N
N

N

HAL

open science

A Three-Step Approach for Building Correct-by-Design
Autonomic Service-Oriented Architectures

Emna Mezghani, Riadh Ben Halima, Ismael Bouassida Rodriguez, Khalil

» To cite this version:

Emna Mezghani, Riadh Ben Halima, Ismael Bouassida Rodriguez, Khalil Drira.

Drira

Approach for Building Correct-by-Design Autonomic Service-Oriented Architectures. 2013.

00807521

HAL Id: hal-00807521
https://hal.science/hal-00807521

Preprint submitted on 3 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A Three-Step

https://hal.science/hal-00807521
https://hal.archives-ouvertes.fr

A Three-Step Approach for Building Correct-by-Design
Autonomic Service-Oriented Architectures

Emna Mezghani':?3, Riadh Ben Halima!-?, Ismael Bouassida Rodriguez'2:3

and Khalil Driral?
L CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France
3 University of Sfax, ReDCAD, B.P.W, 3038 Sfax, Tunisia
{emezghan,rbenhali,bouassida,drira}@laas.fr

Abstract: Autonomic systems are known by their ability to manage and reconfigure
themselves in reaction to context changes without human intervention. The manual
design and management of such complex systems is an error-prone task where both
functional and non-functional requirements can be disturbed. In this paper, we pro-
vide a correct-by-design approach that allows a given abstract architectural description
to be refined into autonomic architecture models that are close to implementations.
The challenge is to get a system architecture that includes the necessary components
for monitoring the non-functional parameters (e.g. quality of service) and reacting to
any degradation by performing runtime reconfigurations. For solving such a problem,
we provide an automated approach where an architecture is modelled as a concep-
tual graph with different levels of abstractions. Nodes represent software components
or services or connectors and vertices represent communication or interaction links.
To endow a given architecture with such properties, we define graph transformation
rules to formally refine a given abstract representation into a specific model allowing
the easy implementation of the autonomic schema. Such a refined schema includes
the autonomic control loop components namely Monitoring, Analysis, Planning, and
Execution (MAPE). We apply our approach to the “Campus-Wide Smart Metering”
use-case providing a service-oriented style connecting Machine-to-Machine devices.
Key Words: Architecture, Autonomic computing, Correct by design, Dynamic re-
configuration.

1 Introduction

Service-Oriented Architectures (SOA) represent an abstract style to implement
user requirements in software systems and their applications. These systems are
built on top of loosely-coupled services which are accessible to a large community
of clients. Still, the Service-Oriented Architecture abstraction contributes, but is
not sufficient to manage the dynamic reconfiguration properties as required for
adaptation to context changes and to provide the best Quality of Service (QoS).

The design of such systems is too complex. It is hard to solve systems en-
tities dependencies when integrating new entities to the existing ones. It re-
quires different refinement steps. The software architect has, first, to elaborate
an initial abstract architecture description from the user requirements. Such

a model can be provided as a UML component diagram that includes busi-
ness components and the related connections. Then, she/he adds incrementally
both additional functional and non-functional requirements during the design
process until the most refined description that can be associated with the real
system design for the implementation. The Model Driven Architecture (MDA)
[Miller and Mukerji, 2003] presents a modelling approach that starts from a high
level model, and which refines this model in order to get the final model ready
to be mapped to a given specific platform.

Few design approaches take into consideration the dynamic evolution of the
non-functional requirements to reconfigure the system. Enabling that for SOA
requires extending applications with the autonomic computing control loop that
refers to monitor QoS parameters, to analyze them, to plan enforce, at runtime,
reconfiguration actions [Riadh Ben-Halima, 2008].

However, it is tedious to incorporate the control loop components in or-
der to support dynamic reconfiguration in SOA-compliant applications since the
handmade refinement approaches are usually error-prone. Several research activ-
ities [Cristian Ruz and Sauvan, 2011], [Maurel et al., 2010], [Sheng et al., 2010,
[Gauvrit et al., 2010] handle the dynamic reconfiguration and show different
ways to adapt systems to the requirements. The variety of the solutions in the
literature underlines the need to provide rule-based approaches and tools for
software architects to assist them in building such systems.

In this paper, we define an automated approach that allows architects to gen-
erate correct-by-design refined representations of autonomic SOA-compliant for
communicating systems and their applications. Starting from an abstract archi-
tectural model of functional and non-functional requirements, we define graph
grammars [Chomsky, 1956a] transformation rules that govern the iterative refin-
ing process and incorporate the autonomic features. The refinement inside each
step is based on graph transformation implemented using the Graph Matching
and Transformation Engine (GMTE)!.

The rest of this paper is organized as follows. In Section 2, we present different
existing work in the field of transforming and refining systems. In Section 3,
we detail our approach and describe the different steps. In Section 4, we give
our motivating example and describe refinements performed to get autonomic
Service-Oriented Architectures. And, finally, Section 5 concludes the paper and
gives an overview of our future work.

2 Related Work

Starting from user requirements (the abstract view of the system) until reaching
application implementation is the purpose of many researchers that adopt the

! The GMTE is available at http://homepages.laas.fr/khalil/GMTE

iterative refinement of architectures. Some of them, adapt MDA to tackle the
separation of concerns at design time.

2.1 MDA Driven Approaches

Authors of [Cao et al., 2008] propose an MDA approach which focuses on trans-
forming the CIM (Computational Independent Model) to the PIM (Platform In-
dependent Model). This approach starts by modelling SOCIM (Service-Oriented
CIM) requirements using the Service-Oriented Feature Model then they refine
this model using several refinement rules and patterns in order to get the SOPIM
(Service-Oriented PIM).

