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ABSTRACT

We develop an analytical Hamiltonian formalism adapted to the study of the motion of two

planets in co-orbital resonance. The Hamiltonian, averaged over one of the planetary mean lon-

gitude, is expanded in power series of eccentricities and inclinations. The model, which is valid

in the entire co-orbital region, possesses an integrable approximation modeling the planar and

quasi-circular motions. First, focusing on the fixed points of this approximation, we highlight re-

lations linking the eigenvectors of the associated linearized differential system and the existence of

certain remarkable orbits like the elliptic Eulerian Lagrangian configurations, the Anti-Lagrange

(Giuppone et al., 2010) orbits and some second sort orbits discovered by Poincaré. Then, the

variational equation is studied in the vicinity of any quasi-circular periodic solution. The funda-

mental frequencies of the trajectory are deduced and possible occurrence of low order resonances

are discussed. Finally, with the help of the construction of a Birkhoff normal form, we prove that

the elliptic Lagrangian equilateral configurations and the Anti-Lagrange orbits bifurcate from the

same fixed point L4.

Subject headings: Co-orbitals; Resonance; Lagrange; Euler; Planetary problem; Three-body prob-

lem

1. Introduction

The co-orbital resonance has been extensively studied for more than one hundred years in the framework

of the restricted three-body problem (RTBP). In most of the analytical works, the emphasis has been placed

on the tadpole orbits, trajectories surrounding one of the two Lagrangian triangular equilibrium points, since

these describe the motion of the Jovian Trojans. However, the global topology of the co-orbital resonance

has been studied in particular by Garfinkel (1976, 1978) and Érdi (1977), but the interest for the horseshoe

orbits which encompass the three equilibrium points L3, L4 and L5, remained academic until the discovery

of the Saturnian satellites Janus and Epimetheus (Smith et al. 1980; Synnott et al. 1981). In Dermott

and Murray (1981a), general properties of the tadpole and horseshoe orbits are described in the quasi-

circular case. In particular, asymptotic estimates of the horseshoe orbits lifetime and the relative width

of this orbits domain are given. But the impossibility to get explicit expressions of the horseshoe orbits

complicated their study, and theoretical works were replaced by numerical simulations. Thereby, Christou

(2000) showed that the region containing the tadpole orbits is not disconnected from the horseshoe one,

and that there exist transitions between these two domains. Also, a global study of the phase space of the

co-orbital resonance was presented in the RTPB by Nesvorný et al. (2002) using a numerical averaging of

the disturbing function over orbital frequencies. Using the same kind of numerical technics, Giuppone et al.

(2010) studied the stability regions and families of periodic orbits of two planets locked in the co-orbital

resonance. Besides the Lagrangian triangular configurations, where the three bodies in Keplerian motion
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occupy the vertices of an equilateral triangle, these authors found a new family of fixed points (equilibrium

in the reduced average problem, but quasi-periodic with two fundamental frequencies for the non-average

problem in inertial reference frame) that they called Anti-Lagrange orbits. Both Lagrange and Anti-Lagrange

families can be seen as a one-parameter family of stable fixed points, parametrized by the eccentricity. As

shown in the Fig. 7 of Giuppone et al. (2010), when the eccentricity is equal to zero, the corresponding

configurations of each family seem to merge in the well known circular Lagrangian equilateral configuration.

Finally, when the eccentricity increases, the stability regions surrounding these orbits become smaller, the

one associated to the Lagrangian configuration being the first to vanish.

In this paper, we will develop a Hamiltonian formalism adapted to the study of the motion of two planets

in co-orbital resonance. We modify the methods presented in Laskar and Robutel (1995) in order to get an

analytical expansion of the planetary Hamiltonian averaged over an orbital period, meaning averaged over one

of the planetary mean longitudes. This expansion, which is a power series of the eccentricities and inclinations

whose coefficients depend on the semi-major axes and on the difference of the planetary mean longitudes,

generalizes the expressions obtained in the RTBP framework by Morais (1999, 2001). Moreover, this one

containing only even terms in the eccentricities and inclinations (see Section 2), the planar circular motions

are conserved along the solutions. These quasi-circular co-orbital motions are modeled by an integrable

Hamiltonian depending only on the semi-major axes and the mean longitudes difference. Contrary to the

integrable approximations derived by Yoder et al. (1983) or Morais (1999, 2001), our model possesses five

fixed points. Three are unstable and correspond to the Eulerian collinear configurations denoted by L1, L2

and L3 where the two planets revolve on circles centered at the Sun. The two others correspond to the

circular Lagrangian equilateral configurations L4 and L5 mentioned above, which are linearly stable if the

planetary masses are small enough (Gascheau 1843).

In Section 3, the linear differential system associated to infinitesimal variations transversal to the plane

containing the quasi-circular orbits will be studied. Only the directions corresponding to the eccentricities

will be considered. First, focusing on the fixed points, we will highlight relations linking the eigenvectors

of the linearized differential system and the existence of certain remarkable orbits like the elliptic Eulerian

and the Lagrangian configurations, the Anti-Lagrange orbits and some second sort orbits discovered by

Poincaré (1892). Then, the variational equation will be studied in the vicinity of any quasi-circular periodic

solution. The fundamental frequencies of the trajectory will be deduced, and possible occurrence of low

order resonances will be discussed.

Section 4 will be devoted to the construction of a Birkhoff normal form in the neighborhood of L4. Beside

the derivation of the fundamental frequencies of any quasi-periodic trajectory lying in this neighborhood,

we will prove that the elliptic Lagrangian equilateral configurations and the Anti-Lagrange orbits bifurcate

from the same fixed point L4. Finally, in Section 5, comments and various approaches for future works will

be presented.

2. The average Hamiltonian

2.1. Canonical heliocentric coordinates

We consider two planets of respective masses m1 and m2 orbiting a central body (Sun, or star) of mass

m0 dominant with respect to the planetary masses. As only co-orbital planets are considered, no planet is

permanently farther from the central body than the other, so the heliocentric coordinate system seems to be

the most adapted to this situation. Following Laskar and Robutel (1995), the Hamiltonian of the three-body
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problem reads

H(r̃j , rj) = HK(r̃j , rj) +Hp(r̃j , rj) with

HK(r̃j , rj) =
∑

j∈{1,2}

(
r̃2
j

2βj
− µjβj
||rj ||

)
and

Hp(r̃j , rj) =
r̃1 · r̃2

m0
− G m1m2

||r1 − r2||
,

(1)

where rj is the heliocentric position of the planet j, βj = m0mj(m0 +mj)
−1 and µj = G(m0 +mj), G being

the gravitational constant. The conjugated variable of rj , denoted by r̃j , is the barycentric linear momentum

of the body of index j. In this expression, HK corresponds to the unperturbed Keplerian motion of the two

planets, more precisely the motion of a mass βj around a fixe center of mass m0 +mj , while Hp models the

gravitational perturbations. If we introduce the small parameter ε given by

ε = Max

(
m1

m0
,
m2

m0

)
, (2)

one can verify that the Keplerian term of the planetary Hamiltonian is of order ε and the other one is of

order ε2 which justifies a perturbative approach.

The choice of these canonical heliocentric coordinates (r̃j , rj) may lead to quite surprising results for

quasi-circular motions. In particular, the famous Lagrangian relative equilibrium, where the three bodies

occupying the vertices of an equilateral triangle animated with an uniform rotation, is described in terms of

elliptical elements by ellipses in rapid rotation. More precisely, r̃j being not collinear to the heliocentric ve-

locity of the planet j, the Keplerian motion associated to the unperturbed Hamiltonian r̃2
j/(2βj)−µjβj/||rj ||

is not represented by a circle described with constant angular velocity, but by a rapidly precessing ellipse

whose eccentricity is proportional to the planetary masses. This phenomenon described in the appendix

(Section 6) is similar to the question of the definition of elliptical elements for a satellite orbiting an oblate

body (see Greenberg (1981)). Except this little drawback which occurs only when the considered motion is

close to the circular Lagrangian configurations, the canonical heliocentric variables are particularly adapted

to study the co-orbital resonances.

In order to define a canonical coordinate system related to the elliptical elements (aj , ej , Ij , λj , $j ,Ωj)

(respectively the semi-major axis, the eccentricity, the inclination, the mean longitude, the longitude of the

pericenter and the longitude of the ascending node of the planet j), we start from the Poincaré’s rectangular

variables in complex form (λj ,Λj , xj ,−ixj , yj ,−iyj) where Λj = βj
√
µjaj ,

xj =
√

Λj

√
1−

√
1− e2

j exp(i$j),

yj =
√

Λj

√√
1− e2

j (1− cos Ij) exp(iΩj).

