithm.
We detailed the Molage environment and its use for navigating through a mas-
sive music collection in [6]. In this particular application, the musical landscape
is used to semi-automatically index new music records just by “drag and drop” of
a new entity on the map. It is also used to automatically build musical playlists.
However some drawbacks were still present, in particular the lack of assistance
for the visual navigation through the map. That is why we proposed to give
some semantics to the map and to assist the building of this map in [7]. In the
following, we broaden this visual assistance by proposing a method for browsing
large databases.

5 A Visual Database Browsing Method

Within large databases, it is often possible to distinguish several layers that may
be considered separately. Our idea is to keep the human operator’s mental map
as stable as possible and to give him or her some hints when he or she switches
from one view to another one.

5.1 Problem Decomposition

Our approach aims to provide adapted visualizations for different abstraction
layers. Information visualization techniques aim to assist the user in a visual in-
ference task. It is very hard to reach a compromise between a strongly analytic
strategy displaying results of classification methods on data and a visualization
representing more faithfully all raw data. The first approach may be clearer for
users but may introduce a bias in their interpretation and preclude insight by
hiding unexpected information. The second approach faces the dimensionality
problem of visualizing too much information at the same time. Our work pro-
poses to satisfy both approaches by finding a compromise.
We assume that Schneiderman’s overview, i.e. the overall view corresponding to
the higher abstraction layer, has to emphasize the structure of the document
collection because that is where the source of insight may reside at this level.
This overview should be used as a kind of GPS for the further navigation into
different local views. For the lower abstraction level, i.e. Schneiderman’s context
views, the aim is to display concrete relations between local data using the most
intuitive visualization techniques. In the following we will briefly describe the
overall view and then local views. A more detailed presentation can be found in
[26].
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5.2 Lattice-based Overview

The concept lattice computed from the document/term (patent/keyword, for
us) matrix will be used both as a support for navigation across the collection (as
used in Image-Sleuth), and as a visual overview emphasizing its structure. Its
related Hasse diagram [18] is displayed using force direct placement techniques
(see section 4.2).
All edges may not be represented as in Fig. 1 (left) to avoid visual overloading.
We use a visual device called “topological lenses” [7] to show edges of the selected
node and to emphasize nodes reached by these edges. For instance, on Fig. 1,
selected node’s intent is plasmadisplay. Relied concepts and their intents are
emphasized. Since an overview supporting navigation is now provided to users,
we will present in the following how a local view associated with a lattice concept
is visualized. Beside the overview, a local view is simultaneously displayed which
represents the objects contained in the extent of the node that has been selected
by the user on the overall view. Hence, an interaction user-case consists in the
following steps. First users select a node on the overview (Fig. 1 left), the local
view is then updated to display the node’s extent (Fig. 1 right). Secondly users
goes deeper in the lattice by selecting a child node of the previous one in the
over view (Fig. 2 left), the local view is updated and objects that belong to
the previous node’s extent but not to the current node disappear (Fig. 2 right).
Fig. 3 and 4 show further steps of the navigation scenario. The way objects are
displayed in the local view is discussed in [26].

Fig. 1. The selection of a concept on the overall view (left hand side) displays patents
contained in the concept’s extent (right hand side) and suggests navigation paths by
emphasizing new concepts on the overall view.
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Fig. 2. The selection of a concept on the overall view (left hand side) displays patents
contained in the concept’s extent (right hand side) and suggests navigation paths by
emphasizing new concepts on the overall view.

Fig. 3. The selection of a concept on the overall view (left hand side) displays patents
contained in the concept’s extent (right hand side) and suggests navigation paths by
emphasizing new concepts on the overall view.
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Fig. 4. The selection of a concept on the overall view (left hand side) displays patents
contained in the concept’s extent (right hand side) and suggests navigation paths by
emphasizing new concepts on the overall view.

6 Using Concept Lattice for Attribute Selection

This section aims to provide a visual answer to the following question: “I have

identified a set of instances of particular interest in the database. I would like

to find its location in the database structure and which attributes have the abil-

ity to put theses instances together”. Databases have increased not only in size
but also in complexity. [20] reports that while as of 1997 only few papers in
the attribute selection community were dealing with domains described by more
than 40 attributes, most papers were exploring domains with hundreds to tens of
thousands of features five years later. Consequently a preprocess called attribute
selection is often needed in order to reduce dimensionality before starting data
analysis techniques. It consists in selecting attributes that are relevant according
to the future data mining task. Beyond the technical purpose of reducing dimen-
sionality for data mining processes, attribute selection constitutes an interesting
process as itself. When used to select attributes that are relevant according
to a classification task, its results give information about which attributes can
be used to separate or describe classes. Detailed reviews of attribute selection
techniques can be found in [20] and [21]. In particular, Iglue [25] is an instance-
based learning system that uses Galois lattices to perform attribute selection.
All techniques share the following skeleton which sums up the process in four key
steps, namely subset generation, subset evaluation, stopping criterion, and result

validation. First an attribute subset is generated according to a certain search
strategy, the second step evaluates the subset’s relevance and consequently se-
lects or discards the subset, then if the stopping criterion is not satisfied a new
subset is generated and the process is repeated. Finally the selected best subset
needs to be validated by prior knowledge. Attribute selection is used for many
data mining tasks, we will focus on its application for classification.