Research activities of [Rafe et al., 2009] and [Pena et al., 2006b] concentrate
on the transformation from the PIM to the PSM (Platform Specific Model).
Authors of [Rafe et al., 2009] present an MDA approach based on Story Driven
Modelling and Aspect Oriented Programming for building SOA-compliant ap-
plications. They start from the PIM based on a UML standard profile to get
the executable code. This approach is composed of three steps: transforming
the PIM into PSM (SOA profile), then into a middleware independent code
achieved via the concept of aspect and finally transforming this middleware
into an executable code. Authors of [Pena et al., 2006b] present an MDA ap-
proach for applying policies to autonomic systems. This approach is based on a
set of UML models and uses an Agent-Oriented methodology called MaCMAS
[Pena et al., 2006a] to specify autonomous features. The authors proposed to use
three PIM models and a PSM model. These models are generated by applying a
set of transformations to the first PIM model (M-RAAF, Reusable Autonomous
& Autonomic Features Model). Therefore, adding new policies is applied in the
two first PIM model in order to add new features and the rest will be generated
thanks to the transforming model. They validate their approach by the NASA
ANTS case study.

In [Utomo, 2011], the author tackles the whole MDA levels and proposes an
SOA-MDA method to implement an enterprise integration. This method pro-
vides a set of concepts that cover both business perspectives (business features
and business requirements) and systems perspectives (functionalities for satisfy-
ing business requirements). The CIM describes the business perspectives using
a Business Process Model, while the PIM and the PSM represent the systems
perspectives. The PIM includes five phases: Abstract Layer Model, Use Case
Model, Class Model, Sequence Model and Component Model. In the PSM level,
where the SOA is integrated after modelling the PIM, they defined three phases
related to SOA: WSDL Model, BPEL Model and Composite Model. They prove
the success of their method through the e-Shop case study.

These research activities involve the MDA to model the different levels of ab-
straction of the application. They even detail each level into sub-levels like the

work of [Utomo, 2011] and [Pena et al., 2006b]. However, there are no details
provided about the transformations. Except the work of [Pena et al., 2006b],
they do not consider autonomic systems. Moreover, none of them discusses how
it is possible to model, transform and automatically generate dynamically re-
configurable architectures.

2.2 Multi-Level Model-Driven Approaches

In this context, Sancho’s [Sancho, 2009] and Rodriguez et al
[Rodriguez et al., 2010] present a multi-level model-driven reconfiguration
approach for collaborative and ubiquitous systems. Their work focuses on pro-
cessing transformation models based on ontology using graph transformation
techniques for refining architectural configurations for multi-level architecture
systems (application, collaboration and middleware levels).

The authors of [Baresi et al., 2004] propose a correct refinement of abstract
architectural models into platform specific representations. Their approach aims
at checking and refining the dynamic architectures. They used graph transforma-
tion and rule-based refinements to model architectural styles for different levels
of platform abstraction and to automatically map them to specific platforms
while preserving the semantic correctness. They validated their approach with
an SOA-compliant case study namely “room reservation system”.

However, the refinement of an abstract architecture to get a dynamic re-
configurable structurally equivalent architecture is a hard task for the architect
and increases with the complexity of the systems. Therefore, automating the
design of such systems is crucial. We propose a rule-based approach that takes
advantages of the graph grammar strength in order to tackle the complexity of
designing autonomic architectures. We handle non-functional requirements with
a focus on QoS management for SOA-compliant applications.

3 A Rule-Based Transformation Approach

In this section, we present an overview of our three-step modelling approach. We
focus on how to generate an autonomic SOA-compliant architecture for commu-
nicating systems and their applications. We give also details for each step.

3.1 The Approach

In software engineering, we notice that designing and developing autonomic ap-
plications are not an easy task. It needs an expert on autonomic computing in
order to understand the requirements and then plug the autonomous components
in the designed architectural model. The proposed approach aims at formalizing
this expertise and automating the integration of autonomic components at design

time. Our main goal is to assist software architects with an efficient approach
that automates the design of autonomic Service-Oriented Architectures.

3.1.1 An Overview

Starting from an abstract architectural model that describes the functional re-
quirements, our approach allows incorporating autonomic components that man-
age the system monitoring and reconfiguration according to its non-functional
requirements. Following the autonomic management architecture proposed by
[Kephart and Chess, 2003, managing non-functional requirements needs four
autonomic control loop components: Monitoring which observes QoS param-
eters, Analysis which detects and identifies QoS degradation, Planning which
plans for reconfiguration actions, Execution which enforces them.

Requirements Automated Steps

A
— |
" P . . E 1
Functional Modeling the Business <!
Requirements Requirements <
o,
Non-Functional [’ / %:

- -
. Requirements Abstract Conceptual Model | | "’i
(Model%) i
— |
/ =3
- - <!
Keys Plugging-in Abstract 2!
MAPE Components —!
|moce 2!
] 8
Q Requirements - 2
Autonomic-enabled Model !
:] Transformation (Modelyy [/ 1IK
/ 2
— 2!
Refining MAPE <
Components ~
Implementation J § !
w !
1

Autonomic Web Service
based applications

/| Detailed MAPE Components
Model (Model?)

<

Figure 1: The three-step transformation approach

As shown in Figure 1, our approach includes two branches. The left-hand
branch is dedicated to the requirements description. The right-hand branch is
dedicated to the architecture description models and their specification and re-
finement steps. We distinguish three steps. Step 0 is called Initial Abstract Archi-
tectural Model (AAM). In this step, the architect manually provides an abstract

description based on the functional requirements. It is represented as a UML
component diagram without being dependent on UML notations. Other kinds
of abstract descriptions can be specified during this step. Step 1 is called Au-
tonomic Architecture Component Model (AACM) in which we automatically
plug in the four autonomic control loop components. Details of each autonomic
control loop component are generated during step 2 that we call Autonomic Ar-
chitecture Deployment Model (AADM). It refines the content of each component
regarding the non-functional requirements. As a result, we get an autonomic ar-
chitectural model able to monitor its state and dynamically reconfigure itself
at runtime if a QoS degradation occurs. The implementation of such dynamic
architectural model as an SOA can lead to an autonomic Web Service based
application.