(3)

This coordinate system has the advantage to be regular when the eccentricities and the inclinations tend to

zero. It is also convenient to use the non-dimensional quantities Xj = xj
√

2/Λj and Yj = yj/
√

2Λj which

are equivalent to ej exp(i$j) and Ij exp(iΩj)/2 for quasi-planar and quasi-circular motions.

As we only consider the planetary motions in the vicinity of the circular planar problem, the Hamiltonian

can be expanded in power series of the variables Xj , Yj and their conjugates in the form

∑
k1,k2

 ∑
(p,q)∈N8

Ψk1,k2
p,q (Λ1,Λ2)Xp1

1 Xp2
2 X

p̄1
1 X

p̄2
2 Y

q1
1 Y q22 Y

q̄1
1 Y

q̄2
2

 ei(k1λ1+k2λ2), (4)
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where the integers occurring in these summations satisfy the relation∑
j

(kj + pj + qj − p̄j − q̄j) = 0, (5)

known as D’Alembert rule. This relation corresponds to the invariance of the Hamiltonian by rotation, or,

which is equivalent, to the fact that the angular momentum of the system is an integral of the motion.

Remark that we will not use this explicit Fourier expansion in this paper, but the D’Alembert rule will play

an important role.

According to Malige et al. (2002), the expression of the angular momentum in Poincaré’s variables reads

C =
∑
j

rj × r̃j =
∑
j


√

2=(yj)
√

Λj − |xj |2 − |yj |
2

2

−
√

2<(yj)
√

Λj − |xj |2 − |yj |
2

2

Λj − |xj |2 − |yj |2

 . (6)

In order to deal with the co-orbital resonance, an appropriate canonical coordinate system is1 (θj , Jj ,

xj ,−ixj , yj ,−iyj) with

θ1 = λ1 − λ2, 2J1 = Λ1 − Λ2,

θ2 = λ1 + λ2, 2J2 = Λ1 + Λ2.
(7)

Inside the 1:1 mean motion resonance, the angular variable θ1 varies slowly with respect to θ2. Conse-

quently, the planetary Hamiltonian (1) will be averaged over the angle θ2.

2.2. The quasi-circular and planar average problem

2.2.1. The average problem

In this paper, we only consider the average Hamiltonian at first order in the planetary masses. More

precisely, we assume that there exists a canonical transformation which maps the initial Hamiltonian H in

H(θj , Jj , xj ,−ixj , yj ,−iyj) = H0(Jj) +H1(θ1, Jj , xj ,−ixj , yj ,−iyj) +O(ε3) (8)

with

H0(J1, J2) = − β3
1µ

2
1

2(J1 + J2)2
− β3

2µ
2
2

2(J1 − J2)2
= HK ◦ φ(θj , Jj , xj ,−ixj , yj ,−iyj) (9)

and

H1(θ1, Jj , xj ,−ixj , yj ,−iyj) =
1

2π

∫ 2π

0

Hp ◦ φ(θj , Jj , xj ,−ixj , yj ,−iyj)dθ2 , (10)

where the map φ satisfy the relation (r̃j , rj) = φ(θj , Jj , xj ,−ixj , yj ,−iyj). If we denote by (θj , Jj , xj ,−ixj , yj ,−iyj)
the canonical variables associated to the average problem, we remark that J2 = Λ1 + Λ2 is a first integral

of H. It is also easy to prove that the quantities
∑
j yj
√

Λj − |xj |2 − |yj |2/2 and
∑
j

[
Λj − |xj |2 − |yj |2

]
are first integrals too. It is possible to take advantage of these first integrals by reducing the problem by

1Other coordinates adapted to the co-orbital resonance have been used by several authors (e.g. Nesvorný et al. (2002) for the

RTBP and Giuppone et al. (2010) for the planetary problem), but these systems, that performed the reduction of the angular

momentum, are singular when the eccentricities tend to zero.
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means of adapted canonical coordinate system as it is the case with the Jacobi reduction in the spatial

problem (see Robutel (1995) and Malige et al. (2002)). The reduction can also be achieved in the planar

problem leading to two degrees of freedom Hamiltonian system depending on two angles: the difference of

the mean longitudes and the difference of the longitudes of the perihelion (Giuppone et al. (2010)). These

reductions introducing some technical issues (addition of a parameter, singularities when the eccentricities

and inclinations tend to zero), we prefer not to reduce the problem.

The average Hamiltonian (10) depending on the mean longitude only by their difference θ1, the rotational

invariance of the Hamiltonian given by the relation (5) imposes that H is even in the variables xj and yj
and their conjugates. As a consequence, the set x1 = x2 = y1 = y2 = 0 is an invariant manifold by the

flow of the average Hamiltonian (10). More generally, this property holds for any order of averaging. This

implies that the part of the average Hamiltonian (10) which does not depend on the eccentricities and the

inclinations, namely H0(θ1, Jj) = H(θ1, Jj , 0, 0, 0, 0), is an integrable Hamiltonian. It is worth noting that

the one degree of freedom Hamiltonian H0, associated to the circular and planar resonant problem, is a

peculiar attribute of the 1:1 mean-motion resonance. The next section is devoted to its study.

2.2.2. The integrable part H0

After replacing the vectors rj and r̃j by their expressions in terms of elliptic elements into the planetary

Hamiltonian (1), an explicit expression of H0 is obtained by suppressing the terms depending on the variables

xj , xj , yj , yj and the fast angle θ2. This leads to the Hamiltonian

H0 =− β1µ1

2a1
− β2µ2

2a2

+ Gm1m2

(
cos θ1√
a1a2

− 1√
a2

1 + a2
2 − 2a1a2 cos θ1

)
,

(11)

where the semi-major axis aj depends on the action J1 and the first integral J2. The constant J2 = Λ1 + Λ2

being positive, there exists a strictly positive number a such that

J2 =
β1
√
µ1 + β2

√
µ2

2

√
a. (12)

At this point, it is convenient to define a new couple of conjugate variables (θ, J) by translating the action

J1 as

J1 =
β1
√
µ1 − β2

√
µ2

2

√
a+ J, θ1 = θ . (13)

It will also be useful to define the dimensionless (non canonical) action-like variable u by the relation

J = (β1 + β2)
√
µ0a u with µ0 = Gm0. (14)

Now, by a substitution of the relations

aj =

(√
a+

(−1)j+1

βj
√
µj

J

)2

= a

(
1 + (−1)j+1 β1 + β2

βj

√
µ0

µj
u

)2

(15)

into the expression (11), the integrable average Hamiltonian H0 can be explicitly expressed in terms of the

(θ, J, a), or (θ, u, a) for convenience. Note that the expression (15) allows one to interpret the parameter a

as a mean value around which the semi-major axes oscillate.
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The figure 1 reproduces the phase portrait of the integrable Hamiltonian H0 in coordinates (θ, u). It can

easily be expressed in terms of semi-major axes using the expression (15) or their first order approximation

aj − a ≈
[
2(−1)j+1a(m1 +m2)/mj

]
u. The upper plot represents the whole phase diagram for m1 = mJ =

10−3 and m2 = mS = 3 × 10−4 and G = m0 = a = 1, where the masses mJ and mS are close to those of

Jupiter and Saturn expressed in solar mass. This plot is similar to the well known Hill’s diagram (or zero-

velocity curves) of the non averaged planar circular RTBP (see Szebehely (1967)) although the zero-velocity

curves are not solution curves of the motion. It is also topologically equivalent to the phase space of the

average planar circular RTBP when the eccentricity of the test-particle is equal to zero (Nesvorný et al.

2002; Morbidelli 2002). The Hamiltonian system associated to H0 possesses five fixed points that correspond

to the usual Euler and Lagrangian configurations, and one singular point at u = θ = 0 which corresponds

to the collision between the planets. The two stable equilibrium points located at θ = ±π/3, u = 0 (see

the next paragraph for more details) represent the average equilateral configurations that we will denote

abusively by L4 and L5 by analogy with the RTBP. Each of these points is surrounded by tadpole orbits

corresponding to periodic deformations of the equilateral triangle. This region is bounded by the separatrix

S3 that originates at the hyperbolic fixed point L3 at θ = π, u ≈ 0, for which the three bodies are aligned

and the Sun is between the two planets and its separatrix. Outside of this domain, the horseshoe orbits are

enclosed by the separatrix S2 that originates at the fixed point L2 (θ = 0 and u < 0). This point, as the

equilibrium point L1, is associated with an Euler configuration for which the two planets are on the same

side of the Sun. The last domain, centered at the singularity, is surrounded by the separatrix S1 connecting

the L1 point (θ = 0 and u > 0) to itself. Inside this small region, the two planets seem to be subjected to a

prograde satellite-like motion, the one revolving the other one clockwise. By an enlargement of this region

( −0.1 < θ < 0.1), the second plot of Fig. 1 (middle box) shows the splitting of the two separatrices S1

(red) and S2 (blue) when the planetary masses are different. On the contrary, for equal planetary masses,

the phase portrait becomes symmetric with respect to the axis u = 0. It turns out that the equilibrium

points L3, L4, L5 lie on the axis of symmetry, and that the two curves S1 and S2 merge together giving

rise to a unique separatrix connecting L1 to L2. The bottom plot of Fig. 1 describes this phenomenon for

m1 = m2 = 5× 10−4, the other parameters being unchanged.