Using Concept Lattice for Visual Navigation and Attribute Selection 9

Our attribute selection process is supervised. It means that the objects’ member-
ship to the considered class is known a priori. This prior knowledge may come
from an additional class attribute or from an additional numerical attribute with
a threshold value. These additional attributes do not belong to the formal con-
text, and thus are not involved in the lattice computation, because we assume
that attributes used to build the lattice reflect the persistant database structure,
while class membership attributes are related to a particular exploitation of the
database. Objects are partitioned into two classes with respect to an additional
class attribute, positive (objects that belong to the class) and negative objects
and we propose to use the database’s lattice to perform attribute selection. The
search strategy consists in browsing the Galois lattice using breadth-first traver-
sal from top to bottom, the generated subset being the current node’s intent. The
intent is evaluated considering the value for Shannon’s entropy on the current
node’s extent. The entropy will be minimal if all objects in the extent belong to
the same class. If entropy is below a given threshold and most of the objects in
extent positive, the intent is selected. The stopping criterion is satisfied when
all nodes have been evaluated. Finally, selected intents are emphasized on the
lattice’s representation, creating navigation paths in the lattice.

6.1 Subset Generation

Considering a context with n attributes, there exist 2n candidate subsets. An
exhaustive search is therefore computationally prohibitive. In order to reduce the
search space, two main strategies have been designed: complete and sequential
search. Complete search strategies, such as branch and bound, ensures that all
optimal subsets will be explored. The space search is still in O(2n) but in practice
fewer subsets are explored. Concerning sequential search strategies, mostly based
on the greedy hill climbing approach, they explores a search space in O(n2) or less
but completeness is not garanteed. Randomness may be introduced in sequential
approaches in order to avoid local optima. Since our main goal is to maintain
users’ mental map and thus to use the same visual structure, the lattice, for
both navigation and display of attribute selection results, we use the lattice as
the search space. The explored subsets are the nodes’ intents. The number of
explored subsets is then the size of the lattice, i.e. O(2min(|A|,|O|)). In practice
the size of the lattice is smaller since only attribute subsets that are meaningful
according to the two closure operators lead to the creation of a node.

6.2 Subset Evaluation

Shannon entropy [22] is used to evaluate the relevance of a node’s intent. It
measures the ability of the intent to discriminate the positive with the negative
objects that appear in the node’s extent. Note that this evaluation does not take
into account the number of objects in the extent. Therefore nodes containing very
few objects may be selected. Formally, considering a node (A1, O1) its associated
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entropy is computed as follows:

H(A1, O1) = −

(

|O+
1 |

|O1|
· log2

(

|O+
1 |

|O1|

)

+
|O−

1 |

|O1|
· log2

(

|O−
1 |

|O1|

))

where |O+
1 | (resp. |O−

1 |) is the number of positive (resp. negative) objects in
the extent. A null entropy occurs when objets in the extent are either all positive
or all negative. Since the goal is to select attributes according to the class, i.e.
according to positive attributes, a node is said optimal if its entropy is below a
given threshold α and if positive objects represent more than half of the extent,

formally: (A1, O1) is optimal if H(A1, O1) ≤ α and
|O−

1
|

|O1|
< 1

2 . In the following

example, we set α = 0. Note that if H(A1, O1) = 0 then
|O−

1
|

|O1|
< 1

2 ⇔ O−
1 = ∅.

6.3 Example

This section illustrates the attribute selection process on a small example taken
from UCI Repository [24]. The lenses data set [23] contains 24 instances and
four nominal attributes. An instance is a patient profile described by the four
attributes age, spectacle prescription, astigmatism, and tear-drop rate, i.e. factors
that have to be taken into account in the choice of a type of contact lenses for
a particular patient