3.1.2 The Transformation Process

The automation of step I and step 2 is based on graph transformation us-
ing graph grammars. So, each architectural model is automatically mapped
to a graph, and then transformed using graph transformation rules. The
graph transformation takes an important role because it can automate model
transformation. At present, few graph transformation tools [Gei et al., 2006,
Ermel et al., 1999] support multi-labelled graph inputs. Also, the main problem
of these tools lies on the limited expressiveness of the used transformation rules.
This kind of issue negatively reduces the range of application scenarios to be
modelled and/or negatively increases the number of needed transformation rules.
In this paper, we use the tool GMTE which handles directed and multi-labelled
graphs. It allows performing graph matching and sequential transformation of
graphs as well as rule applications as long as possible.

A generative grammar [Chomsky, 1956b] is defined, in general, as a classical
grammar system < AX; NT;T; P >, where AX is the axiom, NT is the set of the
non-terminal nodes, T the set of terminal nodes, and P the set of transformation
rules, also called grammar productions.

We follow the approach of Guennoun [Guennoun et al., 2004] that combines
the structure of a Double PushOut (DPO) production structure and negative
application conditions (NAC). An instance belonging to the graph grammar is a
graph containing only terminal nodes obtained by applying a sequence of produc-
tions in P starting from axiom AX. P specifies the set of grammar productions
that are of the form (L, K, R, NAC) where L, R, K and NAC are subgraphs.
Such productions are considered applicable to a given graph G if a graph ho-
momorphism from L to G exists without NAC. If a production is applicable,
its application leads to the removal of the subgraph occurrence (L \ K), the
insertion of an isomorphous copy of the subgraph (R \ K).

Requirements Automated Steps

%ﬁ Wi

= -{@

Model* So

== R Cy=c)
e

Figure 2: The transformation process inside a step

For each step, the initial architectural model is mapped automatically to XMI
format (which is a widely used standard for exchanging information through
XML) then to GraphML [Brandes et al., 2001] format (which is an XML format
for graphs). The GMTE takes this GraphML file as an input. Then, it executes
rules and transforms it into a refined architectural model. We note that the
generated architectural model is correct by construction. The generated archi-
tectural model is a GraphML file and automatically mapped to XMI. Then, it
can be represented as a UML diagram. Figure 2 illustrates an instance of a step.

3.2 Description of the Transformation Steps
3.2.1 Step 0: Initial Abstract Architectural Model (AAM)

In this step, the architect expresses, at a high level description, the functional re-
quirements using an abstract architectural model that we denote Model®. This
model is handmade. It provides a description of structural requirements such
as communications channels between the networked services and their compos-
ing software components. It represents an instantiation of an architectural style
for SOA-compliant systems. Architectural styles are used to describe software
architectures grouped by common resource types, configuration patterns and
constraints [Abowd et al., 1993]. The proposed style is based on two types of
component namely “Source” and “Destination”, respectively equivalent to “Re-
quester” and “Provider” in SOA. This architectural model (M odel?) is described
as a UML component diagram.

The autonomic components will be included in the next steps. Therefore, we
can consider “Equivalent destinations” for the “Original destinations” in order
to perform the dynamic reconfiguration according to the reconfiguration action
when a degradation occurs to the “Original destination”. Such actions may in-
clude the substitution, the load balancing, etc. The “Equivalent destinations”
are components that offer the same business logic as the original components.

3.2.2 Step 1: Autonomic Architecture Component Model (AACM)
Generation

The goal of this step is to generate an autonomic architecture description model
that extends the initial architecture description by the appropriate components
that manage the behaviour of the system. It plugs in an instance of the autonomic
control loop components between each “Destination” and its “Sources” on the
abstract architectural model.

Model’=Model’<GGg,,,,>

Model° (ids1, Source) (ids2, Source)

(ids1, Source) (ids2, Source)

ida
relatedTo elatedTo AI‘EaIygiS)

. ; Rule-based
communicate ommunicates .
Transformation

relatedTo
i, — | @

OriginalDestination)

relatedTo
(ide,

(idg2, EquivalentDestination, idgl) (idp_,
Execution) Planning)

(idg2,
OriginalDestination)

Figure 3: Application example of the GG s¢ep1 graph grammar

We assume that the abstract architectural model Model is composed of two
“Sources”, a “Original destination” and an “Equivalent destination”. A graphical
representation of the corresponding graph is shown in the left side of Figure 3.
This architectural model is automatically mapped to XMI, then to GraphML.
After that, we run the GMTE which takes this GraphML description as input.
Our Engine applies the graph grammar, GG siep1, described in Table 1 which

GGstept = (AX,NT, T, P) with:
T = {N;(idComponent, typeComponent)},
NT = {(N;, “Equivalent Destination” , id EquivalentComponent) }
and P = {pl,p2,p3}
pl=(
L ={N(Id1, “Source”), Na(Ids,” Original Destination”),
Nl “communicates” NQ};
K = {N1(Idy, “Source”), No(Idz, “Original Destination”)};
R = {Ny(Idy, “Source”), Na(Ida, “Original Destination”),
Ns(Ids, “Monitoring”), Ny(Idy, “Analysis”), N5(Ids, “Planning”),
NG (Idﬁ, “E:cecution”), N3 “relatedT o” le N3 “relatedT o” N4,
NB “relatedT o” NG; N4 “relatedT o” “relatedT o”
N6 NQ},
NAC = {Ny(Idg, “Execution”), Ng LT n,11)