A way to estimate the locations of the equilibrium points is to use an asymptotic expansion of the

Hamiltonian (11) in the neighborhood of u = 0. Two cases have to be considered. The first one arises in a

domain which excludes a suitable neighborhood of the collision (the distance between the planets has to be

of order unity). The second case concerns a small domain enclosing the singularity. In the first situation,

our goal can be achieved by an expansion of the Hamiltonian (11) in the neighborhood u = 0, assuming

that the condition θ = O(1) is fulfilled. We will see later that this is satisfied in the tadpole region. This

condition also holds for the horseshoe orbits which do not approach too much the singularity. Denoting by

Γ the quantity
√

2− 2 cos θ, and using the notations σ1 = m1 + m2, σ′1 = m1 −m2 and σ2 = m1m2, the

expansion of H0 can be written as

H0(θ, u) = Ga−1
[
γ1 + γ2(θ) +O(ε3) +

(
δ2(θ) +O(ε3)

)
u

+
(
τ1 + τ2(θ) +O(ε3)

)
u2 + u3R(θ, u, ε)

]
,

(16)

where the coefficients γk, τk, δk are given by

2γ1 = −m0σ1, 2γ2 = σ2(2− Γ2 − 2Γ−1),

2δ2 = −σ1σ
′
1(1− Γ)2(1 + 2Γ−1), 2τ1 = −3m0σ

3
1σ
−1
2 ,

τ2 = σ2
1σ
−1
2

[
(σ2

1 − 3σ2)(4− Γ2/2− Γ−1) + 2σ2
1Γ−3

]
,

(17)

and the remainder R is a periodic function of θ depending on u and of order ε. The location of the
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fixed points L3, L4 and L5, as well as the eigenvalues of the associated linearized system, can be easily

deduced from the expansion (16). The location of the two elliptic fixed points L4 and L5 is approximated by

(θ, u) = (±π/3, 0 + O(ε2)), which leads to a1 = a(1 + O(ε2)), a2 = a(1 + O(ε2)). The quadratic expansion

of the Hamiltonian H0 in the neighborhood of L4 (change π/3 in −π/3 for L5) is equal to

H
(2)
0,L4

= −3

2

G
a

(
σ2

1

σ2
(m0σ1 − 3σ2

1 + 5σ2)u2 +
3

4
σ2

(
θ − π

3

)2
)
, (18)

where only the dominating terms in ε are retained. Moreover, the frequency associated to this elliptic fixed

point reads

ν0 = n0

√
27

4

σ1

m0

(
1− σ2

1 − σ2

2m0σ1
+O(ε2)

)
, (19)

where n0 = µ
1/2
0 a−3/2 plays the role of an averaged mean motion. The location of the hyperbolic point L3 is

obtained by translating u by a quantity u(3) which cancels the linear term in u in the expansion (16) when

θ = π. We get the approximation

u(3) = − (m1 −m2)m1m2

3m0(m1 +m2)2
+O(ε2), (20)

which gives in terms of semi-major axes:

aj =
√
a

(
1 +

(−1)j

3

mk

m0

m1 −m2

m1 +m2
+O(ε2)

)
with j 6= k. (21)

As a consequence, the quadratic expansion of H0 in the vicinity of L3, whose coordinates are (π, u(3)), reads

H
(2)
0,L3

= −3

2

G
a

(
σ2

1

σ2
(m0σ1 −

7

6
σ2

1 + 3σ2)(u− u(3))2 − 7

24
σ2 (θ − π)

2

)
. (22)

The domain including the tadpole orbits is bounded by the separatrix S3. The size of this domain can

be estimated by different ways. A simple manner to achieve this goal is to calculate the quantity U3 which

is the maximal value taken by the action u along S3. By solving the equation H0(π/3, U3) = H0(π, u(3))

where H0 is approximated by (16), we get the expression:

U3 =

√
2σ2√

3m0σ3
1

+O(ε2) =

√
2m1m2√

3m0(m1 +m2)3
+O(ε2). (23)

Similarly, in the perpendicular direction, we can also estimate the quantity Θ3 corresponding to the minimal

value of θ along S3 by an approximation of the positive root of the equation H0(Θ3, 0) = H0(π, u(3)). The

solution is given by

Θ3 = 2 arcsin(

√
2− 1

2
) +O(ε) ≈ 23.9◦, (24)

which is a classical result in the case of the RTBP (Garfinkel 1977).

The approximation (16) is not valid for the Euler points L1 end L2, the latter being located at a distance

of order ε1/3 of the singularity. In this case, we can use the asymptotic expansion of H0(0, u), valid since

u = O(εα) with 0 ≤ α < 1, given by

H0(0, u) = Ga−1
[
γ′−1|u|

−1
+ γ′1 + γ′2 +O(ε3) +

(
δ′2 +O(ε3)

)
u

+
(
τ ′1 + τ ′2 +O(ε3)

)
u2 + u3R′(u, ε)

]
,

(25)
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Fig. 1.— Phase portrait of the Hamiltonian H0 in coordinates (θ, u). The upper box shows the whole space

for m0 = 1, m1 = mJ and m2 = mS , the parameters G and a being equal to one. The separatrix that

originates at L3 (S3) is plotted in green, while S2 is the blue curve and S1 the red one. The middle plot is

an enlargement of the region surrounding the collision point while the bottom plot shows the merging of the

two separatrices S1 and S2 when the planetary masses are equal. Here, their values are m1 = m2 = 5×10−4.

where the coefficients γk, τk, δk are

2γ′−1 = −σ−2
1 σ2

2 , 2γ′1 = 2γ1 = −m0σ1, γ′2 = σ2,

2δ2 = 3σ1σ
′
1, 2τ1 = 2τ ′1 = −3m0σ

3
1σ
−1
2 ,

τ ′2 = 4(σ2
1 − 3σ2)σ2

1σ
−1
2

(26)
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and R′ is a periodic function of θ depending on u and of order ε. At this accuracy, the two Euler points L1

and L2 are symmetric with respect to the line u = 0, and if we denote by u(1) (resp. u(2)) the u-coordinate

of L1 (resp. L2), we have u(2) = −u(1) +O(ε2/3) and

u(1) =
σ2

(6m0σ5
1)1/3

+O(ε2/3) =
m1m2

(6m0(m1 +m2)5)1/3
+O(ε2/3). (27)

Let us mention that the quantities u(1), u(2) and u(3) can also be considered as roots of a polynomial equation,

as it is the case for the Euler’s configurations in the full three-body problem (see Marchal and Bozis (1982)

or Roy (1982)).

As for the tadpole orbits, the width of the horseshoe region along the u axis can be deduced from the

equation H0(π/3, U1) = H0(0, u(1)) that is

U1 = 2−1/261/6m
−1/3
0 σ

−5/3
1 σ2 +O(ε2/3). (28)

The minimal angular separation between two planets in horseshoe orbit is solution of the equation H0(θ(1), 0)

= H0(0, u(1)), and is equivalent to

θ(1) =
4

3

(
σ1

6m0

)1/3

+O(ε2/3). (29)

We note that at this degree of accuracy (neglecting the terms of order ε2/3), the two separatrices S1 and S2

merged in a single curve.

The equations (23) and (28) allow one to retrieve the result on the relative size of the tadpole and

horseshoe regions obtained by Dermott and Murray (1981a) in a very different way. Indeed, we have

U3

U1
= 2

6
√

6

(
m1 +m2

m0

)1/6

= O(ε1/6). (30)

As a consequence, the lower the planetary masses are, the larger the horseshoe region is (with respect to the

width of the tadpole region).

It is worth to mention that, although the average system modeled by the Hamiltonian H0 provides a

faithful representation of the topology of the problem, it only reflects poorly the dynamics in the domain

bounded by S1 containing the singularity.