A fifth attribute, decision, gives for each profile the recommended type of
lenses: hard, soft, or none, dividing patient profiles into three classes. The sce-
nario applied on this example consists in identifying which of the four medical
factors are associated with the decision to contraindicate contact lenses. A nom-
inal scale is applied in order to discretize the four attributes. The resulting for-
mal context has seven binary attributes, namely age:young, age:pre-presbyopic,
age:presbyopic, prescription:myope, prescription:hypermetrope, astigmatism, and
tear-drop:reduced. We assume that these binary attributes reflect the persistant
structure of the database and the associated Galois lattice, computed using
Galicia, has 50 nodes. Positive objects are those which have the value none for
the additional attribute decision, negative ones are the others. Figure 5 shows
the resulting lattice where square nodes denote optimal nodes with null entropy.
During the breadth-first traversal, the first optimal node found is the third node
on the first level. Its intent is A1 = {tear − drop : reduced} and its extent O1

contains 12 positive objects and no negative one. Its associated entropy is then:

H(A1, O1) = −

(

12

12
· log2

(

12

12

)

+
0

12
· log2

(

0

12

))

= 0

assuming that log20 = 0 by applying L’Hôpital’s rule. The fact that the node
(A1, O1) is optimal can be interpreted as:“only positive objects own A1”. In the
present case it means that “only positive objects own {tear−drop : reduced}”, or
in other words ∀o ∈ O, {tear−drop : reduced} ∈ f(o) ⇒ o ∈ O+. If O+−O1 = ∅,
i.e. if all positive objects belong to the optimal node’s extent, the converse is
also satisfied.
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An interesting point is that, thanks to the Galois lattice structure, all the
child nodes of an optimal node are also optimal. Hence, considering two concepts
(A2, O2)≤L(A1, O1), if (A1, O1) is optimal then O1 ⊆ O+. Since O2 ⊆ O1 thanks
to ≤L we have O2 ⊆ O+. When an optimal node is found, this result allows to
discard all its child nodes from the search space.

Fig. 5. Galois Lattice computed from the contact-lenses database binary context.
Square nodes are optimal and their intents form the resulting selected attribute subsets
with respect to the no lenses class.

6.4 Results Interpretation and Association Rules

The resulting lattice answers the original question: “where are my instances of

interest in the database structure and what are the related relevant attributes?”.
Users can see at first sight how considered instances are dispatched with respect
to the database structure representation used for navigation. Related attribute
subsets are the emphasized nodes’ intents. Optimal nodes can also be interpreted
as association rules between their intent and the class membership. These rules
have a maximal confidence since all objects in optimal nodes are positive. Their
support is the number of objects in the extent. Note that thanks to the lat-
tice based representation, users can identify optimal nodes with best supports
with respect to their relative position. Hence, considering two optimal nodes
(A2, O2)≤L(A1, O1) and their related rules c2 : A2 → class and c1 : A1 → class,
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Fig. 6. Galois Lattice computed from the contact-lenses database binary context.
Square nodes are optimal and their intents form the resulting selected attribute subsets
with respect to the no lenses class.

then support(c2) ≤ support(c1) since |O2| ≤ |O1|. Also note that c2 is redundant
compared to c1 since A2 ⊆ A1.
Since child nodes of an optimal node are also optimal, when an optimal node
appears in the first levels like in the present example, the resulting lattice may
be overcrowded by redundant square nodes. It is not visually easy to sepa-
rate these redundant nodes from those that are not children of a higher op-
timal node. For this reason we propose to emphasize optimal nodes that are
not children of an optimal node (see Fig. 6). Only three optimal nodes re-
main: one node on the first level which intent is {tear-drop:reduced} and two
nodes on the third level which respective intents are {age:pre-presbyopic, astig-

matism, prescription:hypermetrope} and {age:presbyopic, astigmatism, prescrip-

tion:hypermetrope}. These two last nodes were hidden among child nodes of the
first one in Fig. 5. Finally, the attribute selection process visually provides to
users the following results: the patient profiles for which contact lenses are con-
traindicated are either those who have a reduced tear-drop rate or those whose
have one of the two particular attributes combination listed above.

7 Conclusion

This paper has presented a method for visual navigation in databases combining
classification behaviors of FCA to produce overviews and intuitive visualization
techniques when focusing on local views. Our method uses a Galois lattice to
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represent the database’s structure. Our goal was to preserve an unique overall
representation of the database which could be suitable both for users that want
to perform free exploration whithout knowing precisely what they want or how
to get it, and for users that want to extract information according to a specific
subset of the database. Research presented in this paper only deals with assist-
ing users in their navigation or in interpreting results of an attribute selection
process, and it does not actually infer information that present techniques would
not be able to infer. This is a proper problem of information visualization. In-
deed, noticing Robert Spence’s definitions “to visualize is to form a mental model

or mental image of something. Visualization is a human cognitive activity, not

something that a computer does”, our goal is not to produce formal results from
raw data because data analysis techniques such as FCA succeed without any
visualization need. We try to explore new techniques to provide bootstraps for
the cognitive activity of users.
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