P2 =(
L = {Ny(Idy, “Source”), No(Idg, “Original Destination”),

. . . “relatedT o”
N3(Ids, “Monitoring”), Na(Idy, “Analysis”), Ny
“relatedT o” “relatedT o”
_relatedTo”, N,}:

N5;N5 NGv

“relatedT o”

No,
N3 e 4 N4, N3

K = {N1(Idy, “Source”), No(Idz, “Original Destination”),
Ns(Ids, “Monitoring”), Na(Idy, “Analysis”), Ns “relatedTo”
N3 “relatedT 0” NQ};

R = {N1(Idy, “Source”), Na(Idy, “Original Destination”),
Ns(Ids, “Monitoring”), Ny(Idy, “Analysis”), N3 “relatedTo”
N relatedTo? nr -y, CrelatedTo oy

N47

Nla

p3 =(
L = {Ny(Idy, “Original Destination”), Ng(Idg, “Execution”),

N7 (Id7, “Equivalent Destination”, Ids), Ng [relatedTo”, Ny}
K = {Nx(Idy, “Original Destination”), Ng(Idg, “Execution”),

NG “relatedT o” NQ};
R = {Ny(Ids, “Original Destination”), N¢(Idg, “Execution”),

N7 (Id7, “Original Destination”), Ng “relatedTo” No,

N6 “relatedT o” N7},)

Table 1: Grammar productions for the generation of the AACM

incorporates effectively the autonomic control loop components. A graphical
representation of the output graph is shown in the right side of Figure 3.

We use the following notations in the sequel: graph nodes are repre-
sented by N;(atty,---att,) where “” allows a node to be identified in
the graph and where atty,---att, are attributes of the node. Attributes
represent the uplet: (idComponent, typeComponent) if the node is termi-
nal and (idComponent, typeComponent, idEquivalentComponent) if the
node is non-terminal. The typeComponent attribute defines the type of
the component. It is defined as an enumeration type. This type is de-
fined by the values of the set S; with Sy={Source, OriginalDestination,
EquivalentDestination, Monitoring, Analysis, Planning, Execution}. The
attribute IdEquivalentComponent is used when the type of the component
(typeComponent) value is EquivalentDestination.

In Table 1, the production pl substitutes the communication link between
“Source” (N3) and “OriginalDestination” (N4) by an autonomic control loop
-Monitoring, Analysis, Planning, Execution- (N3, Ny, N5, Ng).

Applying the production p2 substitutes the link between “Source” (N1) and
“OriginalDestination” (Nz2) by a link between “Monitoring” (N3) and “Source”
(N7). Connecting the monitoring node to the source enables the capture of nec-
essary measurements that will be used by the analysis node.

Applying the production p3 transforms an “EquivalentDestination” on a
“OriginalDestination” (N7) and links the execution node Ng (“Execution”) to
the new node. This production allows to the execution node the enforcement of
reconfiguration plans that adapt the behavior of the application.

The application of GG giep1 is performed as follow: we apply the production
pl as long as possible. When it is not applicable, we apply the p2 as long as
possible. When it is not applicable, we apply p3.

The autonomic architectural model resulting from this transformation is
given as a GraphML description. It corresponds to the graph of Model® in the
right side of Figure 3. This graph includes new components namely: Monitoring,
Analysis, Planning, and Execution.

In Model®, the nodes are linked through the label communicates that de-
scribes their interactions. In Model!, all nodes are connected to each other via
a new label namely relatedTo. A is relatedTo B means that A and B can
exchange data flows or invocations.

Despite the transformation made on the abstract conceptual architectural
model (Model®), the autonomic architectural model still keeps the abstract
view via the relatedTo label and the added autonomic abstract components.
In the next subsection, we detail these abstract components regarding the non-
functional requirements.

3.2.3 Step 2: Autonomic Architecture Deployment Model (AADM)
Generation

In this step, we refine the content of autonomic control loop components regard-
ing the non-functional requirements. We use the GMTE and graph grammars in
order to refine the current architectural model. The input of this step is Model*
that corresponds to the output of step 1. After transformation, we get the graph
Model? shown in Figure 4.

Model?=Model'<GG

StepB_SuurceSideMonitoring>

(ids1, Source) (ids2, Source)

monitors) monitors
(idm,

Monitoring)

(idssm1,
SourceSideMonitor

(idssm2,
ourceSideMonitor)

(idgl, i
OriginalDestination) (idl, Log)

(iddc, (iddm, calls
DynamicConnector) DestinationManager)

relatedTo calls

‘idgz,
OriginalDestination)

(idvd, (ide,
VirtualDestination) Execution)

Figure 4: Application example of the GG step2_sourceSide Monitoring graph gram-
mar

A first set of refinement graph grammar productions (pl and p2 of
GG step2_SourceSideMonitoring) allows adding new nodes composing the Execu-
tion node. In our reconfigurable architectural model, the Execution node contains
three children: “DestinationManager”, “DynamicConnector” and “VirtualDesti-
nation”. The “DestinationManager” enforces the dynamic reconfiguration plans.
The “DynamicConnector” is the main node in the Execution. It binds the source
requests, initially sent to the “VirtualDestination”, to the “OriginalDestination”.
This is done according to the plan performed by the “DestinationManager” node.
The “VirtualDestination” offers the same interfaces as the “OriginalDestination”
with an empty body.

Therefore, a new label is added namely has-a and the relatedTo is refined
to calls. A has-a B, means that the node A is a composite and B is a child of
A. While, A calls B means that the node A invokes the node B.