The simplest argument that points out this problem comes from the computation of the orbit frequency

surrounding the collision point. Indeed, close to the singularity, the Hamiltonian can be approximated by

−Gm1m2a
−1(αJ2 + θ2)−1/2 with α = (m1m2µ0a)−1. (31)

It turns out that the frequency of the trajectory that originates at θ = θ0 and J = 0 is equivalent to
√
m1m2

m0

n0

θ3
0

. (32)

As a product of an averaging process, this frequency would be small compared to n0, but it tends to infinity

when θ0 tends to zero.

To conclude this section, we will compare the average Hamiltonian H0 to a classical approximation of

the co-orbital resonance. This model, represented by the Hamiltonian Ha which reads

Ha = −3

2

G
a

(m1 +m2)3

m1m2
u2 +

Gm1m2

a

(
cos θ − 1√

2− 2 cos θ

)
, (33)
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Fig. 2.— Comparison between the model H0 and its approximation Ha. The level curves of H0 are plotted

in red while the level curves of Ha are in green. The two approximations fit correctly when the trajectories

do not come too close to the singularity (left panel). The right plot shows the inconsistency between the two

models in the Hill’s region.

has been used by Yoder et al. (1983) to study the dynamics of the co-orbital satellites Janus and Epimetheus.

A similar Hamiltonian is also employed to model the 1:1 mean motion resonance in the RTBP (see Morais

(1999)). This approximation is a particular case of the expression (16) obtained by expanding H0 in power

series of u and ε. For small enough values of u, and if θ is not too close to 0 or to 2π, the Hamiltonian Ha

provides a good approximation of H0 in the tadpole region and for horseshoe orbits providing u << ε1/3.

As one can see on the left plot of the figure 2, although the differential system associated to the Hamiltonian

Ha possesses only three fixed points, its trajectories are very close to those of the average Hamiltonian H0,

when they do not approach the collision. This is especially true for the tadpole orbits and the moderate

amplitude horseshoe orbits. On the contrary, as shown in Fig. 2 (right panel), the second model is not

valid in the Hill region. But we have to keep in mind that though in this region the topology of the average

problem is well described by H0, it is not the case of its dynamics.

3. Variational equations in the neighborhood of the quasi-circular problem

3.1. The variational equations

It has been shown in the previous section that the manifold xj = yj = 0 is invariant by the flow of the

average Hamiltonian (10). In order to study the (linear) stability of this invariant manifold in the transversal

directions (xj , yj), we have to calculate the variational equations associated to this invariant surface. These

equations, corresponding to the linearization of the differential system associated to the Hamiltonian (10) in

the neighborhood of the plane xj = yj = 0, can be derived from the quadratic expansion in eccentricity and

inclination of the average Hamiltonian H. This expansion can be written in the form H0 +H
(h)
2 +H

(v)
2 with

H
(h)
2 = Gm1m2

(
AhX1X1 +BhX1X2 +BhX1X2 +AhX2X2

)
(34)

and

H
(v)
2 = Gm1m2

(
AvY1Y 1 +BvY1Y 2 +BvY 1Y2 +AvY2Y 2

)
, (35)
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where the coefficients Ah, Bh, Av and Bv read

Av =

(
a1a2

∆3
− 1
√
a1a2

)
cos θ, Bv =

(
1

√
a1a2

− a1a2

∆3

)
eiθ,

Ah =
a1a2

8∆5

(
a1a2(5 cos 2θ − 13) + 4(a2

1 + a2
2) cos θ

)
− cos θ

2
√
a1a2

,

Bh =
e−2iθ

2
√
a1a2

− a1a2

16∆5

(
a1a2

(
e−3iθ + 9eiθ − 26e−iθ

)
+ 8(a2

1 + a2
2)e−2iθ

)
,

∆ =
√
a2

1 + a2
2 − 2a1a2 cos θ.

(36)

The formulas (34), (35) and (36) generalize the expansion given by Morais (1999, 2001) in the case of the

elliptic RTBP.

The variational equations in the vicinity of a solution lying in the plane xj = yj = 0 and satisfying

θ̇ =
1

c

∂H0

∂u
(θ, u), u̇ = −1

c

∂H0

∂θ
(θ, u) with c = (β1 + β2)

√
µ0a, (37)

take the form (
Ẋ1

Ẋ2

)
= 2iGm1m2

(
Λ−1

1 Ah Λ−1
1 Bh

Λ−1
2 Bh Λ−1

2 Ah

)(
X1

X2

)
= Mh(θ, u)

(
X1

X2

)
(38)

and (
Ẏ1

Ẏ2

)
=
iGm1m2

2

(
Λ−1

1 Av Λ−1
1 Bv

Λ−1
2 Bv Λ−1

2 Av

)(
Y1

Y2

)
= Mv(θ, u)

(
Y1

Y2

)
, (39)

where θ and u are deduced from the solutions of the equations (37), and the Λj implicitly depend on u

by the relations (15). As these solutions are periodic (except if their initial conditions are chosen on the

separatrices S1 to S3) the linear equations (38) and (39) are periodically time-dependent. As a consequence,

their solutions cannot generally be expressed in a close form. A notable exception occurs at the equilibrium

points of the system (37). Indeed, here, the variational equations become autonomous and consequently

integrable. Then we will first begin to study these special cases. Before going further, let us mention that in

this paper, we will not study the “vertical” variational equation (39). Indeed, due to its strong degeneracy,

the study of this linear equation is not sufficient to understand the local dynamics. To this aim, the use

of higher order terms of the Hamiltonian is necessary (at least the forth degree in yj). To be convinced,

it is enough to look at the matrix Mv, defined in (39), for θ = π/3 and u = 0. Indeed, at L4 the matrix

vanishes and the quadratic Hamiltonian does not provide any information about the dynamics in the yj
directions. Then, this situation requires a careful analysis of the structure of the Hamiltonian in order to

deal with potential bifurcations in the vertical direction, as it is pointed out by Jorba (2000) in the case of

the bicircular problem. Therefore, we postpone this study to a future work.

3.1.1. Dynamics around the fixed points

For the equilateral configurations (θ = ±π/3), neglecting the quadratic terms in ε, the matrix Mh takes

the following expression

Mh = −i27

8

n0

m0

(
m2 −m2e

iθ

−m1e
−iθ m1

)
. (40)
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This matrix possesses two eigendirections associated to the eigenvectors

V1 =

(
eiθm2

−m1

)
and V2 =

(
eiθ

1

)
, (41)

whose eigenvalues are respectively

v1 = −i27

8

m1 +m2

m0
n0 and v2 = 0. (42)

These eigenvectors have a precise physical meaning. Along the neutral direction, the one which is collinear

with V2, the two eccentricities are the same and the angle ∆$ = $1 −$2 separating the two apsidal lines

is equal to π/3 at L4 and −π/3 at L5. These configurations clearly correspond to the Lagrangian elliptic

equilibria, which are fixed points of the average problem, and consequently of the linearized average problem

at L4 or L5. This is the reason why the associated eigenvalue v2 vanishes. Along the direction V1, the orbits

satisfy the relations

a1 = a2 = a, θ = ±π/3, m1e1 = m2e2, and ∆$ = $1 −$2 = θ + π. (43)

This corresponds to an infinitesimal version of the Anti-Lagrange orbits found numerically by Giuppone

et al. (2010). On these trajectories the elliptic elements a1, a2, e1, e2 and θ are constant. Only the two angles

$1 and $2 precess with the same frequency equal to

g1 = iv1 =
27

8

m1 +m2

m0
n0, (44)

in such a way that the angle ∆$ is constant. As a consequence, this family of periodic orbits is transformed,

after reduction by the rotations, in a family of fixed points, which is exactly what have found Giuppone et al.

(2010) in the reduced problem. Of course, the family that we found along the eigenvector V1 of the linearized

system provides only an infinitesimal approximation of the Anti-Lagrange family in the neighborhood of L4,

but we will show in Section 4 that this linear approximation can be generalized to any degree using Birkhoff

normal form.

3.1.2. The Eulerian fixed point L3

By evaluating the matrix Mh(θ, u) at (θ, u) = (π, u(3)) and neglecting the terms in ε2 and more, the

matrix of the linearized system at L3 reads

M ′h = i
7

8

n0

m0

(
m2 m2

m1 m1

)
. (45)

This matrix possesses two eigendirections associated to the eigenvectors

V ′1 =

(
m2

m1

)
and V ′2 =

(
1

−1

)
, (46)

whose eigenvalues are respectively

v′1 = i
7

8

m1 +m2

m0
n0 and v′2 = 0. (47)
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As in the equilateral case, the direction V ′2 corresponds to the unstable Euler configurations where the two

planets are in the two sides of the Sun (the eccentricities are equal and the perihelia are in opposition).