The production p3 of GGstep2_SourceSideMonitoring details the Monitor-
ing node. The relatedTo links are refined to monitors links. A monitors

GGStep2_Sou'r'ceSideMonitoring = (AX, NT7 T, P) with:
T = {N;(idComponent, typeComponent)},
NT = {} and P = {pl,p2,p3}

pl=(
L = {Ny(Idy, “Source”), No(Ids, “Monitoring”), Ng(Ids, “Analysis”),
No(Idy, “Planning”), N1o(Id1o, “Ezecution”),
Ng(Idg, “Original Destination”),

“relatedT o” “relatedT o”

Ny ————— N1, No —————— N,
“relatedT o” “relatedT o”

Ny Nig, Nijo ——— N,
“relatedT o” “relatedT o”

Na Nio, Ns Ny } ;

K= {Nl(Icll7 “Source”), Na(Idz, “Monitoring”), Ng(Ids, “Analysis”),
Ny(Idy, “Planning”), N1o(Idyo, “Execution”),
Ng(Idg, “Original Destination”)};

= {N1 (Idy, “Source”), No(Ids, “Monitoring”), Ns(Ids, “Analysis”),

Ny(Idy, “Planning”), N1o(Idyo, “Execution”),
Ns(Idg, “Original Destination”),
Ny(Idy, “DynamicConnector”), N;(Idz, “Virtual Destination”),
Ns(Ids, “Log”), N11(Id11, “Destination M anager”),

“monitors” “calls”
No Ny, No —— N3,
“has—a” “has—a’ “has—a”
Nio Ny, Nyip 222224 Ny, Ny Ny,

“calls” calls calls

N3 ——— Ng, Ng ———— Ng, Ng ——— N1,
“relatedT o” “calls” calls

Nyg ———— Ny, Ny ——— Ng, Ny —— N7 };)

p2 =(
L = {N4(Idy, “DynamicConnector”), N1o(Idyo, “Execution”),
Ns(Idg, “OrlglnalDestlnatlon”)s

N10 “has—a” N4, N10 “has—a” Nﬁ}

K = {Ny(Idy, “DynamicConnector”), Nio(Id1o, “Execution”),
Ns(Idg, “Original Destination”),
Nyp o=, Ny}

R = {N4(Idy, “DynamicConnector”), N1o(Idyg, “Execution”),
Ne(Ids, “OriginalDestmation”),

“has—a” calls
Nyg ——— Ny, Ny —— Ng};)

p3 =(
L = {N:1(Idy, “Source”), No(Ida, “Monitoring”), Ns(Ids, “Log”),
“calls”

N2 e Ng,
N2 “monitors” N1}7

K = {N1(Idy, “Source”), Ny(Idz, “Monitoring”), N3(Ids, “Log”),
N2 “calls” Ng},

R = {Ny(Idy, “Source”), Na(Ids, “Monitoring”), N3(Ids, “Log”),
Ny(Idy, “SourceSide Monitor”)

“has—a” “calls”

N2 e N4,N2 e]\737
“monitors”
Ny ———— Ni}y)

Table 2: Grammar productions for the generation of the AADM

B means that the node A observes either the flows or the state of the
node B. The graph grammars corresponding to this refinement depend on
the non-functional requirements that define the QoS to monitor. The ab-
stract monitoring component can be refined to three different models cor-
responding to three different graph grammars (GG step2_SourceSideMonitorings
GGStepQ-DestinationSideMonitom'ng; GGStepQ-BothSidesMonitom'ng)' Two types of
nodes can be added,“SourceSideMonitor” and “DestinationSideMonitor”, de-
pending on the needs of the architect.

Enabled Source Side Monitoring: This architectural model corresponds to
monitoring only the source side. The monitor belongs only to the requester. For
instance, it enables monitoring the response time. The associated graph grammar
(GGStep2_SourceSideMonitoring) is described in Table 2.

Enabled Destination Side Monitoring: This architectural model (obtained
using GG step2_DestinationSide Monitoring) cOrresponds to monitoring only the des-
tination side. We associate for all equivalent providers a single monitor. For
instance, it enables monitoring the execution time. For sake of shortness, we do
not give this graph grammar.

Enabled both Source and Destination Sides Monitoring: This architectural
model (obtained using GG step2_BothSidesMonitoring) COrresponds to monitoring
both source and destination sides. It deploys monitors in both sides. In addition
to the response time and the execution time, it enables monitoring the commu-
nication time. For sake of shortness, we do not give this graph grammar.

In Table2, a terminal node is represented by an up-
let: (idComponent, typeComponent). The typeComponent attribute defines the
component type. It is defined as an enumeration. This type is defined by the
values of the set Sy with So = {Source, Execution, Monitoring, Log, Analysis,

Planning, VirtualDestination, OriginalDestination, SourceSideM onitor,
DynamicConnector, DestinationM anager}.

The application of GG step2_SourceSideMonitoring is performed as follow: we
apply the production pl as long as possible. When it is not applicable, we apply
the p2 as long as possible. When it is not applicable, we apply p3.

In the output architectural model of this step (Model?), the abstract
relatedTo labels is refined to has-a, monitors and calls that describe the
interaction between nodes, and new nodes have been added that give a detailed
view of the architectural model regardless of the platform.

Figure 4 shows the content the autonomic control loop components. In this
case, only a source side monitor is deployed. Requests are sent to the “Vir-
tual Destination”, and then intercepted by the “Dynamic Connector” which
reroutes them to the suitable “Original Destination”. More details are available
in [Emna Mezghani, 2013].

The resulting architectural model, which is autonomic enabled, can perform a
dynamic reconfiguration when a QoS degradation occurs to recover the running
application. Then, it is easily mapped to SOA: each component corresponds
to a service. The implementation of this architectural model allows to get an
autonomic Web Service based-application that is continuously adapted.

4 The Campus-Wide Smart Metering: an Application Use
Case

In this section, we present our motivating example namely Campus- Wide Smart
Metering (CWSM). Then, from this example, we present some transformations
and refinements rules applied on this example in order to obtain a dynamic
reconfigurable application.

4.1 Motivating Example

A considerable attention has been paid in recent years to the construction of
smart buildings regarding their potential for reducing the power consumption.
Whether newly designed, these buildings are equipped with heterogeneous de-
vices (sensors, actuators, etc.), which are able to supervise and react to the
context changes. Figure 5 depicts the CWSM which represents an example of
M2M? applications. Indeed, the M2M application is one of the prominent SOA
applications that are built on top of a network of services. Its architecture evolves
three entities (Device, Gateway and Server). Each entity can provide or consume
a service. The CWSM consists of a Remote Control Unit (RCU) and a number
of smart buildings composed of conference rooms, labs, smart houses, etc.

2 Machine to Machine, http://www.etsi.org/technologies-clusters/technologies/m2m

@
- \& ~ b \
- @
- il @
= Light i 4
— Active Badge” |
/ Air conditioner System \ Smart

DPhune

> 00 -
@) =

b A ' Actors
bb Wi-Fi ‘\/

Presence
Solar Cells) Sensor
Energy Production

Figure 5: Campus-Wide Smart Metering use case

Each smart building includes heterogeneous devices equipped by sensors
which supervise context parameters, and/or actuators that adjust them. Such de-
vices can be air-conditioners, lamps, smart meters, access control badge systems,
power-supply, and solar cells energy production. These cells track the solar ra-
diations in order to convert sun-light into electricity. Sensors record information
related to the environment such as rooms luminosity, human presence, tempera-
ture, etc. According to this information, actuators configure devices in order to
promote and rationalize the efficient use of energy— for example, by turning off
lights and air conditioning in unoccupied areas. This information is transmitted
to the RCU via gateways. Regarding the pervasive nature of this environment,
a number of challenges should be taken into account when designing such build-
ings. Various issues such as the device mobility and the bandwidth consumption
should be considered. Indeed, devices may dynamically join and leave the envi-
ronment in which they are located. So, gateways may reach an overload state that
may lead to a system degradation expressed in terms of increasing the response
time and in worst case, the request will be not delivered because of the Time
out connection. For instance, if the requests sent from the Presence Sensors to
the RCU are not well delivered on time the delivered QoS of our system will not
be ensured such opening the light or turning on the air-condition of the room.
Therefore, it is crucial to conceive an autonomic system at design time that
dynamically reconfigures applications at runtime. In this context, our approach
is located since it incorporates the dynamic reconfiguration to SOA-compliant
applications. We illustrate the efficiency of our approach by considering the sen-
sors as sources that generated data and the gateways as destinations that offer

the service “connect_to_.RCU” in order to route these data to the RCU.

4.2 Implementation

In this section, we present the architectural models generated by our approach.
The first architectural model (Model®) is drawn by the architect in which he
describes the business requirements. We used an enhanced version of the tool
G-Meidya [Khlif et al., 2012] which is provided as an Eclipse plugin, used to
portray software architectures. As described in Figure 6, we illustrate in this
model the communication between the Presence Sensor, the Light, the Gateway
already connected to them and an Fquivalent Gateway that offers the same
functionality.

<node id="n0">

CWSM (Model°) .gg <data >Presence Sensor</data>
<data >Source</data>

</node>

e ——1 . =] <node id="n1">
Presence Sensor% Light % <data >Light</data>
<data >Source</data>
</node>
<node id="n2">
<data >Gatewayl</data>
<data >ConcreteDestination</data>
</node>
<node id="n3">
<data >Gateway2</data>

Gateway2 % € ta>
<data >EquivalentDestination</data>
<data >Gatewayl</data>

EquivalentTo </node>
3 <edge source="n0" target="n2">

[E <data >communicate</data>
</edge>

_n W <edge source="n1" target="n2">
<Component NameComponent="Presence Sensor" > <data >communicate</data>

<Port NamePort ="PS.P1" /> </edge>

</Component> o GraphML (Model®)
<Component NameComponent="Light" >
<Port NamePort ="L.P1" />

Gatewayl %

sajesunwiwo)

sajedunwwo)

</Component> <Connector NameConnector="C1" source="PS.P1" target="G1.P1" >
<Component NameComponent="Gateway1" > <dgta Nar;w: Communicates”/>
<Port NamePort ="G1.P1" /> </Connector > . I . N
<Port NamePort ="G1.P2" /> <Connector NameConnector="C2" source="L.P2" target="G1.P1" >
<Port NamePort ="G1.P3" /> <data Name="Communicates"/>
</Component> </Connector >
<Component NameComponent="Gateway2" > <Connector NameConnector="C3" source="G2.P3" target="G1.P1" >
<Port NamePort ="G2.P1" /> <data Name="EquivalentTo"/>

o Connector > XMI (Model®)
</Component> </

Figure 6: Model® of CWSM in three formats: UML, XMI and GraphML

The first transformation incorporates the autonomic control loop compo-
nents. Therefore, the UML component diagram Model®, which represents the
entities system, will be generated in the XMI format thanks to G-Meidya. This
file will be automatically transformed to the GraphML format in order to be
the input to the GMTE as presented in Figure 6. The XMI file describes the
business components and the communication connectors. While, each node in
the GraphML file corresponds to a component and each edge is equivalent to a
communication link.

As a first transformation, the graph grammar GGgstep1 productions will be
executed under GMTE. The final result of this graph grammar Model® is pre-
sented in Figure 7 in the UML, XMI and GraphML formats.

<!--business components-->

[}
o)
w

CWSM (Model?)