The other direction is more interesting. In this case, the perihelia are in conjunction and the eccentricities

verify the relation m1e1 = m2e2. As for L4, the method developed in Section 4.1 makes possible to prove

the existence of a one-parameter family of periodic orbits that bifurcates from L3 and is tangent to V ′1 at

this point. Remark that, at least close to L3, this family has been numerically computed by Hadjidemetriou

et al. (2009), and were previously found by Poincaré (1892) as a solution of second sort 2 (see Chenciner

(2012)).

3.1.3. Euler L1 and L2 equilibria

As the Hamiltonian H0 does not reflect properly the dynamics in the neighborhood of the collision

between the two planets, the linearized problem at L1 or L2 will not be considered in the present paper (see

the end of Section 2.2.2).

3.2. The general solution of the variational equation

Now, let us study the general case. This corresponds to writing the variational equation (38) around

a periodic solution of frequency ν. According to the Floquet theorem (see Meyer and Hall (1992)), the

solutions of the variational equation take the form

z(t) = P (νt) exp(At), (48)

where A is a constant matrix and P (ψ) is a matrix whose coefficients are 2π-periodic functions of ψ. As, if

Z is a fundamental matrix solution to the variational equation along a 2π/ν-periodic solution, one has the

relation

Z(t+ 2πν−1) = Z(t) exp
(
2πν−1A

)
, (49)

and the solutions stability of the variational equation depends on the eigenvalues of the monodromy matrix

exp
(
2πν−1A

)
. As a consequence, if we start the integration at t = 0 from the identity matrix, after a period,

we get the relation exp
(
2πν−1A

)
= Z(2πν−1). Thus, this matrix and its eigenvalues can be deduced from a

simple numerical integration of the variational equation. If the eigenvalues modulus of this matrix are equal

to one, the solutions of (38) are quasi-periodic. Moreover, their fundamental frequencies are ν, g1, g2, where g1

and g2 are equal to the eigenvalues arguments of the monodromy matrix multiplied by ν/(2π). Fig. 3 shows

the results corresponding to planetary masses m1 = mJ and m2 = mS . From the numerical computations

of the monodromy matrix eigenvalues, we conclude that solutions of the variational equation are always

quasi-periodic, and thus the invariant manifold of the quasi-circular orbits x1 = x2 = 0 is transversally

stable, at least in the directions associated to the eccentricities. This property seems to hold for every value

of planetary masses that we have tested, that is m1 = m2 = 10−p and m2 = 0.3 ×m1 = 0.3 × 10−p with p

ranging for 3 to 8. Figure 3 shows the behavior of the frequencies ν, g1 and g2 along a section of the space

phase. The red curve corresponds to ν, the green one to g1 and the blue one to g2. The initial conditions

are chosen on the segment θ = π/3 and 0 ≤ u ≤ u(1), u(1) being defined by the relation (27) as the positive

intersection of the line θ = π/3 with the separatrix S1. This plot shows clearly two different dynamical

2Méthodes nouvelles de la mécanique celeste Vol I, Chap III, &47:“Solutions de la seconde sorte”.
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domains: the inner one filled with tadpole orbits ranging from u = 0 to u(3), and the outer domain for

u(3) < u < u(1) populated by horseshoe orbits.

Inside the inner region, the libration frequency ν decreases from the value ν0 ≈
√

27(m1 +m2)/(4m0)n0

≈ 0.0936 yr−1 to zero when the separatrix S3 is reached. The frequency g1 associated to the precession of the

periastra evolves smoothly between 27(m1 +m2)n0/(8m0) ≈ 0.00439 yr−1 at L4 and 7(m1 +m2)n0/(8m0) ≈
0.00114 yr−1 approaching S3. The box located in the upper left corner of the plot details its evolution for

0 < u < 0.0055. As shown in this figure, the last frequency g2 is always very small with respect to the

other ones. It starts from zero and reaches zero again at the separatrix, being at least always twenty times

smaller than g1. Because in the tadpole region, the frequency ν is of order
√
ε and g1 of order ε, these two

frequencies do not generate low order resonances (some of these resonances are indicated by vertical black

dotted lines), except in a very narrow neighborhood of S3. As ν tends to zero at S3, in both sides of this

separatrix, the two curves intersect and ν becomes smaller than g1. Using the estimates derived by Garfinkel

(1976, 1978) in the RTBP, one can easily show that the frequency ν reaches a logarithmic singularity where

it tends to zero as −(log |u − u(3)|)−1. Consequently, the slope of the curve associated to ν is very steep

and then the low order resonances occur only very close to the separatrix, in a region which is intrinsically

unstable.
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Fig. 3.— Variations of the fundamental frequencies of the variational equation. u is plotted along the X-axis

and the frequencies, in rad/yr, along the Y-axis. The red curve represents the evolution of the libration

frequency ν along the segment θ = π/3, 0 ≤ u < u(1), while the green (resp. blue) curve is associated

to g1 (resp. g2). The vertical black dotted lines indicate the location on some resonances between g1 and

ν. The box plotted in the upper left corner of the figure is an enlargement showing the behavior of g1 for

0 ≤ u < 0.0055.

The situation is more interesting inside the horseshoe domain. Indeed, if g2 remains always very small
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with respect to the frequency g1, this one increases significantly after the crossing of the separatrix S3. Note

that this behavior is already mentioned by Morais (1999) where the figure 1.a of her paper dedicated to the

RTBP corresponds approximately to our figure 3 for u ranging from 0 to about 0.008. After this value, g1

keeps to increase, reaching the resonance ν = 2g1 at u ≈ 0.01 and even the 1:1 resonance between ν and g1

approaching the end of the horseshoe domain materialized by the separatrix S1. After the crossing of the

two curves representing the frequencies ν and g1, g1 remains temporarily above ν. The situation is reversed

quickly as ν tends to zero when S1 is reached.

The behavior of the three fundamental frequencies ν, g1, g2, described for m1 = mJ and m2 = mS , seems

to be very weakly mass-dependent. Indeed, the simulations performed with the mass sample presented above

converge to the same conclusions. First, the frequency g2 is always small with respect to g1 and of course to

ν. Second, no significant resonance which may destabilize the average system occurs in the tadpole region,

excepted in a narrow area surrounding S3: the lower the planetary masses are, the larger the ratio ν/g1 is.

And third, in the horseshoe domain, low order resonances involving ν and g1 always occur, in particular,

the 1:1 close to S1 is crossed two times. If these low order resonances generate chaotic behaviors in the

average problem, it is not necessarily this mechanism that dominates in the full (non averaged) three-body

problem for planetary masses comparable to those of Jupiter or Saturn. Indeed, Laughlin and Chambers

(2002) deduced from numerical simulations of the planetary three-body problem that horseshoe orbits, even

starting with the two planets in circular motion, are unstable for planetary masses satisfying the empirical

relation (m1 + m2)/(m0 + m1 + m2) > 0.0004. This limit corresponding approximately to two Saturn’s

mass planets around the Sun. One can find comparable simulations in different cases in Dvorak (2006). In

a nice paper by Barrarés and Ollé (2006), this behavior is studied more carefully. In the case of the RTBP,

these authors prove that the invariant manifolds associated to L3 deeply penetrate the region populated

by horseshoe orbits, generating a large chaotic region, whose size increases with the mass of the secondary

(the mass of the primary being fixed). They even mentioned the possible heteroclinic intersections with the

invariant manifolds associated to Lyapunov orbits around L1 and L2. A similar mechanism probably acts

in the planar planetary problem. As suggested by C. Simó (private communication), not only L3 invariant

manifolds, but also invariant objects of periodic orbits existing in the vicinity of the previous manifolds are

supposed to be involved in the process, as it is the case in the spatial RTBP. This phenomenon, acting in short

time-scale, plays a major role in the instability of the horseshoe regions, even for zero initial eccentricities.

For moderate to small planetary masses, the portion of the horseshoe orbit region intersecting the invariant

manifolds mentioned above shrinks to a narrow region, excluding transitions between the L3 region and the

neighborhoods of L1 and L2. In absence of short time-scale chaos, the destabilizing effect of the resonances

involving the frequencies ν and gj can dominate, at least locally, the dynamics of the full problem, as it is

the case for the average one.

4. Beyond the quadratic approximation: Birkhoff’s normal form and family of periodic

orbits

Let us begin with the study of the dynamics in the neighborhood of L4 (the discussion would be the same

at L5). We first start with the linearized system at this point, or equivalently, with the quadratic expansion

of the average Hamiltonian in the vicinity of L4. Using the notations (17) and (34), this expansion takes the

form

η1(θ − π

3
)2 + η2u

2 +H
(h)
2 , (50)
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the coefficients η1 and η2 being deduced from (18). A symplectic diagonalization of the associated Hamil-

tonian system allows one to define a new canonical coordinate system (z0, z̃0, z1, z̃1, z2, z̃2) that reduces the

previous quadratic form to

K2 =

2∑
q=0

γqzq z̃q. (51)

As for the variables xj and x̃j , the coordinates zj and z̃j are linked with the relation z̃j = −izj . L4 being

an elliptic equilibrium point, the coefficients γj are purely imaginary. More precisely, we have γ0 = iν,

γ1 = ig1 and γ2 = ig2 = 0. Consequently, if 0 ≤ j, k, l ≤ 2 are three distinct integers, the set defined by the

equation zj = zk = 0 is a one-parameter family of periodic orbits of the linearized system parametrized by

the complex number zl. The frequency, which is given by |γl|, is the same for every orbit of the family. Let

us denote F0 the family parametrized by z0 that corresponds to the quasi-circular motions (e1 = e2 = 0).

The one parametrized by z1 corresponding to the linear approximation of the Anti-Lagrange orbits will be

denoted F l1. And the last one, governed by z2, which contains the Lagrangian elliptic configurations, will be

symbolized by F2.

Let us now consider the term of degree greater than two in the expansion of the average Hamiltonian

in the neighborhood of L4, and let us write this expansion as

K = K2 +
∑
p≥3

Kp with Kp =
∑

q∈D6,p

γqz
q0
0 z̃

q̃0
0 z

q1
1 z̃

q̃1
1 z

q2
2 z̃

q̃2
2 , (52)

where

D2n,p = {q = (q0, q̃0, · · · , qn−1, q̃n−1) ∈ N2n/ |q| =
n−1∑
j=0

(|qj |+ |q̃j |) = p}. (53)

All the coefficients q are not allowed in the summations (52): as |x1|2 + |x2|2 = |z1|2 + |z2|2 the D’Alembert

rule is still valid in coordinates zj , and the non-zero coefficients γq verify the relation q1 + q2 = q̃1 + q̃2. This

last relation imposes that the total degree of the monomials zq11 z̃
q̃1
1 z

q2
2 z̃

q̃2
2 is even, thus, the manifold given by

the equation z1 = z2 = 0 is still invariant by the flow of the Hamiltonian K defined in (52). It turns out that

the family F0 is not only an invariant set of the linear problem (51) but also of the full average Hamiltonian

(52). This statement also holds for the family F2 including Lagrange’s configurations. Indeed, as we know

that these configurations exist as fixed points of the average problem and that we always have θ = π/3 and

a1 = a2 (or u = 0), z0 = 0 along the family F2. In addition, the relations ∆$ = π/3 and e1 = e2 = constant

impose that z1 = 0, according to Section 3.1.1. This implies additional constraints on the coefficients of the

Hamiltonian K. Indeed, as every element of this family is an equilibrium point, the Hamiltonian K fulfills

the conditions ∂K
∂zj

= ∂K
∂z̃j

= 0 when |z0| = |z1| = 0. This is equivalent to the cancellation of the coefficients

of the terms

(z2z̃2)q2 , z0(z2z̃2)q2 , z̃0(z2z̃2)q2 , z1z̃2(z2z̃2)q2 , z̃1z2(z2z̃2)q2 . (54)

As regards the Anti-Lagrange family, the relations |z0| = |z2| = 0, which characterizes its infinitesimal

approximation F l1 does not hold. Indeed, if these previous relations are preserved by the linear flow of the

system associated to K2, it is no more the case by the flow of K. If the Lyapunov center theorem (see Meyer

and Hall (1992)) could be applied to K, it would show the existence of a one parameter family of periodic

orbits originating at L4 and tangent to F l1, whose periods would be close to 2π/|γ1| in the neighborhood of

L4. Unfortunately, the coefficient γ2 being equal to zero, the hypothesis of the latter are not fulfilled. To

overcome this difficulty, we use a more elaborated method, based on the construction of a Birkhoff normal

form.
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As mentioned above, the use of the coordinates (zj , z̃j), provides an elementary parametrization of

the families F0 and F2. It is possible to build a coordinate system (ζj , ζ̃j) for which the Anti-Lagrange

family possesses the same kind of parametrization than the two other families, that is |ζ0| = |ζ2| = 0 and

ζ1 depending on the element of the family. This coordinate system can be chosen among one of those that

reduce the Hamiltonian K to its Birkhoff’s normal form. In this context, the Birkhoff transformation consists

in the construction of canonical transformations that act on homogeneous polynomials of given degrees in

order to eliminate non-resonant monomials. These are the monomials which are not of the form

zq00 z̃
q0
0 z

q1
1 z̃

q1
1 z

q2
2 z̃

q2
2 . (55)

More precisely, this transformation is performed iteratively, each step being dedicated to the normalization

of a given degree. An elementary transformation is defined by the time-one map of the flow of an auxiliary

Hamiltonian wn defined as a solution of the equation

γ0

(
ζ̃0
∂wn

∂ζ̃0
− ζ0

∂wn
∂ζ0

)
+ γ1

(
ζ̃1
∂wn

∂ζ̃1
− ζ1

∂wn
∂ζ1

)
= Ψn, (56)

where Ψn contains non resonant monomials of degree n (see Morbidelli (2002)). This equation being linear,

it can be solved monomial by monomial. The resolution of the equation (56) for Ψn = zq00 z̃
q̃0
0 z

q1
1 z̃

q̃1
1 z

q2
2 z̃

q̃2
2

introduces the divisor γ0(q̃0 − q0) + γ1(q̃1 − q1). If we assume that γ0 and γ1 are rationally independent,

which is generically the case3, the denominator cancels only if q0 = q̃0 and q1 = q̃1 independently of q2 and

q̃2. Using the D’Alembert rule, the only monomials involving divisors equal to zero are zq00 z̃
q0
0 z

q1
1 z̃

q1
1 z

q2
2 z̃

q2
2

which are not eliminated from the Hamiltonian. Consequently, the Birkhoff normal form can be computed

at any degree. Let us denoted by (ζj , ζ̃j) the normalizing coordinates. By construction, the coordinates

(zj , z̃j) and (ζj , ζ̃j) are related by expressions of the form: zj = ζj + O2(ζj , ζ̃j) with ζ̃j = −iζj . Then the

Hamiltonian reduced to a Birkhoff normal form reads

N(ζj , ζ̃j) =

2∑
q=0

γqζpζ̃p +
∑

q0+q1+q2≥2

γ′q(ζ0ζ̃0)q0(ζ1ζ̃1)q1(ζ2ζ̃2)q2 , (57)

where the γ′q are complex numbers such that the coefficients of the monomials (ζ2ζ̃2)q2 vanish. As an

example, the Birkhoff normal form corresponding to m1 = mJ and m2 = mS computed up to the fourth

degree in ζj , ζ̃j reads

−0.093622 iζ0ζ̃0 − 0.00439 iζ1ζ̃1 − 2450.55 ζ2
0 ζ̃

2
0 + 472.218 ζ0ζ̃0ζ1ζ̃1

+253.10 ζ0ζ̃0ζ2ζ̃2 − 38.0734 ζ2
1ζ

2
1 − 1.17035 ζ1ζ̃1ζ2ζ̃2,

(58)

where only a few digits of the coefficients are given here. Remark that the “linear” fundamental frequencies,

namely the coefficients of the monomials iζ0ζ̃0 and iζ1ζ̃1, are negative real numbers. As it is more convenient

to deal with positive quantities, we have decided to change the sign of these frequencies in the previous

sections. In the coordinates (ζj , ζ̃j), the Hamiltonian system associated to N is trivially integrable. In

particular, its phase space is foliated in 3-dimensional invariant tori carrying linear flows. In other words,

using the angle-action variables (ϕj , Ij) defined by the relations ζj =
√
Ije

iϕj , one can verify that the actions

Ij are integrals of the motion, and that every solution is quasi-periodic with fundamental frequencies equal