Presence
Sensor

<node id="n4">
<data>Alea383</data>
<data>Monitor</data>

</node>

<node id="n5">
<data>Alea886</data>
<data>Analysis</data>

</node>

<node id="n6">
<data>Alea777</data>
<data>Plan</data>

</node>

<node id="n7">
<data>Alea915</data>
<data>Execution</data>

</node>

<edge source="n4" target="n0">
<data>relatedTo</data>

</edge>

<edge source="n4" target="n1">
<data>relatedTo</data>

</edge>

<edge source="n4" target="n5">
<data>relatedTo</data>

</edge>
GraphML (Model?)

o1pae|ay
oLpatejay

RelatedTo

<!--business components-->

<Component NameComponent="Monitoring" >
<Port NamePort ="M.P1" />

<Port NamePort =
<Port NamePort =

<Port NamePort ="M.P4" />

</Component>

<Component NameComponent="Analysis" >
<Port NamePort ="A.P1" />

<Port NamePort ="A.P2" />

</Component>

<Component NameComponent="Planning" >
<Port NamePort ="P.P1" />

<Port NamePort ="P.P2" />

</Component>

<Component NameComponent="Execution" >

<Port NamePort ="E. P1" />
<Port NamePort ="E.P2" />
<Port NamePort ="E.P3" />

<Connector NameConnector="C1" source="M.P1" target="L.P1" >
<data Name="Communicates" />

</Connector >

<Connector NameConnector="C2" source="M.P2" target="PS.P1" >
<data Name="Communicates" />

</Connector >

<Connector NameConnector="C3" source="M.P3" target="E.P1" >
<data Name="EquivalentTo"/>

</Connector >

<Connector NameConnector="C4" source="M.P4" target="A.P1" >
<data Name="EquivalentTo" />

</Connector >

<!--connectors-->

XMI (Model?)

</Component>

Figure 7: Model' of CWSM in three formats: UML, XMI and GraphML

Finally, after executing all the graph grammars corresponding to step 1 and
step 2, we generate the architectural model illustrated in Figure 8. It is an auto-
nomic architecture able to dynamically reconfigure the application at runtime.

The Source Side Monitors observe QoS parameters. In this case, it corre-
sponds to the response time between sensors and the gateway (Gatewayl). Col-
lected Values are saved in the Log. The Analysis component is notified about the
availability of new data. Then, it detects possible QoS degradation. If detected
(the Gateway! is overloaded), it asks the Planning component for a reconfigura-
tion plan. The plan corresponds to a set of elementary reconfiguration actions.
For instance, it may be the load balancing. Before performing the reconfigura-
tion, all requests are sent to the Virtual Destination which reroutes them to
the Gateway! then to RCU. When performing a dynamic reconfiguration, the
Destination Manager provides and deploys a new Dynamic Connector which

CWSM (Model?) 'R
Presence i
Sensor Light %
monitors
S SourceSide
L] .‘ Monitor '
H has-a | |
3 2
SourceSide 3!
Monitor : E Monitoring: . L]
Analysis %
[] o =
S |
m Log * 2 .
T calls & . -
Gatewayl % a" r n ER PR
calls A (] ()'| Planning :
] .‘ calls £
2 Dynamic Destination
Connector * Manager : callse=]]
calls 5
B S \
calls L] -
O T —] | Erecution S50
2 (@))
Virtual hag-¥ "“ | |
Destination : e -
L has-a u
e
\J

Figure 8: Model? of CWSM in UML

has the load balancing capability. The application will regain the correct state.
After executing the reconfiguration, 50% of requests (from sensors) are sent to
RCU through the Gatewayl and 50% through the Gateway2. This will enhance
the performance and avoid degradation.

An implementation of this architectural model with the Web Service tech-
nology has been already evaluated while using the “Load Balancing” as a recon-
figuration action [Emna Mezghani, 2013].

5 Conclusion

Building dynamically reconfigurable architectures although important for a wide
range of domains remains a task performed by hand. Autonomic architectures in-
clude the different components allowing a system to observe its state, to analyze
it and to plan and execute reconfiguration actions. However, manually archi-
tecting autonomic systems is a hard task and may be error-prone. Therefore,
it is important to provide an approach for automating their correct-by-design
elaboration to satisfy requirements.

In this paper, we introduced a three-step approach that automates the trans-
formation and the refinement of a given static architecture into a dynamically
reconfigurable architecture. Without disturbing the functional requirement of
the supported systems, the system architecture is enriched with new capabili-
ties for managing the non-functional requirements at runtime. Endowing such
capabilities is achieved using graph transformations and refinements rules.

Our approach hides application complexity and minimizes both design time
and errors. The only effort considered from the architect side was to elaborate
the initial abstract business model, and all transformations and refinements are
automated. This approach is likely to be a helpful basis towards significant im-
provements on software scheduling and correctness, which may be especially
useful for complex systems.

Our future work will mainly focus on representing or formalizing the non-
functional requirements, currently described in XML format. Such formalization
may include a semantic description using ontologies to reason and extend the
power of the characterization of services.

Acknowledgments

This research is supported by the ITEA2’s A2NETS (Autonomic Services in M2M
Networks) project?.

References

[Abowd et al., 1993] Abowd, G., Allen, R., and Garlan, D. (1993). Using style to un-
derstand descriptions of software architecture. SIGSOFT Softw. Eng. Notes, 18(5):9—
20.

[Baresi et al., 2004] Baresi, L., Heckel, R., Thne, S., Varro, D., Varr, D., and Milano,
P. D. (2004). Style-based refinement of dynamic software architectures. In In Proc. 4
th Working IEEE/IFIP Conference on Software Architecture, WICSA/, pages 155—
164. TEEE.