3As γ1/γ0 ∼
√

27(m1 +m2)/m0/4, only high order resonances can occur. This allows one to build the normal form up to

a high degree, typically of order 1/
√
ε. In our numerical application, the first potential small denominator involves terms of

degree 48.
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to ωj = ∂N
∂Ij

. Among these solutions, we focus now on those that are members of the families Fj , that is the

solutions satisfying the relations Ik = Il = 0 (j, k, l pairwise distinct), or equivalently ζk = ζl = 0. Using

the transformation that reduces the Hamiltonian K to its normal form up to a given degree, say 2n, and

taking into account the symmetries of the transformation4, one can show that the families are parametrized

as follows. The family F0 containing the quasi-circular periodic orbits is given by

z0 = ζ0 + f(ζ0, ζ̃0), z1 = z2 = 0, ζ̃0 = −iζ0 ∈ C, (59)

f(ζ0, ζ̃0) being a polynomial of degree 2n in (ζ0, ζ̃0) whose lower order terms are quadratic. The family F1

associated to the Anti-Lagrange orbits reads

z0 = P (ζ1ζ̃1), z1 = ζ1 + ζ1Q(ζ1ζ̃1), z2 = ζ1R(ζ1ζ̃1), (60)

where P,Q and R are polynomials of a single complex variable of degree n whose lower order term is of degree

one. Of course, we still have ζ̃1 = −iζ1 ∈ C. As mentioned above, the elliptic equilateral configurations F2

are still given by:

z0 = z1 = 0, z2 = ζ2, ζ2 = −iζ2 ∈ C . (61)

F1 is the most interesting of these three families. Indeed, the quasi-circular family F0 is well known and

its orbits are already represented in the figures 1 and 2. The elliptic equilateral configurations F2 has also

been extensively studied since their discovery by Lagrange. In addition, its expression in terms of elliptic

elements is well known since it corresponds to a1 = a2, e1 = e2 and θ = ∆$ = π/3 (or −π/3 for the family

starting from L5). On the contrary, the family F1 has been only partially studied by Giuppone et al. (2010)

and Hadjidemetriou and Voyatzis (2011).

The use of a Birkhoff normal form allows one to get any desired information concerning this family,

providing that the orbits of the family are contained inside the domain of validity of the normal form.

Practically, this is not the case for the whole family, at least some portion of F1 including L4 is contained

in such a domain. In order to estimate this region, we have computed the relative difference between K and

N along F1 using the expression

ρ(ζ1) =
|K(z0, z1, z2, z̃0, z̃1, z̃2)−N(0, ζ1, 0, 0, ζ̃1, 0)|

|N(0, ζ1, 0, 0, ζ̃1, 0)|
, (62)

where the values of zj are deduced from ζ1 by the relations (60). As ρ(0) = 0, and in order to be consistent

with the approximations done during the computation of the average Hamiltonian, we consider that the

normal form is relevant while ρ(ζ1) < ε2. We have estimated that the thirtieth degree was a good compromise

between the precision of the normal form and its number of terms. Once defined this domain in which the

normal form is relevant, a linear transformation allows one to express the zj (deduced from ζj) in terms of

θ, u, x1, x2 and to deduce the expression of F1 with the help of the elliptic elements. This is shown on the

left panel of the figure 4 in the particular cases m1 = mJ ,m2 = mS . Fig. 4.a displays the evolution of the

eccentricity e1 versus e2 along the family F1 (red curve). The maximal value of e2 for which the condition

ρ(ζ1) < ε2 (here ρ(ζ1) < 10−6) is fulfilled is e2 = 0.23, which corresponds to e1 ≈ 0.066. Let us note that,

we have ρ(ζ1) < 3 × 10−16 as long as e2 < 0.12 and that the precision obtained using the Birkhoff normal

form is comparable to the machine epsilon. In this domain, e1 seems to depend linearly on e2, the slope

of the (red) line being equal to m2/m1. The difference between the green curve, which shows the variation

4It is not necessary to detail this transformation, but the key point lies on the fact that it takes the form ζj = zj +

fj(z1, z2, z3, z̃1, z̃2, z̃3) where the polynomial fj possesses the same symmetries as ∂K
∂z̃j

.
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Fig. 4.— Evolution of the elliptic elements and of the fundamental frequencies in function of e2, along the

families F1 and F2. Left panel: elliptic elements. e1 red curve, panel (a). θ in red and ∆$ (green) in panel

(b). Panel (c): a1 − 1 (red), a2 − 1 (green). Right panel: the fundamental frequencies ν, g1 and g2 are

represented in (d), (e) and (f). The green curves correspond to frequencies computed along F1, F2 in red.

of m1e1 −m2e2 versus e2, and the dashed black line (e1 = 0), indicates that the relation m1e1 = m2e2 is

fulfilled only at the origin of the family F1. Hadjidemetriou and Voyatzis (2011) suggest that along this

family, e1 and e2 tend simultaneously to one regardless of the planetary masses. Fig. 4.b shows how the

angles θ in red and ∆$− 180◦ in green move away from their value at the origin when e2 increases. Basing

on numerical simulations, Hadjidemetriou and Voyatzis (2011) suggest that the angles θ and ∆$ tend to

180◦, when the eccentricities tend to one, which would correspond to a triple collision. The last figure of

the left panel, Fig. 4.c, shows the slight deviation of the semi-major axes from the equality a1 = a2 = 1.

Practically, a1 − 1 is plotted in red, while the green curve corresponds to a2 − 1. This figure shows that,

at least for e2 < 0.23, the variations of the semi-major axes are very small (of order ε2) compared to the

other elliptic elements. The situation may be different for large values of the eccentricities, but this is not

mentioned in the literature.

Remark that, with the help of the analytical expression of F1, we analyze a relatively small portion of

the family F1 compared to the region studied numerically in Giuppone et al. (2010) and Hadjidemetriou

and Voyatzis (2011) where the eccentricities reach 0.8. In contrast, our analytical study allows us to access

to more information. First, it provides a complete understanding of the dynamics of all quasi-periodic

trajectories lying in the validity domain of the Birkhoff normal form. Second, using an analytical expansion
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of the eigenvectors of the differential system (38), we can establish rigorously that, at the beginning of the

family F1, the orbits satisfy the relation m1e1 = m2e2, which has been empirically deduced from numerical

simulations in Giuppone et al. (2010). Third, it allows us to compute straightforwardly the fundamental

frequencies associated to each trajectory belonging to a given family. Indeed, for Fl, the derivative of the

normal form N with respect to Il is the frequency of the corresponding periodic orbit of the family (this

frequency is zero in the particular case of F2). The normal frequencies are obtained by derivation with

respect to the two other action variables. These three frequencies are plotted in Fig.4.d-f for the families F1

and F2. The fundamental frequencies associated to the family F0 are not represented here for the simple

reason that the normal form furnishes the same values as in figure 3, at least in a neighborhood of the circular

equilateral configuration L4. The frequency ν (resp. g1, g2) is plotted in Fig. 4-d (reps. 4-e, 4-f). The red

curves correspond the equilateral family F2 while the green curves are associated to F1.

Although these frequencies and their derivatives are equal at the origin of the families, their behaviors

along F1 and F2 are very different. As shown Fig. 4-f, the frequency g2 is obviously equal to zero all

along the Lagrange family since these trajectories are fixed points of the average problem. On the contrary,

computed on the family F1 this frequency increases to a (local) maximum although it remains small in the

considered interval. According Fig. 4-e, g1 changes only very slightly for the equilateral family, but very

much for F1. Remark that the quantity 2π/g1, which seems to increase with the distance to L4, is the period

of the orbits belonging to F1. Regarding ν (Fig. 4-d), the frequency associated to F1 seems to reach a local

maximum, while the one corresponding to F2 increases.

What can be said concerning the behavior of the fundamental frequencies outside of the validity domain

of the normal form? One thing is clear about the equilateral configurations: when their eccentricity increases,

a critical value depending on the mass ratio (m0m1 +m0m2 +m1m2)/(m0 +m1 +m2)2 is reached, leading to

a period-doubling bifurcation where the family looses its stability (Roberts 2002; Nauenberg 2002). Conse-

quently, for e2 > 0.23, the frequency ν is supposed to keep increasing, until it reaches the resonance 2ν = n,

where n is the planetary mean motion (close to one if a = G = m0 = 1). This is certainly the mechanism

that was acting when Giuppone et al. (2010) observed the shrinking of the stable region surrounding the

equilateral equilibrium, and finally its fading when the eccentricity grows. The way that the family F1 ends

is less clear. In fact, at high eccentricities, only numerical simulations of these orbits have been performed

(Giuppone et al. 2010; Hadjidemetriou and Voyatzis 2011), and when e does not exceed 0.8. Hadjidemetriou

and Voyatzis (2011) suggest that for high eccentric orbits, the two eccentricities coincide, and that θ and

∆$ tend to π. This would imply that the Anti-Lagrange family F1, and the Euler family originating at L3

intersect, or end at a triple collision. This conjecture has to be checked.

5. Concluding remarks

In this paper, we developed a Hamiltonian formalism adapted to study the motion of two planets in co-

orbital resonance. This analytical formalism intends to unify several works dedicated to the 1:1 mean-motion

resonances like the formulations developed by Érdi (1977) or Morais (1999, 2001) in the case of the RTBP,

but also models obtained by Dermott and Murray (1981a) and Yoder et al. (1983) aiming to understand the

dynamics of the two Saturn’s satellites Janus and Epimetheus.

Our approach consists on an expansion of the average Hamiltonian in power series of both planetary

eccentricities and inclinations. To make the study of the tadpole orbits as well as the horseshoe orbits

possible, an expression of the mutual distance valid for all values of θ = λ1 − λ2 has been introduced in
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the Hamiltonian. Contrary to the other authors who modeled the distance between the two planets by the

term
√

2− 2 cos θ, we have chosen to introduce the divisor
√
a2

1 + a2
2 − 2a1a2 cos θ. This changes drastically

the topology of the integrable problem associated to e1 = e2 = I1 = I2 = 0. Indeed, the usual model,

which possesses three fixed points corresponding to L3, L4 and L5, is singular when θ = 0, regardless of the

planetary semi-major axes values. Our approximation gives rise to two additional fixed points corresponding

to the Euler points L1 and L2. The singularity, that is usually identified to a line in the usual model,

is here reduced to a single point that corresponds to the collision of the two planets in the same circular

orbit, that is a1 = a2, θ = 0. Thus, the topology of the two problems is very different. Indeed, with the

first approximation, the phase space is divided in three distinct regions: two symmetrical libration regions

around L4 and L5 respectively, and a third one, populated with horseshoe orbits that encompass the three

equilibrium. Inside this last region, the semi-major axes tend to infinity when the angle θ approaches zero,

which is obviously not very realistic. With the average model presented in this paper, the two regions

surrounding L4 and L5 are practically the same as in the usual model, while the horseshoe region bounded

in a domain lying between the separatrix emanating from L3 and the one originated from L2. This model

can be useful to simulate captures or transitions between different kinds of trajectories under the influence

of weak dissipations, or slow migrations. Indeed, contrary to the usual model, the non-resonant region is

better separated than the resonant horseshoe region.

For small eccentricities, the global topology of the problem is similar to the one described in Nesvorný

et al. (2002) in the RTBP framework, using numerical averaging methods which are not limited to moderate

eccentricities and inclinations. Although we are constrained by the size of eccentricities and inclinations,

our model possesses at least two advantages. On the one hand, this average problem, as long as the number

of terms of its Hamiltonian is not too large, allows fast numerical simulations using large time-steps. On

the other hand, the present analytical formulation of the problem can help to obtain theoretical results

concerning the stability inside the co-orbital resonance. If much has been done in the vicinity of the equilateral

equilibrium points, especially in the RTBP (see Gabern et al. (2005) and references therein), the theoretical

stability of horseshoe orbits remains an open problem.

With the help of a Birkhoff normal form, we have shown how the equilateral family F2 and the Anti-

Lagrange family F1 bifurcate from the circular equilateral configuration L4. If the behavior of the family

F2 is well known from its beginning at L4 to its termination by a period-doubling bifurcation (Roberts

2002), the same cannot be said for the family F1. At this point, we only have conjectures concerning the

termination of this family. This might be a triple collision, and could be related to the end of the Euler aligned

configurations originated at L3. A similar question, which is not discussed in the present paper, concerns

the so-called quasi-satellites family (see Hadjidemetriou et al. (2009); Giuppone et al. (2010)) which could

also end by collisions when the eccentricities tend to one (an alternation of two kinds of double collisions

involving on the one hand, Sun and a first planet, and on the other hand, the second planet and the Sun).

A last point should be mentioned. In Section 3.1, the vertical variational equation has been set aside

because the quadratic part of Hamiltonian in inclination was equal to zero. A careful study of this situation

would reveal interesting bifurcation phenomena giving rise to families of remarkable orbits, as in the case

of the RTBP (Perdios and Zagouras 1991; Marchal 2009) or in the general three-body problem with equal

masses (Féjoz and Chenciner 2008). Finally, a lot remains to be done in that field.
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6. Appendix: L4 in heliocentric canonical elliptic elements

Let us assume that the three bodies describe a circular Lagrangian equilateral configuration where ρ is

the length of the triangle sides. The heliocentric coordinate system can be chosen such as rj = ρuj where

uj =

 cosϕj
sinϕj

0

 , withϕ1 = ωt andϕ2 = ωt+
π

3
, (63)

the angular velocity ω of the relative equilibrium satisfying the third Kepler law ω2ρ3 = µ = G(m0+m1+m2).

The elliptic elements (aj , ej , vj , $j) can be derived from the canonical heliocentric coordinates (r̃j , rj) using

the relations

Kj =
r̃2
j

2βj
− µjβj
||rj ||

= −βjµj
2aj

, (64)

Ej = µ−1
j

r̃j
βj
×
(

rj ×
r̃j
βj

)
− uj = ej

 cos$j

sin$j

0

 (65)

and

cos vj = e−1
j Ej · uj . (66)

r̃j
βj

= γ−1

(
ṙj −

βk
m0

ṙk

)
, with γ = 1− β1β2

m2
0

, (j, k) ∈ {1, 2} and j 6= k, (67)

a straightforward computation leads to the expressions

Kj = −βjµj
2ρ

(
2− µ

µj

(
1− βk

m0
+
β2
k

m2
0

)
γ−2

)
(68)

and

γ2Ej =

(
mk

m0 +mj
− 1

2

µ

µj

βk
m0

)
uj +

µ

µj

βk
m0

(
1

2

βk
m0
− 1

)
uk. (69)

According to (68), the semi-major axis of the planet j is a time-independent quantity approximated by the

expression

aj = ρ

(
1 +

mk

m0

m1 +m2

m0
+O(ε3)

)
(70)

which is slightly larger than the radius ρ of the configuration. As u1 · u2 = 1/2, the expression (69) shows

that the eccentricity (modulus of Ej) is constant, and that the ellipse rotates with an angular velocity equal

to ω. A first order expansion of (69) gives

Ej =
mk

m0

(uj
2
− uk

)
+O(ε2) (71)

and

ej =

√
3

2

mk

m0
+O(ε2). (72)

We deduced from (66) that the true anomalies vj of the planets satisfy

cos vj =
4mj +mk

2
√

3m0

+O(ε2). (73)



– 23 –

REFERENCES
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Jorba, À.: A numerical study on the existence of stable motions near the triangular points of the real

earth-moon system. Astron. Astrophys. 364, 327–338 (2000)

Laskar, J., Robutel, P.: Stability of the planetary three-body problem I: Expansion of the planetary hamil-

tonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)

Laughlin, G., Chambers, J. E.: Extrasolar Trojans: The Viability and Detectability of Planets in the 1:1

Resonance. Astron. J. 124, 592–600 (2002)

Malige, F., Robutel, P., Laskar, J.: Partial reduction in the n-body planetary problem using the angular

momentum integral. Celest. Mech. Dyn. Astron. 84, 283–316 (2002)

Marchal, C., Bozis, G.: Hill Stability and Distance Curves for the General Three-Body Problem. Celestial

Mechanics 26, 311–333 (1982)

Marchal, C.: Long term evolution of quasi-circular Trojan orbits. Celest. Mech. Dyn. Astron. 104, 53–67

(2009)

Meyer, K. R. and Hall, G. R.: Introduction to Hamiltonian dynamical systems and the n-body problem.

Springer-Verlag. (1992)

Morais, M. H. M.: A secular theory for Trojan-type motion. Astron. Astrophys. 350, 318–326 (1999)

Morais, M. H. M.: Hamiltonian formulation of the secular theory for Trojan-type motion. Astron. Astrophys.

369, 677–689 (2001)

Morbidelli, A.: Modern celestial mechanics : aspects of solar system dynamics. Taylor & Francis, London,

2002, ISBN 0415279399 (2002)

Nauenberg, M.: Stability and Eccentricity for Two Planets in a 1:1 Resonance, and Their Possible Occurrence

in Extrasolar Planetary Systems. Astron. J. 124, 2332–2338 (2002)

Nesvorný, D., Thomas, F., Ferraz-Mello, S., Morbidelli, A.: A perturbative treatment of the co-orbital

motion. Celest. Mech. Dyn. Astron. 82, 323–361 (2002)

Perdios, E. and Zagouras, C. G.: Vertical stability of periodic solutions around the triangular equilibrium

points. Celest. Mech. Dyn. Astron. 51, 75–81 (1991)
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