[Brandes et al., 2001] Brandes, U., Eiglsperger, M., Herman, 1., Himsolt, M., and Mar-
shall, M. S. (2001). GraphML Progress Report. In Graph Drawing, pages 501-512.
[Cao et al., 2008] Cao, X.-X., Miao, H.-K., and Xu, Q.-G. (2008). Modeling and re-
fining the service-oriented requirement. In Proceedings of the 2008 2nd IFIP/IEEE
International Symposium on Theoretical Aspects of Software Engineering, TASE 08,

pages 159-165, Washington, DC, USA. IEEE Computer Society.

[Chomsky, 1956a] Chomsky, N. (1956a). Three models for the description of language.
Information Theory, IRE Transactions on, 2(3):113-124.

[Chomsky, 1956b] Chomsky, N. (1956b). Three models for the description of language.
IEEFE Transactions on Information Theory, 2(3):113-124.

[Cristian Ruz and Sauvan, 2011] Cristian Ruz, F. B. and Sauvan, B. (2011). Flexible
adaptation loop for component-based soa applications. In ICAS 2011, The Seventh
International Conference on Autonomic and Autonomous Systems, pages 29-36.

[Emna Mezghani, 2013] Emna Mezghani, Riadh Ben Halima, K. D. (to appear in
2013). DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services,
chapter Web Services Foundations, page 24p. Springer.

[Ermel et al., 1999] Ermel, C., Rudolf, M., and Taentzer, G. (1999). Handbook of
graph grammars and computing by graph transformation. chapter The AGG ap-
proach: language and environment, pages 551-603. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA.

3 A2Nets: Autonomic Services in M2M Networks, https://a2nets.erve.vtt.fi/, last visit
in August 2012

[Gauvrit et al., 2010] Gauvrit, G., Daubert, E., and Andr, F. (2010). Safdis: A frame-
work to bring self-adaptability to service-based distributed applications. In SEAA’10:
Proceedings of the 2010 36th EUROMICRO Conference on, Software Engineering and
Advanced Applications, pages 211 — 218. IEEE Computer Society.

[Gei et al., 2006] Gei, R., Batz, G., Grund, D., Hack, S., and Szalkowski, A. (2006).
Grgen: A fast spo-based graph rewriting tool. In Corradini, A., Ehrig, H., Montanari,
U., Ribeiro, L., and Rozenberg, G., editors, Graph Transformations, volume 4178 of
Lecture Notes in Computer Science, pages 383—-397. Springer Berlin Heidelberg.

[Guennoun et al., 2004] Guennoun, K., Drira, K., and Diaz, M. (2004). A proved
component-oriented approach for managins dynamic software architectures. In Proc.
Tth iasted international conference on software engineering and application, Marina
Del Rrey, CA, USA.

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. M. (2003). The vision of
autonomic computing. Computer, 36(1):41-50.

[Khlif et al., 2012] Khlif, I., Kacem, M. H., and khalil Drira (2012). Une approche
de description multi-chelles et multi points de vue pour les architectures logicielles
dynamiques. In La Confrence francophone sur les Architectures Logicielles (CAL).

[Maurel et al., 2010] Maurel, Y., Diaconescu, A., and Lalanda, P. (2010). Ceylon: A
service-oriented framework for building autonomic managers. In Engineering of Au-
tonomic and Autonomous Systems (EASe), 2010 Seventh IEEE International Con-
ference and Workshops on, pages 3 —11.

[Miller and Mukerji, 2003] Miller, J. and Mukerji, J. (2003). Mda guide version 1.0.1.
Technical report, Object Management Group (OMG).

[Pena et al., 2006a] Pena, J., Hinchey, M. G., and Sterritt, R. (2006a). Towards mod-
eling, specifying and deploying policies in autonomous and autonomic systems using
an aose methodology. In Proceedings of the Third IEEE International Workshop on
Engineering of Autonomic & Autonomous Systems, EASE ’06, pages 37-46, Wash-
ington, DC, USA. IEEE Computer Society.

[Pena et al., 2006b] Pena, J., Hinchey, M. G., Sterritt, R., Ruiz-Cortes, A., and
Resinas, M. (2006b). A model-driven architecture approach for modeling, specifying
and deploying policies in autonomous and autonomic systems. In Proceedings of the
2nd IEEE International Symposium on Dependable, Autonomic and Secure Comput-
ing, DASC ’06, pages 19-30, Washington, DC, USA. IEEE Computer Society.

[Rafe et al., 2009] Rafe, V., Rafeh, R., Fakhri, P., and Zangaraki, S. (2009). Using
mda for developing soa-based applications. In Proceedings of the 2009 International
Conference on Computer Technology and Development - Volume 01, ICCTD ’09,
pages 196-200, Washington, DC, USA. IEEE Computer Society.

[Riadh Ben-Halima, 2008] Riadh Ben-Halima, Khalil Drira, M. J. (2008). Survey a
qos-oriented reconfigurable middleware for self-healing web services. In ICWS ’08:
Proceedings of the 2008 IEEE International Conference on Web Services, volume 1,
pages 104 — 111. IEEE Computer Society.

[Rodriguez et al., 2010] Rodriguez, I. B., Drira, K., Chassot, C., Guennoun, K., and
Jmaiel, M. (2010). A rule-driven approach for architectural self adaptation in collab-
orative activities using graph grammars. Int. J. Autonomic Comput., 1(3):226-245.

[Sancho, 2009] Sancho, G. (2009). Modlisation multi-niveau pour des systmes ubiqui-
taires collaboratifs. Congres de doctorants.

[Sheng et al., 2010] Sheng, Q. Z., Yu, J., and Dustdar, S. (2010). Enabling Context-
Aware Web Services: Methods, Architectures, and Technologies. ~ Chapman &
Hall/CRC, 1st edition.

[Utomo, 2011] Utomo, W. H. (2011). Implementation of mda method into soa envi-
ronment for enterprise integration. IJCSI International Journal of Computer Science
Issues, 8(3):1694-0814.

